JP7018327B2 - Method for producing benzaldehyde derivative - Google Patents

Method for producing benzaldehyde derivative Download PDF

Info

Publication number
JP7018327B2
JP7018327B2 JP2018018163A JP2018018163A JP7018327B2 JP 7018327 B2 JP7018327 B2 JP 7018327B2 JP 2018018163 A JP2018018163 A JP 2018018163A JP 2018018163 A JP2018018163 A JP 2018018163A JP 7018327 B2 JP7018327 B2 JP 7018327B2
Authority
JP
Japan
Prior art keywords
formula
reaction
compound represented
magnesium halide
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018018163A
Other languages
Japanese (ja)
Other versions
JP2019135216A (en
Inventor
真一 小林
正憲 住野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2018018163A priority Critical patent/JP7018327B2/en
Publication of JP2019135216A publication Critical patent/JP2019135216A/en
Application granted granted Critical
Publication of JP7018327B2 publication Critical patent/JP7018327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、ハロゲン化ベンゼン誘導体からベンズアルデヒド誘導体を高収率で製造する方法に関する。 The present invention relates to a method for producing a benzaldehyde derivative from a halogenated benzene derivative in a high yield.

非特許文献1、2または3に開示されているように、グリニャール試薬にDMFのようなN,N-二置換ホルムアミドを付加させるとヘミアミナールが得られる。このヘミアミナールは加水分解してアルデヒドを生成する。

Figure 0007018327000001
As disclosed in Non-Patent Documents 1, 2 or 3, hemiminal is obtained by adding an N, N-disubstituted formamide such as DMF to a Grignard reagent. This hemiaminal hydrolyzes to produce an aldehyde.
Figure 0007018327000001

グリニャール試薬(有機マグネシウムハライド)は、ハロゲン化アルキルなどの有機ハライドと金属マグネシウムとを反応させることによって合成できる。ところが、金属マグネシウム表面を覆う酸化物被膜が、合成反応の開始を阻害するので、初期反応速度が低い。そこで、よう素、よう化メチル、臭化メチル、ジブロモエタンなどの活性化剤を添加したり、金属マグネシウムを窒素雰囲気下で強撹拌したりして、初期反応速度を高めている。また、グリニャール試薬の合成反応は、自触媒反応であると言われている。特許文献1や非特許文献4に記載のように、グリニャール試薬の合成反応において、事前に用意したグリニャール試薬を開始剤として添加することが提案されている。 Grignard reagents (organic magnesium halides) can be synthesized by reacting organic halides such as alkyl halides with metallic magnesium. However, the oxide film covering the surface of the metallic magnesium inhibits the start of the synthetic reaction, so that the initial reaction rate is low. Therefore, activators such as iodine, methyl iodide, methyl bromide, and dibromoethane are added, and metallic magnesium is strongly stirred in a nitrogen atmosphere to increase the initial reaction rate. Further, the synthetic reaction of Grignard reagent is said to be an autocatalytic reaction. As described in Patent Document 1 and Non-Patent Document 4, it has been proposed to add a Grignard reagent prepared in advance as an initiator in the synthesis reaction of the Grignard reagent.

特開平9-316083号公報Japanese Unexamined Patent Publication No. 9-316083

Ximin Chen et al. “Synthesis and Mesomorphic Properties of Tolane-Based Fluorinated Liquid Crystals with an Acrylate Linkage” Mol. Cryst. Liq. Cryst., Vol.528, pp.138-146, 2010Ximin Chen et al. “Synthesis and Mesomorphic Properties of Tolane-Based Fluorinated Liquid Crystals with an Acrylate Linkage” Mol. Cryst. Liq. Cryst., Vol.528, pp.138-146, 2010 Bouveault, L. (1904). “Modes de formation et de preparation des aldehydes saturees de la serie grasse” [Methods of preparation of saturated aldehydes of the aliphatic series]. Bull. Soc. Chim. Fr. 31: 1306-1322.Bouveault, L. (1904). “Modes de formation et de preparation des aldehydes saturees de la serie grasse” [Methods of preparation of saturated aldehydes of the similarly series]. Bull. Soc. Chim. Fr. 31: 1306-1322. Bouveault, L. (1904). “Nouvelle methode generale synthetique de preparation des aldehydes” [Novel general synthetic method for preparing aldehydes]. Bull. Soc. Chim. Fr. 31: 1322-1327.Bouveault, L. (1904). “Nouvelle methode generale synthetique de preparation des aldehydes” [Novel general synthetic method for preparing aldehydes]. Bull. Soc. Chim. Fr. 31: 1322-1327. Philip E. Rakita (1996). “5. Safe Handling Practices of Industrial Scale Grignard Ragents”. In Gary S. Silverman; Philip E. Rakita. Handbook of Grignard reagents (Google Books excerpt). CRC Press. pp. 79-88. ISBN 0-8247-9545-8.Philip E. Rakita (1996). “5. Safe Handling Practices of Industrial Scale Grignard Ragents”. In Gary S. Silverman; Philip E. Rakita. Handbook of Grignard reagents (Google Books excerpt). CRC Press. Pp. 79-88 . ISBN 0-8247-9545-8.

本発明の目的は、ハロゲン化ベンゼン誘導体からベンズアルデヒド誘導体を高収率で製造する方法を提供することである。 An object of the present invention is to provide a method for producing a benzaldehyde derivative from a halogenated benzene derivative in a high yield.

上記目的を達成するために検討した結果、以下の形態を包含する本発明を完成するに至った。 As a result of studies for achieving the above object, the present invention including the following embodiments has been completed.

〔1〕 芳香族マグネシウムハライドの存在下、溶媒中で、式(1)で表される化合物と金属マグネシウムとを反応させて有機マグネシウムハライドを得、
次いで、有機マグネシウムハライドとN,N-ジメチルホルムアミドとを反応させることを含む、
式(2)で表される化合物の製造方法。
[1] In the presence of aromatic magnesium halide, the compound represented by the formula (1) is reacted with metallic magnesium in a solvent to obtain an organic magnesium halide.
It then comprises reacting the organic magnesium halide with N, N-dimethylformamide.
A method for producing a compound represented by the formula (2).


Figure 0007018327000002
(式(1)中、Xは塩素原子、臭素原子またはヨウ素原子であり、R、R、R、R、およびRは、各々独立して、水素原子、フッ素原子またはアルキル基である。)
Figure 0007018327000002
(In formula (1), X is a chlorine atom, a bromine atom or an iodine atom, and R 1 , R 2 , R 3 , R 4 and R 5 are independently hydrogen atoms, fluorine atoms or alkyl groups , respectively. Is .)

Figure 0007018327000003
(式(2)中、R1、R2、R3、R4、およびR5は、式(1)中のそれらと同じである。)
Figure 0007018327000003
(In equation (2), R 1 , R 2 , R 3 , R 4 , and R 5 are the same as those in equation (1).)

〔2〕 溶媒が、トルエンとテトラヒドロフランとの混合物である、〔1〕に記載の製造方法。
〔3〕 トルエン/テトラヒドロフランの重量比が55/45~95/5である、〔2〕に記載の製造方法。
[2] The production method according to [1], wherein the solvent is a mixture of toluene and tetrahydrofuran.
[3] The production method according to [2], wherein the weight ratio of toluene / tetrahydrofuran is 55/45 to 95/5.

〔4〕 芳香族マグネシウムハライドが式(3)で表される化合物である、〔1〕~〔3〕のいずれかひとつに記載の製造方法。

Figure 0007018327000004
(式(3)中、X、R1、R2、R3、R4、およびR5は、式(1)中のそれらと同じである。)
〔5〕 有機マグネシウムハライドとN,N-ジメチルホルムアミドとの反応を行った後、その反応生成物と塩酸とを混ぜ合わせ、次いで分液することをさらに含む、〔1〕~〔4〕のいずれかひとつに記載の製造方法。 [4] The production method according to any one of [1] to [3], wherein the aromatic magnesium halide is a compound represented by the formula (3).

Figure 0007018327000004
(In equation (3), X, R 1 , R 2 , R 3 , R 4 , and R 5 are the same as those in equation (1).)
[5] Any of [1] to [4], which further comprises mixing an organic magnesium halide with N, N-dimethylformamide, then mixing the reaction product with hydrochloric acid, and then separating the liquids. The manufacturing method described in one.

本発明の製造方法によると、ハロゲン化ベンゼン誘導体からベンズアルデヒド誘導体を高収率で製造することができる。 According to the production method of the present invention, a benzaldehyde derivative can be produced from a halogenated benzene derivative in a high yield.

本発明は、芳香族マグネシウムハライドの存在下、溶媒中で、式(1)で表される化合物と金属マグネシウムとを反応させて有機マグネシウムハライドを得(第一工程)、次いで、有機マグネシウムハライドとN,N-ジメチルホルムアミドとを反応させる(第二工程)ことを含む、式(2)で表される化合物の製造方法である。 In the present invention, in the presence of aromatic magnesium halide, the compound represented by the formula (1) is reacted with metallic magnesium in a solvent to obtain organic magnesium halide (first step), followed by organic magnesium halide. It is a method for producing a compound represented by the formula (2), which comprises reacting with N, N-dimethylformamide (second step).


Figure 0007018327000005
(式(1)中、Xは塩素原子、臭素原子またはヨウ素原子であり、R、R、R、R、およびRは、各々独立して、水素原子、フッ素原子またはアルキル基である。)
Figure 0007018327000005
(In formula (1), X is a chlorine atom, a bromine atom or an iodine atom, and R 1 , R 2 , R 3 , R 4 and R 5 are independently hydrogen atoms, fluorine atoms or alkyl groups , respectively. Is .)

Figure 0007018327000006
(式(2)中、R1、R2、R3、R4、およびR5は、式(1)中のそれらと同じである。)
Figure 0007018327000006
(In equation (2), R 1 , R 2 , R 3 , R 4 , and R 5 are the same as those in equation (1).)

1、R2、R3、R4、およびR5におけるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-プチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基などのC1~6アルキル基を挙げることができる。 Alkyl groups in R 1 , R 2 , R 3 , R 4 , and R 5 include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-ptyl group, s-butyl group, i. -C1-6 alkyl groups such as butyl group, t-butyl group, n-pentyl group and n-hexyl group can be mentioned.

芳香族マグネシウムハライドは、ArMgXで表される化合物である。Arは、無置換若しくは置換アリール基または無置換若しくは置換ヘテロアリール基、好ましくは無置換若しくは置換アリール基である。Xは塩素原子、臭素原子またはヨウ素原子である。芳香族マグネシウムハライドは、最も好ましくは、式(3)で表される化合物である。 Aromatic magnesium halide is a compound represented by ArMgX. Ar is an unsubstituted or substituted aryl group or an unsubstituted or substituted heteroaryl group, preferably an unsubstituted or substituted aryl group. X is a chlorine atom, a bromine atom or an iodine atom. The aromatic magnesium halide is most preferably the compound represented by the formula (3).

Figure 0007018327000007
(式(3)中、X、R1、R2、R3、R4、およびR5は、式(1)中のそれらと同じである。)
Figure 0007018327000007
(In equation (3), X, R 1 , R 2 , R 3 , R 4 , and R 5 are the same as those in equation (1).)

芳香族マグネシウムハライドは、式(1)で表される化合物と金属マグネシウムとの反応を開始させる段階に存在させることが好ましい。反応開始段階における芳香族マグネシウムハライドの存在量は、反応開始段階における溶媒100重量部に対して、好ましくは0.001~10重量部、より好ましくは0.1~5重量部である。芳香族マグネシウムハライドを反応開始段階に存在させると、金属マグネシウムの活性を高めることができ、式(1)で表される化合物と金属マグネシウムとの反応をすみやかに開始させることができる。 The aromatic magnesium halide is preferably present at the stage of initiating the reaction between the compound represented by the formula (1) and the metallic magnesium. The abundance of aromatic magnesium halide in the reaction initiation stage is preferably 0.001 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the solvent at the reaction initiation stage. When the aromatic magnesium halide is present at the reaction initiation stage, the activity of the metallic magnesium can be enhanced, and the reaction between the compound represented by the formula (1) and the metallic magnesium can be promptly initiated.

第一工程の反応に使用される溶媒は、エーテル系溶媒と芳香族系溶媒との混合物が好ましい。エーテル系溶媒としては、ジエチルエーテル、テトラヒドロフラン、1、4-ジオキサン、ジブチルエーテル、t-ブチルメチルエーテルなどを挙げることができる。芳香族系溶媒としては、トルエン、キシレンなどを挙げることができる。エーテル系溶媒は、金属マグネシウムを分散させる液媒体として、好ましく使用される。芳香族系溶媒は、式(1)で表される化合物を溶解させる液媒体として、好ましく使用される。
本発明においては、トルエンとテトラヒドロフランとの混合物が特に好ましく用いられる。トルエン/テトラヒドロフランの重量比は、好ましくは55/45~95/5である。使用される溶媒はでき得る限り水分を除去した方が好ましいが、工業的に入手可能な溶媒に含まれている程度の水分は、本発明の製造方法の実施に差ほどの支障はないので、工業的に入手可能な溶媒はそのまま使用することもできる。
The solvent used in the reaction of the first step is preferably a mixture of an ether solvent and an aromatic solvent. Examples of the ether solvent include diethyl ether, tetrahydrofuran, 1,4-dioxane, dibutyl ether, t-butyl methyl ether and the like. Examples of the aromatic solvent include toluene, xylene and the like. The ether solvent is preferably used as a liquid medium for dispersing metallic magnesium. The aromatic solvent is preferably used as a liquid medium for dissolving the compound represented by the formula (1).
In the present invention, a mixture of toluene and tetrahydrofuran is particularly preferably used. The weight ratio of toluene / tetrahydrofuran is preferably 55/45 to 95/5. It is preferable to remove water as much as possible from the solvent used, but the amount of water contained in the industrially available solvent does not hinder the implementation of the production method of the present invention so much. The industrially available solvent can be used as it is.

金属マグネシウムとしては、グリニャール反応において通常使用される公知の形状のマグネシウムがそのまま使用できる。 As the metallic magnesium, magnesium having a known shape usually used in the Grignard reaction can be used as it is.

第一工程において生成する有機マグネシウムハライドは、式(3)で表される化合物と同じ構造を有する化合物である。よって、第一工程において生成した有機マグネシウムハライドの一部を抜き出して、次の第一工程に使用される芳香族マグネシウムハライドとして使用することができる。第一工程における反応温度は、好ましくは-10~60℃、より好ましくは0~45℃、さらに好ましくは0~40℃である。 The organic magnesium halide produced in the first step is a compound having the same structure as the compound represented by the formula (3). Therefore, a part of the organic magnesium halide produced in the first step can be extracted and used as the aromatic magnesium halide used in the next first step. The reaction temperature in the first step is preferably −10 to 60 ° C., more preferably 0 to 45 ° C., still more preferably 0 to 40 ° C.

第二工程に用いられるN,N-ジメチルホルムアミドは、でき得る限り水分を除去した方が好ましいが、工業的に入手可能なN,N-ジメチルホルムアミドに含まれている程度の水分は、本発明の製造方法の実施に差ほどの支障はないので、工業的に入手可能なN,N-ジメチルホルムアミドはそのまま使用することもできる。第二工程における反応温度は、好ましくは-10~50℃、より好ましくは0~20℃である。 It is preferable to remove as much water as possible from the N, N-dimethylformamide used in the second step, but the amount of water contained in the industrially available N, N-dimethylformamide is the present invention. Since there is no significant difference in the implementation of the production method of N, N-dimethylformamide, which is industrially available, the industrially available N, N-dimethylformamide can be used as it is. The reaction temperature in the second step is preferably −10 to 50 ° C., more preferably 0 to 20 ° C.

第二工程において得られた反応生成物と塩酸とを混ぜ合わせて、反応させる(第三工程)。この反応によってMg残渣が主に水相に分配され、式(2)で表される化合物が主に有機相に分配される。第三工程における反応温度は、好ましくは-10~50℃、より好ましくは0~20℃である。 The reaction product obtained in the second step and hydrochloric acid are mixed and reacted (third step). By this reaction, the Mg residue is mainly distributed to the aqueous phase, and the compound represented by the formula (2) is mainly distributed to the organic phase. The reaction temperature in the third step is preferably −10 to 50 ° C., more preferably 0 to 20 ° C.

3,4-ジフルオロベンズアルデヒドの製造

Figure 0007018327000008
Production of 3,4-difluorobenzaldehyde

Figure 0007018327000008

窒素置換した300mlの4頚フラスコに、モレキュラシーブス4Aで乾燥させたTHF30ml、および金属マグネシウム3.83gを加え撹拌した。これに臭化(3,4-ジフルオロフェニル)マグネシウム690mgを加え5分間撹拌した。温度が0.7℃上昇した。これに、1-ブロモ-3,4-ジフルオロベンゼン29.54gをトルエン60mlに溶解させた溶液を、滴下ロートで1時間かけて加え、30℃±0.5℃で1時間反応させて、有機マグネシウムブロマイドを含む液を得た。
この液を10℃に冷却し、この液にモレキュラシーブス4Aで乾燥させたDMF11.51gを10℃~12℃で30分間かけ滴下ロートで加え、10℃~15℃で1時間反応させて、反応生成液を得た。
500mlの4頚フラスコに12.5wt%塩酸120gを調製した。これを10℃に冷却し、そこに前記反応生成液を、窒素雰囲気下、カニューレを用いて10℃±0.5℃で25分間かけ滴下し、10℃~15℃で1時間反応させた。
得られた液を分液して、3,4-ジフルオロベンズアルデヒドのトルエン溶液98.49g(濃度20.95wt%、収率96.2mol%)を得た。
To a 300 ml 4-necked flask substituted with nitrogen, 30 ml of THF dried with Molecular Sives 4A and 3.83 g of metallic magnesium were added and stirred. To this, 690 mg of brominated (3,4-difluorophenyl) magnesium was added, and the mixture was stirred for 5 minutes. The temperature rose by 0.7 ° C. A solution prepared by dissolving 29.54 g of 1-bromo-3,4-difluorobenzene in 60 ml of toluene was added to this over 1 hour with a dropping funnel, and the mixture was reacted at 30 ° C. ± 0.5 ° C. for 1 hour to make it organic. A solution containing magnesium bromide was obtained.
This liquid was cooled to 10 ° C., and 11.51 g of DMF dried with Molecular Sieves 4A was added to this liquid at 10 ° C. to 12 ° C. for 30 minutes with a dropping funnel, and the mixture was reacted at 10 ° C. to 15 ° C. for 1 hour to react. A product solution was obtained.
120 g of 12.5 wt% hydrochloric acid was prepared in a 500 ml 4-necked flask. This was cooled to 10 ° C., and the reaction product solution was added dropwise at 10 ° C. ± 0.5 ° C. over 25 minutes using a cannula under a nitrogen atmosphere, and the reaction was carried out at 10 ° C. to 15 ° C. for 1 hour.
The obtained liquid was separated to obtain 98.49 g (concentration: 20.95 wt%, yield: 96.2 mol%) of a toluene solution of 3,4-difluorobenzaldehyde.

比較例

Figure 0007018327000009

窒素置換した100mlの3頚フラスコに、モレキュラシーブス4Aで乾燥させたTHF10ml、および金属マグネシウム0.385gを加え撹拌した。これに臭素少量を加え5分間撹拌した。これに、1-ブロモ-3,4-ジフルオロベンゼン3.00gをTHF5mlに溶解させた溶液を、滴下ロートで1時間かけて加え、30℃±0.5℃で1時間反応させて、有機マグネシウムブロマイドを含む液を得た。
この液を10℃に冷却し、この液にモレキュラシーブス4Aで乾燥させたDMF1.13gをTHF5mlに溶解させた溶液を10℃~12℃で30分間かけ滴下ロートで加え、10℃~15℃で1時間反応させて、反応生成液を得た。
200mlの4頚フラスコに12.5wt%塩酸40gを調製した。これを10℃に冷却し、そこに前記反応生成液を、窒素雰囲気下、カニューレを用いて10℃±0.5℃で25分間かけ滴下し、10℃~15℃で1時間反応させた。
得られた液を分液して、3,4-ジフルオロベンズアルデヒドのトルエン溶液(収率63mol%)を得た。 Comparative example
Figure 0007018327000009

To a 100 ml 3-necked flask substituted with nitrogen, 10 ml of THF dried with Molecular Sives 4A and 0.385 g of metallic magnesium were added and stirred. A small amount of bromine was added thereto, and the mixture was stirred for 5 minutes. A solution prepared by dissolving 3.00 g of 1-bromo-3,4-difluorobenzene in 5 ml of THF was added thereto with a dropping funnel over 1 hour, and the mixture was reacted at 30 ° C. ± 0.5 ° C. for 1 hour to produce organic magnesium. A solution containing bromide was obtained.
This solution was cooled to 10 ° C., and a solution of 1.13 g of DMF dried with Molecular Sieves 4A in 5 ml of THF was added to this solution at 10 ° C to 12 ° C for 30 minutes with a dropping funnel, and at 10 ° C to 15 ° C. The reaction was carried out for 1 hour to obtain a reaction product solution.
40 g of 12.5 wt% hydrochloric acid was prepared in a 200 ml 4-necked flask. This was cooled to 10 ° C., and the reaction product solution was added dropwise at 10 ° C. ± 0.5 ° C. over 25 minutes using a cannula under a nitrogen atmosphere, and the reaction was carried out at 10 ° C. to 15 ° C. for 1 hour.
The obtained liquid was separated to obtain a toluene solution of 3,4-difluorobenzaldehyde (yield 63 mol%).

以上のとおり、本発明の製造方法によると、ハロゲン化ベンゼン誘導体からベンズアルデヒド誘導体を高収率で製造することができる。 As described above, according to the production method of the present invention, a benzaldehyde derivative can be produced from a halogenated benzene derivative in a high yield.

Claims (3)

芳香族マグネシウムハライドの存在下溶媒中で式(1)で表される化合物と金属マグネシウムと反応を開始させ、
溶媒中での式(1)で表される化合物と金属マグネシウムとの反応を継続して有機マグネシウムハライドを得、
次いで、有機マグネシウムハライドとN,N-ジメチルホルムアミドとを反応させることを含み、
溶媒がトルエンとテトラヒドロフランとの混合物であり、
トルエン/テトラヒドロフランの重量比が55/45~95/5である
式(2)で表される化合物の製造方法。

Figure 0007018327000010
(式(1)中、Xは塩素原子、臭素原子またはヨウ素原子であり、R、R、R、R、およびRは、各々独立して、水素原子、フッ素原子またはアルキル基である。)

Figure 0007018327000011
(式(2)中、R、R、R、R、およびRは、式(1)中のそれらと同じである。)
In the presence of aromatic magnesium halide, the reaction between the compound represented by the formula (1) and metallic magnesium in a solvent was started.
The reaction between the compound represented by the formula (1) in a solvent and metallic magnesium was continued to obtain an organic magnesium halide.
It then involves reacting the organic magnesium halide with N, N-dimethylformamide.
The solvent is a mixture of toluene and tetrahydrofuran,
The weight ratio of toluene / tetrahydrofuran is 55/45 to 95/5 .
A method for producing a compound represented by the formula (2).

Figure 0007018327000010
(In formula (1), X is a chlorine atom, a bromine atom or an iodine atom, and R 1 , R 2 , R 3 , R 4 and R 5 are independently hydrogen atoms, fluorine atoms or alkyl groups , respectively. Is .)

Figure 0007018327000011
(In equation (2), R 1 , R 2 , R 3 , R 4 , and R 5 are the same as those in equation (1).)
芳香族マグネシウムハライドが式(3)で表される化合物である、請求項に記載の製造方法。

Figure 0007018327000012
(式(3)中、X、R、R、R、R、およびRは、式(1)中のそれらと同じである。)
The production method according to claim 1 , wherein the aromatic magnesium halide is a compound represented by the formula (3).

Figure 0007018327000012
(In equation (3), X, R 1 , R 2 , R 3 , R 4 , and R 5 are the same as those in equation (1).)
有機マグネシウムハライドとN,N-ジメチルホルムアミドとの反応を行った後、その反応生成物と塩酸とを混ぜ合わせ、次いで分液することをさらに含む、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2 , further comprising reacting an organic magnesium halide with N, N-dimethylformamide, mixing the reaction product with hydrochloric acid, and then separating the liquids.
JP2018018163A 2018-02-05 2018-02-05 Method for producing benzaldehyde derivative Active JP7018327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018018163A JP7018327B2 (en) 2018-02-05 2018-02-05 Method for producing benzaldehyde derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018018163A JP7018327B2 (en) 2018-02-05 2018-02-05 Method for producing benzaldehyde derivative

Publications (2)

Publication Number Publication Date
JP2019135216A JP2019135216A (en) 2019-08-15
JP7018327B2 true JP7018327B2 (en) 2022-02-10

Family

ID=67623978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018018163A Active JP7018327B2 (en) 2018-02-05 2018-02-05 Method for producing benzaldehyde derivative

Country Status (1)

Country Link
JP (1) JP7018327B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4006764A4 (en) 2019-07-23 2022-09-14 Showa Denko K.K. Material design system, material design method, and material design program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184976A (en) 2008-02-07 2009-08-20 Central Glass Co Ltd Method for producing 1-bromo-3-fluoro-5-difluoromethylbenzene
JP2011521994A (en) 2008-06-06 2011-07-28 エフ.ホフマン−ラ ロシュ アーゲー Method for producing halogenated benzoic acid derivative
CN104926633A (en) 2015-05-06 2015-09-23 江西力田维康科技有限公司 Preparation method for 3-alkoxybenzaldehyde
WO2016071920A2 (en) 2014-11-07 2016-05-12 Excel Industries Ltd. A process for preparation of 3,4-dimethylbenzaldehyde

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184976A (en) 2008-02-07 2009-08-20 Central Glass Co Ltd Method for producing 1-bromo-3-fluoro-5-difluoromethylbenzene
JP2011521994A (en) 2008-06-06 2011-07-28 エフ.ホフマン−ラ ロシュ アーゲー Method for producing halogenated benzoic acid derivative
WO2016071920A2 (en) 2014-11-07 2016-05-12 Excel Industries Ltd. A process for preparation of 3,4-dimethylbenzaldehyde
CN104926633A (en) 2015-05-06 2015-09-23 江西力田维康科技有限公司 Preparation method for 3-alkoxybenzaldehyde

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chemical Industries,64,P.79-87

Also Published As

Publication number Publication date
JP2019135216A (en) 2019-08-15

Similar Documents

Publication Publication Date Title
JP7018327B2 (en) Method for producing benzaldehyde derivative
JP3220986B2 (en) Method for producing fluorine-containing dicarbonyl compound
KR101913484B1 (en) Method for producing compound having oxydifluoromethylene skeleton
JP4320197B2 (en) Process for producing 1-isopropylcyclopentadiene and hinokitiol
CN112194559B (en) Synthesis method of chiral and achiral 2,2' -dihalogenated biaryl compound
JP2006298855A (en) Method for producing 3,3,3-trifluoropropionic acid
JP4948030B2 (en) Method for producing fluorine-containing alcohol derivative
JP3296519B2 (en) Method for producing halogenated aromatic compounds
JP5585992B2 (en) Method for producing nucleophilic adduct using Grignard reaction and nucleophilic addition reagent
EP2403820A1 (en) Chemical process for the production of haloalkenone ethers
JP7183509B2 (en) Method for producing alicyclic acrylic derivative
JP4088904B2 (en) Process for producing α, β-dibromoethylbenzenes and α-bromostyrenes
JPH0687772A (en) Preparation of perhalogenated olefin
WO2021240331A1 (en) Process for the preparation of 3,5-dichloro-2,2,2-trifluoroacetophenone
JP4193631B2 (en) Process for producing β-diketonato copper complex
JP4143556B2 (en) Process for producing α, α, α ′, α′-tetrachloro-p-xylene
JP2001072638A (en) PRODUCTION OF alpha-BROMOALKYLPHENONES
JP2017202992A (en) Method for producing (trifluoromethyl)malonic acid ester
JP4188060B2 (en) Method for producing 1-substituted phenyl-ω-bromoalkane
JP2011190216A (en) Method for producing (trifluoromethyl) alkyl ketone
JP4329304B2 (en) 1,4-Dibromobutane and process for producing the same
JP2016185924A (en) Practical method for producing 3,3-difluoro-2-dihydroxypropionic acid
JP4094564B2 (en) Process for producing α, α, α ′, α′-tetrachloro-p-xylene
JPS6042770B2 (en) Method for producing olefin compounds
JP2010209017A (en) Process for producing aromatic amine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7018327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350