JP7018972B2 - 同一周波数内動作か異周波数間動作かの判定のための方法 - Google Patents

同一周波数内動作か異周波数間動作かの判定のための方法 Download PDF

Info

Publication number
JP7018972B2
JP7018972B2 JP2019571438A JP2019571438A JP7018972B2 JP 7018972 B2 JP7018972 B2 JP 7018972B2 JP 2019571438 A JP2019571438 A JP 2019571438A JP 2019571438 A JP2019571438 A JP 2019571438A JP 7018972 B2 JP7018972 B2 JP 7018972B2
Authority
JP
Japan
Prior art keywords
cell
measurement resource
frequency
reference measurement
resource
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019571438A
Other languages
English (en)
Other versions
JP2020526090A (ja
Inventor
イアナ シオミナ,
ムハマド カズミ,
クリストファー キャレンダー,
Original Assignee
テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エルエム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Publication of JP2020526090A publication Critical patent/JP2020526090A/ja
Application granted granted Critical
Publication of JP7018972B2 publication Critical patent/JP7018972B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

特定の実施形態は、同一周波数内動作と異周波数間動作との区別の分野に関し、より詳細には、5G世代無線におけるユーザ機器のための同一周波数内動作及び異周波数間動作を判定するための方法、装置及びシステムに関する。
新無線(NR:New Radio)アーキテクチャに関して、第3世代パートナシッププロジェクト(3GPP:3rd Generation Partnership Project)において標準化され始めた無線の観点からのアーキテクチャ、いわゆる5Gシステム、及びいわゆるNRは、無線インターフェースの名称である。より高い侵入損失などのより厳しい伝搬条件を有することが知られている場合、特性の1つは、LTEより高い周波数、たとえば6GHzを超える、にまで及ぶ周波数範囲である。これらの影響の一部を軽減するために、ビーム形成などのマルチアンテナ技術が、大規模に使用されることになる。さらに別のNR特性は、セルにおける若しくはユーザ機器(UE:user equipment)のための及び/又は異なる周波数帯でのダウンリンク(DL:downlink)及びアップリンク(UL:uplink)での複数のヌメロロジの使用である。さらに別の特性は、より短いレイテンシを可能にする実現性である。
NRアーキテクチャは、3GPPにおいて論じられており、現在の概念が図1に示され、eNBはLTE eNodeBを示し、gNBはNR基地局(BS:base station)を示す(1つのNR BSは、1つ又は複数の送信/受信点に対応し得る)、そして、ノード間の線は、3GPPにおいて議論されている対応するインターフェースを示す。
さらに、図2は、3GPPにおいて議論されているNR BSを有する配備シナリオを示す。スタンドアロンNR配備及び非スタンドアロンNR配備の両方が、3GPPにおいて標準化されることになる。スタンドアロン配備は、単一又はマルチキャリア(たとえば、NR1次セル(PCell)及びNR1次2次セル(PSCell)を有するNRキャリアアグリゲーション(CA:carrier aggregation)又はデュアルコネクティビティ)でもよい。非スタンドアロン配備は、LTE PCell及びNR PSCellを有する配備を表すことが現在意図されている(1つ又は複数のLTE2次セル(SCell)及び1つ又は複数のNR SCellもまた存在し得る)。
以下の配備オプションは、NR作業項目説明[RP-170847、New WID on New Radio Access Technology(新無線アクセス技術での新作業項目説明)、NTTドコモ、2018年3月]において明示的にとらえられている:
この作業項目は、以下の接続性オプションをサポートすることを目的とする:
単一接続性オプションのための:
- 5Gコアネットワーク(CN)に接続されたNR(TR38.801セクション7.1のオプション2)。
デュアルコネクティビティオプションのための:
- E-UTRAがマスタであるEPCを介するE-UTRA-NR DC(TR38.801セクション10.1.2におけるオプション3/3a/3x)、
- E-UTRAがマスタである5G-CNを介するE-UTRA-NR DC(TR38.801セクション10.1.4におけるオプション7/7a/7x)、
- NRがマスタである5G-CNを介するNR-E-UTRA DC(TR38.801セクション10.1.3におけるオプション4/4A)、そして、
- オプション4/4Aでの作業は、オプション2、3シリーズ及び7シリーズでの作業が完了した後に開始されることになる。
優先度はE-UTRAがマスタである場合であり、第2の優先度はNRがマスタである場合である、E-UTRAとNRとの間のデュアルコネクティビティ(DC:Dual Connectivity)と、NR内のデュアルコネクティビティ。
図3は、同一周波数内及び異周波数間UE動作の複数の測定シナリオを示す。UEは、同一周波数内動作(たとえば、無線リンクモニタリング(RLM:radio link monitoring)、同一周波数内測定、同一周波数内システム情報(SI:system information)読取り、同一周波数内セル識別など)と、異周波数間/無線間アクセス技術(RAT:inter-radio access technology))動作(たとえば、異周波数間測定、異周波数間SI読取り、異周波数間セル識別など)とを実行する。
異周波数間/RAT間動作を実行するために、UEは、通常は、測定ギャップを必要とするが、同一周波数内動作については、帯域幅の限定されたFeMTC(further enhancements for machine-type communication、マシンタイプ通信のためのさらなる拡張)UEを除いて、測定ギャップは一般に必要とされない。周期性40ms又は80msを有するギャップパターンが、LTEにおいて使用される。たとえば、36.300では、同一周波数内隣接(セル)測定及び異周波数間隣接(セル)測定は、以下のように定義される。
同一周波数内隣接(セル)測定に関して、現在のセル及び目標セルが同じ(サービング)キャリア周波数で動作するとき、UEによって実行される隣接セル測定は同一周波数内測定である。異周波数間隣接(セル)測定に関して、隣接セルが、現在のセルと比較して、異なるキャリア周波数で動作するとき、UEによって実行される隣接セル測定は、異周波数間測定である。
測定が非ギャップ支援型かギャップ支援型かは、UEの能力及び現在の動作周波数に依存する。非ギャップ支援型シナリオでは、UEは、測定ギャップなしにそのような測定を実行することができることになる。ギャップ支援型シナリオで、UEは、測定ギャップなしにそのような測定を実行することができると想定されるべきではない。UEは、特定のセル測定が送信/受信ギャップにおいて実行される必要があるかどうかを判定し、スケジューラは、ギャップが必要とされるかどうかを知る必要がある。
図3は、目標セルが同一周波数キャリアで動作するか異周波数キャリアで動作するか、及び測定が非ギャップ支援型かギャップ支援型かを示す複数のシナリオを示す。
シナリオAに関して、現在のセル及び目標セルは、同じキャリア周波数及びセル帯域幅を有する。シナリオAは同一周波数内シナリオであり、測定は非ギャップ支援型である。
シナリオBに関して、現在のセル及び目標セルは同じキャリア周波数を有し、目標セルの帯域幅は現在のセルの帯域幅より小さい。シナリオBは同一周波数内シナリオであり、測定は非ギャップ支援型である。
シナリオCに関して、現在のセル及び目標セルは同じキャリア周波数を有し、目標セルの帯域幅は現在のセルの帯域幅より大きい。シナリオCは同一周波数内シナリオであり、測定は非ギャップ支援型である。
シナリオDに関して、現在のセル及び目標セルは異なるキャリア周波数を有し、目標セルの帯域幅は現在のセルの帯域幅より小さく、そして、目標セルの帯域幅は現在のセルの帯域幅内にある。シナリオDは異周波数間シナリオであり、測定はギャップ支援型である。
シナリオEに関して、現在のセル及び目標セルは異なるキャリア周波数を有し、目標セルの帯域幅は現在のセルの帯域幅より大きく、そして、現在のセルの帯域幅は目標セルの帯域幅内にある。シナリオEは異周波数間シナリオであり、測定はギャップ支援型である。
シナリオFに関して、現在のセル及び目標セルは、異なるキャリア周波数及び重複しない帯域幅を有する。シナリオFは異周波数間シナリオであり、測定はギャップ支援型である。
シナリオGに関して、現在のセル及び目標セルは同じキャリア周波数を有し、帯域幅低減低複雑度(BL:bandwidth reduced low complexity)UE又は拡張カバレッジ内のUEの動作周波数は、現在のセルの中央周波数とアラインされることを保証されない。シナリオGは同一周波数内シナリオであり、測定はギャップ支援型である。
LTEにおいて、キャリアの中央周波数はDCキャリアを含み、物理信号及びマルチキャスト/ブロードキャストチャンネル(たとえば、同期信号、ポジショニング参照信号(PRS:positioning reference signal)、物理ブロードキャストチャンネル(PBCH:physical broadcast channel)など)は、DCに関して中央に置かれる。
現在、ある特定の課題が存在する。NRにおける大きな帯域幅に加えて、同期信号及びSSブロックは、システム帯域幅内で必ずしも中央に置かれない。さらに、複数のSSブロックは、同じ又は異なる時間リソース(たとえば、サブフレーム)において、キャリア帯域幅内にネットワークによって設定され得る。同一周波数内と異周波数間とをどのように区別するかは、不明瞭になる。
既存の解決法で前述の問題に対処するために、帯域内制御シグナリングを使用するバッファ処理のための方法及びネットワークノードが開示される。
いくつかの実施形態が、本開示において詳述される。第1の実施形態によれば、UEが、同一周波数内動作(たとえば、測定など)のための参照として使用される第1のサービングセル(セル1)に属する1つの又は1セットの参照又はアンカ無線測定リソース(RMR:radio measurement resource)を決定する。この決定はまた、次のうちの1つ又は複数に基づき得る:ルール又はネットワークノードからのシグナリング/インジケーション。UEはまた、2つ以上のサービングセル、たとえば、セル1、セル2、セル3、で動作/設定され得る。各サービングセルについて、UEは、独立して、対応するRMRを取得し、対応する同一周波数内セルを決定することになる。
第2の実施形態によれば、同一周波数内動作のための決定された周波数リソースに基づいて、UEは、以下のうちの1つ又は複数のために前述の情報を使用する:隣接セル(Cell2)が同一周波数内隣接セルか異周波数間隣接セルかを判定すること、同一周波数内動作と異周波数間動作との区別(たとえば、異なって同一周波数内動作及び異周波数間動作を実行すること、同一周波数内動作及び異周波数間動作のための少なくとも1つの異なるステップを実行すること、無線測定などの同タイプの動作について異なる同一周波数内要件及び異周波数間要件を満たしつつ動作すること)と、それの帯域幅、たとえば、測定帯域幅(BW:bandwidth)又は参照帯域幅(RF BW:reference bandwidth)、を設定すること、それの送信を設定すること(たとえば、時分割複信(TDD:time division duplex)動作などにおいて、UE送信帯域幅が、決定された同一周波数内リソースを超越しない)など。
別の実施形態では、ユーザ機器において使用するための方法は、参照測定リソースとして第1のセルの第1の測定リソースを取得することを含む。本方法は、第2のセルの第2の測定リソースを取得することを追加で含み、第2のセルの第2の測定リソースと第1のセルの第1の測定リソースとは、同じタイプである。本方法はさらに、第2のセルの第2の測定リソースと参照測定リソースを比較することによって、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定することを含む。
別の実施形態では、ユーザ機器は、ネットワークノードから受信されたインジケーションに基づく参照測定リソースに関する情報を取得する。さらに別の実施形態において、本明細書に記載のユーザ機器は、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定に応答して測定手続きを適応させる。
さらに別の実施形態において、ネットワークノードにおいて使用するための方法は、参照測定リソースとして第1のセルの第1の測定リソースを取得することを含む。本方法は、第2のセルの第2の測定リソースを取得することを追加で含み、第2のセルの第2の測定リソースと第1のセルの第1の測定リソースとは、同じタイプである。本方法はさらに、第2のセルの第2の測定リソースと参照測定リソースを比較することによって、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定することと、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定に関する情報をユーザ機器に送信することとを含む。
別の実施形態では、ネットワークノードは、同一周波数内RMRを判定し、同一周波数内RMR設定を別のノード、たとえば、別のネットワークノード又は別のUE、に提供する。さらに別の実施形態において、ネットワークノードは、取得されたRMRに関する情報をユーザ機器に送信する。
ある種の実施形態では、第1の及び第2の測定リソースは、SSブロック又はCSI-RSを含む。ある種の実施形態では、本明細書に記載のネットワークノードはさらに、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定に応答してユーザ機器に送信される測定設定を適応させることを含む。
特定の実施形態は、UE及びネットワークノードについて説明される。1つの実施形態において、同一周波数内動作及び異周波数間動作を判定するためのユーザ機器は、少なくとも1つの処理回路と、プロセッサ実行可能な命令を記憶する少なくとも1つのストレージであって、処理回路によって実行されたとき、それは、ユーザ機器に、参照測定リソースとして第1のセルの第1の測定リソースを取得させ、第2のセルの第2の測定リソースと第1のセルの第1の測定リソースとが同タイプである第2のセルの第2の測定リソースを取得させ、第2のセルの第2の測定リソースと参照測定リソースを比較することによって第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定させる、少なくとも1つのストレージとを備える。
1つの実施形態において、ユーザ機器のための同一周波数内動作及び異周波数間動作を判定するためのネットワークノードは、少なくとも1つの処理回路と、プロセッサ実行可能な命令を記憶する少なくとも1つのストレージであって、処理回路によって実行されたとき、それは、ネットワークノードに、第2のセルの第2の測定リソースと第1のセルの第1の測定リソースとが同じタイプである第2のセルの第2の測定リソースを取得させ、第2のセルの第2の測定リソースと参照測定リソースを比較することによって第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定させ、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定に関する情報をユーザ機器に送信させる、少なくとも1つのストレージとを備える。
別の実施形態では、同一周波数内動作及び異周波数間動作を判定するための通信システムは、少なくとも1つの処理回路を備えるネットワークノードであって、少なくとも1つの処理回路は、参照測定リソースとして第1のセルの第1の測定リソースを取得し、第2のセルの第2の測定リソースと第1のセルの第1の測定リソースとが同じタイプである第2のセルの第2の測定リソースを取得し、参照測定リソース及び第2のセルの第2の測定リソースをユーザ機器に送信するように設定された、ネットワークノードと、少なくとも1つの処理回路を備えるネットワーク内のユーザ機器であって、ネットワークノードから参照測定リソース及び第2のセルの第2の測定リソースを受信し、第2のセルの第2の測定リソースと参照測定リソースを比較することによって第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定するように設定された、ユーザ機器とを備える。
本開示のある種の態様及びそれらの実施形態は、これら又は他の課題に対する解決策を提供し得る。本明細書で開示される問題点のうちの1つ又は複数に対処する様々な実施形態が本明細書で提案されている。
ある種の実施形態は、以下の技術的利点のうちの1つ又は複数を提供し得る。本開示で開示される方法は、NRにおける同一周波数内動作と異周波数間動作とを区別する可能性を提供し得る。同一周波数内動作及び異周波数間動作は、通常は、完全に異なるパフォーマンスを有するので、ネットワークがUEパフォーマンスを制御することができるように、本方法はさらに、ネットワークに知られている、UEビヘイビアを規定し得る。
様々な他の特徴及び利点は、以下の詳細な説明及び図面を考慮すれば、当業者には明らかとなろう。ある種の実施形態は、挙げられた利点のうちのいずれも有さない、いくつかを有する、又はすべてを有することがある。
本明細書に組み込まれ、その一部を形成する添付の図面は、本開示の原理を説明するのに役立つ説明と共に、本開示のいくつかの態様を示す。
第3世代パートナシッププロジェクトにおける例示的新無線アーキテクチャを示す図である。 3GPPにおける新無線基地局を有する例示的配備シナリオを示す図である。 同一周波数内及び異周波数間UE動作の複数の測定シナリオを示す図である。 ある種の実施形態による、例示的ワイヤレスネットワークを示す図である。 ある種の実施形態による、例示的ユーザ機器を示す図である。 ある種の実施形態による、例示的仮想化環境を示す図である。 ある種の実施形態による、ホストコンピュータに中間ネットワークを介して接続された例示的電気通信ネットワークを示す図である。 ある種の実施形態による、部分的にワイヤレスな接続を介してユーザ機器と基地局を介して通信する例示的ホストコンピュータを示す図である。 ある種の実施形態による、ホストコンピュータ、基地局及びユーザ機器を含む通信システムにおいて実装された例示的方法を示す図である。 ある種の実施形態による、ホストコンピュータ、基地局及びユーザ機器を含む通信システムにおいて実装されたもう1つの例示的方法を示す図である。 ある種の実施形態による、ホストコンピュータ、基地局及びユーザ機器を含む通信システムにおいて実装されたさらにもう1つの例示的方法を示す図である。 ある種の実施形態による、ホストコンピュータ、基地局及びユーザ機器を含む通信システムにおいて実装されたさらに別の例示的方法を示す図である。 ある種の実施形態による、同期信号(SS:synchronization signal)ブロック、SSバースト及びSSバーストセットの例示的設定を示す図である。 ある種の実施形態による、同一周波数内及び異周波数間UE動作の複数の測定シナリオを示す図である。 ある種の実施形態による、ユーザ機器における方法の流れ図である。 ある種の実施形態による、ネットワークノードにおけるもう1つの方法の流れ図である。 ある種の実施形態による、例示的ユーザ機器のブロック図である。 ある種の実施形態による、例示的ネットワークノードのブロック図である。
通常のLTEシステムでは、現在のセル及び目標セルは、同じ周波数(同一周波数内シナリオ)で、及び/又は異なる周波数(異周波数間シナリオ)で動作することができる。目標セルが現在のセルに隣接し、同一周波数キャリア(intra-frequency carrier)で動作するときに干渉が生じることがあり、不十分な帯域幅によるあらゆるハンドオーバについて異周波数間動作を実行することは望ましくないので、同一周波数内動作か異周波数間動作かの選択は、重大になる。UEは、目標セルが異周波数キャリア(inter-frequency carrier)で動作することを示す測定値を受信した後に、再設定を実行する必要がある。これは、時に、レイテンシ又はハンドオーバ失敗につながる。
さらに、より大きな帯域幅を有するNRシステムでは、同期信号及びSSブロックは、システム帯域幅内で必ずしも中央に置かれない。複数のSSブロックは、同じ又は異なる時間リソース(たとえば、サブフレーム)において、キャリア帯域幅内にネットワークによって設定され得る。したがって、NR内のUEの同一周波数内動作と異周波数間動作とを区別するための本開示における方法は、前述の問題に対する解決策を提供する。本開示における方法は、参照測定リソースと目標測定リソースとの比較に基づいて、目標セルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定し、同一周波数内動作と異周波数間動作とを区別する。
ここで、本明細書で意図された実施形態のうちのいくつかを、添付の図面を参照して、より完全に説明する。しかしながら、他の実施形態が、本明細書で開示される主題の範囲内に含まれ、開示される主題は、本明細書に記載の実施形態のみに限定されるものとして解釈されるべきではなく、これらの実施形態は、当業者に本主題の範囲を伝えるための例として提供される。
一般に、本明細書で使用されるすべての用語は、それが使用されている文脈から異なる意味が明確に与えられる及び/又は暗示されるのでない限り、関連技術分野におけるそれらの通常の意味に従って解釈されるものとする。1つの/その(a/an/the)要素、装置、構成要素、手段、ステップなどのすべての参照は、特に明記のない限り、要素、装置、構成要素、手段、ステップなどの少なくとも1つの例を参照するものとしてオープンに解釈されるものとする。ステップが別のステップに続く若しくは先行するものとして明示的に記載されていない限り、及び/又はステップが別のステップに続く若しくは先行する必要があるということが黙示的である場合、本明細書で開示されるいずれの方法のステップも、開示されている正確な順番で実行される必要はない。本明細書で開示される実施形態のいずれかの任意の特徴は、適切な場合には、任意の他の実施形態に適用され得る。同様に、いずれかの実施形態の任意の利点は、任意の他の実施形態に適用することができ、逆もまた同様である。含まれる実施形態の他の目的、特徴及び利点が、以下の説明から明らかとなろう。
一部の実施形態では、非制限的用語「UE」が使用される。本明細書でのUEは、無線信号を介してネットワークノード又は別のUEと通信する能力を有する任意のタイプのワイヤレスデバイスでもよい。UEはまた、無線通信デバイス、目標デバイス、デバイス対デバイス(D2D:device to device)UE、マシンタイプUE又はマシン対マシン通信(M2M:machine to machine)の能力を有するUE、UE装備センサ、iPAD、タブレット、モバイル端末、スマートフォン、ラップトップ埋め込み装備(LEE:laptop embedded equipped)、ラップトップ搭載機器(LME:laptop mounted equipment)、USBドングル、加入者宅内機器(CPE:Customer Premises Equipment)などでもよい。
また、一部の実施形態では、一般的専門用語「ネットワークノード」が使用される。それは、基地局、無線基地局、基地局トランシーバ、基地局コントローラ、ネットワークコントローラ、マルチスタンダード無線BS、gNB、NR BS、発展型ノードB(eNB:evolved Node B)、ノードB、マルチセル/マルチキャストコーディネーションエンティティ(MCE:Multi-cell/multicast Coordination Entity)、リレーノード、アクセスポイント、無線アクセスポイント、リモート無線ユニット(RRU:Remote Radio Unit)リモート無線ヘッド(RRH:Remote Radio Head)、マルチスタンダードBS(別名MSR BS)、コアネットワークノード(たとえば、MME、SONノード、調整ノード、ポジショニングノード、MDTノードなど)、或いは外部ノード(たとえば、サードパーティノード、現在のネットワークの外部のノード)などの無線ネットワークノードを備え得る、任意の種類のネットワークノードでもよい。ネットワークノードはまた、テスト機器を備え得る。
本明細書で使用される「無線ノード」という用語は、UE又は無線ネットワークノードを示すために使用され得る。
本明細書で使用される「シグナリング」という用語は、次のうちのいずれかを備え得る:高位レイヤシグナリング(たとえば、無線リソース制御(RRC:radio resource control)などを介する)、低位レイヤシグナリング(たとえば、物理制御チャンネル又はブロードキャストチャンネルを介する)、或いはその組合せ。シグナリングは、黙示的又は明示的でもよい。シグナリングはさらに、ユニキャスト、マルチキャスト又はブロードキャストでもよい。シグナリングはまた、別のノードに直接又は第3のノードを介し得る。
本明細書で使用される「無線測定」という用語は、無線信号で実行される任意の測定を参照し得る。無線測定値は、絶対的又は相対的になり得る。無線測定値は、信号品質及び/又は信号強度でもよい信号レベルと称され得る。無線測定値は、たとえば、同一周波数内、異周波数間、RAT間測定値、CA測定値などになり得る。無線測定値は、単向性(たとえば、DL又はUL)又は双方向性(たとえば、RTT、Rx-Txなど)になり得る。無線測定値のいくつかの例は:タイミング測定値(たとえば、TOA、タイミングアドバンス、RTT、RSTD、Rx-Tx、伝搬遅延など)、角度測定値(たとえば、到達の角度)、電力ベースの測定値(たとえば、受信信号電力、RSRP、受信信号品質、RSRQ、SINR、SNR、干渉電力、全干渉プラス雑音、RSSI、雑音電力など)、セル検出又はセル識別、無線リンクモニタリング(RLM)、システム情報(SI)読取りなど。UEがギャップなしにそのような測定を行う能力を有さない限り、異周波数間及びRAT間測定は、測定ギャップにおいてUEによって実行される。測定ギャップの例は、測定ギャップID#0(40msごとに生じる6msの各ギャップ)、測定ギャップID#1(80msごとに生じる6msの各ギャップ)などである。測定ギャップは、ネットワークノードによってUEにおいて設定される。
キャリアの測定を実行することは、そのキャリアで動作する1つ又は複数のセルの信号の測定を実行すること、又はキャリアの信号の測定(別名、キャリア特有の測定、たとえばRSSI)を実行することを暗示し得る。セル特有の測定の例は、信号強度、信号品質などである。
本明細書で使用される測定パフォーマンスという用語は、無線ノードによって実行される測定のパフォーマンスの特性を示す任意の基準又はメトリックを指し得る。測定パフォーマンスという用語はまた、測定要件、測定パフォーマンス要件などとも呼ばれる。無線ノードは、実行される測定に関する1つ又は複数の測定パフォーマンス基準を満たさなければならない。測定パフォーマンス基準の例には、測定時間、測定時間と測定されることになるセルの数、測定報告遅延、測定精度、参照値に関する測定精度(たとえば、理想的測定結果)などがある。測定時間の例には、測定期間、セル識別期間、評価期間などがある。
本明細書でヌメロロジという用語は、次のうちの任意の1つ又はその組合せを含み得る:サブキャリア間隔、帯域幅内のサブキャリアの数、リソースブロックサイズ、シンボルの長さ、CPの長さなど。1つの特定の非制限的例では、ヌメロロジは、7.5kHz、15kHz、30kHz、60kHz、120kHz、又は240kHzのサブキャリア間隔を含む。別の例では、ヌメロロジは、30kHz以上のサブキャリア間隔で使用され得るCPの長さである。
本明細書で使用される帯域幅(BW)という用語は、それを介してノードが別のノードに信号を送信する及び/又は別のノードから信号を受信する周波数の範囲である。BWは、動作帯域幅、チャンネル帯域幅、システム帯域幅、設定された帯域幅、送信帯域幅、セル帯域幅、セル送信BW、キャリア帯域幅などと同義で呼ばれる。BWは、以下のうちの任意の1つで表現することができる:いくつかの物理チャンネル(たとえば、G3リソースブロック、G4サブキャリアなど)に関して、G1 MHz、G2 GHz。1つの例では、BWは保護周波数帯を含むことができ、その一方で、別の例では、BWは保護周波数帯を除くことができる。たとえば、システム又はチャンネルBWは保護周波数帯を含むことができ、一方で、送信帯域幅は保護周波数帯なしのBWから成る。簡単にするために、BWという用語が、実施形態において使用される。
本明細書に記載の実施形態は、任意のマルチキャリアシステムに適用可能であり、ここで、少なくとも2つの無線ネットワークノードが、同じUEの無線測定値を設定することができる。1つの特定の例示的シナリオは、LTE PCell及びNR PSCellを有するデュアルコネクティビティ配備を含む。もう1つの例示的シナリオは、NR PCell及びNR PSCellを有するデュアルコネクティビティ配備である。
図4は、ある種の実施形態によるある種の実施形態による、例示的ワイヤレスネットワークである。本明細書に記載の主題は、任意の適切な構成要素を使用する任意の適切なタイプのシステムにおいて実装され得るが、本明細書で開示される実施形態は、図4に示された例示的ワイヤレスネットワークなど、ワイヤレスネットワークに関連して説明される。簡単にするために、図4のワイヤレスネットワークは、ネットワーク406、ネットワークノード460及び460b、並びにワイヤレスデバイス(WD:wireless device)410、410b、及び410cのみを示す。実際には、ワイヤレスネットワークは、ワイヤレスデバイス間の通信或いはワイヤレスデバイスと固定電話、サービスプロバイダ、又は任意の他のネットワークノード若しくはエンドデバイスなどの別の通信デバイスとの間の通信をサポートするのに適した任意の付加的要素をさらに含み得る。図示された構成要素について、ネットワークノード460及びワイヤレスデバイス(WD)410は、さらに詳しく描かれている。ある種の実施形態では、ネットワークノード460は、図16及び18にさらに示されたネットワークノードでもよい。一部の実施形態では、ネットワークノード460は、図7から12にさらに示された基地局でもよい。ある種の実施形態では、ワイヤレスデバイス410は、図5、7~12、及び14~16にさらに示されたユーザ機器でもよい。ワイヤレスネットワークは、ワイヤレスネットワークによって又はこれを介して提供されるサービスへのワイヤレスデバイスのアクセス及び/又はそのようなサービスのワイヤレスデバイスの使用を円滑にするために、通信及び他のタイプのサービスを1つ又は複数のワイヤレスデバイスに提供し得る。
ワイヤレスネットワークは、任意のタイプの通信、電気通信、データ、セルラ、及び/又は無線ネットワーク又は他の類似のタイプのシステムを備える、及び/又はそれらとインターフェースすることができる。一部の実施形態では、ワイヤレスネットワークは、特定の標準又は他のタイプの予め規定されたルール又は手続きに従って動作するように設定され得る。したがって、ワイヤレスネットワークの特定の実施形態は、グローバルシステムフォーモバイルコミュニケーションズ(GSM:Global System for Mobile Communications)、ユニバーサルモバイル通信システム(UMTS:Universal Mobile Telecommunications System)、ロングタームエボリューション(LTE:Long Term Evolution)及び/又は他の適切な2G、3G、4G、又は5G標準などの通信標準、IEEE802.11標準などのワイヤレスローカルエリアネットワーク(WLAN:wireless local area network)標準、並びに/或いは、WiMax(Worldwide Interoperability for Microwave Access)、ブルートゥース、Z-Wave及び/又はZigBee標準などの任意の他の適切なワイヤレス通信標準を実装し得る。
ネットワーク406は、1つ又は複数のバックホールネットワーク、コアネットワーク、IPネットワーク、公衆交換電話網(PSTN:public switched telephone network)、パケットデータネットワーク、光ネットワーク、ワイドエリアネットワーク(WAN)、ローカルエリアネットワーク(LAN)、ワイヤレスローカルエリアネットワーク(WLAN)、ワイヤードネットワーク、ワイヤレスネットワーク、メトロポリタンエリアネットワーク、及び、デバイス間の通信を可能にするための他のネットワークを備え得る。
ネットワークノード460及びWD410は、さらに詳しく後述される様々な構成要素を備える。これらの構成要素は、ワイヤレスネットワークにおいてワイヤレス接続を提供することなど、ネットワークノード及び/又はワイヤレスデバイス機能性を提供するために連携する。異なる実施形態において、ワイヤレスネットワークは、任意の数のワイヤード又はワイヤレスネットワーク、ネットワークノード、基地局、コントローラ、ワイヤレスデバイス、リレー局、並びに/或いは、ワイヤード接続又はワイヤレス接続のいずれを介してでもデータ及び/又は信号の通信を円滑にする又はこれに参加する任意の他の構成要素又はシステムを備え得る。
本明細書では、ネットワークノードは、ワイヤレスデバイスへのワイヤレスアクセスを可能にする及び/又は提供するためにワイヤレスデバイスと及び/又はワイヤレスネットワーク内の他のネットワークノード又は機器と直接的又は間接的に通信する並びに/或いはワイヤレスネットワークにおいて他の機能(たとえば、管理)を実行する能力を有する、そのように設定された、配置された及び/又は動作可能な機器を指す。ネットワークノードの例は、アクセスポイント(AP)(たとえば、無線アクセスポイント)、基地局(BS)(たとえば、無線基地局、ノードB、発展型ノードB(eNB)及びNR NodeB(gNB))を含むが、これらに限定されない。基地局は、それらが提供するカバレッジの量(又は、つまり、それらの送信電力レベル)に基づいて分類することができ、その場合、フェムト基地局、ピコ基地局、マイクロ基地局、又はマクロ基地局と呼ばれることもある。基地局は、リレーノード又はリレーを制御するリレードナーノードでもよい。ネットワークノードはまた、集中型デジタルユニット及び/又はリモート無線ユニット(RRU)、リモート無線ヘッド(RRH)と時に称される、などの分散型無線基地局の1つ又は複数の(又はすべての)部分を含み得る。そのようなリモート無線ユニットは、アンテナ統合無線のようにアンテナと統合されても統合されなくてもよい。分散型無線基地局の部分は、分散型アンテナシステム(DAS:distributed antenna system)内のノードと呼ばれることもある。ネットワークノードのさらなる例は、MSR BSなどのマルチスタンダード無線(MSR:multi-standard radio)機器、無線ネットワークコントローラ(RNC:radio network controller)又は基地局コントローラ(BSC:base station controller)などのネットワークコントローラ、基地局トランシーバ(BTS:base transceiver station)、送信ポイント、送信ノード、マルチセル/マルチキャストコーディネーションエンティティ(MCE:multi-cell/multicast coordination entity)、コアネットワークノード(たとえば、MSC、MME)、O&Mノード、OSSノード、SONノード、ポジショニングノード(たとえば、E-SMLC)、及び/又はMDTを含む。別の例として、ネットワークノードは、さらに詳しく後述するような仮想ネットワークノードでもよい。しかしながら、より一般的には、ネットワークノードは、ワイヤレスネットワークへのアクセスをワイヤレスデバイスに可能にする及び/又は提供するための或いはワイヤレスネットワークにアクセスしたワイヤレスデバイスに何らかのサービスを提供するための能力を有する、そのように設定された、配置された、及び/又は動作可能な任意の適切なデバイス(又はデバイスのグループ)を表し得る。
図4において、ネットワークノード460は、処理回路470、デバイス可読媒体480、インターフェース490、補助機器484、電源486、電力回路487、及びアンテナ462を含む。図4の例示的ワイヤレスネットワークに示されたネットワークノード460は、ハードウェア構成要素の図示された組合せを含むデバイスを表し得るが、他の実施形態は、構成要素の異なる組合せを有するネットワークノードを備え得る。タスク、特徴、機能及び本明細書で開示される方法を実行するために必要とされるハードウェア及び/又はソフトウェアの任意の適切な組合せをネットワークノードは備えることが、理解されよう。さらに、ネットワークノード460の構成要素は、より大きなボックス内に位置する又は複数のボックス内にネストされた単一ボックスとして図示されているが、実際には、ネットワークノードは、単一の図示された構成要素を構成する複数の異なる物理構成要素を備え得る(たとえば、デバイス可読媒体480は、複数の別個のハードドライブ並びに複数のRAMモジュールを備え得る)。
同様に、ネットワークノード460は、独自のそれぞれの構成要素をそれぞれが有し得る複数の物理的に別個の構成要素(たとえば、NodeB構成要素及びRNC構成要素、又はBTS構成要素及びBSC構成要素など)で構成され得る。ネットワークノード460が複数の別個の構成要素(たとえば、BTS及びBSC構成要素)を備えるある種のシナリオでは、別個の構成要素のうちの1つ又は複数は、いくつかのネットワークノードの間で共用され得る。たとえば、単一RNCは、複数のNodeBを制御し得る。そのようなシナリオでは、各固有のNodeB及びRNCペアは、場合によっては、単一の別個のネットワークノードと考えられ得る。一部の実施形態では、ネットワークノード460は、複数の無線アクセス技術(RAT)をサポートするように設定され得る。そのような実施形態では、いくつかの構成要素は、二重にされ得(たとえば、異なるRATのための別個のデバイス可読媒体480)、いくつかの構成要素は再使用され得る(たとえば、同じアンテナ462がRATによって共用され得る)。一部の実施形態では、ネットワークノード460は、図15に関して説明される同一周波数内動作及び異周波数間動作の判定など、ワイヤレスデバイス410の機能を実行し得る。ネットワークノード460はまた、たとえば、GSM、WCDMA、LTE、NR、WiFi、又はブルートゥースワイヤレス技術など、ネットワークノード460に統合された異なるワイヤレス技術のための様々な図示された構成要素の複数のセットを含み得る。これらのワイヤレス技術は、ネットワークノード460内の同じ又は異なるチップ又はチップのセット及び他の構成要素内に統合され得る。
処理回路470は、ネットワークノードによって提供されているものとして本明細書に記載された任意の判定、計算又は類似の動作(たとえば、ある種の取得動作)を実行するように設定される。処理回路470によって実行されるこれらの動作は、たとえば、取得された情報を他の情報に変換すること、取得された情報又は変換された情報をネットワークノードに記憶された情報と比較すること、及び/又は取得された情報又は変換された情報に基づいて1つ又は複数の動作を実行することによって、処理回路470によって取得された情報を処理すること、並びに前記処理の結果として判定を行うことを含み得る。特定の実施形態において、ネットワークノード460の処理回路470は、図15及び16にさらに図示された方法を実行し得る。
処理回路470は、マイクロプロセッサ、コントローラ、マイクロコントローラ、中央処理装置、デジタル信号プロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又は任意の他の適切なコンピューティングデバイスのうちの1つ又は複数の組合せ、リソース、或いは、単独で又はデバイス可読媒体480などの他のネットワークノード460構成要素と併せて、ネットワークノード460機能を提供するように動作可能なハードウェア、ソフトウェア及び/又は符号化されたロジックの組合せを備え得る。たとえば、処理回路470は、デバイス可読媒体480に又は処理回路470内のメモリに記憶された命令を実行し得る。そのような機能性は、本明細書で論じられる様々なワイヤレス特徴、機能、又は利益のいずれかの提供を含み得る。一部の実施形態では、処理回路470は、システムオンチップ(SOC)を含み得る。
一部の実施形態では、処理回路470は、無線周波数(RF)トランシーバ回路472及びベースバンド処理回路474のうちの1つ又は複数を含み得る。一部の実施形態では、無線周波数(RF)トランシーバ回路472及びベースバンド処理回路474は、別個のチップ(又はチップのセット)、ボード、又は、無線ユニット及びデジタルユニットなどのユニット上でもよい。代替実施形態において、RFトランシーバ回路472及びベースバンド処理回路474の一部又はすべては、同じチップ又はチップのセット、ボード、又はユニット上でもよい。
ある種の実施形態では、ネットワークノード、基地局、eNB又は他のそのようなネットワークデバイスによって提供されているものとしての本明細書に記載の機能性の一部又はすべては、デバイス可読媒体480又は処理回路470内のメモリに記憶された命令を実行する処理回路470によって実行され得る。代替実施形態において、機能性のうちの一部又はすべては、ハードワイヤード方式などで、別個の又はディスクリートデバイスの可読媒体に記憶された命令を実行することなしに処理回路470によって提供され得る。それらの実施形態のいずれにおいてでも、デバイス可読記憶媒体に記憶された命令を実行してもしなくても、処理回路470は、記載された機能を実行するように設定することができる。そのような機能によってもたらされる利益は、単独で処理回路470に又はネットワークノード460の他の構成要素に制限されないが、ネットワークノード460全体によって、並びに/或いは一般にエンドユーザ及びワイヤレスネットワークによって享受される。
デバイス可読媒体480は、処理回路470によって使用され得る情報、データ、及び/又は命令を記憶する永続記憶装置、ソリッドステートメモリ、リモートに搭載されたメモリ、磁気媒体、光媒体、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、大容量記憶媒体(たとえば、ハードディスク)、取り外し可能記憶媒体(たとえば、フラッシュドライブ、コンパクトディスク(CD)又はデジタル多用途ディスク(DVD))、及び/又は任意の他の揮発性又は不揮発性の、非一時的デバイス可読及び/又はコンピュータ実行可能なメモリデバイスを含むがこれらに限定されない、任意の形の揮発性又は不揮発性コンピュータ可読メモリを備え得る。デバイス可読媒体480は、コンピュータプログラム、ソフトウェア、ロジック、ルール、コード、テーブルなどのうちの1つ又は複数を含むアプリケーション、及び/又は処理回路470によって実行することができる及びネットワークノード460によって使用することができる他の命令を含む、任意の適切な命令、データ又は情報を記憶し得る。デバイス可読媒体480は、処理回路470によって行われる任意の計算及び/又はインターフェース490を介して受信される任意のデータを記憶するために使用され得る。一部の実施形態では、処理回路470及びデバイス可読媒体480は、統合されると考えられ得る。
インターフェース490は、ネットワークノード460、ネットワーク406、及び/又はWD410の間のシグナリング及び/又はデータのワイヤード又はワイヤレス通信において使用される。図示されているように、インターフェース490は、たとえば、ワイヤード接続を介してネットワーク406に及びネットワーク406から、データを送信及び受信するために、ポート/端末494を備える。インターフェース490はまた、アンテナ462に連結され得る又はある種の実施形態においてアンテナ462の一部であることがある、無線フロントエンド回路492を含む。無線フロントエンド回路492は、フィルタ498及び増幅器496を備える。無線フロントエンド回路492は、アンテナ462及び処理回路470に接続され得る。無線フロントエンド回路は、アンテナ462と処理回路470との間で通信される信号を調整するように設定され得る。無線フロントエンド回路492は、ワイヤレス接続を介して他のネットワークノード又はWDに送出されることになるデジタルデータを受信し得る。無線フロントエンド回路492は、フィルタ498及び/又は増幅器496の組合せを使用する適切なチャンネル及び帯域幅パラメータを有する無線信号にデジタルデータを変換し得る。無線信号は、次いで、アンテナ462を介して送信され得る。同様に、データを受信するとき、アンテナ462は、次いで無線フロントエンド回路492によってデジタルデータに変換される無線信号を収集し得る。デジタルデータは、処理回路470に渡され得る。他の実施形態において、インターフェースは、異なる構成要素及び/又は異なる組合せの構成要素を備え得る。
ある種の代替実施形態において、ネットワークノード460は、別個の無線フロントエンド回路492を含まないことがあり、代わりに、処理回路470が、無線フロントエンド回路を備え得、別個の無線フロントエンド回路492なしにアンテナ462に接続され得る。同様に、一部の実施形態では、すべての又は一部のRFトランシーバ回路472は、インターフェース490の一部と考えられ得る。さらに他の実施形態において、インターフェース490は、1つ又は複数のポート又は端末494、無線フロントエンド回路492、並びにRFトランシーバ回路472、無線ユニット(図示せず)の一部としての、を含み得、そして、インターフェース490は、デジタルユニット(図示せず)の一部であるベースバンド処理回路474と通信し得る。
アンテナ462は、ワイヤレス信号を送信及び/又は受信するように設定された、1つ又は複数のアンテナ、又はアンテナアレイを含み得る。アンテナ462は、無線フロントエンド回路490に結合され得、ワイヤレスにデータ及び/又は信号を送信及び受信する能力を有する任意のタイプのアンテナでもよい。一部の実施形態では、アンテナ462は、たとえば、2GHzと66GHzとの間で、無線信号を送信/受信するように動作可能な1つ又は複数の全方向性の、セクタ又はパネルアンテナを備え得る。全方向性アンテナは、任意の方向において無線信号を送信/受信するために使用され得、セクタアンテナは、特定のエリア内のデバイスから無線信号を送信/受信するために使用され得、そして、パネルアンテナは、相対的に直線で無線信号を送信/受信するために使用されるサイトアンテナのラインでもよい。場合によっては、複数のアンテナの使用は、MIMOと称され得る。ある種の実施形態では、アンテナ462は、ネットワークノード460とは別個でもよく、インターフェース又はポートを介してネットワークノード460に接続可能になり得る。
アンテナ462、インターフェース490、及び/又は処理回路470は、ネットワークノードによって実行されるものとして本明細書に記載された任意の受信動作及び/又はある種の取得動作を実行するように設定され得る。任意の情報、データ及び/又は信号が、ワイヤレスデバイス、別のネットワークノード及び/又は任意の他のネットワーク機器から受信され得る。同様に、アンテナ462、インターフェース490、及び/又は処理回路470は、ネットワークノードによって実行されるものとして本明細書に記載された任意の送信動作を実行するように設定され得る。任意の情報、データ及び/又は信号が、ワイヤレスデバイス、別のネットワークノード及び/又は任意の他のネットワーク機器に送信され得る。
電力回路487は、電力管理回路を備え得る、又はこれに連結され得、本明細書に記載の機能性を実行するための電力をネットワークノード460の構成要素に供給するように設定される。電力回路487は、電源486から電力を受信し得る。電源486及び/又は電力回路487は、それぞれの構成要素に適した形でネットワークノード406の様々な構成要素に電力を提供する(たとえば、それぞれの構成要素のために必要とされる電圧及び電流レベルで)ように設定され得る。電源486は、電力回路487及び/又はネットワークノード460に含まれても、これらの外部でもよい。たとえば、ネットワークノード460は、電気ケーブルなどの入力回路又はインターフェースを介して外部電源(たとえば、電気コンセント)に接続可能になり得、それにより、外部電源が電力回路487に電力を供給する。さらなる例として、電源486は、電力回路487に接続された又はこれに統合された、バッテリ又はバッテリパックの形で電力のソースを備え得る。バッテリは、外部電源が切れた場合に非常用電源を提供し得る。光電池デバイスなどの他のタイプの電源もまた使用され得る。
ネットワークノード460の代替実施形態は、本明細書に記載の機能性及び/又は本明細書に記載の主題をサポートするために必要な任意の機能性のうちのいずれかを含む、ネットワークノードの機能性のある種の態様を提供する責任を負い得る図4に示されたものを超える追加の構成要素を含み得る。たとえば、ネットワークノード460は、ネットワークノード460への情報の入力を可能にするために、及びネットワークノード460からの情報の出力を可能にするために、ユーザインターフェース機器を含み得る。これは、ネットワークノード460のための診断、メンテナンス、修理、及び他の管理機能をユーザが実行することを可能にし得る。
本明細書では、ワイヤレスデバイス(WD)は、ネットワークノード及び/又は他のワイヤレスデバイスとワイヤレスに通信する能力を有する、そのように設定された、配置された及び/又は動作可能なデバイスを指す。特に断りのない限り、WDという用語は、ユーザ機器(UE)と同義で本明細書において使用され得る。ある種の実施形態では、ワイヤレスデバイス410は、図13~15及び17にさらに示されたユーザ機器でもよい。ワイヤレスに通信することは、電磁波、無線波、赤外線波、及び/又は電波を介して情報を伝えるのに適した他のタイプの信号を使用してワイヤレス信号を送信/受信することを含み得る。一部の実施形態では、WDは、直接の人間の相互作用なしに情報を送信及び/又は受信するように設定され得る。たとえば、WDは、内部又は外部イベントによってトリガされたとき、又はネットワークからの要求に応答して、所定のスケジュールでネットワークに情報を送信するように設計され得る。WDの例は、スマートフォン、携帯電話、セルフォン、ボイスオーバーIP(VoIP)フォン、ワイヤレスローカルループフォン、デスクトップコンピュータ、携帯情報端末(PDA)、ワイヤレスカメラ、ゲーム機又はデバイス、音楽記憶デバイス、再生装置、ウェアラブル端末デバイス、ワイヤレスエンドポイント、モバイル局、タブレット、ラップトップ、ラップトップ埋め込み機器(LEE)、ラップトップ搭載機器(LME)、スマートデバイス、ワイヤレス顧客構内機器(CPE)。車両搭載ワイヤレス端末デバイスなどを含むが、これらに限定されない。WDは、たとえば、サイドリンク通信、車両対車両(V2V:vehicle-to-vehicle)、車両対インフラストラクチャ(V2I:vehicle-to-infrastructure)、車両対あらゆる物(V2X:vehicle-to-everything)の3GPP標準を実装することによって、デバイス対デバイス(D2D)通信をサポートすることができ、この場合、D2D通信デバイスと称され得る。さらに別の特定の例として、IoT(Internet of Things)シナリオにおいて、WDは、モニタリング及び/又は測定を実行する及びそのようなモニタリング及び/又は測定の結果を別のWD及び/又はネットワークノードに送信するマシン又は他のデバイスを表し得る。WDは、この場合、3GPPコンテキストではMTCデバイスと称され得るマシン対マシン(M2M)デバイスでもよい。1つの特定の例として、WDは、3GPP NB-IoT(narrow band internet of things)標準を実装するUEでもよい。そのようなマシン又はデバイスの具体的な例は、センサ、電力メータなどの計測デバイス、産業マシン、又は家庭用若しくは個人用器具(たとえば、冷蔵庫、テレビジョンなど)、パーソナルウェアラブル(たとえば、腕時計、フィットネストラッカなど)である。他のシナリオにおいて、WDは、その動作状況の監視及び/又は報告或いはその動作に関連する他の機能の能力を有する車両又は他の機器を表し得る。前述のようなWDは、ワイヤレス接続のエンドポイントを表し得、その場合、デバイスはワイヤレス端末と称され得る。さらに、前述のようなWDは、モバイルでもよく、その場合、それはモバイルデバイス又はモバイル端末とも称され得る。
図示されているように、ワイヤレスデバイス410は、アンテナ411、インターフェース414、処理回路420、デバイス可読媒体430、ユーザインターフェース機器432、補助機器434、電源436及び電力回路437を含む。WD410は、たとえば、少し例を挙げると、GSM、WCDMA、LTE、NR、WiFi、WiMAX、又はブルートゥースワイヤレス技術など、WD410によってサポートされる異なるワイヤレス技術のための、図示された構成要素のうちの1つ又は複数の構成要素の複数のセットを含み得る。これらのワイヤレス技術は、WD410内の他の構成要素と同じ又は異なるチップ又はチップのセットに統合され得る。
アンテナ411は、ワイヤレス信号を送信及び/又は受信するように設定された1つ又は複数のアンテナ又はアンテナアレイを含み得、インターフェース414に接続される。ある種の代替実施形態において、アンテナ411は、WD410とは別個でもよく、インターフェース又はポートを介してWD410に接続可能になり得る。アンテナ411、インターフェース414、及び/又は処理回路420は、WDによって実行されるものとして本明細書に記載されている任意の受信又は送信動作を実行するように設定され得る。任意の情報、データ及び/又は信号が、ネットワークノード及び/又は別のWDから受信され得る。一部の実施形態では、無線フロントエンド回路及び/又はアンテナ411は、インターフェースと考えられ得る。
図示されているように、インターフェース414は、無線フロントエンド回路412及びアンテナ411を備える。無線フロントエンド回路412は、1つ又は複数のフィルタ418及び増幅器416を備える。無線フロントエンド回路414は、アンテナ411及び処理回路420に接続され、アンテナ411と処理回路420との間で通信される信号を調整するように設定される。無線フロントエンド回路412は、アンテナ411に連結され得る、又はアンテナ411の一部でもよい。一部の実施形態では、WD410は、別個の無線フロントエンド回路412を含まないことがあり、そうではなくて、処理回路420は、無線フロントエンド回路を備え得、アンテナ411に接続され得る。同様に、一部の実施形態では、RFトランシーバ回路422の一部又はすべては、インターフェース414の一部と考えられ得る。無線フロントエンド回路412は、ワイヤレス接続を介して他のネットワークノード又はWDに送出されることになるデジタルデータを受信し得る。無線フロントエンド回路412は、フィルタ418及び/又は増幅器416の組合せを使用して適切なチャンネル及び帯域幅パラメータを有する無線信号にデジタルデータを変換し得る。無線信号は、次いで、アンテナ411を介して送信され得る。同様に、データを受信しているとき、アンテナ411は、次いで無線フロントエンド回路412によってデジタルデータに変換される、無線信号を収集し得る。デジタルデータは、処理回路420に渡され得る。他の実施形態において、インターフェースは、異なる構成要素及び/又は異なる組合せの構成要素を備え得る。
処理回路420は、マイクロプロセッサ、コントローラ、マイクロコントローラ、中央処理装置、デジタル信号プロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又は任意の他の適切なコンピューティングデバイスのうちの1つ又は複数の組合せ、リソース、或いは、単独で又はデバイス可読媒体430などの他のWD410構成要素と連動して、WD410機能性を提供するように動作可能なハードウェア、ソフトウェア、及び/又は符号化されたロジックの組合せを備え得る。そのような機能性は、本明細書で論じられる様々なワイヤレス特徴又は利益のいずれかの提供を含み得る。たとえば、処理回路420は、本明細書で開示される機能性を提供するために、デバイス可読媒体430に又は処理回路420内のメモリに記憶された命令を実行し得る。特定の実施形態において、ワイヤレスデバイス410の処理回路420は、図15にさらに示された方法を実行し得る。
図示されているように、処理回路420は、RFトランシーバ回路422、ベースバンド処理回路424、及びアプリケーション処理回路426のうちの1つ又は複数を含む。他の実施形態において、処理回路は、異なる構成要素及び/又は異なる組合せの構成要素を備え得る。ある種の実施形態では、WD410の処理回路420は、SOCを備え得る。一部の実施形態では、RFトランシーバ回路422、ベースバンド処理回路424、及びアプリケーション処理回路426は、別個のチップ又はチップのセット上にあることがある。代替実施形態において、ベースバンド処理回路424及びアプリケーション処理回路426の一部又はすべては、1つのチップ又はチップのセット内に結合され得、RFトランシーバ回路422は、別個のチップ又はチップのセット上にあってもよい。さらに代替実施形態において、RFトランシーバ回路422及びベースバンド処理回路424の一部又はすべては、同じチップ又はチップのセット上にあることがあり、アプリケーション処理回路426は、別個のチップ又はチップのセット上にあることがある。さらに他の代替実施形態において、RFトランシーバ回路422、ベースバンド処理回路424、及びアプリケーション処理回路426の一部又はすべては、同じチップ又はチップのセット内に結合され得る。一部の実施形態では、RFトランシーバ回路422は、インターフェース414の一部でもよい。RFトランシーバ回路422は、処理回路420のRF信号を調整し得る。
ある種の実施形態では、WDによって実行されるものとして本明細書に記載の機能性の一部又はすべては、ある種の実施形態ではコンピュータ可読記憶媒体であることがある、デバイス可読媒体430に記憶された命令を実行する処理回路420によって提供され得る。代替実施形態において、機能性の一部の又はすべては、ハードワイヤード方式などで、別個の又はディスクリートデバイスの可読記憶媒体に記憶された命令を実行することなしに処理回路420によって提供され得る。それらの特定の実施形態のいずれかにおいて、デバイス可読記憶媒体に記憶された命令を実行してもしなくても、処理回路420は、記載された機能性を実行するように設定することができる。そのような機能性によって提供される利益は、単独で処理回路420に又はWD410の他の構成要素に限定されず、全体としてのWD410によって、及び/又は一般にエンドユーザ及びワイヤレスネットワークによって、享受される。
処理回路420は、WDによって実行されるものとして本明細書に記載された任意の決定、計算、又は類似の動作(たとえば、ある種の取得動作)を実行するように設定され得る。処理回路420によって実行されるものとしての、これらの動作は、たとえば、取得された情報を他の情報に変換すること、取得された情報又は変換された情報をWD410によって記憶された情報と比較すること、及び/又は取得された情報又は変換された情報に基づいて1つ又は複数の動作を実行することにより、処理回路420によって取得された情報を処理すること、並びに前記処理の結果として判定を行うことを含み得る。
デバイス可読媒体430は、コンピュータプログラム、ソフトウェア、ロジック、ルール、コード、テーブルなどのうちの1つ又は複数を含むアプリケーション及び/又は処理回路420によって実行することが可能な他の命令を記憶するように動作可能になり得る。デバイス可読媒体430は、コンピュータメモリ(たとえば、ランダムアクセスメモリ(RAM)又は読取り専用メモリ(ROM))、大容量記憶媒体(たとえば、ハードディスク)、取り外し可能記憶媒体(たとえば、コンパクトディスク(CD)又はデジタルビデオディスク(DVD))、及び/又は処理回路420によって使用され得る情報、データ、及び/又は命令を記憶する任意の他の揮発性又は不揮発性の、非一時的デバイス可読及び/又はコンピュータ実行可能メモリデバイスを含み得る。一部の実施形態では、処理回路420及びデバイス可読媒体430は、統合されたものとして考えられ得る。
ユーザインターフェース機器432は、人間のユーザがWD410と相互作用することを可能にする構成要素を提供し得る。そのような相互作用は、視覚、聴覚、触覚などの多数の形態をとり得る。ユーザインターフェース機器432は、ユーザへの出力を生み出すように及びユーザが入力をWD410に提供することを可能にするように動作可能になり得る。相互作用のタイプは、WD410にインストールされたユーザインターフェース機器432のタイプに応じて変化し得る。たとえば、WD410がスマートフォンである場合には、相互作用はタッチスクリーンを介し得、WD410がスマートメーターである場合には、相互作用は、使用量(たとえば、使用されたガロン数)を提供するスクリーン又は警報音を提供する(たとえば、煙が検知された場合に)スピーカを介し得る。ユーザインターフェース機器432は、入力インターフェース、デバイス及び回路と、出力インターフェース、デバイス及び回路とを含み得る。ユーザインターフェース機器432は、WD410への情報の入力を可能にするように設定され、処理回路420に接続されて処理回路420が入力情報を処理することを可能にする。ユーザインターフェース機器432は、たとえば、マイクロフォン、近接若しくは他のセンサ、キー/ボタン、タッチディスプレイ、1つ又は複数のカメラ、USBポート、又は他の入力回路を含み得る。ユーザインターフェース機器432はまた、WD410からの情報の出力を可能にするように、及び処理回路420がWD410から情報を出力することを可能にするように設定される。ユーザインターフェース機器432は、たとえば、スピーカ、ディスプレイ、振動回路、USBポート、ヘッドフォンインターフェース、又は他の出力回路を含み得る。ユーザインターフェース機器432の1つ又は複数の入力及び出力インターフェース、デバイス、及び回路を使用し、WD410は、エンドユーザ及び/又はワイヤレスネットワークと通信することができ、それらが本明細書に記載の機能性から利益を得ることを可能にし得る。
補助機器434は、WDによって一般に実行されないことがあるより多くの特定の機能性を提供するように動作可能である。これは、様々な目的で測定を行うための専門のセンサ、ワイヤード通信などの付加的タイプの通信のためのインターフェースなどを備え得る。補助機器434の構成要素の包含及びタイプは、実施形態及び/又はシナリオに応じて異なり得る。
一部の実施形態では、電源436は、バッテリ又はバッテリパックの形でもよい。外部電源(たとえば、電気コンセント)、光電池デバイス又は動力電池など、他のタイプの電源もまた使用され得る。WD410はさらに、本明細書に記載又は示された任意の機能性を実行するために電源436からの電力を必要とするWD410の様々な部分に電源436から電力を届けるための電力回路437を備え得る。ある種の実施形態では、電力回路437は、電力管理回路を備え得る。電力回路437は、付加的に又は別法として外部電源から電力を受信するように動作可能になり得、その場合、WD410は、入力回路又は電気動力ケーブルなどのインターフェースを介して外部電源(電気コンセントなど)に接続可能になり得る。ある種の実施形態では、電力回路437はまた、外部電源から電源436に電力を届けるように動作可能になり得る。これは、たとえば、電源436の充電のためでもよい。電力回路437は、任意のフォーマッティング、変換、又は他の修正を電源436からの電力に実行して、電力を、電力が供給される先のWD410のそれぞれの構成要素に適するようにさせることができる。
図5は、本明細書に記載の様々な態様によるUEの1つの実施形態を示す。本明細書では、ユーザ機器又はUEは、関連デバイスを所有及び/又は操作する人間ユーザという意味でのユーザを必ずしも有さないことがある。そうではなく、UEは、人間ユーザへの販売、又は人間ユーザによる操作向けに意図されるが、特定の人間ユーザに関連付けられていないことがある、又は最初は特定の人間ユーザに関連付けられていないことがあるデバイスを表し得る(たとえば、スマートスプリンクラコントローラ)。別法として、UEは、エンドユーザへの販売又はエンドユーザによる操作向けに意図されていないが、ユーザの利益に関連し得る又はユーザの利益のために操作され得るデバイスを表し得る(たとえば、スマート電力メータ)。UE500は、NB-IoT UE、マシンタイプ通信(MTC:machine type communication)UE、及び/又は拡張MTC(eMTC:enhanced MTC)UEを含む、第3世代パートナシッププロジェクト(3GPP)によって識別された任意のUEでもよい。図5に示されているような、UE500は、3GPPのGSM、UMTS、LTE、及び/又は5G標準など、第3世代パートナシッププロジェクト(3GPP)によって公表された1つ又は複数の通信標準による通信向けに設定されたWDの一例である。ある種の実施形態では、ユーザ機器500は、図13~15及び17にさらに示されるユーザ機器でもよい。前述のように、WD及びUEという用語は、同義で使用され得る。したがって、図5はUEであるが、本明細書で論じられる構成要素は、WDに同等に適用可能であり、逆もまた同様である。
図5では、UE500は、入力/出力インターフェース505、無線周波数(RF)インターフェース509、ネットワーク接続インターフェース511、ランダムアクセスメモリ(RAM)517、読取り専用メモリ(ROM)519、及び記憶媒体521などを含むメモリ515、通信サブシステム531、電源533、及び/又は任意の他の構成要素、或いはその任意の組合せに動作可能なように連結された、処理回路501を含む。記憶媒体521は、オペレーティングシステム523、アプリケーションプログラム525、及びデータ527を含む。他の実施形態において、記憶媒体521は、他の類似のタイプの情報を含み得る。ある種のUEは、図5に示されたすべての構成要素、又はそれらの構成要素のサブセットのみを使用し得る。構成要素間の統合のレベルは、UEによって異なり得る。さらに、ある種のUEは、複数のプロセッサ、メモリ、トランシーバ、送信器、受信器などの構成要素の複数のインスタンスを含み得る。
図5では、処理回路501は、コンピュータ命令及びデータを処理するように設定され得る。処理回路501は、1つ又は複数のハードウェア実装された状態マシン(たとえば、離散的なロジック、FPGA、ASICなどにおける)など、メモリ内のマシン可読コンピュータプログラムとして記憶されたマシン命令を実行するように動作可能な任意の順次状態マシン、適切なファームウェアと一緒のプログラマブルロジック、適切なソフトウェアと一緒の、マイクロプロセッサ又はデジタル信号プロセッサ(DSP)などの、1つ又は複数の記憶されたプログラム、汎用プロセッサ、或いは前記の任意の組合せを実装するように設定され得る。たとえば、処理回路501は、2つの中央処理装置(CPU)を含み得る。データは、コンピュータによる使用に適した形の情報でもよい。
図示された実施形態では、入力/出力インターフェース505は、通信インターフェースを入力デバイス、出力デバイス、或いは、入力及び出力デバイスに提供するように設定され得る。UE500は、入力/出力インターフェース505を介して出力デバイスを使用するように設定され得る。出力デバイスは、入力デバイスと同じタイプのインターフェースポートを使用し得る。たとえば、USBポートは、UE500への入力及びUE500からの出力を提供するために使用され得る。出力デバイスは、スピーカ、サウンドカード、ビデオカード、ディスプレイ、モニタ、プリンタ、アクチュエータ、エミッタ、スマートカード、別の出力デバイス、又はその任意の組合せでもよい。UE500は、ユーザがUE500内に情報をキャプチャすることを可能にするために入力/出力インターフェース505を介して入力デバイスを使用するように設定され得る。入力デバイスは、タッチセンサ式又はプレゼンスセンサ式ディスプレイ、カメラ(たとえば、デジタルカメラ、デジタルビデオカメラ、ウェブカメラなど)、マイクロフォン、センサ、マウス、トラックボール、方向性パッド、トラックパッド、スクロールホイール、スマートカードなどを含み得る。プレゼンスセンサ式ディスプレイは、ユーザからの入力を感知するための容量性又は抵抗性タッチセンサを含み得る。センサは、たとえば、加速度計、ジャイロスコープ、傾斜センサ、力センサ、磁力計、光センサ、近接センサ、別の同様のセンサ、又はその任意の組合せでもよい。たとえば、入力デバイスは、加速度計、磁力計、デジタルカメラ、マイクロフォン、及び光センサでもよい。
図5では、RFインターフェース509は、送信器、受信器、及びアンテナなどのRF構成要素に通信インターフェースを提供するように設定され得る。ネットワーク接続インターフェース511は、通信インターフェースをネットワーク543aに提供するように設定され得る。ネットワーク543aは、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、コンピュータネットワーク、ワイヤレスネットワーク、電気通信ネットワーク、別の同様のネットワーク又はその任意の組合せなど、ワイヤード及び/又はワイヤレスネットワークを包含し得る。たとえば、ネットワーク543aは、Wi-Fiネットワークを備え得る。ネットワーク接続インターフェース511は、イーサネット、TCP/IP、SONET、ATMなどの1つ又は複数の通信プロトコルによる通信ネットワークを介して1つ又は複数の他のデバイスと通信するために使用される受信器及び送信器インターフェースを含むように設定され得る。ネットワーク接続インターフェース511は、通信ネットワークリンク(たとえば、光、電気など)に適した受信器及び送信器機能性を実装し得る。送信器及び受信器機能は、回路構成要素、ソフトウェア又はファームウェアを共用し得、或いは別法として別個に実装され得る。
RAM517は、オペレーティングシステム、アプリケーションプログラム、及びデバイスドライバなどのソフトウェアプログラムの実行中にデータ又はコンピュータ命令の記憶又はキャッシュを行うために処理回路501にバス502を介してインターフェースするように設定され得る。ROM519は、コンピュータ命令又はデータを処理回路501に提供するように設定され得る。たとえば、ROM519は、基本入力及び出力(I/O)、スタートアップ、又は不揮発性メモリに記憶されたキーボードからのキーストロークの受信などの基本システム機能のための不変の低レベルシステムコード又はデータを記憶するように設定され得る。記憶媒体521は、RAM、ROM、プログラマブル読取り専用メモリ(PROM)、消去可能プログラマブル読取り専用メモリ(EPROM)、電気的消去可能プログラマブル読取り専用メモリ(EEPROM)、磁気ディスク、光ディスク、フロッピディスク、ハードディスク、取り外し可能カートリッジ、又はフラッシュドライブなどのメモリを含むように設定され得る。1つの例では、記憶媒体521は、オペレーティングシステム523、ウェブブラウザアプリケーションなどのアプリケーションプログラム525、ウィジェット若しくはガジェットエンジン又は別のアプリケーション、及びデータファイル527を含むように設定され得る。記憶媒体521は、UE500によって使用するために、バラエティ豊かな様々なオペレーティングシステムのいずれか又はオペレーティングシステムの組合せを記憶し得る。
記憶媒体521は、RAID(redundant array of independent disk)、フロッピディスクドライブ、フラッシュメモリ、USBフラッシュドライブ、外部ハードディスクドライブ、サムドライブ、ペンドライブ、キードライブ、高密度デジタル多用途ディスク(HD-DVD:high-density digital versatile disc)光ディスクドライブ、内部ハードディスクドライブ、ブルーレイ光ディスクドライブ、ホログラフィックデジタルデータストレージ(HDDS:holographic digital data storage)光ディスクドライブ、外部ミニデュアルインラインメモリモジュール(DIMM:mini-dual in-line memory module)、同期型ダイナミックランダムアクセスメモリ(SDRAM:synchronous dynamic random access memory)、外部マイクロDIMM SDRAM、加入者識別モジュール若しくは取り外し可能ユーザ識別(SIM/RUIM:subscriber identity module or a removable user identity)モジュールなどのスマートカードメモリ、他のメモリ、或いはその任意の組合せなどのいくつかの物理ドライブユニットを含むように設定され得る。記憶媒体521は、UE500が、一時的又は非一時的メモリ媒体に記憶された、コンピュータで実行可能な命令、アプリケーションプログラムなどにアクセスすること、データをオフロードすること、或いはデータをアップロードすることを可能にし得る。通信システムを使用するものなどの製造品は、デバイス可読媒体を備え得る記憶媒体521において有形に実施され得る。
図5において、処理回路501は、通信サブシステム531を使用するネットワーク543bと通信するように設定され得る。ネットワーク543a及びネットワーク543bは、1つ又は複数の同じネットワーク或いは1つ又は複数の異なるネットワークでもよい。通信サブシステム531は、ネットワーク543bと通信するために使用される1つ又は複数のトランシーバを含むように設定され得る。たとえば、通信サブシステム531は、IEEE802.5、CDMA、WCDMA、GSM、LTE、UTRAN、WiMaxなどの1つ又は複数の通信プロトコルによる無線アクセスネットワーク(RAN)の別のWD、UE、又は基地局など、ワイヤレス通信の能力を有する別のデバイスの1つ又は複数のリモートトランシーバと通信するために使用される1つ又は複数のトランシーバを含むように設定され得る。各トランシーバは、それぞれ、RANリンクに適した送信器又は受信器機能性(たとえば、周波数割当てなど)を実装するために送信器533及び/又は受信器535を含み得る。さらに、各トランシーバの送信器533及び受信器535は、回路構成要素、ソフトウェア又はファームウェアを共用し得る、或いは別法として別個に実装され得る。
図示された実施形態において、通信サブシステム531の通信機能は、データ通信、音声通信、マルチメディア通信、ブルートゥースなどの短距離通信、近距離無線通信、位置を判定するためのグローバルポジショニングシステム(GPS)の使用などの位置ベースの通信、別の同様の通信機能、或いはその任意の組合せを含み得る。たとえば、通信サブシステム531は、セルラ通信、Wi-Fi通信、ブルートゥース通信、及びGPS通信を含み得る。ネットワーク543bは、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、コンピュータネットワーク、ワイヤレスネットワーク、電気通信ネットワーク、別の同様のネットワーク又はその任意の組合せなど、ワイヤード及び/又はワイヤレスネットワークを包含し得る。たとえば、ネットワーク543bは、セルラネットワーク、Wi-Fiネットワーク、及び/又は近距離無線ネットワークでもよい。電源513は、交流(AC)又は直流(DC)電力をUE500の構成要素に提供するように設定され得る。
本明細書に記載の特徴、利益及び/又は機能は、UE500の構成要素のうちの1つにおいて実装され得る、又はUE500の複数の構成要素を横断して分割され得る。さらに、本明細書に記載の特徴、利益、及び/又は機能は、ハードウェア、ソフトウェア又はファームウェアの任意の組合せにおいて実装され得る。1つの例では、通信サブシステム531は、本明細書に記載の構成要素のいずれかを含むように設定され得る。さらに、処理回路501は、バス502を介してそのような構成要素のいずれかと通信するように設定され得る。別の例では、そのような構成要素のいずれかは、処理回路501によって実行されたときに本明細書に記載の対応する機能を実行するメモリに記憶されたプログラム命令によって表され得る。別の例では、そのような構成要素のうちのいずれかの構成要素の機能性は、処理回路501と通信サブシステム531との間で分割され得る。別の例では、そのような構成要素のうちのいずれかの構成要素の非計算集約的機能は、ソフトウェア又はファームウェアにおいて実装され得、計算集約的機能は、ハードウェアにおいて実装され得る。
図6は、ある種の実施形態による、例示的仮想化環境を示す。図6は、一部の実施形態によって実装される機能が仮想化され得る仮想化環境600を示す概略的ブロック図である。これに関連して、仮想化は、ハードウェアプラットフォーム、記憶デバイス及びネットワークリソースの仮想化を含み得る装置又はデバイスの仮想バージョンの作成を意味する。本明細書では、仮想化は、ノード(たとえば、仮想化された基地局又は仮想化された無線アクセスノード)に或いはデバイス(たとえば、UE、ワイヤレスデバイス又は任意の他のタイプの通信デバイス)又はその構成要素に適用することができ、機能性の少なくとも一部分が1つ又は複数の仮想構成要素として実装される(たとえば、1つ又は複数のアプリケーション、構成要素、機能、仮想マシン又は1つ又は複数のネットワーク内の1つ又は複数の物理処理ノードで実行するコンテナを介して)実装形態に関する。
一部の実施形態では、本明細書に記載の機能の一部又はすべては、ハードウェアノード630のうちの1つ又は複数によってホストされる1つ又は複数の仮想環境600において実装された1つ又は複数の仮想マシンによって実行される仮想構成要素として実装され得る。さらに、仮想ノードが無線アクセスノードではない又は無線接続性(たとえば、コアネットワークノード)を必要としない実施形態では、そのとき、ネットワークノードは、完全に仮想化され得る。
本機能は、本明細書で開示される実施形態のうちのいくつかの実施形態の特徴、機能、及び/又は利益のうちのいくつかを実装するように動作可能な1つ又は複数のアプリケーション620(ソフトウェアインスタンス、仮想アプライアンス、ネットワーク機能、仮想ノード、仮想ネットワーク機能などと別称され得る)によって実装され得る。アプリケーション620は、処理回路660及びメモリ690を備えるハードウェア630を提供する仮想化環境600において実行される。メモリ690は、処理回路660によって実行可能な命令695を含み、それにより、アプリケーション620は、本明細書で開示される特徴、利益、及び/又は機能のうちの1つ又は複数を提供するように動作可能である。
仮想化環境600は、民生(COTS:commercial off-the-shelf)プロセッサ、特定用途向け集積回路(ASIC)、或いはデジタル若しくはアナログハードウェア構成要素又は専用プロセッサを含む任意の他のタイプの処理回路でもよい、1セットの1つ又は複数のプロセッサ又は処理回路660を備えた、汎用又は専用ネットワークハードウェアデバイス630を備える。各ハードウェアデバイスは、命令695又は処理回路660によって実行されるソフトウェアを一時的に記憶するための非永続メモリでもよいメモリ690-1を備え得る。各ハードウェアデバイスは、物理ネットワークインターフェース680を含む、ネットワークインターフェースカードとしても知られる、1つ又は複数のネットワークインターフェースコントローラ(NIC:network interface controller)670を備え得る。各ハードウェアデバイスはまた、ソフトウェア695がそこに記憶された非一時的、永続的、マシン可読記憶媒体690-2、及び/又は処理回路660によって実行可能な命令を含み得る。ソフトウェア695は、1つ又は複数の仮想化レイヤ650(ハイパーバイザとも呼ばれる)のインスタンスを作成するためのソフトウェア、仮想マシン640を実行するためのソフトウェア、並びに本明細書に記載のいくつかの実施形態に関連して記載された機能、特徴及び/又は利益をそれが実行することを可能にするソフトウェアを含む、任意のタイプのソフトウェアを含み得る。
仮想マシン640は、仮想処理、仮想メモリ、仮想ネットワーキング又はインターフェース及び仮想ストレージを備え、対応する仮想化レイヤ650又はハイパーバイザによって実行され得る。仮想アプライアンス620のインスタンスの異なる実施形態は、仮想マシン640のうちの1つ又は複数で実装され得、実装形態は、異なる形で行われ得る。
動作中、処理回路660は、仮想マシンモニタ(VMM:virtual machine monitor)と時に称されることがあるハイパーバイザ又は仮想化レイヤ650のインスタンスを作成するために、ソフトウェア695を実行する。仮想化レイヤ650は、仮想マシン640にネットワーキングハードウェアのように見える仮想オペレーティングプラットフォームを示し得る。
図6に示されるように、ハードウェア630は、一般又は特定の構成要素を有するスタンドアロンネットワークノードでもよい。ハードウェア630は、アンテナ6225を備え得、仮想化を介していくつかの機能を実装し得る。別法として、ハードウェア630は、多数のハードウェアノードが連携する及び、とりわけアプリケーション620のライフサイクル管理を監督する、管理及び編成(MANO:management and orchestration)6100を介して管理される、ハードウェアのより大きなクラスタ(たとえば、データセンタ又は顧客構内機器(CPE)内など)の一部でもよい。
ハードウェアの仮想化は、いくつかの文脈では、ネットワーク機能仮想化(NFV:network function virtualization)と称される。NFVは、データセンタ及び顧客構内機器内に置かれ得る、業界標準高容量サーバハードウェア、物理スイッチ、及び物理ストレージに多数のネットワーク機器タイプを統合するために使用され得る。
NFVとの関連で、仮想マシン640は、プログラムが物理的な非仮想化マシンで実行していたかのようにプログラムを実行する物理マシンのソフトウェア実装形態でもよい。それぞれの仮想マシン640、及びその仮想マシンを実行するハードウェア630のその部分は、それがその仮想マシン専用のハードウェア及び/又は他の仮想マシン640とその仮想マシンによって共用されるハードウェアであれば、別個の仮想ネットワーク要素(VNE)を形成する。
さらにNFVに関連して、仮想ネットワーク機能(VNF:Virtual Network Function)は、ハードウェアネットワーキングインフラストラクチャ630の最上部の1つ又は複数の仮想マシン640において実行する特定のネットワーク機能を処理する責任を有し、図6のアプリケーション620に対応する。
一部の実施形態では、1つ又は複数の送信器6220及び1つ又は複数の受信器6210をそれぞれ含む1つ又は複数の無線ユニット6200は、1つ又は複数のアンテナ6225に連結され得る。無線ユニット6200は、1つ又は複数の適切なネットワークインターフェースを介してハードウェアノード630と直接通信することができ、無線アクセスノード又は基地局などの無線能力を有する仮想ノードを提供するために仮想構成要素と組み合わせて使用され得る。
一部の実施形態では、一部のシグナリングは、別法としてハードウェアノード630と無線ユニット6200との間の通信のために使用され得る制御システム6230の使用の影響を受け得る。
図7は、ある種の実施形態による、中間ネットワークを介してホストコンピュータに接続された例示的電気通信ネットワークを示す。図7を参照すると、一実施形態によれば、通信システムは、無線アクセスネットワークなどのアクセスネットワーク711及びコアネットワーク714を備える、3GPPタイプのセルラネットワークなどの電気通信ネットワーク710を含む。アクセスネットワーク711は、それぞれが対応するカバレッジエリア713a、713b、713cを規定する、NB、eNB、gNB又は他のタイプのワイヤレスアクセスポイントなどの複数の基地局712a、712b、712cを備える。ある種の実施形態では、複数の基地局712a、712b、712cは、図16及び18に関して説明されるようなネットワークノードでもよい。ある種の実施形態では、複数の基地局712a、712b、712cは、図13~15及び17に関して説明されるようなユーザ機器の機能性を実行し得る。各基地局712a、712b、712cは、ワイヤード又はワイヤレス接続715を介してコアネットワーク714に接続可能である。カバレッジエリア713c内に置かれた第1のUE791は、対応する基地局712cにワイヤレスで接続される又は対応する基地局712cによってページングされるように設定され得る。カバレッジエリア713a内の第2のUE792は、対応する基地局712aにワイヤレスに接続可能である。複数のUE791、792が本例では図示されているが、開示される実施形態は、唯一のUEがカバレッジエリア内にある又は唯一のUEが対応する基地局712に接続している状況に同等に適用可能である。ある種の実施形態では、複数のUE791、792は、図13~15及び17に関して説明されるようなユーザ機器でもよい。
電気通信ネットワーク710自体は、ホストコンピュータ730に接続され、ホストコンピュータ730は、スタンドアロンサーバ、クラウド実装されたサーバ、分散型サーバのハードウェア及び/又はソフトウェアにおいて或いはサーバファーム内の処理リソースとして実施され得る。ホストコンピュータ730は、サービスプロバイダの所有権又は制御の下にあってもよく、或いはサービスプロバイダによって又はサービスプロバイダのために動作させられ得る。電気通信ネットワーク710とホストコンピュータ730との接続721及び722は、コアネットワーク714からホストコンピュータ730に直接延びてもよく、或いはオプションの中間ネットワーク720を介してもよい。中間ネットワーク720は、パブリックネットワーク、プライベートネットワーク又はホスト型ネットワークのうちの1つ、又はそれらのうちの2つ以上の組合せでもよく、中間ネットワーク720は、もしあるなら、バックボーンネットワーク又はインターネットでもよく、具体的には、中間ネットワーク720は、2つ以上のサブネットワーク(図示せず)を備え得る。
全体としての図7の通信システムは、接続されたUE791、792及びホストコンピュータ730の間の接続性を有効にする。接続性は、オーバーザトップ(OTT:over-the-top)接続750として説明され得る。ホストコンピュータ730及び接続されたUE791、792は、媒介としてアクセスネットワーク711、コアネットワーク714、任意の中間ネットワーク720及び可能なさらなるインフラストラクチャ(図示せず)を使用し、OTT接続750を介してデータ及び/又はシグナリングを通信するように設定される。OTT接続750は、OTT接続750が通過する参加通信デバイスはアップリンク及びダウンリンク通信のルーティングを認識しないという意味で、透過的になり得る。たとえば、基地局712は、接続されたUE791に転送される(たとえば、ハンドオーバされる)ことになるホストコンピュータ730に由来するデータとの着信ダウンリンク通信の過去のルーティングに関して知らされないことがある、又は知らされる必要はない。同様に、基地局712は、UE791からホストコンピュータ730に向けて始められる外向きのアップリンク通信の未来のルーティングを認識する必要はない。
図8は、いくつかの実施形態による、部分的にワイヤレスな接続を介してユーザ機器と基地局を介して通信する例示的ホストコンピュータを示す。前段落で論じられたUE、基地局及びホストコンピュータの一実施形態による例示的実装形態について、図8を参照して、ここで説明する。通信システム800では、ホストコンピュータ810は、通信システム800の異なる通信デバイスのインターフェースとのワイヤード又はワイヤレス接続をセットアップ及び維持するように設定された通信インターフェース816を含むハードウェア815を備える。ホストコンピュータ810はさらに、ストレージ及び/又は処理能力を有し得る処理回路818を備える。具体的には、処理回路818は、1つ又は複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、或いは命令を実行するようになされたこれらの組合せ(図示せず)を備え得る。ホストコンピュータ810はさらに、ホストコンピュータ810に記憶された若しくはこれよってアクセス可能な及び処理回路818によって実行可能な、ソフトウェア811を備える。ソフトウェア811は、ホストアプリケーション812を含む。ホストアプリケーション812は、UE830及びホストコンピュータ810で終了するOTT接続850を介して接続するUE830など、リモートユーザにサービスを提供するように動作可能になり得る。サービスのリモートユーザへの提供において、ホストアプリケーション812は、OTT接続850を使用して送信されるユーザデータを提供し得る。
通信システム800はさらに、電気通信システムにおいて提供される並びにホストコンピュータ810と及びUE830とそれが通信することを可能にするハードウェア825を備える、基地局820を含む。ある種の実施形態では、基地局820は、図16及び18に関して説明されるようなネットワークノードでもよい。ハードウェア825は、通信システム800の異なる通信デバイスのインターフェースとのワイヤード又はワイヤレス接続をセットアップ及び維持するための通信インターフェース826、並びに基地局820によってサービスされるカバレッジエリア(図8には図示せず)内に置かれたUE830とのワイヤレス接続870を少なくともセットアップ及び維持するための無線インターフェース827を含み得る。通信インターフェース826は、ホストコンピュータ810への接続860を円滑にするように設定され得る。接続860は直接でもよく、或いは、接続860は、電気通信システムのコアネットワーク(図8に示さず)を通過及び/又は電気通信システム外部の1つ又は複数の中間ネットワークを通過してもよい。示された実施形態では、基地局820のハードウェア825はさらに、1つ又は複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又は命令を実行するようになされたこれらの組合せ(図示せず)を備え得る、処理回路828を含む。基地局820はさらに、内部に記憶された又は外部接続を介してアクセス可能なソフトウェア821を有する。
通信システム800はさらに、すでに参照されたUE830を含む。ある種の実施形態では、UE830は、図13~15及び17に関して説明されるようなユーザ機器でもよい。それのハードウェア835は、UE830が現在位置するカバレッジエリアにサービスする基地局とのワイヤレス接続870をセットアップ及び維持するように設定された無線インターフェース837を含み得る。UE830のハードウェア835はさらに、1つ又は複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又は命令を実行するようになされたこれらの組合せ(図示せず)を備え得る、処理回路838を含む。UE830はさらに、UE830に記憶された若しくはこれによってアクセス可能な及び処理回路838によって実行可能なソフトウェア831を備える。ソフトウェア831は、クライアントアプリケーション832を含む。クライアントアプリケーション832は、ホストコンピュータ810のサポートを有して、UE830を介して人間又は非人間ユーザにサービスを提供するように動作可能になり得る。ホストコンピュータ810では、実行中のホストアプリケーション812は、UE830及びホストコンピュータ810で終了するOTT接続850を介して実行中のクライアントアプリケーション832と通信し得る。ユーザへのサービス提供において、クライアントアプリケーション832は、ホストアプリケーション812から要求データを受信し、要求データに応答してユーザデータを提供することができる。OTT接続850は、要求データ及びユーザデータの両方を転送することができる。クライアントアプリケーション832は、ユーザと相互作用して、それが提供するユーザデータを生成することができる。
図8に示されたホストコンピュータ810と、基地局820と、UE830とは、それぞれ、図7のホストコンピュータ730と、基地局712a、712b、712cのうちの1つと、UE791、792のうちの1つと類似する又は同一であってもよいことに留意されたい。すなわち、これらのエンティティの内部の動きは、図8に示されるようでもよく、独立して、周囲のネットワークトポロジは、図7のそれでもよい。
図8において、OTT接続850は、媒介デバイスの明示的参照及びこれらのデバイスを介するメッセージの正確なルーティングなしに、基地局820を介するホストコンピュータ810とUE830との通信を説明するために抽象的に描かれてある。ネットワークインフラストラクチャは、ルーティングを判定することができ、それは、UE830から若しくはサービスプロバイダオペレーティングホストコンピュータ810から又はその両方から隠すように設定され得る。OTT接続850がアクティブである間、ネットワークインフラストラクチャは、それがルーティングを動的に変更する判定(たとえば、ネットワークの負荷バランシング検討又は再設定に基づく)をさらに行うことができる。
UE830と基地局820との間のワイヤレス接続870は、本開示を通じて説明される実施形態の教示に従う。様々な実施形態のうちの1つ又は複数は、ワイヤレス接続870が最後のセグメントを形成する、OTT接続850を使用してUE830に提供されるOTTサービスのパフォーマンスを改善する。より厳密には、これらの実施形態の教示は、送信バッファにおける冗長データの処理を改善し、それにより、無線リソース利用の効率の改善(たとえば、冗長データを送信しないこと)並びに新データの受信の遅延の低減(たとえば、バッファ内の冗長データを取り除くことによって、新データが、より早く送信され得る)などの利益をもたらす。
測定手続きは、1つ又は複数の実施形態が改善するモニタリングデータレート、レイテンシ及び他の要因を目的として、提供され得る。測定結果の変動に応答して、ホストコンピュータ810とUE830との間のOTT接続850を再設定するためのオプションのネットワーク機能性がさらに存在し得る。測定手続き及び/又はOTT接続850を再設定するためのネットワーク機能性は、ホストコンピュータ810のソフトウェア811及びハードウェア815において、又はUE830のソフトウェア831及びハードウェア835において、又はその両方で実装され得る。実施形態において、センサ(図示せず)は、OTT接続850が通過する通信デバイスにおいて又はそのような通信デバイスに関連して配備され得、センサは、上記で例示されたモニタされる数量の値を供給すること、或いはそこからソフトウェア811、831がモニタされる数量を計算又は推定し得る他の物理数量の値を供給することによって、測定手続きに参加し得る。OTT接続850の再設定は、メッセージフォーマット、再送信設定、好ましいルーティングなどを含み得、再設定は基地局820に影響を及ぼす必要はなく、そして、それは基地局820に知られてなくても又は感知できなくてもよい。そのような手続き及び機能性は、当分野では知られており、実施されることがある。ある種の実施形態では、測定は、スループット、伝搬時間、レイテンシなどのホストコンピュータ810の測定を円滑にする占有UEシグナリングを含み得る。ソフトウェア811及び831が、OTT接続850を使用し、それが伝搬時間、エラーなどをモニタする間に、メッセージ、具体的には空の又は「ダミー」メッセージ、を送信させるので、測定は実装され得る。
図9は、一部の実施形態によるある種の実施形態による、ホストコンピュータ、基地局及びユーザ機器を含む通信システムにおいて実装される例示的方法を示す。より具体的には、図9は、1つの実施形態による、通信システムにおいて実装される方法を示す流れ図である。通信システムは、図7及び8を参照して説明されるものでもよいホストコンピュータ、基地局及びUEを含む。本開示を簡単にするために、図9のみの図面の参照が、このセクションに含まれることになる。ステップ910において、ホストコンピュータはユーザデータを提供する。ステップ910のサブステップ911(オプションでもよい)では、ホストコンピュータは、ホストアプリケーションを実行することによって、ユーザデータを提供する。ステップ920では、ホストコンピュータは、ユーザデータをUEに運ぶ送信を開始する。ステップ930(オプションでもよい)では、基地局が、本開示を通して説明される実施形態の教示に従って、ホストコンピュータが開始した送信において運ばれたユーザデータをUEに送信する。ステップ940(やはりオプションでもよい)で、UEは、ホストコンピュータによって実行されるホストアプリケーションに関連するクライアントアプリケーションを実行する。
図10は、一部の実施形態による、ホストコンピュータ、基地局及びユーザ機器を含む通信システムにおいて実装される例示的方法を示す。より具体的には、図10は、1つの実施形態による、通信システムにおいて実装される方法を示す流れ図である。通信システムは、図7及び8を参照して説明されるものでもよいホストコンピュータ、基地局及びUEを含む。本開示を簡単にするために、図10の図面の参照のみが、このセクションに含まれることになる。本方法のステップ1010において、ホストコンピュータはユーザデータを提供する。オプションのサブステップ(図示せず)において、ホストコンピュータは、ホストアプリケーションを実行することによって、ユーザデータを提供する。ステップ1020で、ホストコンピュータは、ユーザデータをUEに運ぶ送信を開始する。送信は、本開示を通して説明される実施形態の教示によれば、基地局を通り得る。ステップ1030(オプションでもよい)で、UEは、その送信で運ばれたユーザデータを受信する。
図11は、一部の実施形態による、ホストコンピュータ、基地局及びユーザ機器を含む通信システムにおいて実装される別のさらなる例示的方法を示す。より具体的には、図11は、1つの実施形態による、通信システムにおいて実装される方法を示す流れ図である。通信システムは、図7及び8を参照して説明されるものでもよいホストコンピュータ、基地局及びUEを含む。本開示を簡単にするために、図11の図面の参照のみが、このセクションに含まれることになる。ステップ1110(オプションでもよい)で、UEは、ホストコンピュータによって提供された入力データを受信する。追加で又は別法として、ステップ1120で、UEはユーザデータを提供する。ステップ1120のサブステップ1121(オプションでもよい)で、UEは、クライアントアプリケーションを実行することによって、ユーザデータを提供する。ステップ1110のサブステップ1111(オプションでもよい)で、UEは、ホストコンピュータによって提供される受信された入力データに反応してユーザデータを提供するクライアントアプリケーションを実行する。ユーザデータの提供において、実行されるクライアントアプリケーションは、ユーザから受信されたユーザ入力をさらに考慮し得る。ユーザデータが提供された具体的方式にかかわらず、UEは、サブステップ1130(オプションでもよい)で、ユーザデータのホストコンピュータへの送信を開始する。本方法のステップ1140において、ホストコンピュータは、本開示を通して説明される実施形態の教示によれば、UEから送信されたユーザデータを受信する。
図12は、一部の実施形態による、ホストコンピュータ、基地局及びユーザ機器を含む通信システムにおいて実装された別の例示的方法を示す。より具体的には、図12は、1つの実施形態による、通信システムにおいて実装された方法を示す流れ図である。通信システムは、図7及び8を参照して説明されるものでもよいホストコンピュータ、基地局及びUEを含む。本開示を簡単にするために、図12の図面の参照のみが、このセクションに含まれることになる。ステップ1210(オプションでもよい)において、本開示を通して説明される実施形態の教示に従って、基地局は、ユーザデータをUEから受信する。ステップ1220(オプションでもよい)で、基地局は、受信されたユーザデータのホストコンピュータへの送信を開始する。ステップ1230(オプションでもよい)で、ホストコンピュータは、基地局によって開始された送信で運ばれたユーザデータを受信する。
本明細書で開示される任意の適切なステップ、方法、特徴、機能、又は利益は、1つ又は複数の仮想装置の1つ又は複数の機能ユニット又はモジュールを介して実行され得る。各仮想装置は、いくつかのこれらの機能ユニットを備え得る。これらの機能ユニットは、1つ又は複数のマイクロプロセッサ又はマイクロコントローラを含み得る、処理回路、並びに、デジタル信号プロセッサ(DSP)、専用デジタルロジックなどを含み得る、他のデジタルハードウェアを介して実装され得る。処理回路は、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、キャッシュメモリ、フラッシュメモリデバイス、光記憶デバイスなど、1つの又はいくつかのタイプのメモリを含み得る、メモリに記憶されたプログラムコードを実行するように設定され得る。メモリに記憶されたプログラムコードは、1つ又は複数の電気通信及び/又はデータ通信プロトコルを実行するためのプログラム命令並びに本明細書に記載の技法のうちの1つ又は複数を実行するための命令を含む。いくつかの実装形態において、処理回路は、本開示の1つ又は複数の実施形態による対応する機能をそれぞれの機能ユニットに実行させるために使用され得る。
図13は、ある種の実施形態による、セル内の同期信号(SS)ブロック、SSバースト及びSSバーストセットの例示的設定を示す。図13は、他の実施形態において想定され得るユーザ機器によって実行されるSSブロック及びSSバースト設定の非制限的例を説明する。一部の実施形態では、ユーザ機器は、図15及び17に関して説明されるようなユーザ機器でもよい。SSブロックに含まれる信号は、同一周波数内、異周波数間及びRAT間を含む、NRキャリアの測定(すなわち、別のRATからのNR測定)のために使用され得る。
SSブロックに関して、NR-1次同期信号(PSS:primary synchronization signal)、NR-2次同期信号(SSS:secondary synchronization signal)及び/又はNR物理ブロードキャストチャンネル(PBCH)は、SSブロック内で送信することができる。所与の周波数帯について、SSブロックは、デフォルトサブキャリア間隔に基づくN OFDMシンボルに対応し、Nは定数である。UEは、少なくともOFDMシンボルインデックス、無線フレーム内のスロットインデックス、及びSSブロックからの無線フレーム番号を識別することができるものとする。単一セットの可能なSSブロック時間位置(たとえば、無線フレームに関する又はSSバーストセットに関する)が、周波数帯ごとに指定される。少なくともマルチビームの場合、SSブロックの少なくとも時間インデックスが、UEに示される。実際の送信されるSSブロックの場所が、CONNECTEDモードUEが未使用のSSブロックにおいてDLデータ/制御を受信するのを助けるための及び潜在的にIDLEモードUEが未使用のSSブロックにおいてDLデータ/制御を受信するのを助けるための、CONNECTED/IDLEモード測定を助けるために知らされ得る。
SSバーストに関して、1つの又は複数のSSブロックは、SSバーストを構成する。SSバーストセット内のSSブロックの最大数Lは、キャリア周波数に依存してもしなくてもよい。異なる周波数範囲のSSバーストセット内のSSブロックの最大数Lは、様々である。たとえば、周波数範囲が3GHzまでであるとき、Lは4である。周波数範囲が3GHzから6GHzであるとき、Lは8である。周波数範囲が6GHzから52.6GHzであるとき、Lは64である。
SSバーストセットに関して、1つの又は複数のSSバーストは、SSバーストセット(又はシリーズ)をさらに構成し、SSバーストセット内のSSバーストの数は有限である。物理レイヤ仕様の観点から、SSバーストセットの少なくとも1つの周期性がサポートされる。UEの観点から、SSバーストセット送信は周期的である。少なくとも最初のセル選択について、UEは、所与のキャリア周波数のSSバーストセット送信のデフォルト周期性(たとえば、5ms、10ms、20ms、40ms、80ms、又は160msのうちの1つ)を想定し得る。UEは、所与のSSブロックはSSバーストセット周期性で繰り返されると想定し得る。デフォルトで、UEは、gNBが同数の物理ビームを送信することも、SSバーストセット内の異なるSSブロックを横切る同じ物理ビームを送信することも想定しなくてもよい。特別な場合に、SSバーストセットは、1つのSSバーストを備え得る。
各キャリアについて、送信されるSSブロックの実際の数が、異なるセルでは異なる場合でも、SSブロックは、完全に又は少なくとも部分的に、時間合わせされ得る又は重複し得る、或いは、SSブロックの最初が、時間合わせされ得る。
同一周波数内又は異周波数間動作を判定するためにUE及びネットワークノードにおいて実行される方法に関して、UEは、同一周波数内動作の参照として使用される第1のサービングセル(セル1)に属する1つの又は1セットの参照又はアンカ無線測定リソース(RMR)を判定する。UEはまた、2つ以上のサービングセル、たとえば、セル1、セル2、セル3、と動作し得る/設定され得る。各サービングセルについて、UEは、独立して、対応するRMRを取得し、対応する同一周波数内セルを判定することになる。UEは、任意のRRC状態、たとえば、IDLE、INACTIVE、又はCONNECTED状態、にあり得る。
同一周波数内RMR又は同一周波数内RMR設定は、帯域幅、ある種のセットのRBを含む参照ブロック(RB)の数、RMRの中央、周波数におけるRMRの開始/終了、周波数ドメイン内の参照からのオフセット(たとえば、DCからの又は特定のRBからのデルタRB)などによって特性を示され得る。
同一周波数内RMRは、たとえば、1つ又は複数のサブフレーム、1つ又は複数の無線フレームなどを含む、特定の制限された期間について判定され得る。さらなる実施形態において、同一周波数内RMRは、ある特定の時間T1changeより頻繁に変更されなくてもよい。また、その判定は、少なくともT2determineと同じ位頻繁に行われ得る。
同一周波数内RMRはまた、特定の周期的又は非周期的タイムドメインリソース又は時間ドメインパターン、たとえば、UEアクティビティパターン、DRXパターン、測定タイムドメインパターン、ギャップパターンなど、と関連付けられ得る。たとえば、同一周波数内RMRは、パターンによって示されるリソース(たとえば、1つ又は複数のサブフレーム又は無線フレーム又はスロットなど)において適用され、他のタイムドメインリソースにおいて適用されなくてもよい。
同一周波数内RMR、異周波数間RMR、又は非同一周波数内RMRのそれぞれはまた、1つ又は複数のいわゆる帯域幅部分を備え得る。たとえば、異なる帯域幅部分はまた、キャリアアグリゲーションに類似して集約され得る。
さらなる実施形態で、判定は、周期的に又は非周期的に行われ得る。たとえば、判定は、トリガするイベント、条件、又はインジケーション/メッセージが別のノードから受信されたときに行われ得る。
同一周波数内RMRは、すべてのUEのセルにおいて共通でもよく、或いはUEのうちの1つ又は1グループに特有でもよい。同一周波数内RMRは、静的に設定され得る、或いは動的に又は準静的に(より少ない頻度で)変更され得る。
判定の後、本方法はさらに、同一周波数内動作と異周波数間動作とを区別する。同一周波数内動作の例は、RLM、隣接セル内の同一周波数内動作、同一周波数内測定、同一周波数内システム情報読取り、同一周波数内CGI読取り、同一周波数内セル検出又はセル識別、ビーム識別、チャンネル状態情報-参照信号(CSI-RS:Channel State Information-Reference Signal)ベースの測定、CSI-RSグループベースの測定などを含むが、これらに限定されない。
さらなる実施形態において、同一周波数内RMRは、明示的に又は黙示的に判定され得る。黙示的判定は、たとえば、1つ又は複数のUEの同一周波数内動作のために使用されるように設定された信号又は信号のグループ/ブロックの設定パラメータからでもよい。パラメータは、周波数リソース、帯域幅、リソースブロック、キャリアの一部などを含むが、これらに限定されない。たとえば、RLMのために使用されることになる信号、同一周波数内セル検出又はセル識別のために使用されることになる1つ又は複数のSSブロック、CSI-RS又はCSI-RSグループ、システム帯域幅内の異なる周波数リソースに位置し得る複数のSSブロック、SSバースト、又はSSバーストセットから選択された1つのSSブロック又はSSバースト又はSSバーストセット(別名、参照SSブロック、参照SSバースト、又は参照SSバーストセット)。
さらなる実施形態において、同一周波数内RMRは、具体的には、同じセルに関連する1つの、いくつかの、又はすべてのビームと関連し得る。たとえば、セル内のビームのサブセットは同一周波数内ルールに基づいて動作させられ、その一方、同セル内の少なくとも1つの他のビームは異周波数間ルールに基づいて動作させられる。
いくつかの実施形態では、同一周波数内動作が、測定ギャップなしに実行される。したがって、いくつかの実施形態では、同一周波数内動作はまた、「測定ギャップを必要としない動作」、「測定ギャップなしで実行される動作」、「非ギャップ支援型動作」、「非ギャップ支援型測定」などとも同義で称され得る。たとえば、UEが、ギャップなしでセルの信号を測定することができる場合、同一周波数内動作と考えられ得る。
いくつかの実施形態では、同一周波数内動作が測定ギャップにおいて実行される。したがって、いくつかの実施形態では、同一周波数内動作はまた、「測定ギャップを必要とする動作」、「測定ギャップにおいて実行される動作」、「ギャップ支援型動作」、「ギャップ支援型測定」などとも同義で称され得る。
いくつかの実施形態では、異周波数間動作という用語はまた、「測定ギャップを必要とする動作」、「測定ギャップにおいて実行される動作」、「ギャップ支援型動作」、「ギャップ支援型測定」などとも同義で称され得る。
同一周波数内RMRの判定は、DCキャリアを含むリソースと異なっていてもいなくてもよい、同一周波数内の事前に規定された位置と、1つ又は複数の同一周波数内ルール及び異周波数間ルールと、別のノードからのシグナリング/インジケーションとのうちの1つ又は任意の組合せに基づき得る。
同一周波数内ルール及び異周波数間ルールの例は、同一周波数内RMRが、一般にUEのためのページングリソース又はUEのためのページングリソースの特定のサブセットに関連するリソースであることであり、その関連性が信号伝達又は事前に規定され得、ページングはIDLEモードページング、INACTIVEモードページング、又はCONNECTEDモードページングでもよいことと、同一周波数内RMRが、周波数ドメイン内のページングリソースに最も近いページングリソース、SSブロック、SSバースト、又はSSバーストセットに関連するSSブロック、SSバースト、又はSSバーストセットであることであり、ページングはIDLEモードページング、INACTIVEモードページング、又はCONNECTEDモードページングでもよいことと、同一周波数内RMRが、RLMのために設定されたリソースであることと、同一周波数内RMRが、設定された同一周波数内測定帯域幅内のリソースであることと、同一周波数内RMRが、制御チャンネルを含むリソース、たとえばUEが制御チャンネルを受信するリソース、であることであり、制御チャンネルは物理ダウンリンク制御チャンネル(PDCCH:physical downlink control channel)、E-PDCCHなどであることと、同一周波数内RMRが、周波数ドメイン内の探索空間を含むリソースであることであり、UEはある種のメッセージ又はチャンネル、たとえばダウンリンク制御情報、を受信することが予期されることと、同一周波数内RMRが、このUEへのすべてのサービングセル又はサービングビーム専用送信を含むリソースであることと、同一周波数内RMRが、特定の時間リソース内の最大UE帯域幅のリソースであることであり、特定の時間ソースは、特定のサブフレーム又は無線フレームでもよく、最大UE帯域幅は、最大UE RF帯域幅又はUE帯域幅能力でもよく、サービングセル/ビーム送信が同じ時間リソース内のより小さな帯域幅を介するときでも、このUEへのすべてのサービングセル又はサービングビーム専用送信を含むことと、同一周波数内RMRが、少なくとも1つのCSI-RSリソースグループのリソースを含むことであり、CSI-RSリソースグループは、CSI-RS信号を含む無線リソースのグループでもよく、CSI-RSリソースグループはまた、SCI-RSシーケンス内で使用されるグループ特有のIDによって特性を示され得ることと、同一周波数内RMRがチャンネルラスタと一致することと、同一周波数内RMRが同期ラスタと一致することであり、同一周波数内RMRは少なくとも1つの同期ラスタポイントを含むこととを含むが、これらに限定されない。
シグナリングに先立って同一周波数内RMRを判定する必要がある別のUE又はネットワークノードなど、別のノードからのシグナリング/インジケーションの例は、別のノードからのルール又はシグナリングにやはり基づくノードにおける判定であり、別のノードは動作及びメンテナンスノード(OM:maintenance node)又は自己編成ネットワークノード(SON:self-organizing network node)でもよい、判定と、UE帯域幅能力、ノードによって同様に考慮され得る同一周波数内RMRに関係する特定のUE能力と、SS設定情報、CSI-RSグループ設定情報、複数のCSI-RSグループのうちの1つのグループの識別子若しくはインジケータ、複数のSS設定のうちの1つの設定の識別子若しくはインジケータ、RMRに関連付けられたページングリソースの識別子、同一周波数内周波数RMRに一意に関連付けられた又は同一周波数内RMRを判定若しくは導出するために使用することができるインジケータ、同じ周波数リソース上のSSブロックのグループに関連するインジケータ若しくはID、ここで同一周波数内の複数のSSブロックは異なるIDに関連付けられ得る、のうちの1つ又は複数を含むシグナリング又はメッセージとを含むが、これらに限定されない。
UEはまた、それがシグナリングを介して異なる同一周波数内RMRを取得しない限り、同一周波数内の事前に規定された位置を想定し得る。同一周波数内の事前に規定された位置は、DCキャリア又はある種のRBを含むが、キャリア帯域幅より小さくてもよいUE RF帯域幅能力を超えない、周波数リソースでもよい。
本明細書でシグナリングは、上位レイヤシグナリング、物理レイヤシグナリング、又はこれら2つの組合せを含み得、専用シグナリング、マルチキャスト又はブロードキャストを介し得る。
別の実施形態では、ネットワークノードは、同一周波数内RMRを判定し、同一周波数内RMR設定を別のノード、たとえば、別のネットワークノード又は別のUE、に提供する。
別の実施形態では、同一周波数内RMRは、問題の周波数帯において、データ、制御などの他の送信のためにサポートされるヌメロロジのより大きなセットから、サブキャリア間隔などの1つ又は複数の特定のヌメロロジのみを使用することを可能にされ得る。たとえば、その周波数帯の参照ヌメロロジ又はSSブロックによって使用されるヌメロロジは、この周波数帯において使用され得る。
同一周波数内RMRのUEヌメロロジが、知られている、又はたとえば前述のルールによって判定することができる場合、ネットワークは、同一周波数内RMRにおけるヌメロロジを明示的に示す必要はない。
別の実施形態では、同一周波数内RMRのヌメロロジが、ネットワークによってUEに信号伝達/示される。
同一周波数内RMR及びUE能力に関して、異なるUEは、異なるサイズの動作同一周波数内RMRの能力を有し得る。1つの例では、前述のUE能力は、UE RF帯域幅能力、UE測定帯域幅能力、特定のRMRリソースでの同一周波数内動作をサポートするためのUE能力などを含み得る。この能力は、同一周波数内RMRを判定するために使用され得る。
同一周波数内RMRが、別のノードから受信された/別のノードによって設定された場合、UEはまた、受信された/設定された同一周波数内RMRをそれの能力に合わせる(たとえば、同一周波数内RMRの帯域幅を減らす)ことができ、これは、他のノードがUE能力を認識していないことがあるときに特に有用である。
そのようなUE能力は、たとえば、トリガするイベント、条件に応じて、又はネットワークからの要求に応じて、ネットワークノードに信号伝達され得る。そのようなUE能力を受信したとき、ネットワークノードは、この能力を使用して同一周波数内RMRを設定することができる。
判定された同一周波数内参照周波数の使用方法に関して、さらに別の実施形態では、同一周波数内動作のための判定された周波数リソースに基づいて、UE及び/又はネットワークノードは、以下の動作(1)から(7)のうちの1つ又は任意の組合せを実行する。
(1)以下を含む、隣接セル(セル2)が同一周波数内であるか異周波数間であるかを判定すること:セル2における測定リソース(たとえばRMR)の中央周波数が、セル1におけるRMRの中央周波数と同じである場合、そのとき、セル2は、サービングセル、セル1、に関して同一周波数内セルとしてUEによって見なされる。そうでない場合には、セル2は、UEによって異周波数間セルとして見なされ、そして、セル2における測定リソース(たとえば、RMR)の中央周波数及びセル1における測定リソース(たとえば、RMR)の中央周波数が、ある特定のマージン(たとえば、デルタF)内である場合、そのとき、セル2は、UEによって、同一周波数内セルと見なされる。そうでない場合、セル2は、UEによって、異周波数間セルと見なされる。
(2)同一周波数内動作と異周波数間動作とを区別すること。たとえば、同一周波数内動作と異周波数間動作とを異なって実行すること、同一周波数内動作及び異周波数間動作について少なくとも1つの異なるステップを実行すること、無線測定などの同タイプの動作について異なる同一周波数内及び異周波数間要件を満たしながら動作すること。動作は、動作リソースの少なくとも一部分、或いは、1RB又はY個のRB、その動作のRBの5%又はBWのZ%、でもよい、閾値以上であるときに同一周波数内RMRに含まれないすべての動作リソースを含む。
(3)それの帯域幅を設定すること。たとえば、測定BW又はRF BWは、同一周波数内RMRを含むように設定される。
(4)それの送信を設定すること。たとえば、TDDのような動作において、UE送信帯域幅は、同一周波数内RMRを含む。
(5)UE測定を設定すること又はUE測定設定を制御すること。たとえば、同一周波数内測定設定は、同一周波数内RMR内にあるように設定される。
(6)送信及び/又は受信のスケジューリングを適応させること。たとえば、スケジューリングされたリソースが同一周波数内RMRと合致する、これはスケジューリングされたリソースが周波数ドメイン外にない又は超えないことを意味する、ような、ネットワークノードにおけるDL送信スケジューリング、UEにおけるDL受信スケジューリング、UEにおけるUL送信スケジューリング、及びネットワークノードにおけるUL受信スケジューリング。
(7)前のステップにおける判定された隣接セル/ビームが同一周波数内であるか異周波数間であるかに基づいて隣接セル/ビームで測定を実行するための測定手続きを適応させること。測定手続きの適応の例は、隣接セルが同一周波数内セルである場合に隣接セルで測定を実行するために第1の測定手続き(P1)を使用すること、及び/又は、隣接セルが異周波数間セルである場合に隣接セルで測定を実行するために第2の測定手続き(P2)を使用することである。
P1の例は、ギャップなしに測定を実行することと、第1の測定サンプリングレート(R1)を使用して測定を実行することと、第1の測定時間(T1)にわたり測定を実行すること、ここでT1=200ms、と、第1の測定精度(A1)を満たしつつ第1の測定時間(T1)にわたり測定を実行すること、ここでRSRP測定についてA1=±3dB、とを含むがこれらに限定されない。
P2の例は、第2の測定サンプリングレート(R2)を使用して測定を実行すること、ここでR2<R1、と、第2の測定時間(T2)にわたり測定を実行すること、ここでT2>T1及びT2=800msであり同時にT1=200ms、と、第2の測定精度(A2)を満たしつつ第2の測定時間(T2)にわたり測定を実行すること、ここでA2の大きさはA1の大きさより大きい、たとえば、RSRP測定についてA2=±6dB、と、測定ギャップにおいて測定を実行すること、たとえば、異周波数間動作の又は同一周波数内ではない動作のUE測定ギャップを設定することは、動作が同一周波数内RMRに含まれないリソースを含むので、その動作は同一周波数内ではないという判定に基づく、もう1つの例として、設定される測定ギャップパターンは、同一周波数内動作がギャップを必要とする場合に同一周波数内動作について、異なる周期性又はギャップの長さにより、異なり得る。
ネットワークは、判定された同一周波数内RMRに基づいて支援データを作成することができ、たとえば、同一周波数内動作の隣接セルリスト及び/又は異周波数間動作の隣接セルリストを作成することができる。
ネットワークノードは、UEからそれを受信するときにネットワークノード自体によって又はUEによって判定された同一周波数内RMR情報/設定を使用し得る。
UE又はネットワークノードはさらに、1つ又は複数の動作タスクを実行するための実行される同一周波数内及び/又は異周波数間動作の結果を使用し得る。タスクの例は、セル変更動作又はモビリティのための測定の使用と、別のノードへの測定結果の報告、ここで別のモードはネットワークノード又は別のUEでもよい、と、ポジショニングのための測定の使用とを含むが、これらに限定されない。
ネットワークノード及びUEはまた、同一周波数内/異周波数間RMR情報を潜在的に設定及び使用してキャリアアグリゲーションを有するUEを設定することができる。異周波数間リソース又は非同一周波数内リソースは、UEパフォーマンスを強化する及びそれらの現在の異周波数間リソースからキャリアアグリゲーションゲインを達成するために、サービングセルリソースを有するアグリゲーションのために考慮され得る。したがって、異周波数間RMR又は非同一周波数内RMRは、キャリアアグリゲーションのための候補周波数リソースと見なされ得る。
図14は、ある種の実施形態による、同一周波数内及び異周波数間UE動作の複数の測定シナリオを示す。いくつかの実施形態では、UEは、図15及び17でさらに説明されるユーザ機器でもよい。UEは、特定のセル測定が送信/受信ギャップにおいて実行される必要があるかどうかを判定し、スケジューラはギャップが必要とされるかどうかを知る必要がある。
図14は、目標セルが同一周波数キャリアで動作するか異周波数キャリアで動作するか並びに測定が非ギャップ支援型かギャップ支援型かを示す複数のシナリオを示す。ある種の実施形態では、現在のセルは第1のサービングセルでもよく、目標セルは第2のサービングセルでもよい。いくつかの実施形態では、UEは、同一周波数内動作の参照として使用される第1のサービングセル(セル1)に属するRMRのうちの1つ又は1セットのRMRを判定する。別の実施形態では、判定は、次のうちの1つ又は複数に基づき得る:ルール又はネットワークからのシグナリング/インジケーション。UEはまた、2つ以上のサービングセル、たとえば、セル1、セル2、セル3など、と設定され得る。各サービングセルについて、UEは、独立して、対応するRMRを取得し、対応する同一周波数内セルを判定することになる。
シナリオAに関して、現在のセル及び目標セルは、同じSSバーストセットキャリア周波数及びセル帯域幅を有する。シナリオAは、同一周波数内シナリオであり、測定ギャップ支援型ではない。
シナリオBに関して、現在のセル及び目標セルは、同じSSバーストセットキャリア周波数を有し、及び目標セルの帯域幅は現在のセルの帯域幅より小さい。シナリオBは、同一周波数内シナリオであり、測定ギャップ支援型ではない。
シナリオCに関して、現在のセル及び目標セルは、同じSSバーストセットキャリア周波数を有し、目標セルの帯域幅は現在のセルの帯域幅より大きい。シナリオCは、同一周波数内シナリオであり、測定ギャップ支援型ではない。
シナリオDに関して、現在のセル及び目標セルは、異なるSSバーストセットキャリア周波数を有し、目標セルの帯域幅は現在のセルの帯域幅より小さく、目標セルの帯域幅は、現在のセルの帯域幅内である。シナリオDは、異周波数間シナリオであり、測定ギャップ支援型である。
シナリオEに関して、現在のセル及び目標セルは、異なるSSバーストセットキャリア周波数を有し、目標セルの帯域幅は現在のセルの帯域幅より大きく、そして、現在のセルの帯域幅は目標セルの帯域幅内である。シナリオEは、異周波数間シナリオであり、測定ギャップ支援型である。
シナリオFに関して、現在のセル及び目標セルは、異なるSSバーストセットキャリア周波数、及び重複しない帯域幅を有する。シナリオFは、異周波数間シナリオであり、測定ギャップ支援型である。
シナリオGに関して、現在のセル及び目標セルは、同じSSバーストセットキャリア周波数を有し、UEの動作周波数は、現在のセルの中央周波数とアラインされることを保証されない。シナリオGは、同一周波数内シナリオであり、測定ギャップ支援型である。
シナリオHに関して、現在のセル及び目標セルは、同じSSバーストセットキャリア周波数を有する。シナリオHは、同一周波数内シナリオであり、測定ギャップ支援型ではない。
シナリオIに関して、現在のセル及び目標セルは、異なるSSバーストセットキャリア周波数を有する。シナリオIは、異周波数間シナリオであり、測定ギャップ支援型である。
シナリオJに関して、現在のセル及び目標セルは、同じキャリア周波数を共用する各セルのSSバーストセットのうちの少なくとも1つを有する複数のSSバーストセットを有する。シナリオJは、同一周波数内シナリオであり、測定ギャップ支援型ではない。
シナリオKに関して、現在のセル及び目標セルは、同じキャリア周波数を共用する各セルのSSバーストセットを有さない複数のSSバーストセットシナリオを有する。シナリオKは、異周波数間シナリオであり、測定ギャップ支援型である。
シナリオLに関して、現在のセル及び目標セルは、同じキャリア周波数を共用する各セルのSSバーストセットのうちの少なくとも1つを有する複数のSSバーストセットシナリオを有するが、UEはこの/これらのSSバーストセットのいずれにも位置しない。シナリオLは、同一周波数内シナリオであり、測定ギャップ支援型である。
図15は、ある種の実施形態による、ユーザ機器における方法の流れ図である。方法1500は、ユーザ機器が第1のセルの第1の測定リソースを取得するステップ1510で開始する。ある種の実施形態では、第1のセルは第1のサービングセル(セル1)でもよい。いくつかの実施形態では、第1の測定リソースは、参照測定リソースと見なされ得る。いくつかの実施形態では、ユーザ機器は、図4に示すワイヤレスデバイスでもよい。いくつかの実施形態では、ユーザ機器は、図5に示すユーザ機器でもよい。
ステップ1520で、ユーザ機器は第2のセルの第2の測定リソースを取得し、第2のセルの第2の測定リソースと第1のセルの第1の測定リソースとは同じタイプである。ある種の実施形態では、第2のセルは、第2のサービングセル(セル2)でもよい。ある種の実施形態では、ユーザ機器は、1つ又は複数の隣接セルの測定リソースを取得し得る。いくつかの実施形態では、隣接セルは、第3のサービングセル(セル3)でもよい。ある種の実施形態では、測定リソースは、SSブロック又はCSI-RSを備え得る。ある種の実施形態では、UEは、ネットワークノードから受信されたインジケーションに基づいてRMRに関する情報を取得する。
ステップ1530で、ユーザ機器は、第2のセルの第2の測定リソースと参照測定リソースを比較することによって、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定する。いくつかの実施形態では、ユーザ機器はさらに、対応する参照測定リソースを1つ又は複数の隣接セルの測定リソースと個々に比較することによって、1つ又は複数の隣接セルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定し得る。いくつかの実施形態では、第2のセルの第2の測定リソースの周波数が参照測定リソースの周波数と同じであるとき、ユーザ機器は、第2のセルで同一周波数内動作を実行し得る。いくつかの実施形態では、第2のセルの第2の測定リソースの周波数が参照測定リソースの周波数と同じではないとき、ユーザ機器は、第2のセルで異周波数間動作を実行し得る。いくつかの実施形態では、ユーザ機器はさらに、測定ギャップ支援が必要かどうかを判定し得る。いくつかの実施形態では、第1のセルの中央周波数が第2のセルの中央周波数とは異なるとき、測定ギャップ支援が必要とされる。いくつかの実施形態では、第1のセルの中央周波数が第2のセルの中央周波数の第1のマージン内にあるとき、測定ギャップ支援は必要とされる。ある種の実施形態では、ユーザ機器は、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定に応答して、測定手続きをさらに適応させ得る。
図16は、ある種の実施形態による、ネットワークノードにおける別の方法の流れ図である。方法1600は、ネットワークノードが第1のセルの第1の測定リソースを取得するステップ1610で開始する。ある種の実施形態では、第1のセルは第1のサービングセル(セル1)でもよい。いくつかの実施形態では、第1の測定リソースは、参照測定リソースとして使用され得る。いくつかの実施形態では、ネットワークノードは、図4に示されたネットワークノードでもよい。
ステップ1620で、ネットワークノードは、第2のセルの第2の測定リソースを取得し、第2のセルの第2の測定リソースと第1のセルの第1の測定リソースとは、同じタイプである。ある種の実施形態では、第2のセルは、第2のサービングセル(セル2)でもよい。いくつかの実施形態では、ネットワークノードは、1つ又は複数の隣接セルの測定リソースを取得し得る。いくつかの実施形態では、隣接セルは、第3のサービングセル(セル3)でもよい。ある種の実施形態では、測定リソースは、SSブロック又はCSI-RSを備え得る。
ステップ1630で、ネットワークノードは、第2のセルの第2の測定リソースと参照測定リソースを比較することによって、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定する。いくつかの実施形態では、ネットワークノードはさらに、対応する参照測定リソースを1つ又は複数の隣接セルの測定リソースと個々に比較することによって、1つ又は複数の隣接セルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定し得る。ある種の実施形態では、ネットワークノードはさらに、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定に応答して、UEに送信される測定設定を適応させ得る。ある種の実施形態では、ネットワークノードはさらに、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定に応答して、UEへのアップリンク及び/又はダウンリンクにおける信号のスケジューリングを適応させ得る。
ステップ1640で、ネットワークノードは、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定に関する情報をユーザ機器に送信する。いくつかの実施形態では、ネットワークノードは、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定のためにユーザ機器に第1のセルの第1の測定リソース、第2のセルの第2の測定リソース、及び任意の他の隣接セルの任意の可能な測定リソースを送信する。ある種の実施形態では、ネットワークノードは、取得されたRMRに関する情報をUEに送信し得る。ある種の実施形態では、ネットワークノードは、測定設定をUEに送信し得る。ある種の実施形態では、ネットワークノードは、UEへのアップリンク及び/又はダウンリンクにおける信号のスケジューリングを送信し得る。
図17は、ある種の実施形態による、例示的ユーザ機器の概略的ブロック図である。ユーザ機器1700は、ワイヤレスネットワーク(たとえば、図4に示すワイヤレスネットワーク)において使用され得る。ユーザ機器1700は、ワイヤレスデバイス又はネットワークノード(たとえば、図4に示すワイヤレスデバイス410又はネットワークノード460)において実装され得る。ユーザ機器1700は、図15を参照して説明される例示的方法及び場合により本明細書で開示される任意の他のプロセス又は方法を実行するように動作可能である。図15の方法は、必ずしもユーザ機器1700だけによって実行されないこともまた理解されたい。方法の少なくとも一部の動作は、1つ又は複数の他のエンティティによって実行することができる。
ユーザ機器1700は、1つ又は複数のマイクロプロセッサ又はマイクロコントローラを含み得る処理回路、並びに、デジタル信号プロセッサ(DSP)、専用デジタルロジックなどを含み得る他のデジタルハードウェアを備え得る。いくつかの実施形態では、ユーザ機器1700の処理回路は、図4に示す処理回路でもよい。いくつかの実施形態では、ユーザ機器1700の処理回路は、図5に示すプロセッサでもよい。処理回路は、読取り専用メモリ(ROM)、ランダムアクセスメモリ、キャッシュメモリ、フラッシュメモリデバイス、光記憶デバイスなどの、1つの又はいくつかのタイプのメモリを含み得る、メモリに記憶されたプログラムコードを実行するように設定され得る。いくつかの実施形態では、メモリに記憶されたプログラムコードは、1つ又は複数の電気通信及び/又はデータ通信プロトコルを実行するためのプログラム命令並びに本明細書に記載の技法のうちの1つ又は複数を実行するための命令を含む。いくつかの実装形態において、処理回路は、取得ユニット1710及び判定ユニット1720、及びユーザ機器1700の任意の他の適切なユニットに本開示の1つ又は複数の実施形態による対応する機能を実行させるために使用され得る。
図17に示されるように、ユーザ機器1700は、取得ユニット1710及び判定ユニット1720を含む。取得ユニット1710は、第1のセルの第1の測定リソースを取得するように設定され得る。いくつかの実施形態では、第1の測定リソースは、参照測定リソースと見なされ得る。ある種の実施形態では、第1のセルは第1のサービングセル(セル1)でもよい。取得ユニット1710は、第2のセルの第2の測定リソースを取得するように設定され得、第2のセルの第2の測定リソースと第1のセルの第1の測定リソースとは、同じタイプである。ある種の実施形態では、第2のセルは、第2のサービングセル(セル2)でもよい。ある種の実施形態では、取得ユニット1710は、1つ又は複数の隣接セルの測定リソースを取得し得る。いくつかの実施形態では、隣接セルは、第3のサービングセル(セル3)でもよい。ある種の実施形態では、測定リソースは、SSブロック又はCSI-RSを備え得る。ある種の実施形態では、UEは、ネットワークノードから受信されたインジケーションに基づいてRMRに関する情報を取得する。
判定ユニット1720は、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを第2のセルの第2の測定リソースと参照測定リソースを比較することによって判定するように設定され得る。いくつかの実施形態では、判定ユニット1720はさらに、対応する参照測定リソースを1つ又は複数の隣接セルの測定リソースと個々に比較することによって1つ又は複数の隣接セルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定し得る。ある種の実施形態では、ユーザ機器は、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定に応答して測定手続きをさらに適応させ得る。
図18は、ある種の実施形態による、例示的ネットワークノードの概略的ブロック図である。ネットワークノード1800は、ワイヤレスネットワーク(たとえば、図4に示すワイヤレスネットワーク)において使用され得る。ネットワークノード1800は、ワイヤレスデバイス(たとえば、図4に示すワイヤレスデバイス410)において実装され得る。ネットワークノード1800は、図16を参照して説明されるような例示的方法及び場合により本明細書で開示される任意の他のプロセス又は方法を実行するように動作可能である。図16の方法は必ずしもネットワークノード1800だけによって実行されないこともまた理解されたい。本方法の少なくとも一部の動作は、1つ又は複数の他のエンティティによって実行され得る。
ネットワークノード1800は、1つ又は複数のマイクロプロセッサ又はマイクロコントローラを含み得る処理回路、並びに、デジタル信号プロセッサ(DSP)、専用デジタルロジックなどを含み得る他のデジタルハードウェアを備え得る。いくつかの実施形態では、ネットワークノード1800の処理回路は、図4に示す処理回路470でもよい。処理回路は、読取り専用メモリ(ROM)、ランダムアクセスメモリ、キャッシュメモリ、フラッシュメモリデバイス、光記憶デバイスなどの1つの又はいくつかのタイプのメモリを含み得る、メモリに記憶されたプログラムコードを実行するように設定され得る。いくつかの実施形態では、メモリに記憶されたプログラムコードは、1つ又は複数の電気通信及び/又はデータ通信プロトコルを実行するためのプログラム命令並びに本明細書に記載の技法のうちの1つ又は複数を実行するための命令を含む。いくつかの実装形態において、処理回路は、取得ユニット1810、判定ユニット1820、送信ユニット1830、及び、ネットワークノード1800の任意の他の適切なユニットに本開示の1つ又は複数の実施形態による対応する機能を実行させるために使用され得る。
図18に示されるように、ネットワークノード1800は、取得ユニット1810、判定ユニット1820、及び送信ユニット1830を含む。取得ユニット1810は、第1のセルの第1の測定リソースを取得するように設定され得る。ある種の実施形態では、第1のセルは第1のサービングセル(セル1)でもよい。いくつかの実施形態では、第1の測定リソースは、参照測定リソースと見なされ得る。取得ユニット1810は、第2のセルの第2の測定リソースを取得するように設定され得、第2のセルの第2の測定リソースと第1のセルの第1の測定リソースとは、同じタイプである。ある種の実施形態では、第2のセルは、第2のサービングセル(セル2)でもよい。ある種の実施形態では、取得ユニット1810は、1つ又は複数の隣接セルの測定リソースを取得し得る。いくつかの実施形態では、隣接セルは、第3のサービングセル(セル3)でもよい。ある種の実施形態では、測定リソースは、SSブロック又はCSI-RSを備え得る。
判定ユニット1820は、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを第2のセルの第2の測定リソースと参照測定リソースを比較することによって判定するように設定され得る。いくつかの実施形態では、判定ユニット1820はさらに、参照測定リソースを1つ又は複数の隣接セルの1つ又は複数の測定リソースと個々に比較することによって、1つ又は複数の隣接セルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定し得る。
送信ユニット1830は、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定をユーザ機器に送信するように設定され得る。いくつかの実施形態では、送信ユニット1830は、第2のセルが同一周波数内で動作するか異周波数間で動作するかを判定するためにユーザ機器に第1のセルの第1の測定リソース、第2のセルの第2の測定リソース、及び任意の他の隣接セルの任意の可能な測定リソースを送信し得る。ある種の実施形態では、送信ユニット1830は、取得されたRMRに関する情報をUEに送信し得る。ある種の実施形態では、送信ユニット1830は、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定に応答して測定設定をUEに送信し得る。ある種の実施形態では、送信ユニット1830は、第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかの判定に応答してUEへのアップリンク及び/又はダウンリンクにおける信号のスケジューリングを送信し得る。
ユニットという用語は、電子工学、電気デバイス及び/又は電子デバイスの分野における従来の意味を有し得、たとえば、本明細書に記載されているものなどのような、電気及び/又は電子回路、デバイス、モジュール、プロセッサ、受信器、送信器、メモリ、ロジックソリッドステート及び/又はディスクリートデバイス、それぞれのタスク、手続き、計算、出力、及び/又は表示機能を実行するためのコンピュータプログラム又は命令などを含み得る。
様々な実施形態によれば、本明細書に記載の特徴の利点は、冗長データが、電波インターフェースを介して送信される前に、破棄され得、以って、貴重な帯域幅を節約することである。別の利点は、カバレッジの一時的損失を有するDUが冗長データのそのバッファを消去することができ、カバレッジが復元されると直ちに新しいデータを送信する準備が整い得るということである。
図中のプロセスは、本発明のある種の実施形態によって実行される特定の順序の動作を示し得るが、そのような順序は例示であることを理解されたい(たとえば、代替実施形態は、異なる順序でそれらの動作を実行する、ある種の動作を結合させる、ある種の動作をオーバーラップするなどし得る)。
本発明は、いくつかの実施形態に関して説明されているが、本発明は、記載されている実施形態に限定されず、添付の特許請求の範囲の趣旨及び範囲内の修正及び変更を有して実施され得ることが、当業者には認められよう。したがって、本明細書は、制限ではなく例示と見なされるものとする。

Claims (43)

  1. ユーザ機器(UE)(1700)において使用するための方法(1500)であって、
    参照測定リソースとして第1のセルの第1の測定リソースを取得すること(1510)と、
    第2のセルの第2の測定リソースと前記第1のセルの前記第1の測定リソースとが同じタイプである前記第2のセルの前記第2の測定リソースを取得すること(1520)と、
    前記第2のセルの前記第2の測定リソースと前記参照測定リソースを比較することによって、前記第2のセルは同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定すること(1530)と
    を含み、
    前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかを判定することが、少なくとも部分的に、前記参照測定リソースの1つ又は複数のルールに基づき、前記ルールが、前記参照測定リソースは前記UE(1700)のためのページングリソースに関連していることと、前記参照測定リソースは前記UE(1700)のための前記ページングリソースのサブセットであることと、前記参照測定リソースは前記ページングリソースに関連する同期信号(SS)ブロック又はSSバースト又はSSバーストセットであることと、前記参照測定リソースは周波数ドメイン内の前記ページングリソースに最も近い前記SSブロック又はSSバースト又はSSバーストセットであることと、前記参照測定リソースは無線リンクモニタリング(RLM)のために設定されることと、前記参照測定リソースは、前記UE(1700)が情報又はチャンネルを受信する、制御チャンネルを含むことと、前記参照測定リソースは、前記UE(1700)が情報又はチャンネルを受信する、前記周波数ドメイン内の探索空間を含むことと、前記参照測定リソースは前記UE(1700)へのサービングセル専用送信を含むことと、前記参照測定リソースはチャンネルラスタと一致することと、を含む、方法(1500)。
  2. 前記第2のセルの前記第2の測定リソースの周波数が前記参照測定リソースの周波数と同じであるときに前記第2のセルで同一周波数内動作を実行することをさらに含む、請求項1に記載の方法(1500)。
  3. 前記第2のセルの前記第2の測定リソースの周波数が前記参照測定リソースの周波数と同じではないときに前記第2のセルで異周波数間動作を実行することをさらに含む、請求項1に記載の方法(1500)。
  4. 測定ギャップ支援が必要かどうかを判定することをさらに含む、請求項1から3のいずれか一項に記載の方法(1500)。
  5. 前記第1のセルの中央周波数が前記第2のセルの中央周波数とは異なるとき、前記測定ギャップ支援が必要とされる、請求項4に記載の方法(1500)。
  6. 前記第1のセルの中央周波数が前記第2のセルの中央周波数の第1のマージン内にあるとき、前記測定ギャップ支援が必要とされる、請求項4に記載の方法(1500)。
  7. 前記第1のセルの少なくとも1つの同期信号バーストが前記第2のセルの少なくとも1つの同期信号バーストと同じ周波数を共用するときに前記第2のセルで同一周波数内動作を実行することをさらに含む、請求項1に記載の方法(1500)。
  8. 前記第1のセルの同期信号バーストが前記第2のセルの同期信号バーストと同じ周波数を共用しないときに前記第2のセルで異周波数間動作を実行することをさらに含む、請求項1に記載の方法(1500)。
  9. 前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかを判定することが、少なくとも部分的に、周波数内の予め規定された位置に基づく、請求項1から8のいずれか一項に記載の方法(1500)。
  10. 前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかを判定することが、少なくとも部分的に、ネットワークノードからの又は別のUEからのインジケーションに基づく、請求項1から9のいずれか一項に記載の方法(1500)。
  11. ネットワークノードから受信されたインジケーションに基づく前記参照測定リソースに関する情報を取得することをさらに含む、請求項1から10のいずれか一項に記載の方法(1500)。
  12. 前記第1の及び第2の測定リソースが、SSブロック又はCSI-RSを含む、請求項1から11のいずれか一項に記載の方法(1500)。
  13. 前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定に応答して測定手続きを適応させることをさらに含む、請求項1から12のいずれか一項に記載の方法(1500)。
  14. ネットワークノード(1800)において使用するための方法(1600)であって、
    参照測定リソースとして第1のセルの第1の測定リソースを取得すること(1610)と、
    第2のセルの第2の測定リソースと前記第1のセルの前記第1の測定リソースとが同じタイプである前記第2のセルの前記第2の測定リソースを取得すること(1620)と、
    前記第2のセルの前記第2の測定リソースと前記参照測定リソースを比較することによって、前記第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定すること(1630)と、
    前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定に関する情報をユーザ機器(UE)(1700)に送信すること(1640)と
    を含み、
    前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかを判定することが、少なくとも部分的に、前記参照測定リソースの1つ又は複数のルールに基づき、前記ルールが、前記参照測定リソースは前記UE(1700)のためのページングリソースに関連していることと、前記参照測定リソースは前記UE(1700)のための前記ページングリソースのサブセットであることと、前記参照測定リソースは前記ページングリソースに関連する同期信号(SS)ブロック又はSSバースト又はSSバーストセットであることと、前記参照測定リソースは周波数ドメイン内の前記ページングリソースに最も近い前記SSブロック又はSSバースト又はSSバーストセットであることと、前記参照測定リソースは無線リンクモニタリング(RLM)のために設定されることと、前記参照測定リソースは、前記UE(1700)が情報又はチャンネルを受信する、制御チャンネルを含むことと、前記参照測定リソースは、前記UE(1700)が情報又はチャンネルを受信する、前記周波数ドメイン内の探索空間を含むことと、前記参照測定リソースは前記UE(1700)へのサービングセル専用送信を含むことと、前記参照測定リソースはチャンネルラスタと一致することと、を含む、方法(1600)。
  15. 前記取得された参照測定リソースに関する情報を前記ユーザ機器(1700)に送信することをさらに含む、請求項14に記載の方法(1600)。
  16. 前記第2のセルの前記第2の測定リソースの周波数が前記参照測定リソースの周波数と同じであるときに、前記ユーザ機器(1700)が前記第2のセルで同一周波数内動作を実行する、請求項14に記載の方法(1600)。
  17. 前記第2のセルの前記第2の測定リソースの周波数が前記参照測定リソースの周波数と同じではないときに、前記ユーザ機器(1700)が前記第2のセルで異周波数間動作を実行する、請求項14に記載の方法(1600)。
  18. 前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかを判定することが、少なくとも部分的に、周波数内の予め規定された位置に基づく、請求項14から17のいずれか一項に記載の方法(1600)。
  19. 前記第1の及び第2の測定リソースが、SSブロック又はCSI-RSを含む、請求項14から18のいずれか一項に記載の方法(1600)。
  20. 前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定に応答して前記ユーザ機器(1700)に送信される測定設定を適応させることをさらに含む、請求項14から19のいずれか一項に記載の方法(1600)。
  21. 前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定に応答して前記ユーザ機器(1700)へのアップリンク及び/又はダウンリンクにおける信号のスケジューリングを適応させることをさらに含む、請求項14から20のいずれか一項に記載の方法(1600)。
  22. 同一周波数内動作及び異周波数間動作を判定するためのユーザ機器(UE)(1700)であって、
    少なくとも1つの処理回路と、
    プロセッサ実行可能命令を記憶する少なくとも1つのストレージと
    を備え、前記プロセッサ実行可能命令は、前記処理回路によって実行されたとき、前記ユーザ機器に、
    参照測定リソースとして第1のセルの第1の測定リソースを取得させ(1510)、
    第2のセルの第2の測定リソースと前記第1のセルの前記第1の測定リソースとが同じタイプである前記第2のセルの前記第2の測定リソースを取得させ(1520)、及び、
    前記第2のセルの前記第2の測定リソースと前記参照測定リソースを比較することによって前記第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定させ(1530)、前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定が、少なくとも部分的に、前記参照測定リソースの1つ又は複数のルールに基づき、前記ルールが、前記参照測定リソースは前記UE(1700)のためのページングリソースに関連していることと、前記参照測定リソースは前記UE(1700)のための前記ページングリソースのサブセットであることと、前記参照測定リソースは前記ページングリソースに関連する同期信号(SS)ブロック又はSSバースト又はSSバーストセットであることと、前記参照測定リソースは周波数ドメイン内の前記ページングリソースに最も近い前記SSブロック又はSSバースト又はSSバーストセットであることと、前記参照測定リソースは無線リンクモニタリング(RLM)のために設定されることと、前記参照測定リソースは、前記UE(1700)が情報又はチャンネルを受信する、制御チャンネルを含むことと、前記参照測定リソースは、前記UE(1700)が情報又はチャンネルを受信する、前記周波数ドメイン内の探索空間を含むことと、前記参照測定リソースは前記UE(1700)へのサービングセル専用送信を含むことと、前記参照測定リソースはチャンネルラスタと一致することと、を含む、ユーザ機器(1700)。
  23. 前記命令がさらに、前記第2のセルの前記第2の測定リソースの周波数が前記参照測定リソースの周波数と同じであるときに、前記ユーザ機器(1700)に前記第2のセルで前記同一周波数内動作を実行させる、請求項22に記載のユーザ機器(1700)。
  24. 前記命令がさらに、前記第2のセルの前記第2の測定リソースの周波数が前記参照測定リソースの周波数と同じではないときに、前記ユーザ機器(1700)に前記第2のセルで前記異周波数間動作を実行させる、請求項22に記載のユーザ機器(1700)。
  25. 前記命令がさらに、測定ギャップ支援が必要かどうかを前記ユーザ機器(1700)に判定させる、請求項22から24のいずれか一項に記載のユーザ機器(1700)。
  26. 前記第1のセルの中央周波数が前記第2のセルの中央周波数とは異なるとき、前記測定ギャップ支援が必要とされる、請求項25に記載のユーザ機器(1700)。
  27. 前記第1のセルの中央周波数が前記第2のセルの中央周波数の第1のマージン内にあるとき、前記測定ギャップ支援が必要とされる、請求項25に記載のユーザ機器(1700)。
  28. 前記第1のセルの少なくとも1つの同期信号バーストが前記第2のセルの少なくとも1つの同期信号バーストと同じ周波数を共用するとき、前記命令がさらに、前記ユーザ機器(1700)に前記第2のセルで前記同一周波数内動作を実行させる、請求項22に記載のユーザ機器(1700)。
  29. 前記第1のセルの同期信号バーストが前記第2のセルの同期信号バーストと同じ周波数を共用しないとき、前記命令がさらに、前記ユーザ機器(1700)に前記第2のセルで前記異周波数間動作を実行させる、請求項22に記載のユーザ機器(1700)。
  30. 前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定が、少なくとも部分的に、周波数内の予め規定された位置に基づく、請求項22から29のいずれか一項に記載のユーザ機器(1700)。
  31. 前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定が、少なくとも部分的に、ネットワークノードからの又は別のUEからのインジケーションに基づく、請求項22から30のいずれか一項に記載のユーザ機器(1700)。
  32. ネットワークノードから受信されたインジケーションに基づく前記参照測定リソースに関する情報を取得することをさらに含む、請求項22から31のいずれか一項に記載のユーザ機器(1700)。
  33. 前記第1の及び第2の測定リソースが、SSブロック又はCSI-RSを含む、請求項22から32のいずれか一項に記載のユーザ機器(1700)。
  34. 前記命令がさらに、前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定に応答して前記ユーザ機器(1700)に測定手続きを適応させる、請求項22から33のいずれか一項に記載のユーザ機器(1700)。
  35. ユーザ機器(UE)(1700)のための同一周波数内動作及び異周波数間動作を判定するためのネットワークノード(1800)であって、
    少なくとも1つの処理回路と、
    プロセッサ実行可能命令を記憶する少なくとも1つのストレージと、
    を備え、前記プロセッサ実行可能命令は、前記処理回路によって実行されたとき、前記ネットワークノード(1800)に、
    参照測定リソースとして第1のセルの第1の測定リソースを取得させ(1610)、
    第2のセルの第2の測定リソースと前記第1のセルの前記第1の測定リソースとが同じタイプである前記第2のセルの前記第2の測定リソースを取得させ(1620)、
    前記第2のセルの前記第2の測定リソースと前記参照測定リソースを比較することによって前記第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定させ(1630)、及び、
    前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定に関する情報を前記ユーザ機器(1700)に送信させ(1640)、
    前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定が、少なくとも部分的に、前記参照測定リソースの1つ又は複数のルールに基づき、前記ルールが、前記参照測定リソースは前記UE(1700)のためのページングリソースに関連していることと、前記参照測定リソースは前記UE(1700)のための前記ページングリソースのサブセットであることと、前記参照測定リソースは前記ページングリソースに関連する同期信号(SS)ブロック又はSSバースト又はSSバーストセットであることと、前記参照測定リソースは周波数ドメイン内の前記ページングリソースに最も近い前記SSブロック又はSSバースト又はSSバーストセットであることと、前記参照測定リソースは無線リンクモニタリング(RLM)のために設定されることと、前記参照測定リソースが、前記UE(1700)が情報又はチャンネルを受信する、制御チャンネルを含むことと、前記参照測定リソースは、前記UE(1700)が情報又はチャンネルを受信する、前記周波数ドメイン内の探索空間を含むことと、前記参照測定リソースは前記UE(1700)へのサービングセル専用送信を含むことと、前記参照測定リソースはチャンネルラスタと一致することと、を含む、ネットワークノード(1800)。
  36. 前記命令がさらに、前記ネットワークノード(1800)に前記取得された参照測定リソースに関する情報を前記ユーザ機器(1700)へ送信させる、請求項35に記載のネットワークノード(1800)。
  37. 前記第2のセルの前記第2の測定リソースの周波数が前記参照測定リソースの周波数と同じであるとき、前記ユーザ機器(1700)が、前記第2のセルで前記同一周波数内動作を実行する、請求項35に記載のネットワークノード(1800)。
  38. 前記第2のセルの前記第2の測定リソースの周波数が前記参照測定リソースの周波数と同じではないとき、前記ユーザ機器(1700)が、前記第2のセルで前記異周波数間動作を実行する、請求項35に記載のネットワークノード(1800)。
  39. 前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定が、少なくとも部分的に、周波数内の予め規定された位置に基づく、請求項35から38のいずれか一項に記載のネットワークノード(1800)。
  40. 前記第1の及び第2の測定リソースが、SSブロック又はCSI-RSを含む、請求項35から39のいずれか一項に記載のネットワークノード(1800)。
  41. 前記命令がさらに、前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定に応答して、前記ユーザ機器(1700)に送信される測定設定を前記ネットワークノード(1800)に適応させる、請求項35から40のいずれか一項に記載のネットワークノード(1800)。
  42. 前記命令がさらに、前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定に応答して前記ネットワークノード(1800)に前記ユーザ機器(1700)へのアップリンク及び/又はダウンリンクにおける信号のスケジューリングを適応させる、請求項35から41のいずれか一項に記載のネットワークノード(1800)。
  43. 同一周波数内動作及び異周波数間動作を判定するための通信システムであって、
    参照測定リソースとして第1のセルの第1の測定リソースを取得し、
    第2のセルの第2の測定リソースと前記第1のセルの前記第1の測定リソースとが同じタイプである前記第2のセルの前記第2の測定リソースを取得し、
    ユーザ機器(1700)に前記参照測定リソース及び前記第2のセルの第2の測定リソースを送信するように設定された少なくとも1つの処理回路を備えるネットワークノード(1800)と、
    前記ネットワークノード(1800)から前記参照測定リソース及び前記第2のセルの前記第2の測定リソースを受信し、
    前記第2のセルの前記第2の測定リソースと前記参照測定リソースを比較することによって、前記第2のセルが同一周波数キャリアで動作するか異周波数キャリアで動作するかを判定するように設定された少なくとも1つの処理回路を備えるネットワーク内のユーザ機器(UE)(1700)と
    を備え、
    前記第2のセルが前記同一周波数キャリアで動作するか前記異周波数キャリアで動作するかの前記判定が、少なくとも部分的に、前記参照測定リソースの1つ又は複数のルールに基づき、前記ルールが、前記参照測定リソースは前記UE(1700)のためのページングリソースに関連していることと、前記参照測定リソースは前記UE(1700)のための前記ページングリソースのサブセットであることと、前記参照測定リソースは前記ページングリソースに関連する同期信号(SS)ブロック又はSSバースト又はSSバーストセットであることと、前記参照測定リソースは周波数ドメイン内の前記ページングリソースに最も近い前記SSブロック又はSSバースト又はSSバーストセットであることと、前記参照測定リソースは無線リンクモニタリング(RLM)のために設定されることと、前記参照測定リソースは、前記UE(1700)が情報又はチャンネルを受信する、制御チャンネルを含むことと、前記参照測定リソースは、前記UE(1700)が情報又はチャンネルを受信する、前記周波数ドメイン内の探索空間を含むことと、前記参照測定リソースは前記UE(1700)へのサービングセル専用送信を含むことと、前記参照測定リソースはチャンネルラスタと一致することと、を含む、通信システム。
JP2019571438A 2017-06-28 2018-06-25 同一周波数内動作か異周波数間動作かの判定のための方法 Active JP7018972B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762526190P 2017-06-28 2017-06-28
US62/526,190 2017-06-28
PCT/IB2018/054679 WO2019003091A1 (en) 2017-06-28 2018-06-25 METHOD FOR DETERMINING BETWEEN INTRA AND INTER-FREQUENCY OPERATIONS

Publications (2)

Publication Number Publication Date
JP2020526090A JP2020526090A (ja) 2020-08-27
JP7018972B2 true JP7018972B2 (ja) 2022-02-14

Family

ID=63108606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019571438A Active JP7018972B2 (ja) 2017-06-28 2018-06-25 同一周波数内動作か異周波数間動作かの判定のための方法

Country Status (7)

Country Link
US (2) US11758448B2 (ja)
EP (1) EP3646638A1 (ja)
JP (1) JP7018972B2 (ja)
KR (1) KR102276347B1 (ja)
CN (2) CN111052796B (ja)
WO (1) WO2019003091A1 (ja)
ZA (1) ZA202000220B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019068587A1 (en) * 2017-10-02 2019-04-11 Sony Mobile Communications Inc METHOD AND DEVICE FOR SYNCHRONIZATION AND MEASUREMENT IN A RADIO COMMUNICATION SYSTEM
EP3955663A1 (en) * 2017-11-03 2022-02-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Paging method, terminal device and network device
AU2018403263B2 (en) 2018-01-19 2022-03-17 Nokia Technologies Oy Methods, devices and computer readable medium for new radio management measurement
CN113170345A (zh) * 2018-11-01 2021-07-23 中兴通讯股份有限公司 用于频率测量和间隙配置的方法和装置
WO2020140288A1 (zh) * 2019-01-04 2020-07-09 株式会社Ntt都科摩 无线通信方法及设备
CN110519838B (zh) * 2019-08-06 2021-07-13 三维通信股份有限公司 分布式天线系统的时分双工同步方法、装置、设备和介质
US11563637B2 (en) * 2019-10-13 2023-01-24 Qualcomm Incorporated Bandwidth part switching for dual active protocol stack handover
TWI783466B (zh) * 2020-05-15 2022-11-11 聯發科技股份有限公司 Rssi測量的使用者設備和rssi測量方法
CN114125957A (zh) * 2020-08-31 2022-03-01 华为技术有限公司 一种通信方法、装置及计算机可读存储介质
CN112558628A (zh) * 2020-11-23 2021-03-26 深圳市中博科创信息技术有限公司 基于自组网无人机的控制方法及计算机可读存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130308481A1 (en) 2012-05-18 2013-11-21 Telefonaktiebolaget L M Ericsson (Publ) Technique for performing cell measurement on at least two cells

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9596042B2 (en) 2013-04-08 2017-03-14 Telefonaktiebolaget L M Ericsson (Publ) Methods of performing inter-frequency measurements in the IDLE state
CN106304128A (zh) 2015-05-18 2017-01-04 中兴通讯股份有限公司 一种多载波异频测量间隙配置方法、系统、基站和终端
WO2018209497A1 (en) * 2017-05-15 2018-11-22 Mediatek Singapore Pte. Ltd. Methods and apparatus for rrm measurement and reporting mechanism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130308481A1 (en) 2012-05-18 2013-11-21 Telefonaktiebolaget L M Ericsson (Publ) Technique for performing cell measurement on at least two cells

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Discussion on UE measurements in LTE[online],3GPP TSG-RAN WG4#39 R4-060450,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG4_Radio/TSGR4_39/Docs/R4-060450.zip>,2006年05月12日
NTT DOCOMO, INC.,Discussion on remaining details on multiple SS block transmissions in wideband CC for NR[online],3GPP TSG RAN WG1 adhoc_NR_AH_1706 R1-1711059,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1706/Docs/R1-1711059.zip>,2017年06月17日
RAN WG4,LS on definitions of intra and inter-frequency measurements[online],3GPP TSG RAN WG4 adhoc_TSGR4_NR_Jun2017 R4-1706719,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG4_Radio/TSGR4_AHs/TSGR4_NR_Jun2017/Docs/R4-1706719.zip>,2017年06月19日
Samsung,Measurement based on CSI-RS for L3 mobility[online],3GPP TSG RAN WG1 adhoc_NR_AH_1706 R1-1710638,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1706/Docs/R1-1710638.zip>,2017年06月16日

Also Published As

Publication number Publication date
CN111052796B (zh) 2022-08-30
WO2019003091A1 (en) 2019-01-03
CN115379495A (zh) 2022-11-22
US20200178129A1 (en) 2020-06-04
KR102276347B1 (ko) 2021-07-13
JP2020526090A (ja) 2020-08-27
US20230422113A1 (en) 2023-12-28
CN111052796A (zh) 2020-04-21
ZA202000220B (en) 2024-04-24
KR20200019996A (ko) 2020-02-25
US11758448B2 (en) 2023-09-12
EP3646638A1 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
JP7018972B2 (ja) 同一周波数内動作か異周波数間動作かの判定のための方法
JP7179064B2 (ja) 無線通信のためのトリガされる測定報告
US10601556B2 (en) Measurement gap configuration
JP7022212B2 (ja) 無線リンクモニタリングを実行するための方法
EP3718350B1 (en) Configuring dual connectivity maximum transmit power
US20200266958A1 (en) Switching of Bandwidth Parts in Wireless Communication Network
US20200053583A1 (en) Method, network node and ue for handling rrm measurements on a carrier comprising a plurality of synchronization sequence blocks
US11418967B2 (en) Method for inter-radio access technology resource sharing
CN114080842A (zh) 用于控制无线通信网络中的预先配置的上行链路资源上的传输的方法和设备
US20220078739A1 (en) Method to validate timing advance for preconfigured resource transmission
US20230068789A1 (en) Random Access Resource Configuration in Different Bandwidth Parts for Two-Step Random Access
JP2023537732A (ja) Drx非アクティブ時間中に測位srsをアクティブ化すること
WO2021045672A1 (en) Cross-link-interferienece (cli) mesurement control at user equipment
US20240172029A1 (en) Transitioning Between Pre-Configured Measurement Gap Patterns and Normal Measurement Gap Patterns
US20220167371A1 (en) Methods, apparatus and computer-readable mediums relating to uplink transmissions
US20240172155A1 (en) Time difference of arrival and signal strength based timing advance validation for configured grant small data transmission
EP4278659A1 (en) Communication device measurement and report for pattern recognition of periodic resource availability for extended reality mobility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220201

R150 Certificate of patent or registration of utility model

Ref document number: 7018972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150