JP7019126B2 - Grain quality measuring instrument - Google Patents

Grain quality measuring instrument Download PDF

Info

Publication number
JP7019126B2
JP7019126B2 JP2016168619A JP2016168619A JP7019126B2 JP 7019126 B2 JP7019126 B2 JP 7019126B2 JP 2016168619 A JP2016168619 A JP 2016168619A JP 2016168619 A JP2016168619 A JP 2016168619A JP 7019126 B2 JP7019126 B2 JP 7019126B2
Authority
JP
Japan
Prior art keywords
grain
alignment plate
alignment
gap
measuring instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016168619A
Other languages
Japanese (ja)
Other versions
JP2017024913A (en
Inventor
由武 青島
治樹 杉山
晃 花嶋
悟 松下
孝 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP2016168619A priority Critical patent/JP7019126B2/en
Publication of JP2017024913A publication Critical patent/JP2017024913A/en
Application granted granted Critical
Publication of JP7019126B2 publication Critical patent/JP7019126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Description

本発明は、例えば玄米や白米等の穀粒の品質を測定して、その品質を判定したり判別する際に使用される穀粒品質測定器に関する。 The present invention relates to a grain quality measuring instrument used for measuring the quality of grains such as brown rice and white rice and determining or discriminating the quality.

従来、穀粒の品質としての例えば外観を光学的に検出して、穀粒の品質を判定・選別する機器としては、例えば特許文献1に開示のものが提案されている。この機器は、筐体の下部に配設したホッパと、このホッパに連設されホッパ内の穀粒を筐体上部に配設された上部タンクまで昇降させる昇降機と、上部タンクの底面部に配設されて穀粒をシュートの上部に供給するフィーダ等を備えている。 Conventionally, as a device for optically detecting, for example, the appearance of grain quality to determine and sort the grain quality, for example, the device disclosed in Patent Document 1 has been proposed. This device is arranged on the bottom of the upper tank, a hopper arranged at the bottom of the housing, an elevator that is connected to this hopper and raises and lowers the grains in the hopper to the upper tank arranged at the upper part of the housing. It is equipped with a feeder that is installed and supplies grains to the upper part of the chute.

そして、穀粒投入口としてのホッパに投入された穀粒が、昇降機、上部タンク及びフィーダを介してシュートの上部に供給され、シュート表面の複数の流下溝を流下(落下)した穀物がシュート下部に配設した撮像部で撮像され、その撮像データに基づいて穀粒の品質が判定されたり判別されるようになっている。 Then, the grain charged into the hopper as the grain input port is supplied to the upper part of the chute via the elevator, the upper tank and the feeder, and the grain flowing down (falling) through the plurality of flow-down grooves on the chute surface is the lower part of the chute. The quality of the grain is determined or discriminated based on the image taken by the image pickup unit arranged in the above.

特許第5590861号公報Japanese Patent No. 5590861

しかしながら、このような機器にあっては、穀粒を撮像部に供給するためのシュートの上部に配設される穀粒供給装置が、上部タンクとその底面開口部に連設された電動式のフィーダを有し、このフィーダを振動させつつその排出口からシュートの上部に穀粒を供給する構成であるため、シュートの各流下溝に穀粒を一粒ずつ短時間にかつ安定して供給することが難しく、穀粒の品質の測定精度を十分に高めることが難しい。 However, in such a device, the grain supply device arranged on the upper part of the chute for supplying the grain to the image pickup unit is an electric type connected to the upper tank and the bottom opening thereof. Since it has a feeder and is configured to supply grains from the discharge port to the upper part of the chute while vibrating the feeder, the grains are stably supplied one by one to each flow groove of the chute in a short time. It is difficult, and it is difficult to sufficiently improve the measurement accuracy of grain quality.

また、穀粒供給装置として、上部タンクやフィーダ及び昇降機等を有するため、その構成が複雑となり、機器自体の外形が大きくなって例えば卓上型の機器に適用することが困難であり、さらに機器自体がコスト高になると共にそのメンテナンスが面倒になる等、使い勝手の面で劣るという不都合を有している。 In addition, since the grain supply device has an upper tank, a feeder, an elevator, etc., its configuration becomes complicated, the outer shape of the device itself becomes large, and it is difficult to apply it to, for example, a desktop device, and the device itself. However, it has the inconvenience of being inferior in terms of usability, such as high cost and troublesome maintenance.

本発明は、このような事情に鑑みてなされたもので、その目的は、穀粒の自重を利用しつつ穀粒供給装置の所定角度の複数枚の整列板に沿って穀粒を流下させることにより、供給装置の構成を簡略化しつつ穀粒の流下速度を均一にし得て、穀粒の測定精度を十分に高めることが可能な穀粒品質測定器を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to allow grains to flow down along a plurality of alignment plates at a predetermined angle of a grain supply device while utilizing the weight of the grains themselves. It is an object of the present invention to provide a grain quality measuring device capable of making the flow rate of grains uniform while simplifying the configuration of a feeding device and sufficiently improving the measurement accuracy of grains.

かかる目的を達成すべく、本発明のうち請求項1に記載の発明は、筐体上部の投入口から供給される穀粒を、前記投入口の下方に配設したシュートの上部に穀粒供給装置を介して供給し、前記シュートの下部から放出された穀粒を撮像装置にて撮像して品質測定する穀粒品質測定器であって、前記穀粒供給装置は、前記投入口の下部に配設され前記筐体の垂直面に対して所定角度傾斜した整列板を上下方向に複数枚備え、上流側の整列板及び下流側の整列板は、互いに交差する方向に配設され、前記上流側の整列板の前記穀粒の流下する下端と前記下流側の整列板の前記穀粒が流下する面との間に前記穀粒が通過可能な間隙を形成しつつ連設されるとともに、前記投入口から供給された穀粒が、前記上流側の整列板から前記下流側の整列板に順次に流下しつつ各整列板間に形成された前記間隙を介して各整列板を上流側から下流側に向けて順に流下して前記シュートに供給されるように構成され、前記各整列板間の最上流側の間隙が下流側の間隙より大きく設定されて下流側の間隙を通過した前記穀粒を前記シュートに流下させるとともに、前記穀粒の流下量及び流下速度が均一になるように前記整列板の傾斜角度及び前記間隙寸法を所定に設定し得ることを特徴とする。 In order to achieve such an object, in the invention according to claim 1 of the present invention, the grains supplied from the input port at the upper part of the housing are supplied to the upper part of the chute arranged below the input port. A grain quality measuring device that is supplied via an apparatus and images the grains released from the lower part of the chute with an image pickup device to measure the quality. The grain supply device is located at the lower part of the input port. A plurality of alignment plates that are arranged and inclined at a predetermined angle with respect to the vertical surface of the housing are provided in the vertical direction, and the alignment plate on the upstream side and the alignment plate on the downstream side are arranged in a direction intersecting each other, and the upstream side is arranged. The grain is continuously provided while forming a gap through which the grain can pass between the lower end of the alignment plate on the side where the grain flows down and the surface of the alignment plate on the downstream side where the grain flows. Grains supplied from the input port flow down sequentially from the upstream side alignment plate to the downstream alignment plate, and each alignment plate is downstream from the upstream side through the gap formed between the alignment plates. The grain is configured to flow down in order toward the side and be supplied to the chute, and the gap on the most upstream side between the alignment plates is set larger than the gap on the downstream side and passes through the gap on the downstream side. Is allowed to flow down to the chute, and the inclination angle and the gap size of the alignment plate can be predetermined so that the flow-down amount and the flow-down speed of the grains are uniform .

また、請求項2に記載の発明は、前記各整列板が互いに直角状態で連設されると共に、前記上流側の整列板と下流側の整列板とが前記間隙を有して連設されていることを特徴とする。また、請求項3に記載の発明は、前記各整列板が表面処理されたことを特徴とする。さらに、請求項4に記載の発明は、前記投入口の底部開口にシャッタが開閉可能に配設され、該シャッタが開放された際に所定量の前記穀粒が傾斜した最上位の整列板上に供給されることを特徴とする。 Further, in the invention according to claim 2, the alignment plates are connected at right angles to each other, and the alignment plate on the upstream side and the alignment plate on the downstream side are connected with the gap. It is characterized by being. The invention according to claim 3 is characterized in that each of the alignment plates is surface-treated. Further, according to claim 4, the invention is provided on a top-level alignment plate in which a shutter is openable and closable at the bottom opening of the inlet, and a predetermined amount of the grains are inclined when the shutter is opened. It is characterized by being supplied to.

本発明のうち請求項1に記載の発明によれば、投入口から投入された穀粒が、互いに交差方向に所定角度傾斜した複数枚の上下方向の整列板を流下しつつ各整列板間に形成された間隙を介して各整列板を上方から下方に順に流下してシュートに供給されるため、穀粒の流下をその自重と整列板の傾斜角度を利用しつつ行うことができて、穀粒供給装置の構成を簡略化しつつ、傾斜角度や間隙寸法を所定に設定することで穀粒の流下速度を均一にでき、測定器における穀粒の品質測定精度を十分に高めることが可能になる。 According to the invention of claim 1 of the present invention, the grains thrown in from the charging port flow down between a plurality of vertically arranging plates inclined at a predetermined angle in the intersecting direction with each other. Since each alignment plate flows down from the top to the bottom in order through the formed gap and is supplied to the chute, the grain can flow down while utilizing its own weight and the inclination angle of the alignment plate. By simplifying the configuration of the grain supply device and setting the inclination angle and the gap size to a predetermined value, the flow rate of the grains can be made uniform, and the quality measurement accuracy of the grains in the measuring instrument can be sufficiently improved. ..

また、請求項2に記載の発明によれば、請求項1に記載の発明の効果に加え、各整列板が互いに直角状態で連設されると共に、上流側の整列板の下端が下流側の整列板の下部に前記間隙を有して連設されているため、互いに交差する一対の整列板で所定容積の穀粒収容凹部を容易に形成できると共に、上流側の整列板に落下して跳ね返った穀粒を下流側の整列板で確実に受け止めつつ間隙を通過させることができて、各整列板における穀粒の流下をスムーズにして流下量を均一化することができる。 Further, according to the invention of claim 2, in addition to the effect of the invention of claim 1, the alignment plates are connected in a right angle to each other, and the lower end of the alignment plate on the upstream side is on the downstream side. Since the alignment plates are connected to each other with the gap at the bottom of the alignment plate, a pair of alignment plates intersecting each other can easily form a grain storage recess having a predetermined volume, and at the same time, they fall to the alignment plate on the upstream side and bounce off. The grains can be passed through the gap while being reliably received by the alignment plate on the downstream side, and the flow of the grains on each alignment plate can be made smooth and the flow rate can be made uniform.

また、請求項3に記載の発明によれば、請求項1または2に記載の発明の効果に加え、整列板が表面処理され、その最上流側が間隙が下流側の間隙より大きく設定されているため、穀粒を上流側から下流側に向け一層スムーズに流下移動することができて、シュートの各流下溝に穀粒を一粒ずつ確実に収容流下させることができる。 Further, according to the invention of claim 3, in addition to the effect of the invention of claim 1 or 2, the alignment plate is surface-treated, and the gap on the most upstream side thereof is set to be larger than the gap on the downstream side. Therefore, the grains can flow down more smoothly from the upstream side to the downstream side, and the grains can be reliably accommodated and flowed down in each flow down groove of the chute.

さらに、請求項4に記載の発明によれば、請求項1ないし3に記載の発明の効果に加え、シャッタの開放により投入口の底面開口が開放された際に、所定量の穀粒が傾斜した最上位の整列板上に供給されるため、例えば測定ボタンのオン操作により、上部タンク内の穀粒を自動的に最上位の整列板上に排出供給し、この穀粒を表面処理した各整列板を介して所定の速度でスムーズに流下させて撮像部に供給することができ、測定時間を短縮することができたり、測定器の操作自体が簡単となり、その使い勝手を向上させることができる。 Further, according to the invention of claim 4, in addition to the effect of the invention of claims 1 to 3, when the bottom opening of the input port is opened by opening the shutter, a predetermined amount of grains are inclined. Since it is supplied onto the top-level alignment plate, for example, by turning on the measurement button, the grains in the upper tank are automatically discharged and supplied onto the top-level alignment plate, and the grains are surface-treated. It can be smoothly flowed down at a predetermined speed through each alignment plate and supplied to the image pickup unit, which can shorten the measurement time, simplify the operation of the measuring instrument itself, and improve its usability. can.

本発明に係わる穀粒品質測定器の一実施形態を示す平面図A plan view showing an embodiment of a grain quality measuring instrument according to the present invention. 同上面カバーを取り外した状態の平面図Top view with the top cover removed 同その側面図The same side view 同整列板の組み立て状態を示す側面図Side view showing the assembled state of the alignment plate 同図2の正面図Front view of FIG. 同シュートの組立状態を示す平面図Plan view showing the assembled state of the chute 同その側面図The same side view 同穀粒測定装置の制御系のブロック図Block diagram of the control system of the same grain measuring device 同その動作の一例を示すフローチャートA flowchart showing an example of the operation. 同撮像装置の動作の一例を示すタイミングチャートTiming chart showing an example of the operation of the image pickup device

以下、本発明を実施するための形態を図面に基づいて詳細に説明する。
図1~図10は、本発明に係わる穀粒品質測定器の一実施形態を示している。図1に示すように、穀粒品質測定器1は、縦長箱状の筺体2を有し、この筺体2の各側面にはカバーが配置されると共に、上面の略中央位置には投入口としてのホッパ3が設けられ、前面には表示器としてのLCD4と測定ボタン5が設けられている。また、前面下部には試料受け皿6がその把手6aを所定寸法外側に突出した状態で引き出し可能に配設されている。さらに、筐体2の右側面には測定結果を印字可能なプリンタ7が配設されている。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
1 to 10 show an embodiment of a grain quality measuring instrument according to the present invention. As shown in FIG. 1, the grain quality measuring instrument 1 has a vertically long box-shaped housing 2, and covers are arranged on each side surface of the housing 2 and as a slot at a substantially central position on the upper surface. A hopper 3 is provided, and an LCD 4 as a display and a measurement button 5 are provided on the front surface. Further, a sample tray 6 is arranged at the lower part of the front surface so as to be able to be pulled out with the handle 6a protruding outward by a predetermined dimension. Further, a printer 7 capable of printing the measurement result is arranged on the right side surface of the housing 2.

前記ホッパ3は、平面視方形状に形成されて、長方形状の底部開口にシャッタ8が後述する如く開閉可能に配設されている。そして、このホッパ3のシャッタ8下方には、図2~図4に示すように、本発明に係わる穀粒供給装置9が配設されている。この穀粒供給装置9は、平板状で表面処理された4枚の同一形状の整列板10a~10dを有し、この各整列板10a~10dは上下方向に2枚ずつ交互に角度90°で交差するように配置されている。 The hopper 3 is formed in a rectangular shape in a plan view, and a shutter 8 is arranged in a rectangular bottom opening so as to be openable and closable as described later. As shown in FIGS. 2 to 4, a grain supply device 9 according to the present invention is arranged below the shutter 8 of the hopper 3. The grain supply device 9 has four flat plate-shaped surface-treated alignment plates 10a to 10d having the same shape, and each of the alignment plates 10a to 10d alternately has two plates in the vertical direction at an angle of 90 °. Arranged to intersect.

このとき、整列板10aの下端が整列板10bの上下方向(穀粒の流下方向)の下部に所定の間隙11aを有して連設され、整列板10bの下端が交差する整列板10cの下部に間隙11bを有して連設されている。また同様に、整列板10cの下端が交差する整列板10dの下部に間隙11bを有して連設されている。なお、4枚の整列板10a~10dで形成される前記3つの間隙11a、11bの図4に示す寸法は、t1≧t2≧t3に設定されている。これにより、互いに交差する一対の整列板10a~10dで形成される上方の空間内に、図3の矢印イのような穀粒の流路が形成されている。 At this time, the lower end of the alignment plate 10a is connected to the lower portion of the alignment plate 10b in the vertical direction (grain flow direction) with a predetermined gap 11a, and the lower end of the alignment plate 10b intersects the lower portion of the alignment plate 10c. There is a gap 11b in the series. Similarly, a gap 11b is provided in the lower part of the alignment plate 10d where the lower ends of the alignment plate 10c intersect with each other. The dimensions shown in FIG. 4 of the three gaps 11a and 11b formed by the four alignment plates 10a to 10d are set to t1 ≧ t2 ≧ t3. As a result, a flow path of grains as shown by arrow a in FIG. 3 is formed in the upper space formed by the pair of alignment plates 10a to 10d that intersect each other.

この穀粒供給装置9の下方には、シュート13が所定角度傾斜状態で配設されている。このシュート13は、平面視長方形状に形成され、図6に示すように、幅方向の両側にガイド13aがそれぞれ一体形成されると共に、その表面(裏面)には、長手方向(筐体の上下方向)に沿って所定幅で所定深さの流下溝13bが複数併設状態で形成されている。そして、このシュート13は、その上端が前記穀粒供給装置9の前記整列板10dの下端下方に位置して、穀粒供給装置9から穀粒が排出供給され、また下端は筐体2の下部まで延設されている。 A chute 13 is arranged below the grain supply device 9 in a predetermined angle inclined state. The chute 13 is formed in a rectangular shape in a plan view, and as shown in FIG. 6, guides 13a are integrally formed on both sides in the width direction, and the front surface (back surface) thereof is formed in the longitudinal direction (upper and lower sides of the housing). A plurality of flow grooves 13b having a predetermined width and a predetermined depth are formed along the direction). The upper end of the chute 13 is located below the lower end of the alignment plate 10d of the grain supply device 9, grains are discharged and supplied from the grain supply device 9, and the lower end is the lower end of the housing 2. Has been extended to.

また、シュート13の表面側には、抑え蓋(抑えカバー)14が配設されている。この抑え蓋14は、シュート13の下部全域を略覆う大きさの平板で形成され、その表面側の上部中央位置には、ソレノイド15が配設されている。このソレノイド15が後述する如く制御装置23の作動信号で作動することにより、抑え蓋14とシュート13の表面間の隙間が接近位置と離間位置とに設定されるようになっている。なお、前記接近位置の隙間寸法は、シュート13上を一粒の穀粒が流下する際にそのスムーズな移動(流下)を妨げない寸法に設定され、前記離間位置の隙間寸法は、シュート13と抑え蓋14間に穀粒が詰まった場合に、それを取り除くことができたりあるいはシュート13の表面の清掃が可能な寸法に設定されている。 Further, a holding lid (holding cover) 14 is arranged on the surface side of the chute 13. The holding lid 14 is formed of a flat plate having a size that substantially covers the entire lower part of the chute 13, and a solenoid 15 is arranged at the upper center position on the surface side thereof. As described later, the solenoid 15 is operated by the operation signal of the control device 23, so that the gap between the surfaces of the holding lid 14 and the chute 13 is set at the approaching position and the separating position. The gap size at the approaching position is set to a size that does not hinder the smooth movement (flowing) of a grain when a grain flows down on the chute 13, and the gap size at the separating position is the same as that of the chute 13. When the grain is clogged between the holding lids 14, the size is set so that it can be removed or the surface of the chute 13 can be cleaned.

前記シュート13の下部には撮像装置16が配設されている。この撮像装置16は、カメラ17と、反射用のミラー18、及び光源としての反射用LED19と透過用LED20及びバックグランド用LED21を有している。そして、これらが図3及び図7に示すように配置されている。このとき、反射用LED19と透過用LED20は、前記シュート13の下端から放出(排出)される穀粒に光を照射し、その反射光や透過光が前記ミラー18で反射されてカメラ17に入射するようになっている。なお、カメラ17は、シュート13の下部の裏面側の空間に配置されている。 An image pickup device 16 is arranged below the chute 13. The image pickup apparatus 16 includes a camera 17, a mirror 18 for reflection, an LED 19 for reflection as a light source, an LED 20 for transmission, and an LED 21 for background. And these are arranged as shown in FIGS. 3 and 7. At this time, the reflecting LED 19 and the transmitting LED 20 irradiate the grains emitted (discharged) from the lower end of the chute 13 with light, and the reflected light and the transmitted light are reflected by the mirror 18 and incident on the camera 17. It is designed to do. The camera 17 is arranged in the space on the back surface side below the chute 13.

図8は、前記穀粒品質測定器1のブロック図を示している。図8に示すように、制御装置23を構成するメイン基板は、例えば筐体2の前面カバー内部に配設され、そのCPU24には、前記測定ボタン5、LCD4、プリンタ7等が接続されると共にブザー25、FPGA(field programmable gate array)26等が接続されている。また、FPGA26には、前記カメラ17、各LED19~21、シャッタ8、ソレノイド15等が接続されている。 FIG. 8 shows a block diagram of the grain quality measuring instrument 1. As shown in FIG. 8, the main board constituting the control device 23 is arranged inside the front cover of the housing 2, for example, and the measurement button 5, the LCD 4, the printer 7, and the like are connected to the CPU 24. A buzzer 25, an FPGA (field programmable gate array) 26, etc. are connected. Further, the camera 17, the LEDs 19 to 21, the shutter 8, the solenoid 15, and the like are connected to the FPGA 26.

そして、このように構成された穀粒品質測定器1は、図9に示すように動作する。すなわち、前記測定ボタン5がON操作(S101)されると、ホッパ3のシャッタ8がON(S102)となり所定のON時間が経過(S103)すると、シャッタ8がOFF(S104)となる。これにより、所定量の試料がホッパ3から穀粒供給装置9に供給されることになる。 Then, the grain quality measuring instrument 1 configured in this way operates as shown in FIG. That is, when the measurement button 5 is turned on (S101), the shutter 8 of the hopper 3 is turned on (S102), and when a predetermined ON time elapses (S103), the shutter 8 is turned off (S104). As a result, a predetermined amount of sample is supplied from the hopper 3 to the grain supply device 9.

シャッタ8がOFFしたら、測定遅延時間が経過したか否かが判断(S105)され、遅延時間が経過した時点でカメラの取り込みが開始(S106)される。この取り込んだ画像データを演算(S107)して、その演算結果をLCD4に表示(S107)し、詰まり防止ソレノイド27をONして、ON時間が経過したか否かが判断(S110)される。そして、詰まり防止ソレノイド27が所定時間ONしたらOFF(S111)となり、一連の測定動作が終了(S112)する。 When the shutter 8 is turned off, it is determined whether or not the measurement delay time has elapsed (S105), and when the delay time has elapsed, camera capture is started (S106). The captured image data is calculated (S107), the calculation result is displayed on the LCD 4 (S107), the clogging prevention solenoid 27 is turned on, and it is determined whether or not the ON time has elapsed (S110). Then, when the clogging prevention solenoid 27 is turned on for a predetermined time, it is turned off (S111), and a series of measurement operations is completed (S112).

つまり、シャッタ8を所定時間開放し所定量の試料を穀粒供給装置9内に供給して、シュート13から放出される試料を撮像装置16で撮影し、その画像データを制御装置23等で処理して得られた測定結果がLCD4に表示されることになる。また、例えば測定結果が表示されたら、詰まり防止ソレノイド27が作動して、抑え蓋14が離間してシュート13と抑え蓋14間に詰まっている試料が自動的取り除かれることになる。なお、前記ステップS101~S108の所要時間は約5秒で、従来の同種の測定器に対して大幅に短縮されることが確認されている。 That is, the shutter 8 is opened for a predetermined time, a predetermined amount of sample is supplied into the grain supply device 9, the sample released from the chute 13 is photographed by the image pickup device 16, and the image data is processed by the control device 23 or the like. The measurement result obtained in this way will be displayed on the LCD 4. Further, for example, when the measurement result is displayed, the clogging prevention solenoid 27 is activated, the holding lid 14 is separated, and the sample stuck between the chute 13 and the holding lid 14 is automatically removed. It has been confirmed that the time required for steps S101 to S108 is about 5 seconds, which is significantly shorter than that of the conventional measuring instrument of the same type.

図10は、撮像装置16の動作を示すタイミングチャートである。図10に示すように、前記撮像装置16によれば、カメラ17と同期して反射用LED19と透過用LED20を交互に発光させてカメラクロックをFPGA26に取り込むと共に、これと同期させてカメラ17の読み取りを開始し、各LED19、20の発光信号を出力することで、1ラインずつ異なる画像を取得するようにしている。そして、この画像に基づいて穀粒の品質が測定されることになる。 FIG. 10 is a timing chart showing the operation of the image pickup apparatus 16. As shown in FIG. 10, according to the image pickup apparatus 16, the reflection LED 19 and the transmission LED 20 are alternately emitted to emit light in synchronization with the camera 17, the camera clock is taken into the FPGA 26, and the camera 17 is synchronized with the reflection LED 19 and the transmission LED 20. By starting reading and outputting the light emission signals of each of the LEDs 19 and 20, a different image is acquired for each line. Then, the quality of the grain is measured based on this image.

このように、前記穀粒品質測定器1によれば、ホッパ3から投入された試料(穀粒)が、互いに交差方向に所定角度傾斜した4枚の上下方向の整列板10a~10dを流下しつつ、各整列板10a~10d間に形成された間隙11a、11bを介して各整列板10a~10dを上方から下方に順に流下してシュート13に供給されるため、試料の流下をその自重と整列板10a~10dの傾斜角度等を利用して行うことができて、穀粒供給装置9の構成を簡略化しつつ、整列板10a~10dの傾斜角度や間隙11a、11b寸法を所定に設定することで試料の流下速度を均一にできて、試料の品質判定精度を十分に高めることが可能になる。 As described above, according to the grain quality measuring instrument 1, the samples (grains) charged from the hopper 3 flow down the four vertical alignment plates 10a to 10d inclined at predetermined angles in the crossing direction with each other. At the same time, the alignment plates 10a to 10d flow down in order from above to below through the gaps 11a and 11b formed between the alignment plates 10a to 10d and are supplied to the chute 13, so that the flow of the sample is taken as its own weight. It can be performed by using the inclination angles of the alignment plates 10a to 10d, and the inclination angles of the alignment plates 10a to 10d and the gaps 11a and 11b are predetermined while simplifying the configuration of the grain supply device 9. As a result, the flow rate of the sample can be made uniform, and the quality determination accuracy of the sample can be sufficiently improved.

また、穀粒供給装置9の各整列板10a~10dが互いに直角状態で連設されると共に、各整列板10a~10dが間隙11a、11bを有して連設されているため、一対の整列板10a、10b及び10c、10dで所定容積の穀粒収容凹部を形成できると共に、最上流側の整列板10aに落下して跳ね返った穀粒を下流側の整列板10b~10dで確実に受け止めつつ、間隙11a、11bを通過させることができ、各整列板10a~10dにおける試料の流下量を均一化することができる。 Further, since the alignment plates 10a to 10d of the grain supply device 9 are connected at right angles to each other and the alignment plates 10a to 10d are connected with gaps 11a and 11b, a pair of alignment plates is arranged. The plates 10a, 10b, 10c, and 10d can form a grain storage recess of a predetermined volume, and the grains that have fallen and bounced off the most upstream side alignment plate 10a are reliably received by the downstream side alignment plates 10b to 10d. , The gaps 11a and 11b can be passed through, and the flow rate of the sample in each of the alignment plates 10a to 10d can be made uniform.

また、整列板10a~10dの最上流側の間隙11aの寸法t1が下流側の間隙11bの寸法t2、t3より大きく設定されているため、試料を上流側から下流側に向けてスムーズに流下させることができて、シュート13の各流下溝13b内に試料を一粒ずつ確実に流通(流下)させることができる。 Further, since the dimension t1 of the gap 11a on the most upstream side of the alignment plates 10a to 10d is set to be larger than the dimensions t2 and t3 of the gap 11b on the downstream side, the sample is smoothly flowed down from the upstream side to the downstream side. This makes it possible to reliably flow (flow) the sample one by one into each flow groove 13b of the chute 13.

さらに、穀粒供給装置9の各整列板10a~10dが表面処理されると共に、ホッパ3の底面開口が開放された際に所定量の試料が傾斜した最上位の整列板10a上に排出供給されるため、例えば測定ボタン5のON操作により、ホッパ3内の試料を自動的に最上位の整列板10a上に排出供給し、この試料を表面処理された各整列板10a~10dを介して所定の速度でスムーズに流下させて撮像装置16に供給することができ、測定時間を短縮することができたり、品質測定器1の操作自体が簡単となる。また、試料のショート板13への供給に従来のようなフィーダ駆動用の大型モータの使用が不要となり、測定器1の振動や騒音の発生を防止することができ、結果として、品質測定器1の使い勝手を向上させること等ができる。 Further, each of the alignment plates 10a to 10d of the grain supply device 9 is surface-treated, and when the bottom opening of the hopper 3 is opened, a predetermined amount of sample is discharged and supplied onto the inclined top-level alignment plate 10a. Therefore, for example, by turning on the measurement button 5, the sample in the hopper 3 is automatically discharged and supplied onto the uppermost alignment plate 10a, and this sample is predetermined via the surface-treated alignment plates 10a to 10d. It can be smoothly flowed down at the speed of 1 and supplied to the image pickup apparatus 16, the measurement time can be shortened, and the operation itself of the quality measuring instrument 1 becomes easy. Further, it is not necessary to use a large motor for driving the feeder as in the conventional case for supplying the sample to the short plate 13, and it is possible to prevent the vibration and noise of the measuring instrument 1 from being generated. As a result, the quality measuring instrument 1 is used. It is possible to improve the usability of the.

また、前記穀粒品質測定器1の場合、シュート板13の表面に撮像装置16方向に指向する複数の流下溝13bが形成されると共に、各流下溝13bに対して所定位置に接離可能な抑え蓋14が配設されているため、シュート板13の表面側を覆う抑え蓋14で各流下溝13b内での試料の重なりや流下溝13b外への外れ(飛び出し)が防止され、各流下溝13b内に試料を一粒ずつ確実に収容流下できて、試料の品質測定精度を十分に高めることができる。 Further, in the case of the grain quality measuring instrument 1, a plurality of flow-down grooves 13b pointing in the direction of the image pickup device 16 are formed on the surface of the chute plate 13, and can be brought into contact with and separated from each flow-down groove 13b at a predetermined position. Since the holding lid 14 is arranged, the holding lid 14 covering the surface side of the chute plate 13 prevents the sample from overlapping in each flowing groove 13b and coming off (jumping out) to the outside of the flowing groove 13b, and each flowing down. The sample can be reliably accommodated and flowed down into the groove 13b one by one, and the quality measurement accuracy of the sample can be sufficiently improved.

また、前記撮像装置16を備えるため、この種の測定器の場合には、本来2方向からの読み取りが必要でカメラや光源が2倍必要になるが、本発明の穀粒品質測定器1の場合は、反射光と透過光を有効利用することで、カメラと光源の数をともに削減できて、ローコスト、省スペース、小型化が実現できて、卓上形の穀粒品質測定器にも好適に適用することが可能になる。 Further, since the image pickup device 16 is provided, in the case of this type of measuring instrument, reading from two directions is originally required, and a camera and a light source are required twice. However, the grain quality measuring instrument 1 of the present invention requires twice as much. In this case, by effectively using the reflected light and transmitted light, the number of cameras and light sources can be reduced, low cost, space saving, and miniaturization can be realized, which is also suitable for desktop grain quality measuring instruments. It will be possible to apply.

なお、前記実施形態においては、穀粒供給装置の交差状態の一対の整列板を2組配設する例について説明したが、本発明はこの構成に限定されず、例えば3組以上配設しても良いし、一対の整列板の交差角度も90°に限らず、適宜の角度を採用することができる。また、上記実施形態においては、各組の整列板の穀粒の流下方向と直交する幅も同一に限らず、下流側が広くなるように設定して、流下する穀粒の平面的な均一化を図ったり、各整列板間の間隙寸法をt1≧t2≧t3とする等、本発明に係わる各発明の要旨を逸脱しない範囲において適宜に変更することができる。 In the above embodiment, an example in which two sets of a pair of alignment plates in an intersecting state of the grain supply device are arranged has been described, but the present invention is not limited to this configuration, and for example, three or more sets are arranged. Also, the crossing angle of the pair of alignment plates is not limited to 90 °, and an appropriate angle can be adopted. Further, in the above embodiment, the width orthogonal to the flow direction of the grains of each set of alignment plates is not limited to the same, and the downstream side is set to be wider to make the flowing grains uniform in a plane. It can be appropriately changed as long as it does not deviate from the gist of each invention according to the present invention, such as setting the gap size between the alignment plates to t1 ≧ t2 ≧ t3.

本発明は、白米や玄米等の穀粒に限らず全ての穀粒に品質測定に利用できるし、その用途も穀粒の母集団のサンプル(試料)の品質を測定して母集団の品質を測定する検査用の品質測定器等への使用に限らず、母集団の各穀粒の品質をそれぞれ測定する品質測定器にも利用可能である。 The present invention can be used for quality measurement of all grains, not limited to grains such as white rice and brown rice, and its use is also to measure the quality of a sample of a population of grains to measure the quality of the population. It can be used not only as a quality measuring instrument for inspection to measure, but also as a quality measuring instrument for measuring the quality of each grain of the population.

1・・・・・・・・・穀粒品質測定器
2・・・・・・・・・筺体
3・・・・・・・・・ホッパ
4・・・・・・・・・LCD
5・・・・・・・・・測定ボタン
6・・・・・・・・・試料受け皿
7・・・・・・・・・プリンタ
8・・・・・・・・・シャッタ
9・・・・・・・・・穀粒供給装置
10a~10d・・・整列板
11a、11b・・・間隙
13・・・・・・・・シュート
13b・・・・・・・流下溝
14・・・・・・・・抑え蓋
15・・・・・・・・ソレノイド
16・・・・・・・・撮像装置
17・・・・・・・・カメラ
18・・・・・・・・ミラー
19・・・・・・・・反射用LED
20・・・・・・・・透過用LED
21・・・・・・・・バックグランド用LED
23・・・・・・・・制御装置
24・・・・・・・・CPU
26・・・・・・・・FPGA
1 ・ ・ ・ ・ ・ ・ ・ ・ ・ Grain quality measuring instrument 2 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Housing 3 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Hopper 4 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ LCD
5 ・ ・ ・ ・ ・ ・ ・ ・ Measurement button 6 ・ ・ ・ ・ ・ ・ ・ ・ ・ Sample saucer 7 ・ ・ ・ ・ ・ ・ ・ ・ ・ Printer 8 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・············································································································································································································・ ・ ・ ・ Holding lid 15 ・ ・ ・ ・ ・ ・ Solenoid 16 ・ ・ ・ ・ ・ ・ ・ ・ Imaging device 17 ・ ・ ・ ・ ・ ・ ・ ・ Camera 18 ・ ・ ・ ・ ・ ・ ・ ・ Mirror 19 ・ ・・ ・ ・ ・ ・ ・ Reflective LED
20 ・ ・ ・ ・ ・ ・ ・ ・ LED for transmission
21 ・ ・ ・ ・ ・ ・ ・ ・ LED for background
23 ・ ・ ・ ・ ・ ・ ・ ・ Control device 24 ・ ・ ・ ・ ・ ・ ・ ・ CPU
26 ・ ・ ・ ・ ・ ・ ・ ・ FPGA

Claims (4)

筐体上部の投入口から供給される穀粒を、前記投入口の下方に配設したシュートの上部に穀粒供給装置を介して供給し、前記シュートの下部から放出された穀粒を撮像装置にて撮像して品質測定する穀粒品質測定器であって、
前記穀粒供給装置は、前記投入口の下部に配設され前記筐体の垂直面に対して所定角度傾斜した整列板を上下方向に複数枚備え、上流側の整列板及び下流側の整列板は、互いに交差する方向に配設され、前記上流側の整列板の前記穀粒の流下する下端と前記下流側の整列板の前記穀粒が流下する面との間に前記穀粒が通過可能な間隙を形成しつつ連設されるとともに、前記投入口から供給された穀粒が、前記上流側の整列板から前記下流側の整列板に順次に流下しつつ各整列板間に形成された前記間隙を介して各整列板を上流側から下流側に向けて順に流下して前記シュートに供給されるように構成され、前記各整列板間の最上流側の間隙が下流側の間隙より大きく設定されて下流側の間隙を通過した前記穀粒を前記シュートに流下させるとともに、前記穀粒の流下量及び流下速度が均一になるように前記整列板の傾斜角度及び前記間隙寸法を所定に設定し得ることを特徴とする穀粒品質測定器。
Grains supplied from the input port on the upper part of the housing are supplied to the upper part of the chute arranged below the input port via the grain supply device, and the grains released from the lower part of the chute are imaged. It is a grain quality measuring instrument that captures images and measures the quality.
The grain supply device is provided with a plurality of alignment plates arranged in the lower part of the input port and inclined at a predetermined angle with respect to the vertical surface of the housing in the vertical direction, and is provided with an alignment plate on the upstream side and an alignment plate on the downstream side. Are arranged in a direction intersecting each other, and the grain can pass between the lower end of the grain flow of the upstream alignment plate and the flowing surface of the grain of the downstream alignment plate. The grains were continuously arranged while forming a gap, and the grains supplied from the input port were formed between the alignment plates while sequentially flowing down from the alignment plate on the upstream side to the alignment plate on the downstream side. Each alignment plate is configured to flow down in order from the upstream side to the downstream side through the gap and supplied to the chute, and the gap on the most upstream side between the alignment plates is larger than the gap on the downstream side. The grain that has been set and passed through the gap on the downstream side is allowed to flow down to the chute, and the inclination angle and the gap dimension of the alignment plate are set to be predetermined so that the flow amount and the flow speed of the grain are uniform. A grain quality measuring instrument characterized by being able to.
前記各整列板が互いに直角状態で連設されると共に、前記上流側の整列板と下流側の整列板とが前記間隙を有して連設されていることを特徴とする請求項1に記載の穀粒品質測定器。 The first aspect of claim 1, wherein the alignment plates are connected at right angles to each other, and the alignment plate on the upstream side and the alignment plate on the downstream side are connected with the gap. Grain quality measuring instrument. 前記各整列板が表面処理されたことを特徴とする請求項1または2に記載の穀粒品質測定器。 The grain quality measuring instrument according to claim 1 or 2, wherein each of the alignment plates is surface-treated . 前記投入口の底部開口にシャッタが開閉可能に配設され、該シャッタが開放された際に所定量の前記穀粒が傾斜した最上位の前記整列板上に供給されることを特徴とする請求項1ないし3のいずれかに記載の穀粒品質測定器。 A claim is characterized in that a shutter is operably arranged at the bottom opening of the input port, and when the shutter is opened, a predetermined amount of the grain is supplied onto the tilted top-level alignment plate. Item 6. The grain quality measuring instrument according to any one of Items 1 to 3.
JP2016168619A 2016-08-30 2016-08-30 Grain quality measuring instrument Active JP7019126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016168619A JP7019126B2 (en) 2016-08-30 2016-08-30 Grain quality measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016168619A JP7019126B2 (en) 2016-08-30 2016-08-30 Grain quality measuring instrument

Publications (2)

Publication Number Publication Date
JP2017024913A JP2017024913A (en) 2017-02-02
JP7019126B2 true JP7019126B2 (en) 2022-02-15

Family

ID=57945294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016168619A Active JP7019126B2 (en) 2016-08-30 2016-08-30 Grain quality measuring instrument

Country Status (1)

Country Link
JP (1) JP7019126B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107720213B (en) * 2017-09-09 2020-10-27 华中农业大学 Double-channel automatic conveying device for hyperspectral automatic imaging of potted rice and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263585A (en) 2001-03-13 2002-09-17 Kubota Corp Granular material classifying apparatus and granular material treating apparatus
JP2011122837A (en) 2009-12-08 2011-06-23 Satake Corp Color-sorting machine
WO2012165534A1 (en) 2011-06-01 2012-12-06 出光興産株式会社 Storage device for granular material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112847A (en) * 1982-12-17 1984-06-29 ヤンマー農機株式会社 Controller for rate of de-gluten of rice huller
JPS61132304U (en) * 1985-02-05 1986-08-18
JP3317420B2 (en) * 1994-03-11 2002-08-26 株式会社サタケ Evacuation rate detection device
JP2000002662A (en) * 1998-06-15 2000-01-07 Satake Eng Co Ltd Color sorting machine and adjusting method for background in the color sorting machine
JP5840870B2 (en) * 2011-06-01 2016-01-06 出光興産株式会社 Hydrogenated petroleum resin pellet conveyor and hydrogenated petroleum resin pellet manufacturing plant
JP5807448B2 (en) * 2011-08-26 2015-11-10 株式会社サタケ Chute for optical sorter and optical sorter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263585A (en) 2001-03-13 2002-09-17 Kubota Corp Granular material classifying apparatus and granular material treating apparatus
JP2011122837A (en) 2009-12-08 2011-06-23 Satake Corp Color-sorting machine
WO2012165534A1 (en) 2011-06-01 2012-12-06 出光興産株式会社 Storage device for granular material

Also Published As

Publication number Publication date
JP2017024913A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
RU2702029C1 (en) Apparatus for sorting precious stones
JP5807448B2 (en) Chute for optical sorter and optical sorter
JP5795498B2 (en) Granule sorter
JP5676369B2 (en) Granule sorter
MY143686A (en) Mixture identification system
JP7019126B2 (en) Grain quality measuring instrument
JP2008298695A (en) Grain quality discriminating apparatus
WO2013080351A1 (en) Object counting device
JPWO2019230636A1 (en) Particle imaging device, particle size measuring device, compound particle size measuring device, computer program, particle observation method, and compound particle measuring device
JP6884936B2 (en) Grain quality measuring instrument
JP5792519B2 (en) Granule sorter
KR20150122917A (en) Color sorting device
JP6179752B2 (en) Inspection device
JP2017513012A (en) Apparatus for determining the particle size and / or particle shape of a particle mixture
JP6751864B2 (en) Grain quality measuring instrument
JP2005172608A (en) Appearance inspecting apparatus
JP5140510B2 (en) Disk-like object appearance inspection device
JP5299431B2 (en) Image reader tray
KR101830891B1 (en) Color-based sorting apparatus
JP2019037754A (en) Token identification device and token separation device using the token identification device
US1185045A (en) Change-giving vender.
JPH08161454A (en) Article counter
JP2006198539A (en) Particulate matter sorting machine by color
WO2019202868A1 (en) Coin wear or deformation detection device, coin handling machine, and coin wear or deformation detection method
JP2009039642A (en) Color sorting machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210615

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210624

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210702

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210806

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210813

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210903

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211115

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211217

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7019126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150