JP7020203B2 - アンビソニックス信号生成装置、音場再生装置、及びアンビソニックス信号生成方法 - Google Patents

アンビソニックス信号生成装置、音場再生装置、及びアンビソニックス信号生成方法 Download PDF

Info

Publication number
JP7020203B2
JP7020203B2 JP2018045828A JP2018045828A JP7020203B2 JP 7020203 B2 JP7020203 B2 JP 7020203B2 JP 2018045828 A JP2018045828 A JP 2018045828A JP 2018045828 A JP2018045828 A JP 2018045828A JP 7020203 B2 JP7020203 B2 JP 7020203B2
Authority
JP
Japan
Prior art keywords
sound
ambisonics signal
ambisonics
microphone
positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018045828A
Other languages
English (en)
Other versions
JP2019161455A (ja
Inventor
和憲 鈴木
慎一郎 小柳
孝之 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2018045828A priority Critical patent/JP7020203B2/ja
Publication of JP2019161455A publication Critical patent/JP2019161455A/ja
Application granted granted Critical
Publication of JP7020203B2 publication Critical patent/JP7020203B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stereophonic System (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

本開示は、アンビソニックス信号生成装置、音場再生装置、及びアンビソニックス信号生成方法に関する。
従来から、劇場やホール等の音響設計に使用する検討ツールとしては、コンピュータシミュレーションと縮尺模型実験とが挙げられる。コンピュータシミュレーションを検討ツールとして用いる手法では、室の3次元形状をCAD(Computer Aided Design)モデル化し、その空間内の音の伝搬性状を幾何音響学に則って検討する。近年はコンピュータの計算能力の向上と、建築図書がCAD化され室形状データを建築設計者と共有することが可能となったことから、経済性かつ機動力のあるツールとなりつつある。
しかしながら、コンピュータシミュレーションを用いた手法では、信号の反射、解析、及び散乱に関する仮定が、実音場と大きく異なる場合がある。また、コンピュータシミュレーションでは、実際の建築物では重要な要素である2次元曲面や3次元曲面等のさまざまな不規則表面や意匠的ディテールを扱うことは困難である。
一方、縮尺模型実験を検討ツールとして用いる手法では、一般に、実寸の1/10~1/20縮尺の実音場の模型を製作し、相似則を満たした条件下で音の伝搬を計測する。例えば、建築CADデータをもとにNC(Numerically Controlled)工作機械を利用することで、精巧な模型を製作できる。つまり、縮尺模型実験を用いた手法では、室形状に関するファクターを相当な精度で模擬することが可能であり、有効な計算方法が確立されていない曲面やディテールの影響までを含んだ検討ができる。そのため、高い音響的品質の求められるプロジェクト等では、縮尺模型実験は、重要なツールとなっている。
「高臨場感音響技術とその理論」 安藤、IEICE Fundamentals Review, Vol.3, No.4,pp33-46, 2010
上述した縮尺模型実験では、例えば、縮尺模型の受音位置において、2本のモノラルマイクを、離間して設置する、或いは小型のステレオマイクを用いる方法がある。この方法は、容易に測定できるが、再生できる音場も2次元に限られるため、通常のステレオ再生程度の音場の再生しかできないという問題点がある。
また例えば、小型ダミーヘッドを用いて集音する方法がある。この方法は、頭部伝達関数を模擬する方法で、3次元の音響空間を集音及び再生できるが、集音時の小型ダミーヘッドの頭部・耳介・肩等の形状と、再生時の聴取者の同形状が完全に相似側を満たしている必要があり、異なる場合には正確に再現されないという問題がある。また、再生音をヘッドホンで呈示する場合には、上記のような問題は避けることが出来るが、技術的に頭外定位させることが難しく、立体音場の再生は困難である。
一方、実音場を3次元で集音・再生する方法として、アンビソニックス方式がある。アンビソニックスは、受音点における音圧を球面調和関数で階層的に展開する方法で、モノフォニックから3次元立体音場の集音・再生が定式化されている(例えば、非特許文献1参照)。
1次アンビソニックスは、球面調和関数の1次までの展開係数を用いる方法であり、無指向性(0次)及び、x,y,z軸方向の指向性について実音場における集音方法には、Aフォーマット及びBフォーマットの2種類がある。Aフォーマットでは、4個のカーディオイド型マイクロホンを正四面体の頂点に配置したものを用いる。また、Bフォーマットでは、マイクロホンユニットの中心付近に、双指向性マイクロホンを、x,y,z軸方向用に1個ずつと無指向性マイクロホン1個を配置したものを用いる。そして、演算により無指向性及び双指向性の特性を得る方法である。
さらに、精度の高い集音を行うためには、球表面上に設置した多チャンネルマイクロホンを用いる方法により、高次の指向性を得る方法が実用化されている。
そのため、アンビソニックス方式を縮尺模型実験に適用して、3次元音場を可聴化することが望まれている。しかしながら、この場合、相似則により超音波帯域での測定が必要となるが、小型でこの条件を満たすアンビソニックス用のマイクロホンは、現状では存在しない。
このように、従来の方法を縮尺模型実験に適用した場合、縮尺模型内での集音した音によるアンビソニックス信号の生成が適切に成されず、音場の再生が困難だった。
本発明は上記問題点を解決するためになされたものであり、縮尺模型実験に適用した場合でも、適切なアンビソニックス信号の生成が可能なアンビソニックス信号生成装置、音場再生装置、及びアンビソニックス信号生成方法を提供することを目的とする。
上記目的を達成するために、第1の態様のアンビソニックス信号生成装置は、予め定められた対象周波数帯域の音を集音する単一のマイクロホンと、前記対象周波数帯域の上限周波数の音の半波長未満の値に応じて定めた距離離れた複数の位置の各々に、前記マイクロホンを移動させる移動部と、前記複数の位置の各々において前記マイクロホンによって集音された音の信号に基づいて、アンビソニックス信号を生成する信号生成部と、を含む。
第1の態様のアンビソニックス信号生成装置では、単一のマイクロホンを移動部により、対象周波数帯域の上限周波数の音の半波長未満の値に応じて定めた距離離れた複数の位置の各々に移動させて、マイクロホンによって集音された音の信号に基づいて、アンビソニックス信号を生成する。これにより、第1の態様のアンビソニックス信号生成装置によれば、縮尺模型実験に適用した場合でも、適切なアンビソニックス信号の生成が可能となる。
第2の態様のアンビソニックス信号生成装置は、第1の態様のアンビソニックス信号生成装置において、前記対象周波数帯域は、周波数に応じて分割した複数の帯域の中の2つ以上の帯域であり、前記距離は、前記2つ以上の帯域各々の上限周波数の音の半波長未満の値に応じて定められている。
第2の態様のアンビソニックス信号生成装置では、対象周波数帯域が、周波数に応じて分割した複数の帯域の中の2つ以上の帯域であるため、1つの帯域(分割しない場合)と比べて、マイクロホンのSN(signal-to-Noise)比を向上させることができる。
第3の態様のアンビソニックス信号生成装置は、第1の態様または第2の態様のアンビソニックス信号生成装置において、前記マイクロホンは、実音場を縮尺して作成した縮尺模型空間内の音を集音する。
第3の態様のアンビソニックス信号生成装置では、実音場を縮尺して作成した縮尺模型空間内の音をマイクロホンにより集音するため、縮尺模型内での集音された音によりアンビソニックス信号を生成することができる。
第4の態様に記載のアンビソニックス信号生成装置は、第1の態様から第3の態様のいずれか1態様のアンビソニックス信号生成装置において、前記複数の位置は、前記信号生成部で生成するアンビソニックス信号の次数をnとした場合、(n+1)以上の位置に定められる。
第4の態様のアンビソニックス信号生成装置では、アンビソニックス信号の次数をnとした場合、(n+1)以上の位置でマイクロホンによって集音されるため、再現精度の高いアンビソニックス信号を生成することができる。
第5の態様に記載のアンビソニックス信号生成装置は、第1の態様から第4の態様のいずれか1態様のアンビソニックス信号生成装置において、前記複数の位置は、集音対象空間内に想定された三次元空間座標の原点に対応する位置、前記三次元空間座標の三軸各々の軸上における原点に対して対称な一対の点の各々に対応する位置を含む。
第5の態様のアンビソニックス信号生成装置では、集音対象空間内に想定された三次元空間座標の原点に対応する位置、三次元空間座標の三軸各々の軸上における原点に対して対称な一対の点の各々に対応する位置において、マイクロホンにより集音される。これにより、第5の態様のアンビソニックス信号生成装置によれば、適切な位置においてマイクロホンによって集音されるため、再現精度の高いアンビソニックス信号を生成することができる。
第6の態様に記載のアンビソニックス信号生成装置は、第1の態様から第5の態様のいずれか1態様のアンビソニックス信号生成装置において、前記複数の位置は、前記距離が異なる位置を含む。
第6の態様のアンビソニックス信号生成装置では、距離が異なる位置においてマイクロホンにより集音された音を含むことができるため、集音の際の位置決めの自由度を高めることができる。
上記目的を達成するために、第7の態様の音場再生装置は、第1の態様から第6の態様のいずれか1態様に記載のアンビソニックス信号生成装置と、前記アンビソニックス信号生成装置が生成するアンビソニックス信号を用いて、スピーカを駆動する駆動信号を生成する駆動部と、を含む。
第7の態様の音場再生装置は、駆動部が、本開示のアンビソニックス信号生成装置により生成されたアンビソニックス信号から生成した駆動信号により、スピーカを駆動することができる。このように第7の態様の音場再生装置によれば、縮尺模型実験に適用した場合でも、適切なアンビソニックス信号の生成が可能となり、適切に音場の再生が成される。
上記目的を達成するために、第8の態様のアンビソニックス信号生成方法は、単一のマイクロホンが、予め定められた対象周波数帯域の音を集音するステップと、移動部が、前記対象周波数帯域の上限周波数の音の半波長未満の値に応じて定めた距離離れた複数の位置の各々に、前記マイクロホンを移動させるステップと、信号生成部が、前記複数の位置の各々において前記マイクロホンによって集音された音の信号に基づいて、アンビソニックス信号を生成するステップと、を含む。
本開示によれば、縮尺模型実験に適用した場合でも、適切なアンビソニックス信号の生成を可能とすることができる。
実施形態の音場再生システムの構成の一例を示す構成図である。 実施形態の音源の一例を示す図である。 実施形態のマイクロホン及び移動部の一例を示す図である。 実施形態の音場再生装置(アンビソニックス信号生成装置)の制御系の構成の一例を示すブロック図である。 実施形態のアンビソニックス信号生成処理の流れの一例を示すフローチャートである。 1次アンビソニックス信号を得るためのマイクロホンの集音位置の位置例を説明する図である。 実施形態のアンビソニックス信号再生処理の流れの一例を示すフローチャートである。 2次アンビソニックス信号を得るためのマイクロホンの集音位置の位置例を説明する図である。
以下、図面を参照して本発明の実施形態を詳細に説明する。なお、本実施形態は本発明を限定するものではない。
まず、図1を参照して、本発明が適用された音場再生システム1の全体構成の一例について説明する。
図1に示すように、本実施形態の音場再生システム1は、音場再生装置10、縮尺模型12、音源14、及びスピーカ18を備える。また、図1に示すように、本実施形態の音場再生装置10は、アンビソニックス信号生成装置20及びアンビソニックスデコーダ30を備える。さらに、アンビソニックス信号生成装置20は、マイクロホン22、移動部24、制御部26、及びアンビソニックス信号生成部28を含む。
本実施形態の縮尺模型12は、一例として、実音場を、1/10に縮小した模型である。なお、模型の縮小率は、本実施形態に限定されないことは言うまでもない。縮尺模型12内には、音源14、マイクロホン22、及び移動部24が配置されている。
音源14は、縮尺模型12用の音源である。本実施形態の音源14は、縮尺模型実験に用いる音源として必要とされる、十分な音響パワー、広帯域で平坦な周波数特性、放射波形の再現性(ヒステリシスを生じないこと)が良いこと、及び寿命・耐久性が良いこと等の性能を満たしている。また、音源14は、物理量の測定に際しては、ISO3882の12面体音源との相似性を満たしている。本実施形態の音源14の一例を図2に示す。
図2に示した音源14は、圧電型振動体であるPVDF(PolyVinylidene DiFluoride)膜を貼り合わせた振動膜周辺を固定し、波形に保持したものを振動体として用いた。振動体の1ユニットの寸法は、22.8mm×11.8mm×3.8mm、タックの幅と深さは3mm~6mm、及び0.5mm~1mmとした。この振動体を、12面体の各面に振動部14Aとして取り付け、1/10縮尺の12面体スピーカとして音源14を制作した。
なお、本実施形態の音源14は、周波数が40kHzまでに対応する低音域用の音源14と、周波数が14kHz~300kHzまでに対応する高音域用の音源14とを、集音対象とする対象周波数帯域に応じて使い分けている。
一方、本実施形態のマイクロホン22には、アンビソニックス信号を集音する単一のマイクロホンを用いた。具体例として、本実施形態では、マイクロホン22として、B&K社製、4138型、外部偏極型音圧音場マイクロホンを単一で用いた。本実施形態のマイクロホン22は、音源14から出力された音を集音し、集音した音の信号をアンビソニックス信号生成部28に出力する。
本実施形態のマイクロホン22は、移動部24に取り付けられており、移動部24によって、所定の複数の位置(詳細後述)の各々に移動が可能である。本実施形態のマイクロホン22及び移動部24の一例を図3に示す。本実施形態の移動部24は、自動ステージ24Aと、自動ステージ24Aに取り付けられた保持部24Bと、保持部24Bの先端に取り付けられた保持部24Cとを有している。保持部24Cの先端には、マイクロホン22が保持されている。
自動ステージ24Aは、制御部26に接続されており、制御部26の指示により、保持部24Cに保持されているマイクロホン22を、3次元方向(x,y,z)方向に自動的に移動する。なお、自動ステージ24Aの外装は、吸音材で被覆されており、音源14からの音が反響(反射)しないようにされている。
本実施形態では、具体例として、中央精機製、ハイグレードXYステージ、ALD-4011-G0Mと、中央精機製、ハイグレードZ昇降ステージ、LV-4042-1と、を組合せることにより、位置決めの精度が0.01mm、ステージの寸法が40mm×40mm、及び高さが90mmの自動ステージを制作して、移動部24として用いた。なお、保持部24Bの長さは280mmであり、保持部24Cの長さは50mmとした。
本実施形態の制御部26は、音源14から予め定められた対象周波数帯域の音を出力させる制御を行う機能を有する。また、制御部26は、マイクロホン22を予め定められた所定の複数の位置(詳細後述)に移動させるための指示を移動部24に出力する機能を有する。
アンビソニックス信号生成部28は、マイクロホン22から出力された音の信号に基づいて、アンビソニックス信号を生成する。本実施形態のアンビソニックス信号生成部28が、本開示の信号生成部の一例である。
アンビソニックスデコーダ30は、アンビソニックス信号生成部28により生成されたアンビソニックス信号をデコードして、音場を再現するための複数のスピーカ18各々を駆動するための駆動信号を生成する。本実施形態のアンビソニックスデコーダ30が、本開示の駆動部の一例である。
本実施形態の制御部26、アンビソニックス信号生成部28、及びアンビソニックスデコーダ30は、サーバコンピュータ等により実現できる。図4を参照して、音場再生装置10(アンビソニックス信号生成装置20)の構成について説明する。図4に示すように、本実施形態の音場再生装置10は、CPU(Central Processing Unit)40、ROM(Read Only Memory)42、及びRAM(Random Access Memory)44、及びI/F(Interface)部46を備える。CPU40は、音場再生装置10の全体の動作を制御する。ROM42には、CPU40で実行される、後述するアンビソニックス信号生成処理プログラム、及びアンビソニックス信号再生処理を含む各種のプログラム等が予め記憶されている。RAM44は、各種データを一時的に記憶する。また、I/F部46は、無線通信及び有線通信の少なくとも一方により、音源14、スピーカ18、及びマイクロホン22の各々と通信を行う。また、I/F部46は、図示を省略したが、無線通信及び有線通信の少なくとも一方により、音場再生装置10の外部装置との間で、各種信号の送受信を行う。移動部24、CPU40、ROM42、RAM44、及びI/F部46は、システムバスやコントロールバス等のバス49を介して相互に接続されている。
次に、本実施形態の音場再生システム1における音場再生装置10の作用について説明する。
(実施例1)
本実施例では、音場再生装置10により1次アンビソニックス信号を生成し、再生する形態について説明する。
まず、本実施例におけるアンビソニックス信号生成装置20による、アンビソニックス信号生成処理について説明する。
本実施例のアンビソニックス信号生成装置20では、一例として、外部装置により行われた縮尺模型実験の開始の指示を受け付けた場合に、CPU40がROM42に記憶されているアンビソニックス信号生成処理プログラムを実行することにより、CPU40が制御部26及びアンビソニックス信号生成部28として機能し、図5に示したアンビソニックス信号生成処理を実行する。
図5に示したステップS100で制御部26は、音源14から対象周波数帯域の音を出力させる。本実施例では、一例として、対象周波数帯域と、集音を行う際にマイクロホン22が配置される位置の距離(以下、「マイクロホン22の距離」ともいう)dと、用いられる音源14との対応関係を、相似則に従って表1のように定めた。表1に示すように本実施例では、一例として、音源14の特性及びマイクロホン22のSN比等を考慮し、下記の表1のように帯域を低音域と高音域との2つに分割した各々の帯域の各々を対象周波数帯域とし、対象周波数帯域毎に、音の出力及び集音を行った。
Figure 0007020203000001
なお、マイクロホン22の距離dは、インパルス応答信号(以下、「IR」という)の差分信号の感度(SN比)を考慮すると、大きい(離間している)ことが好ましいが、空間的なエイリアシングの発生を抑える観点から、集音する音(対象周波数帯域)の上限周波数の半波長(λ/2)未満としている。
次のステップS102で制御部26は、マイクロホン22による集音を管理するための変数mを「1」(m=1)とする。そして、次のステップS104で制御部26は、マイクロホン22をN番目の位置に移動させる。
本実施例は、音源14から受音点の中心w(図6参照)と、中心wからx, y, z軸方向に±d/2離れた複数の位置各々においてマイクロホン22により集音を行う。一例として、本実施形態では、Bフォーマットの信号を集音する場合と同様に、図6に示した7箇所の位置r1~r7の各々に順次、マイクロホン22を配置して集音を行った。図6に示した例では、位置r1が受音点の中心wに対応し、位置r2~r7の各々は、中心wとd/2だけ離れている。なお、本実施形態の中心wが、本開示の三次元空間座標の原点の一例に対応する。
このように、本実施例では、7回集音を行うため、集音回数を表す上記「N」を7としている。なお、マイクロホン22の位置は、図6に示した位置r1~r7に限らず、距離dがλ/2未満を満たす任意の位置であればよい。
次のステップS106ではマイクロホン22により集音が行われ、制御部26は、マイクロホン22によって集音された音声を取得する。
次のステップS108で制御部26は、変数mが集音回数Nと等しい(m=N)か否かを判定する。すなわち、全ての集音位置で集音が行われたか否かを判定する。変数mが集音回数Nと等しくない場合、ステップS108の判定が否定判定となり、ステップS110へ移行する。ステップS110で制御部26は、変数mに「1」を加算(m=m+1)した後、ステップS104に戻り、上記処理を繰り返す。
一方、変数mが集音回数Nと等しい(m=N)場合、ステップS108の判定が肯定判定となり、ステップS112へ移行する。
ステップS112でアンビソニックス信号生成部28は、各集音位置で集音された音の信号からアンビソニックス信号を生成し、本アンビソニックス信号生成処理を終了する。本実施例では、一例としてアンビソニックス信号生成部28は、各音の信号のIRについて、方向別に差分をとることにより、双指向性のIRを導出することにより、アンビソニックス信号を生成する。
次に、このようにして生成された1次アンビソニックス信号による音場の再生について説明する。
本実施形態の音場再生装置10では、一例として、外部装置から音場の再生を指示された場合に、CPU40がROM42に記憶されているアンビソニックス信号再生処理プログラムを実行することにより、CPU40がアンビソニックスデコーダ30として機能し、図7に示したアンビソニックス信号再生処理を実行する。
図7に示したステップS150でアンビソニックスデコーダ30は、アンビソニックス信号生成部28から出力されたアンビソニックス信号をデコードしてスピーカ18を駆動するための駆動信号を生成する。なお、デコード方法(駆動信号の生成方法)は、一般的な、実音場による集音により生成されたアンビソニックス信号のデコード方法と同様の方法とすることができるため、説明を省略する。
次のステップS152でアンビソニックスデコーダ30は、上記ステップS150で生成した駆動信号をスピーカ18の各々に出力し、本アンビソニックス信号再生処理を終了する。
このようにして生成された駆動信号に応じてスピーカ18が駆動し、音声を再生することにより、縮尺模型実験における1次アンビソニックス信号を用いた音場の再生を行うことができる。
(実施例2)
本実施例では、さらに集音の精度を高めるために、音場再生装置10によりn次アンビソニックス信号を生成し、再生する形態について説明する。実施例1の方法をn次アンビソニックス信号の生成・再生に適用した場合、非常に多くの位置でIRの測定を行う(マイクロホン22により集音を行う)必要があり、次数が大きくなるにつれ、導出のための負荷が大きくなり、実現が困難になる。そこで、本実施例では、n次アンビソニックス信号を生成する場合に、より少ない位置で集音を可能とするための形態例について説明する。
まず、本実施例におけるアンビソニックス信号生成装置20による、アンビソニックス信号生成処理について説明する。本実施例のアンビソニックス信号生成装置20により行われるアンビソニックス信号生成処理の全体の流れは、実施例1のアンビソニックス信号生成処理(図5参照)と同様であるため、図5を参照して説明する。
図5に示したステップS100で制御部26は、音源14から対象周波数帯域の音を出力させる。上述したように、マイクロホン22の距離dは、集音する音(対象周波数帯域)の上限周波数の半波長(λ/2)未満である。本実施例では、一例として、対象周波数帯域と、マイクロホン22の距離dと、用いられる音源14との対応関係を、相似則に従って表2のように定めた。表2に示すように本実施例では、一例として、音源14の特性及びマイクロホン22のSN比等を考慮し、下記の表2のように帯域を低音域と中音域と高音域との3つに分割した各々の帯域の各々を対象周波数帯域とし、対象周波数帯域毎に、音の出力及び集音を行った。
Figure 0007020203000002
次のステップS102~S110で制御部26は、実施例1のアンビソニックス信号生成処理のステップS102~S110の各処理と同様に、N箇所の異なる位置に、移動部24によってマイクロホン22を移動させ、各位置で集音を行う。
n次アンビソニックス信号の取得に必要な信号の最小数は、(n+1)である。そのため、例えば、1次アンビソニックス信号を取得する場合、信号の最小数は、4となり、マイクロホン22を最低でも異なる4箇所の位置に配置し、集音する必要がある。また例えば、2次アンビソニックス信号を取得する場合、信号の最小数は、9となり、マイクロホン22を最低でも異なる9箇所の位置に配置し、集音する必要がある。一例として、本実施例では、2次アンビソニックス信号を取得する場合、図8に示した11箇所の位置r1~r11の各々に順次、マイクロホン22を配置して集音を行った。図8に示した例では、実施例1の位置r1~r7に、さらに位置r8~r11が加わっている。位置r8~r11は、位置r6と、高さ方向(z軸方向)の位置が同様である。このように、2次のアンビソニックス信号を取得する場合、図8に示した例では、11回集音を行うため、集音回数を表す上記「N」を11としている。なお、マイクロホン22の位置は、図8に示した位置r1~r11に限らず、距離dがλ/2未満を満たす任意の位置であればよい。
次のステップS112でアンビソニックス信号生成部28は、各集音位置で集音された音の信号からアンビソニックス信号を生成し、本アンビソニックス信号生成処理を終了する。本実施例におけるアンビソニックス信号の生成方法について詳細に説明する。
振幅Qの平面波がψ,φ方向(ψは方位角、φは真上を0°とする仰角)から到来する場合、
Figure 0007020203000003

で平面波が作る音圧pを球面調和展開すると音圧pは、下記(1)式で表される。
Figure 0007020203000004
なお、上記(1)式において、
Figure 0007020203000005

である。
上記(1)式をn次で打ち切り、行列表現して、音源14の平面波に、球面調和関数を乗じると、下記(2)式が得られる。
Figure 0007020203000006
上記(2)式の両辺に、左側からX・Yの擬似逆行列をかけると下記(3)式が得られる。
Figure 0007020203000007

上記(3)式における左辺は平面波の音場の指向性を表し、中辺は任意の
Figure 0007020203000008

におけるマイクロホン22の
Figure 0007020203000009

から導出できる音場の指向性を表す。右辺の太文字のBは平面波のアンビソニックス信号と呼ばれ、1次アンビソニックスではB信号に相当する。
このように、本実施例のアンビソニックス信号生成装置20では、任意の位置においてマイクロホン22により集音した音の信号からB信号を作成することが可能である。
次に、このようにして生成されたn次アンビソニックス信号による音場の再生について説明する。本実施例の音場再生装置10により行われるアンビソニックス信号再生処理の全体の流れは、実施例1のアンビソニックス信号再生処理(図7参照)と同様であるため、図7を参照して説明する。
図7に示したステップS150でアンビソニックスデコーダ30は、アンビソニックス信号をデコードして駆動信号を生成する。本実施例におけるアンビソニックス信号のデコード方法について詳細に説明する。
中心から等距離における同一球面上に、L個のスピーカ18を設置し、これらのスピーカ18から放射される音波は平面波であると仮定し、これらが作る音圧を球面調和展開すると、下記(4)式が得られる。
Figure 0007020203000010

なお、上記(4)式において、(θ,φ)は、原点から見たスピーカ18の方向、aは、各スピーカ18の駆動信号である。
ここで、平面波が作る音圧と、L個のスピーカ18が作る音圧が等しい((1)式=(4)式)とし、展開をn次で打ち切り行列表現し、球面調和関数の直交性を利用すると、下記(5)式が得られる。
Figure 0007020203000011
従って、上記(5)式により、スピーカ18を駆動する駆動信号が導出される。
次のステップS152でアンビソニックスデコーダ30は、上記(5)式により導出された駆動信号をスピーカ18の各々に出力し、本アンビソニックス信号再生処理を終了する。
このようにして生成された駆動信号に応じてスピーカ18が駆動し、音声を再生することにより、縮尺模型実験におけるn次アンビソニックス信号を用いた音場の再生を行うことができる。
以上説明したように、本実施形態のアンビソニックス信号生成装置20は、予め定められた対象周波数帯域の音を集音する単一のマイクロホン22と、対象周波数帯域の上限周波数の音の半波長未満の値に応じて定めた距離d離れた複数の位置の各々に、マイクロホン22を移動させる移動部24と、複数の位置の各々においてマイクロホン22によって集音された音の信号に基づいて、アンビソニックス信号を生成するアンビソニックス信号生成部28と、を含む。
これにより、本実施形態のアンビソニックス信号生成装置20(音場再生装置10)によれば、縮尺模型実験に適用した場合でも、適切なアンビソニックス信号の生成が可能となり、縮尺模型12の音場を3次元の立体音場で試聴することが可能となる。
そのため、本実施形態のアンビソニックス信号生成装置20(音場再生装置10)によれば、プレゼンテーション技術が飛躍的に向上するとともに、高い音響品質で空間印象を評価することが可能となり、音響設計の精度向上に大きく寄与することが可能となる。
また、本実施形態のアンビソニックス信号生成装置20(音場再生装置10)によれば、従来に比べて簡易な構成で、縮尺模型実験に適用した場合でも、適切なアンビソニックス信号の生成が可能となる。
なお、本実施形態では、音場再生装置10(アンビソニックス信号生成装置20)を、適用する集音対象空間を、縮尺模型12空間として形態に説明したが、当該形態に限定されず、実音場(実寸の音場)を集音対象空間としてもよいことは言うまでもない。
また、本実施形態では、マイクロホン22の全ての位置(集音位置)における距離dが同一である形態について説明したが、当該形態に限定されず、距離dがλ/2未満を満たすならば、位置によって、距離dが異なっていてもよい。
また、本実施形態でCPU40がソフトウェア(プログラム)を実行することにより実行したアンビソニックス信号生成処理及びアンビソニックス信号再生処理の少なくとも一方を、CPU40以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(field-programmable gate array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、アンビソニックス信号生成処理及びアンビソニックス信号再生処理の少なくとも一方を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
また、本実施形態では、音場再生装置10のROM42に予め各種プログラムが記憶(インストール)されている態様を説明したが、これに限定されない。アンビソニックス信号生成処理プログラム及びアンビソニックス信号再生処理プログラムの少なくとも一方は、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、アンビソニックス信号生成処理プログラム及びアンビソニックス信号再生処理プログラムの少なくとも一方は、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
その他、本実施形態で説明した音場再生システム1、音場再生装置10、及びアンビソニックス信号生成装置20等の構成及び動作等は一例であり、本発明の主旨を逸脱しない範囲内において状況に応じて変更可能であることはいうまでもない。
1 音場再生システム
10 音場再生装置
12 縮尺模型
14 音源
18 スピーカ
20 アンビソニックス信号生成装置
22 マイクロホン
24 移動部
28 アンビソニックス信号生成部
30 アンビソニックスデコーダ

Claims (7)

  1. 予め定められた対象周波数帯域の音を集音する単一のマイクロホンと、
    前記対象周波数帯域の上限周波数の音の半波長未満の値に応じて定めた距離離れた複数の位置の各々に、前記マイクロホンを移動させる移動部と、
    前記複数の位置の各々において前記マイクロホンによって集音された音の信号に基づいて、アンビソニックス信号を生成する信号生成部と、
    を含み、
    前記対象周波数帯域は、周波数に応じて分割した複数の帯域の中の2つ以上の帯域であり、
    前記距離は、前記2つ以上の帯域各々の上限周波数の音の半波長未満の値に応じて定められている、
    アンビソニックス信号生成装置。
  2. 前記マイクロホンは、実音場を縮尺して作成した縮尺模型空間内の音を集音する
    請求項1に記載のアンビソニックス信号生成装置。
  3. 前記複数の位置は、前記信号生成部で生成するアンビソニックス信号の次数をnとした場合、(n+1)以上の位置に定められる
    請求項1または請求項2に記載のアンビソニックス信号生成装置。
  4. 前記複数の位置は、集音対象空間内に想定された三次元空間座標の原点に対応する位置、前記三次元空間座標の三軸各々の軸上における原点に対して対称な一対の点の各々に対応する位置を含む
    請求項1から請求項3のいずれか1項に記載のアンビソニックス信号生成装置。
  5. 前記複数の位置は、前記距離が異なる位置を含む、
    請求項1から請求項4のいずれか1項に記載のアンビソニックス信号生成装置。
  6. 請求項1から請求項5のいずれか1項に記載のアンビソニックス信号生成装置と、
    前記アンビソニックス信号生成装置が生成するアンビソニックス信号を用いて、スピーカを駆動する駆動信号を生成する駆動部と、
    を含む音場再生装置。
  7. 単一のマイクロホンが、予め定められた対象周波数帯域の音を集音するステップと、
    移動部が、前記対象周波数帯域の上限周波数の音の半波長未満の値に応じて定めた距離離れた複数の位置の各々に、前記マイクロホンを移動させるステップと、
    信号生成部が、前記複数の位置の各々において前記マイクロホンによって集音された音の信号に基づいて、アンビソニックス信号を生成するステップと、
    を含み、
    前記対象周波数帯域は、周波数に応じて分割した複数の帯域の中の2つ以上の帯域であり、
    前記距離は、前記2つ以上の帯域各々の上限周波数の音の半波長未満の値に応じて定められている、
    アンビソニックス信号生成方法。
JP2018045828A 2018-03-13 2018-03-13 アンビソニックス信号生成装置、音場再生装置、及びアンビソニックス信号生成方法 Active JP7020203B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045828A JP7020203B2 (ja) 2018-03-13 2018-03-13 アンビソニックス信号生成装置、音場再生装置、及びアンビソニックス信号生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045828A JP7020203B2 (ja) 2018-03-13 2018-03-13 アンビソニックス信号生成装置、音場再生装置、及びアンビソニックス信号生成方法

Publications (2)

Publication Number Publication Date
JP2019161455A JP2019161455A (ja) 2019-09-19
JP7020203B2 true JP7020203B2 (ja) 2022-02-16

Family

ID=67995212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045828A Active JP7020203B2 (ja) 2018-03-13 2018-03-13 アンビソニックス信号生成装置、音場再生装置、及びアンビソニックス信号生成方法

Country Status (1)

Country Link
JP (1) JP7020203B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150695A (ja) 2020-03-17 2021-09-27 株式会社日立製作所 立体音響システム並びに収録装置及び再現装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166516A (ja) 2009-01-19 2010-07-29 Sanyo Electric Co Ltd 音響処理装置及びそれを備えた電子機器並びに音響処理方法
JP2013524601A (ja) 2010-03-31 2013-06-17 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 複数のスピーカ及びマイクロホンアレイを測定するための装置及び方法
JP2017175632A (ja) 2012-03-06 2017-09-28 ドルビー・インターナショナル・アーベー 高次アンビソニックス・オーディオ信号の再生のための方法および装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145690A (en) * 1976-05-31 1977-12-03 Hitachi Ltd Control circuit for probe moving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166516A (ja) 2009-01-19 2010-07-29 Sanyo Electric Co Ltd 音響処理装置及びそれを備えた電子機器並びに音響処理方法
JP2013524601A (ja) 2010-03-31 2013-06-17 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 複数のスピーカ及びマイクロホンアレイを測定するための装置及び方法
JP2017175632A (ja) 2012-03-06 2017-09-28 ドルビー・インターナショナル・アーベー 高次アンビソニックス・オーディオ信号の再生のための方法および装置

Also Published As

Publication number Publication date
JP2019161455A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
Grimm et al. A toolbox for rendering virtual acoustic environments in the context of audiology
JP6607895B2 (ja) 少なくとも一つのフィードバック遅延ネットワークを使ったマルチチャネル・オーディオに応答したバイノーラル・オーディオの生成
CN105323684B (zh) 声场合成近似方法、单极贡献确定装置及声音渲染系统
US10075800B2 (en) Mixing desk, sound signal generator, method and computer program for providing a sound signal
US20160337777A1 (en) Audio processing device and method, and program therefor
KR20110124306A (ko) 3차원 사운드 환경에서 사운드 객체를 배치하기 위한 방법에 의해 구현되는 테스트 플랫폼
US20140105405A1 (en) Method and Apparatus for Creating Spatialized Sound
JP2009512364A (ja) 仮想オーディオシミュレーション
Zotter et al. A beamformer to play with wall reflections: The icosahedral loudspeaker
Fazenda et al. Recreating the sound of Stonehenge
Pelzer et al. Auralization of a virtual orchestra using directivities of measured symphonic instruments
US20230306953A1 (en) Method for generating a reverberation audio signal
JP7020203B2 (ja) アンビソニックス信号生成装置、音場再生装置、及びアンビソニックス信号生成方法
CN108632709B (zh) 一种沉浸式宽带3d声场重放方法
US11122363B2 (en) Acoustic signal processing device, acoustic signal processing method, and acoustic signal processing program
JP6970366B2 (ja) 音像再現装置、音像再現方法及び音像再現プログラム
WO2018053050A1 (en) Audio signal processor and generator
Zotkin et al. Incident field recovery for an arbitrary-shaped scatterer
Bédard et al. Development of a directivity-controlled piezoelectric transducer for sound reproduction
JP4866301B2 (ja) 頭部伝達関数補間装置
Vennerød Binaural reproduction of higher order ambisonics-a real-time implementation and perceptual improvements
Plessas Rigid sphere microphone arrays for spatial recording and holography
JP2014045282A (ja) 残響付加装置、残響付加プログラム
JP6917823B2 (ja) 音響シミュレーション方法、装置、及びプログラム
Betlehem et al. Sound field of a directional source in a reverberant room

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7020203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150