JP7015607B1 - Manufacturing method of sinter crushing teeth - Google Patents

Manufacturing method of sinter crushing teeth Download PDF

Info

Publication number
JP7015607B1
JP7015607B1 JP2021546785A JP2021546785A JP7015607B1 JP 7015607 B1 JP7015607 B1 JP 7015607B1 JP 2021546785 A JP2021546785 A JP 2021546785A JP 2021546785 A JP2021546785 A JP 2021546785A JP 7015607 B1 JP7015607 B1 JP 7015607B1
Authority
JP
Japan
Prior art keywords
tooth
core material
wear
resistant layer
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021546785A
Other languages
Japanese (ja)
Other versions
JPWO2021201244A1 (en
Inventor
喜嗣 花田
英昭 永吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJICO CO., LTD.
Original Assignee
FUJICO CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJICO CO., LTD. filed Critical FUJICO CO., LTD.
Publication of JPWO2021201244A1 publication Critical patent/JPWO2021201244A1/ja
Application granted granted Critical
Publication of JP7015607B1 publication Critical patent/JP7015607B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/28Shape or construction of beater elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)

Abstract

長尺硬化材の製造方法、及び、焼結機で製造された焼結鉱を破砕する焼結鉱破砕機に用いられ、歯本体11の破砕部側にその長さ方向に渡って耐摩耗層13が形成された焼結鉱破砕用歯10並びにその製造方法は、歯本体11の破砕部側にその長さ方向に渡って設けられる芯部12を囲んで、耐摩耗層13の形状に対応した空洞部15、18を形成する型枠16、19を配置した後、型枠16、19内への溶湯の供給と溶湯の型枠16、19内からの排出を連続的に行って溶湯を芯部12に溶着させ、更に溶湯を型枠16、19内に貯留して凝固させる耐摩耗層形成工程を行い、耐摩耗層13を形成する。It is used in a method for manufacturing a long hardened material and a sinter crusher that crushes the sinter produced by the sinter, and a wear-resistant layer is applied to the crushed portion side of the tooth body 11 in the length direction. The sintered ore crushing tooth 10 on which the 13 is formed and the manufacturing method thereof surround the core portion 12 provided on the crushed portion side of the tooth body 11 in the length direction thereof, and correspond to the shape of the wear-resistant layer 13. After arranging the molds 16 and 19 forming the hollow portions 15 and 18, the molten metal is continuously supplied into the molds 16 and 19 and discharged from the molds 16 and 19 to discharge the molten metal. A wear-resistant layer forming step of welding to the core portion 12 and further storing and solidifying the molten metal in the molds 16 and 19 is performed to form the wear-resistant layer 13.

Description

本発明は、焼結機で製造された高温の焼結鉱を破砕する焼結鉱破砕機に用いられる焼結鉱破砕用歯の製造方法に関する。 The present invention relates to a method for producing a sinter crushing tooth used in a sinter crusher that crushes a high-temperature sinter produced by the sinter.

高炉で使用される焼結鉱は、図5に示すように、無端ベルト状に連結され、一方向に移動する複数のパレット80を備えた焼結機81により、焼結原料を焼成することで製造されている。なお、焼結機81で製造された焼結鉱は、排鉱部に位置するパレット80から排出された後、排鉱部付近に設けられた焼結鉱破砕機(以下、単に破砕機とも記載)82により所定の粒度に破砕されて、高炉に供給される。
この破砕機82は、間隔を有して並設された複数の受歯83を備えた固定歯84と、固定歯84の上方に配置された回転軸85に突設された複数の鬼歯86を備えた回転歯87とを有し、固定歯84上の焼結鉱を、複数の受歯83と、回転軸87の回転により隣り合う受歯83間に進入する鬼歯86とで破砕するものである(例えば、特許文献1参照)。
As shown in FIG. 5, the sinter used in the blast furnace is connected in an endless belt shape, and the sinter raw material is fired by a sinter 81 equipped with a plurality of pallets 80 that move in one direction. It is manufactured. The sinter produced by the sinter 81 is discharged from the pallet 80 located in the sinter portion, and then the sinter crusher provided in the vicinity of the sinter portion (hereinafter, also simply referred to as a crusher). ) 82 is crushed to a predetermined particle size and supplied to the blast furnace.
The crusher 82 includes a fixed tooth 84 having a plurality of receiving teeth 83 arranged side by side at intervals, and a plurality of demon teeth 86 projecting from a rotating shaft 85 arranged above the fixed tooth 84. The sintered ore on the fixed tooth 84 is crushed by a plurality of receiving teeth 83 and a demon tooth 86 that enters between adjacent receiving teeth 83 by rotation of the rotating shaft 87. (See, for example, Patent Document 1).

このように、破砕機81は高温の焼結鉱を破砕するものであるため、図6(A)、(B)に示すように、受歯83の破砕部側(使用にあっては上側)には、その長さ方向(長手方向、長尺方向)に渡って耐摩耗層88が形成されている(鬼歯も同様)。
この耐摩耗層88は、例えば、肉盛鋳掛技術により製造され、具体的には、歯本体89の表面に予め鋼製の格子90を溶接して小ブロックを形成し、この小ブロックの格子90内に所要成分の粒状やワイヤー状の溶接材料からなる硬化材を注入してカーボン電極のアーク熱で溶融させ、あるいは、格子90内に白銑鉄の溶湯を徐々に鋳込みながらカーボン電極のアーク熱で溶融させ、歯本体89に融合させることで形成されている。このように、格子90を形成して鋳掛ける(肉盛溶接する)ことで、耐摩耗層88のひび割れの進展や肉厚影響による剥離を防ぐことができる。
As described above, since the crusher 81 crushes the high-temperature sintered ore, as shown in FIGS. 6A and 6B, the crushing portion side (upper side in use) of the receiving tooth 83. The wear-resistant layer 88 is formed in the length direction (longitudinal direction, long direction) (the same applies to the demon tooth).
The wear-resistant layer 88 is manufactured by, for example, overlay casting technology, and specifically, a steel grid 90 is welded to the surface of the tooth body 89 in advance to form a small block, and the grid 90 of the small block is formed. A hardened material made of granular or wire-shaped welding material of the required components is injected into the inside and melted by the arc heat of the carbon electrode, or the molten metal of white iron is gradually cast into the lattice 90 and the arc heat of the carbon electrode is used. It is formed by melting and fusing it with the tooth body 89. By forming the lattice 90 and casting it (overlay welding) in this way, it is possible to prevent the wear-resistant layer 88 from being cracked and peeled off due to the influence of the wall thickness.

特開平4-9433号公報Japanese Unexamined Patent Publication No. 4-9433

しかしながら、上記した技術では、耐摩耗層88に引け巣やブローホールが発生し、また、格子90と耐摩耗層88の間に未溶着箇所が発生する等の不良や欠陥が生じ、これらの欠陥箇所が欠落ち、脱落してしまう。
このため、耐摩耗層88の摩耗や欠損が(特に、図6(B)に示す長さ方向中央部、及び、長さ方向に直交する幅方向両側部に)生じ易くなり、更なる長寿命化が求められていた。また、硬化材を格子90のマス目ごとに鋳掛けるため、鋳掛箇所が多く製造に時間を要し、更に、高い熟練度を備えた鋳掛作業者が必要となり、大量生産しづらかった。
なお、耐摩耗層の形成にはカーボン電極のアーク熱を用いることから、大きな電力が必要となり、製造コストがかかっていた。
However, in the above-mentioned technique, shrinkage cavities and blow holes are generated in the wear-resistant layer 88, and defects and defects such as unwelded portions are generated between the lattice 90 and the wear-resistant layer 88, and these defects occur. The part is missing and falls off.
Therefore, the wear-resistant layer 88 is likely to be worn or chipped (particularly at the central portion in the length direction shown in FIG. 6B and both sides in the width direction orthogonal to the length direction), and the life is further extended. Was required. Further, since the hardened material is cast for each square of the lattice 90, there are many casting points and it takes time to manufacture, and a tinkering worker with a high skill level is required, which makes mass production difficult.
Since the arc heat of the carbon electrode is used to form the wear-resistant layer, a large amount of electric power is required and the manufacturing cost is high.

本発明はかかる事情に鑑みてなされたもので、従来よりも耐摩耗性の向上が図れ、しかも、作業性よく経済的に製造可能な焼結鉱破砕用歯の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing a tooth for sinter crushing, which can be improved in wear resistance as compared with the conventional case and can be manufactured economically with good workability. And.

前記目的に沿う第1の発明に係る焼結鉱破砕用歯の製造方法は、焼結鉱破砕機に供給される焼結鉱を破砕する焼結鉱破砕用の歯であって、該焼結鉱破砕用の歯が、長尺の歯本体部と、該歯本体部の長さ方向に沿って該歯本体部と一体に構成される芯材と、該芯材を囲うように成形され前記焼結鉱と接触する耐摩耗層からなる破砕部と、を備えた焼結鉱破砕用歯の製造方法において、
a)前記芯材を、その長さ方向が鉛直方向となるように立設配置する工程と、
b)前記芯材の最下部領域を囲んで前記耐摩耗層の形状に対応した空洞部Aを前記芯材との間に形成する型枠Aを配置する工程と、
c)前記空洞部Aへの溶湯供給と該溶湯の前記空洞部Aからの排出を連続的に行い、溶湯を前記芯材と接触させることにより、前記芯材の表層部を軟化状態もしくは溶融状態とし、溶湯を前記芯材に溶着させる工程と、
d)溶湯を前記空洞部Aに充填して部分耐摩耗層を成形する工程と、
e)成形した前記部分耐摩耗層の上側領域を含めて前記芯材の次の対象領域を囲んで前記耐摩耗層の形状に対応した空洞部Bを前記芯材との間に形成する型枠Bを配置する工程と、
f)前記空洞部Bに溶湯を供給して、前記部分耐摩耗層に発生した引け巣を含む欠陥を消失させながら凝固させる工程と、
g)前記空洞部Bへの溶湯の供給と該溶湯の前記空洞部Bからの排出を連続的に行い、溶湯を前記芯材と接触させることにより、前記芯材の表層部を軟化状態もしくは溶融状態とし、溶湯を前記芯材に溶着させる工程と、
h)溶湯を前記空洞部Bに充填して新たな部分耐摩耗層を成形する工程と、を有し、
以後、前記e)から前記h)までの各工程を、前記芯材の長さ方向に渡って複数回行い、前記耐摩耗層を形成する。
前記目的に沿う第2の発明に係る焼結鉱破砕用歯の製造方法は、焼結鉱破砕機に供給される焼結鉱を破砕する焼結鉱破砕用の歯であって、該焼結鉱破砕用の歯が、長尺の歯本体部と、該歯本体部の長さ方向に沿って該歯本体部と一体に構成される芯材と、該芯材を囲うように成形され前記焼結鉱と接触する耐摩耗層からなる破砕部と、を備えた焼結鉱破砕用歯の製造方法において、
前記芯材を、成形する前記焼結鉱破砕用の歯の長さ方向に分割されて、最下部に配置される分割芯材Aと、該分割芯材Aの上側に鉛直方向に載置される複数の分割芯材Bで構成し、
a)前記分割芯材Aを最下部に配置される型枠Aの内側面に接して配置して、前記耐摩耗層の形状に対応した空洞部Aを前記分割芯材Aと前記型枠Aとの間に形成する工程と、
b)前記空洞部Aへの溶湯供給と該溶湯の前記空洞部Aからの排出を連続的に行い、溶湯を前記分割芯材と接触させることにより、前記分割芯材Aの表層部を軟化状態もしくは溶融状態とし、溶湯を前記分割芯材Aに溶着させる工程と、
c)溶湯を前記空洞部Aに充填して部分耐摩耗層を成形する工程と、
d)前記分割芯材Bを囲み前記分割芯材Bが内側面に接する型枠Bを配置して、前記耐摩耗層の形状に対応して前記分割芯材Bと前記型枠Bとの間に形成される空洞部Bを、前記部分耐摩耗層の上側に位置させる工程と、
e)前記空洞部Bに溶湯を供給して、前記部分耐摩耗層に発生した引け巣を含む欠陥を消失させながら凝固させる工程と、
f)前記空洞部Bへの溶湯の供給と該溶湯の前記空洞部Bからの排出を連続的に行い、溶湯を前記分割芯材Bと接触させることにより、前記分割芯材Bの表層部を軟化状態もしくは溶融状態とし、溶湯を前記分割芯材Bに溶着させる工程と、
g)溶湯を前記空洞部Bに充填して新たな部分耐摩耗層を成形する工程と、を有し、
以後、前記d)から前記g)までの各工程を、前記芯材の長さ方向に渡って複数回行い、前記耐摩耗層を形成する。
The method for producing a sinter crushing tooth according to the first invention according to the above object is a sinter crushing tooth for crushing a sinter supplied to a sinter crusher, and the sintering is performed. The ore crushing tooth is formed so as to surround the long tooth body portion, the core material integrally formed with the tooth body portion along the length direction of the tooth body portion, and the core material. In a method for manufacturing a sinter crushing tooth provided with a crushed portion made of an abrasion resistant layer that comes into contact with the sinter.
a) A step of erection and arranging the core material so that its length direction is the vertical direction.
b) A step of arranging a formwork A that surrounds the lowermost region of the core material and forms a cavity A corresponding to the shape of the wear-resistant layer between the core material and the core material.
c) The surface layer portion of the core material is softened or melted by continuously supplying the molten metal to the cavity A and discharging the molten metal from the cavity A and bringing the molten metal into contact with the core material. The process of welding the molten metal to the core material in a state and
d) The step of filling the cavity A with the molten metal to form a partial wear-resistant layer, and
e) A formwork that surrounds the next target area of the core material including the upper region of the molded partial wear-resistant layer and forms a cavity B corresponding to the shape of the wear-resistant layer between the core material and the hollow portion B. The process of arranging B and
f) A step of supplying molten metal to the cavity B and solidifying it while eliminating defects including shrinkage cavities generated in the partial wear-resistant layer.
g) By continuously supplying the molten metal to the cavity B and discharging the molten metal from the cavity B and bringing the molten metal into contact with the core material, the surface layer portion of the core material is softened or melted. The process of welding the molten metal to the core material in a state and
h) It has a step of filling the cavity B with molten metal to form a new partial wear-resistant layer.
After that, each step from e) to h) is performed a plurality of times in the length direction of the core material to form the wear-resistant layer.
The method for producing a sinter crushing tooth according to the second invention according to the above object is a sinter crushing tooth for crushing a sinter supplied to a sinter crusher, and the sintering is performed. The ore crushing tooth is formed so as to surround the long tooth body portion, the core material integrally formed with the tooth body portion along the length direction of the tooth body portion, and the core material. In a method for manufacturing a sinter crushing tooth provided with a crushed portion made of an abrasion resistant layer that comes into contact with the sinter.
The core material is divided in the length direction of the teeth for sinter crushing to be molded, and is placed vertically on the divided core material A arranged at the lowermost portion and on the upper side of the divided core material A. It is composed of a plurality of split core materials B,
a) The split core material A is arranged in contact with the inner side surface of the formwork A arranged at the lowermost portion, and the cavity portion A corresponding to the shape of the wear-resistant layer is formed between the split core material A and the formwork A. And the process of forming between
b) The surface layer portion of the divided core material A is formed by continuously supplying the molten metal to the cavity A and discharging the molten metal from the cavity A and bringing the molten metal into contact with the divided core material A. A step of welding the molten metal to the split core material A in a softened or melted state, and
c) The step of filling the cavity A with the molten metal to form a partial wear-resistant layer, and
d) A formwork B is arranged so as to surround the divided core material B and the divided core material B is in contact with the inner side surface, and between the divided core material B and the formwork B corresponding to the shape of the wear-resistant layer. The step of locating the cavity portion B formed in the above portion above the partial wear resistant layer, and
e) A step of supplying molten metal to the cavity B and solidifying it while eliminating defects including shrinkage cavities generated in the partial wear-resistant layer.
f) The surface layer portion of the divided core material B is formed by continuously supplying the molten metal to the cavity B and discharging the molten metal from the cavity B and bringing the molten metal into contact with the divided core material B. A step of welding the molten metal to the split core material B in a softened or melted state, and
g) It has a step of filling the cavity B with molten metal to form a new partial wear-resistant layer.
After that, each step from d) to g) is performed a plurality of times in the length direction of the core material to form the wear-resistant layer.

第1、第2の発明に係る焼結鉱破砕用歯の製造方法において、前記型枠A、Bには、溶湯の排出口が前記芯材の長さ方向に渡って複数形成され、該各排出口の開閉により、前記空洞部A、Bへの溶湯の供給と前記空洞部A、Bからの溶湯の排出を連続的に行って前記芯材の表層部を軟化状態もしくは溶融状態とした後、前記部分耐摩耗層を成形することができる。 In the method for producing a tooth for sinter crushing according to the first and second inventions, a plurality of molten metal discharge ports are formed in the molds A and B in the length direction of the core material, and the respective molds A and B are formed. By opening and closing the discharge port, the molten metal is continuously supplied to the cavities A and B and the molten metal is continuously discharged from the cavities A and B to bring the surface layer portion of the core material into a softened or melted state. , The partial wear resistant layer can be formed.

本発明に係る焼結鉱破砕用歯の製造方法において、前記焼結鉱破砕機は、間隔を有して配置された複数の受歯を備えた固定歯と、該固定歯の上方に配置された回転軸に放射状に突設され、該回転軸の回転により隣り合う前記受歯の間に進入する複数の鬼歯を備えた回転歯とを有し、製造する前記焼結鉱破砕用の歯が前記受歯であるのがよい。 In the method for manufacturing a tooth for crushing a sintered ore according to the present invention, the sintered ore crusher is arranged on a fixed tooth having a plurality of receiving teeth arranged at intervals and above the fixed tooth. A tooth for crushing a sintered ore, which has a rotating tooth provided with a plurality of demon teeth that are radially projected from the rotating shaft and enter between adjacent receiving teeth due to the rotation of the rotating shaft. It is preferable that the tooth is received.

本発明に係る焼結鉱破砕用歯の製造方法において、前記焼結鉱破砕機は、間隔を有して配置された複数の受歯を備えた固定歯と、該固定歯の上方に配置された回転軸に放射状に突設され、該回転軸の回転により隣り合う前記受歯の間に進入する複数の鬼歯を備えた回転歯とを有し、製造する前記焼結鉱破砕用の歯が前記鬼歯であってもよい。 In the method for manufacturing a tooth for crushing a sintered ore according to the present invention, the sintered ore crusher is arranged on a fixed tooth having a plurality of receiving teeth arranged at intervals and above the fixed tooth. A tooth for crushing a sintered ore, which has a rotating tooth provided with a plurality of demon teeth that are radially projected from the rotating shaft and enter between adjacent receiving teeth due to the rotation of the rotating shaft. May be the demon tooth.

本発明に係る焼結鉱破砕用歯の製造方法は、型枠内へ溶湯を供給し、芯材の表層部を軟化状態もしくは溶融状態にして、溶湯を芯部に溶着させるので、芯部に対する耐摩耗層(硬化層、以下同じ)の密着力が高められる。また、溶湯を型枠内に貯留して凝固させるので、耐摩耗層を一体的に形成できる。更に、例えば、従来のような、格子が不要であるため、また、アーク熱も不要となり、溶湯の冷却速度が速いので、形成される耐摩耗層を硬くでき、形成する耐摩耗層の耐摩耗性を向上できる。なお、高い熟練度を備えた鋳掛作業者も不要となる。
従って、従来よりも耐摩耗性の向上が図れる焼結鉱破砕用歯を、作業性よく経済的に製造できる。
In the method for producing a tooth for sinter crushing according to the present invention, the molten metal is supplied into the mold, the surface layer portion of the core material is in a softened or melted state, and the molten metal is welded to the core portion, so that the molten metal is welded to the core portion. The adhesion of the wear-resistant layer (hardened layer, the same applies hereinafter) is enhanced. Further, since the molten metal is stored in the mold and solidified, the wear-resistant layer can be integrally formed. Further, for example, since the lattice is not required and the arc heat is not required as in the conventional case, and the cooling rate of the molten metal is high, the wear-resistant layer to be formed can be hardened, and the wear-resistant layer to be formed can be hardened. You can improve your sex. It also eliminates the need for tinkering workers with a high degree of skill.
Therefore, a tooth for sinter crushing, which can improve wear resistance as compared with the conventional case, can be manufactured economically with good workability.

特に、引け巣(空洞)を消失させることで、従来よりも組織の緻密化と品質の安定化が図れる。 In particular, by eliminating the shrinkage cavities (cavities), the tissue can be made finer and the quality can be stabilized more than before.

(A)は本発明の一実施例に係る焼結鉱破砕用歯の製造方法で製造された焼結鉱破砕機の受歯の斜視図、(B)は同焼結鉱破砕用歯の製造方法の説明図である。(A) is a perspective view of a receiving tooth of a sinter crusher manufactured by the method for manufacturing a sinter crushing tooth according to an embodiment of the present invention, and (B) is a manufacturing of the sinter crushing tooth. It is explanatory drawing of the method. 本発明の他の実施例に係る焼結鉱破砕用歯の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the sinter crushing tooth which concerns on other Examples of this invention. (A)~(G)は実験例に係る焼結鉱破砕用歯の製造方法で製造された受歯の耐摩耗層の摩耗状況を示すグラフである。(A) to (G) are graphs showing the wear state of the wear-resistant layer of the receiving tooth manufactured by the method for manufacturing a sinter crushing tooth according to an experimental example. (A)は実験例に係る焼結鉱破砕用歯の製造方法で製造された受歯の摩耗状況を示すグラフ、(B)、(C)は比較例に係る焼結鉱破砕用歯の製造方法で製造された受歯の摩耗状況を示すグラフ、(D)は実験例に係る焼結鉱破砕用歯の製造方法で製造された受歯の摩耗状況を示すグラフ、である。(A) is a graph showing the wear state of the receiving tooth manufactured by the method for manufacturing a sintered ore crushing tooth according to an experimental example, and (B) and (C) are manufacturing of a sintered ore crushing tooth according to a comparative example. The graph which shows the wear state of the receiving tooth manufactured by the method, (D) is the graph which shows the wearing state of the receiving tooth manufactured by the manufacturing method of the sintered ore crushing tooth which concerns on an experimental example. 焼結鉱の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of a sinter. (A)は従来例に係る焼結鉱破砕機の受歯の斜視図、(B)は同受歯の耐摩耗層の摩耗状況を示す説明図である。(A) is a perspective view of a receiving tooth of a sinter crusher according to a conventional example, and (B) is an explanatory view showing a wear state of a wear-resistant layer of the receiving tooth.

続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
まず、図1(A)を参照しながら、本発明の一実施例に係る焼結鉱破砕用歯の製造方法で製造された、焼結鉱破砕機に用いられる受歯(焼結鉱破砕用歯の一例)10と鬼歯(焼結鉱破砕用歯の一例、図示せず)について説明する。
焼結鉱破砕機は、複数の受歯10を備えた固定歯と、ロールの表面に設けられた大きな原料を噛み込む突起状の複数の鬼歯を備えた回転歯とを有し、焼結機で製造された高温の焼結鉱を破砕するものである(図5参照)。
Subsequently, an embodiment embodying the present invention will be described with reference to the attached drawings, and the present invention will be understood.
First, with reference to FIG. 1 (A), a tooth receiving (for sinter crushing) used in a sinter crusher manufactured by the method for manufacturing a sinter crushing tooth according to an embodiment of the present invention. An example of a tooth) 10 and a demon tooth (an example of a sintered ore crushing tooth, not shown) will be described.
The sinter ore crusher has a fixed tooth having a plurality of receiving teeth 10 and a rotating tooth having a plurality of protruding demon teeth provided on the surface of the roll to bite a large raw material, and is sintered. It crushes high-temperature sinter produced by the machine (see FIG. 5).

固定歯は、複数(例えば、10本以上)の受歯10が間隔を有して平行(格子状(連子状))に配置されている。
この受歯10は、断面四角形の棒状のものであり、歯本体11と、歯本体11の破砕部側(使用にあっては上部側)に設けられた芯部(母材、芯材)12と、この芯部12に溶着され、歯本体11の破砕部側にその長さ方向に渡って形成された耐摩耗層13とを有している(即ち、歯本体11は、受歯10のうち、芯部12と耐摩耗層13を除いた部分)。
In the fixed teeth, a plurality of (for example, 10 or more) receiving teeth 10 are arranged in parallel (lattice-like) with an interval.
The receiving tooth 10 has a rod shape having a square cross section, and is a tooth body 11 and a core portion (base material, core material) 12 provided on the crushed portion side (upper side in use) of the tooth body 11. The tooth body 11 has a wear-resistant layer 13 welded to the core portion 12 and formed on the crushed portion side of the tooth body 11 in the length direction thereof (that is, the tooth body 11 has a tooth receiving portion 10). Of which, the portion excluding the core portion 12 and the wear-resistant layer 13).

芯部12は、例えば、鋼製のものであり、断面逆T字状となって、歯本体11の破砕部側表面(上側表面)にその長さ方向に沿って取付けられている。
この芯部12の突出部分の幅Cwは、例えば、耐摩耗層13の幅(歯本体11の長さ方向とは直交する方向の幅)Rwの0.05~0.3倍(好ましくは0.2倍以下)程度であり、また、芯部12(突出部分)の高さCtは、例えば、耐摩耗層13の高さRtの0.5~0.9倍(好ましくは、下限が0.6倍、上限が0.8倍)程度であるが、受歯の構成によって種々変更できる(形状も変更できる)。
The core portion 12 is made of steel, for example, and has an inverted T-shaped cross section, and is attached to the crushed portion side surface (upper surface) of the tooth body 11 along the length direction thereof.
The width Cw of the protruding portion of the core portion 12 is, for example, 0.05 to 0.3 times (preferably 0) the width of the wear-resistant layer 13 (the width in the direction orthogonal to the length direction of the tooth body 11) Rw. The height Ct of the core portion 12 (protruding portion) is, for example, 0.5 to 0.9 times the height Rt of the wear-resistant layer 13 (preferably, the lower limit is 0). It is about 6.6 times, the upper limit is 0.8 times), but it can be changed in various ways depending on the configuration of the receiving tooth (the shape can also be changed).

この芯部12の歯本体11への取付けは、溶接により行われるが、例えば、ボルト等の締結手段で行ってもよく、また、締結手段を併用して行ってもよい。更に、芯部は歯本体と一体であってもよい(歯本体と芯部が分断されていない、一体的に製造された構成でもよい)。
また、芯部12は、歯本体11の長さ方向途中位置(ここでは、長さ方向中央部)で分断されているが、固定歯の種類によっては分断されていないものもある。
なお、上記したように、耐摩耗層13を一体的に形成した芯部12を歯本体11に溶接あるいはボルト等の締結手段で取付けることにより、耐摩耗層13が摩耗減損した場合には、歯本体11と芯部12との溶接部分を切断あるいは締結手段を外して、歯本体11から芯部12を取り外し、新品の耐摩耗層13を一体的に形成した芯部12を歯本体11に取付ければよい。これにより、例えば、実際に使用されている現場で容易に交換でき、また、現場への輸送(搬送)に際しても、耐摩耗層13を一体的に形成した芯部12と歯本体11を個別に輸送し現地にて組み立てることで輸送コストの低減が図れる。
The core portion 12 is attached to the tooth body 11 by welding, but may be performed by, for example, a fastening means such as a bolt, or may be performed in combination with the fastening means. Further, the core portion may be integrated with the tooth body (the tooth body and the core portion may be integrally manufactured without being separated).
Further, the core portion 12 is divided at an intermediate position in the length direction of the tooth body 11 (here, the central portion in the length direction), but some of the core portions 12 are not divided depending on the type of fixed tooth.
As described above, when the wear-resistant layer 13 is worn out by attaching the core portion 12 integrally formed with the wear-resistant layer 13 to the tooth body 11 by welding or fastening means such as bolts, the teeth are worn out. The welded portion between the main body 11 and the core portion 12 is cut or the fastening means is removed, the core portion 12 is removed from the tooth main body 11, and the core portion 12 integrally formed with the new wear-resistant layer 13 is attached to the tooth main body 11. Just do it. Thereby, for example, it can be easily replaced at the site where it is actually used, and the core portion 12 and the tooth body 11 integrally formed with the wear-resistant layer 13 are individually formed during transportation to the site. Transportation costs can be reduced by transporting and assembling on-site.

分断された各芯部12に溶着された耐摩耗層13の長さ(歯本体11の長さ方向の長さ)は、例えば、500mm以上(更には、1000mm以上)程度であり、上限値は特に限定されるものではないが、例えば、3000mm程度である。なお、芯部が分断されていない構成であれば、耐摩耗層も分断されていない構成にできる。
この耐摩耗層13の材質は、高炭素かつ高クロムをベースにした白銑鉄(例えば、C:4.0~5.5質量%、Cr:25~30質量%の白銑鋳鉄等)が主体であり、高温雰囲気で磨耗を受ける場合に極めて優れた耐用度を示す。なお、耐摩耗層の材質は、焼結鉱破砕機に使用可能な金属製の材質であれば、上記した白銑鉄に限定されるものではない。
The length of the wear-resistant layer 13 welded to each of the divided cores 12 (the length in the length direction of the tooth body 11) is, for example, about 500 mm or more (further, 1000 mm or more), and the upper limit value is Although not particularly limited, it is, for example, about 3000 mm. If the core portion is not divided, the wear-resistant layer can also be configured not divided.
The material of the wear-resistant layer 13 is mainly white pig iron based on high carbon and high chromium (for example, C: 4.0 to 5.5% by mass, Cr: 25 to 30% by mass, etc.). It exhibits extremely excellent durability when it is worn in a high temperature atmosphere. The material of the wear-resistant layer is not limited to the above-mentioned white pig iron as long as it is a metal material that can be used in a sinter crusher.

上記した歯本体11の長さ方向に隣り合う耐摩耗層13の間、及び、歯本体11の上側側部には、鋳掛肉盛層14が形成されている。これにより、歯本体11と耐摩耗層13との一体性が高められ、また、歯本体11の破砕部側の摩耗を抑制できる。
なお、歯本体11の内部には、冷却水用の流路(図示しない)が形成され、使用時における受歯10の温度上昇を抑制可能な構成となっている(歯本体11が水冷構造を備えている)。
A tinkered overlay layer 14 is formed between the wear-resistant layers 13 adjacent to each other in the length direction of the tooth body 11 and on the upper side of the tooth body 11. As a result, the integrity between the tooth body 11 and the wear-resistant layer 13 is enhanced, and wear on the crushed portion side of the tooth body 11 can be suppressed.
A flow path for cooling water (not shown) is formed inside the tooth body 11 so that the temperature rise of the receiving tooth 10 during use can be suppressed (the tooth body 11 has a water-cooled structure). I have).

回転歯は、図5に示した回転歯87と略同一形状であるため、ここでは便宜的に、図5で使用した符号を付して説明する。回転歯87は、固定歯の上方に、その軸心が平面視して受歯10(歯本体11)の長さ方向とは直交する方向に沿って配置された回転軸85と、この回転軸85に放射状に突設され、回転軸85の回転により隣り合う受歯10の間に進入する複数の鬼歯86を備えている。
この鬼歯86に相当する本発明の鬼歯は、側面視して扇形状となって、歯本体と、歯本体の破砕部側(使用にあっては回転方向下流部側)の長さ方向(回転軸を中心とした高さ方向)に渡って設けられた芯部(母材、芯材)と、この芯部に溶着された耐摩耗層とを有している(即ち、歯本体は、鬼歯のうち、芯部と耐摩耗層を除いた部分)。
Since the rotary tooth has substantially the same shape as the rotary tooth 87 shown in FIG. 5, the reference numerals used in FIG. 5 will be added here for convenience. The rotary tooth 87 has a rotary shaft 85 arranged above the fixed tooth along a direction whose axis is perpendicular to the length direction of the receiving tooth 10 (tooth body 11) in a plan view, and a rotary shaft thereof. It is provided with a plurality of demon teeth 86 that are radially projected from the 85 and enter between the adjacent receiving teeth 10 due to the rotation of the rotating shaft 85.
The demon tooth of the present invention corresponding to this demon tooth 86 has a fan shape when viewed from the side, and is in the length direction of the tooth body and the crushed portion side (rotational direction downstream portion side in use) of the tooth body. It has a core portion (base material, core material) provided over (in the height direction about the rotation axis) and a wear-resistant layer welded to the core portion (that is, the tooth body has a tooth body. , The part of the demon tooth excluding the core and the wear-resistant layer).

芯部は、例えば、鋼製のものであり、断面逆T字状となって、歯本体の破砕部側表面にその長さ方向に沿って取付けられているが、鬼歯の形状に応じて変更することができる。この芯部は、歯本体とは分断されてもよく、また、歯本体と一体であってもよい(受歯と同様)。
なお、耐摩耗層の材質は、上記した受歯10の耐摩耗層と同様の材質で構成できるが、材質の種類は、受歯10の耐摩耗層と同一でもよく、また、異なってもよい。
The core is made of steel, for example, and has an inverted T-shaped cross section and is attached to the surface of the tooth body on the crushed portion side along the length direction thereof, depending on the shape of the demon tooth. Can be changed. This core portion may be separated from the tooth body or may be integrated with the tooth body (similar to the receiving tooth).
The material of the wear-resistant layer can be made of the same material as the wear-resistant layer of the receiving tooth 10 described above, but the type of material may be the same as or different from the wear-resistant layer of the receiving tooth 10. ..

続いて、図1(B)を参照しながら、受歯10の製造方法について説明する。
まず、図1(B)の左図に示すように、受歯10の芯部12を、その長さ方向が鉛直方向となるように立設配置し、この芯部12の最下部領域(後述する最初の耐摩耗層形成工程の対象となる領域)を囲んで、形成する耐摩耗層13の形状(長手方向長さは分割分)に対応した空洞部15を形成する型枠16を配置する(型枠16と芯部12とで空洞部15が形成される)。この型枠16の内側(溶湯との接触面側)には耐火物層がある(後述する型枠19も同様)。
Subsequently, a method for manufacturing the receiving tooth 10 will be described with reference to FIG. 1 (B).
First, as shown in the left figure of FIG. 1B, the core portion 12 of the receiving tooth 10 is vertically arranged so that its length direction is the vertical direction, and the lowermost region of the core portion 12 (described later). A formwork 16 for forming a cavity 15 corresponding to the shape of the wear-resistant layer 13 to be formed (the length in the longitudinal direction is divided) is arranged so as to surround the area to be the target of the first wear-resistant layer forming step. (The hollow portion 15 is formed by the mold 16 and the core portion 12). There is a refractory layer inside the formwork 16 (on the contact surface side with the molten metal) (the same applies to the formwork 19 described later).

ここでは、平面視して芯部12全体が型枠16で囲まれている(空洞部15に芯部12が配置されている)が、芯部12の表面側(耐摩耗層13の形成面側)のみが、型枠で囲まれてもよい。また、この芯部12は、歯本体11に取付けられていない状態で(芯部12のみで)型枠16に配置されているが、歯本体11に取付けられた状態で型枠16に配置されてもよい。
なお、芯部12の表面には、予め凹凸処理(例えば、ブラスト処理)がなされ、更に耐摩耗層13が溶着し易くなるように、溶着促進剤を塗布しておくことが好ましい。
Here, the entire core portion 12 is surrounded by the formwork 16 in a plan view (the core portion 12 is arranged in the cavity portion 15), but the surface side of the core portion 12 (the surface on which the wear-resistant layer 13 is formed). Only the side) may be surrounded by the formwork. Further, the core portion 12 is arranged in the formwork 16 in a state where it is not attached to the tooth body 11 (only in the core portion 12), but is arranged in the formwork 16 in a state where it is attached to the tooth body 11. You may.
It is preferable that the surface of the core portion 12 is subjected to unevenness treatment (for example, blast treatment) in advance, and a welding accelerator is applied so that the wear resistant layer 13 can be easily welded.

次に、型枠16内(空洞部15)への溶湯の供給(注湯)と該溶湯の型枠16内からの排出を連続的に行って溶湯を芯部12に溶着させた後、更に溶湯を型枠16内に貯留(充填)して凝固させる(所定時間かけて半凝固状態とする)、耐摩耗層形成工程を行う。
ここで、型枠16への溶湯の供給と型枠16からの溶湯の排出は、芯部12の表層部が軟化状態もしくは溶融状態となるまで行う。従って、溶湯の温度は、芯部12の融点Ctmより高い温度に設定する(例えば、(Ctm+20℃)以上、更には、(Ctm+50℃)以上、更に好ましくは、(Ctm+100℃)以上)のがよい。一方、溶湯の温度の上限値は特に限定されないが、溶湯の温度を上昇させるための電力や型枠の損傷等を考慮すれば、(Ctm+200℃)程度である。
Next, the molten metal is continuously supplied (pouring) into the mold 16 (cavity 15) and discharged from the mold 16 to weld the molten metal to the core 12, and then further. A wear-resistant layer forming step is performed in which the molten metal is stored (filled) in the mold 16 and solidified (to be in a semi-solidified state over a predetermined time).
Here, the molten metal is supplied to the mold 16 and the molten metal is discharged from the mold 16 until the surface layer portion of the core portion 12 is in a softened state or a molten state. Therefore, the temperature of the molten metal is preferably set to a temperature higher than the melting point Ctm of the core portion 12 (for example, (Ctm + 20 ° C.) or higher, further (Ctm + 50 ° C.) or higher, more preferably (Ctm + 100 ° C.) or higher). .. On the other hand, the upper limit of the temperature of the molten metal is not particularly limited, but is about (Ctm + 200 ° C.) in consideration of the electric power for raising the temperature of the molten metal, damage to the mold, and the like.

続いて、図1(B)の中図に示すように、上記した耐摩耗層形成工程で形成された半凝固部位17(形成される耐摩耗層13の一部)の上側領域も含めた次の領域(2回目の耐摩耗層形成工程の対象領域)を囲んで、形成する耐摩耗層13の形状(長手方向長さは分割分)に対応した空洞部18を形成する型枠19を配置し、上記した耐摩耗層形成工程を行う。
この型枠の配置と耐摩耗層形成工程(溶湯を芯部12に固着させる工程)を、図1(B)の右図に示すように、芯部12の長さ方向に渡って(下側から上側へ)複数回繰り返し行う。なお、耐摩耗層形成工程の繰り返し回数(所定回数)は、型枠の個数(形成する耐摩耗層13の長さ)により決まる。
Subsequently, as shown in the middle figure of FIG. 1 (B), the next including the upper region of the semi-solidified portion 17 (a part of the formed wear-resistant layer 13) formed in the above-mentioned wear-resistant layer forming step. A mold 19 for forming a cavity 18 corresponding to the shape of the wear-resistant layer 13 to be formed (the length in the longitudinal direction is divided) is arranged so as to surround the region (the target area of the second wear-resistant layer forming step). Then, the above-mentioned wear-resistant layer forming step is performed.
As shown in the right figure of FIG. 1B, the process of arranging the formwork and forming the wear-resistant layer (step of fixing the molten metal to the core portion 12) is performed over the length direction of the core portion 12 (lower side). Repeat multiple times (from to the top). The number of repetitions (predetermined number of times) of the wear-resistant layer forming step is determined by the number of molds (length of the wear-resistant layer 13 to be formed).

上記した2回目以降の耐摩耗層形成工程は、前回行った耐摩耗層形成工程により形成された半凝固部位17に発生した引け巣20を無くしながら(壊しながら)行う(前工程の半凝固状態の湯と新たに注湯した湯とを混ぜ合わせ、前工程の湯の引け巣を消失させながら、即ち、内部に引け巣などの欠陥を残さない状態で凝固させて行う)。
従って、この半凝固部位17は、完全に凝固した状態ではなく、少なくともその上部が軟化状態(更には、上側中央部が溶融状態)にある半凝固状態であることが好ましい。ここで、軟化状態とは、例えば、耐摩耗層13の融点Rtmより200~50℃の範囲で低い温度(Rtm-(200~50℃))となった状態であり、例えば、溶湯注湯後の経過時間(例えば、注湯終了から数分程度:予め求めた半凝固部位17温度と経過時間との関係)に基づいて、2回目以降の耐摩耗層形成工程を行うこともできる。
The second and subsequent wear-resistant layer forming steps described above are performed while eliminating (breaking) the shrinkage cavities 20 generated in the semi-solidified portion 17 formed by the previously performed wear-resistant layer forming step (semi-solidified state of the previous step). The hot water is mixed with the newly poured hot water and coagulated while eliminating the shrinkage cavities of the hot water in the previous process, that is, without leaving any defects such as shrinkage cavities inside).
Therefore, it is preferable that the semi-solidified portion 17 is not in a completely solidified state, but is in a semi-solidified state in which at least the upper portion thereof is in a softened state (furthermore, the upper central portion is in a molten state). Here, the softened state is, for example, a state in which the temperature is lower than the melting point Rtm of the wear-resistant layer 13 in the range of 200 to 50 ° C. (Rtm- (200 to 50 ° C.)), and is, for example, after pouring the molten metal. The second and subsequent wear-resistant layer forming steps can also be performed based on the elapsed time (for example, about several minutes from the end of pouring: the relationship between the temperature of the semi-solidified portion 17 and the elapsed time obtained in advance).

最後に押湯を行うことにより、芯部12に耐摩耗層13が形成される。
上記した方法で製造した耐摩耗層13を、芯部12を介して歯本体11に取付けた後、歯本体11の隣り合う耐摩耗層13の間、及び、歯本体11の上側側部に、鋳掛肉盛層14を形成することで、受歯10として使用できる。
なお、鬼歯についても、上記した受歯10と同様、鬼歯の芯部を、その長さ方向(高さ方向)が鉛直方向となるように立設配置し、この芯部を囲んで、形成する耐摩耗層の形状に対応した空洞部を形成する型枠を配置し、上記した耐摩耗層形成工程を1回又は複数回行うことで、耐摩耗層を形成する。
Finally, by pressing the hot water, the wear-resistant layer 13 is formed on the core portion 12.
After the wear-resistant layer 13 manufactured by the above method is attached to the tooth body 11 via the core portion 12, the wear-resistant layer 13 is attached between the adjacent wear-resistant layers 13 of the tooth body 11 and on the upper side of the tooth body 11. By forming the tinker overlay layer 14, it can be used as the receiving tooth 10.
As for the demon tooth, as in the case of the receiving tooth 10 described above, the core portion of the demon tooth is vertically arranged so that the length direction (height direction) is the vertical direction, and the core portion is surrounded by the demon tooth. A wear-resistant layer is formed by arranging a mold for forming a cavity corresponding to the shape of the wear-resistant layer to be formed and performing the above-mentioned wear-resistant layer forming step once or a plurality of times.

次に、図2を参照しながら、本発明の他の実施例に係る焼結鉱破砕用歯の製造方法ついて説明する。本実施例に係る焼結鉱破砕用歯は受歯であって、この受歯は前記した受歯10と外観上は略同様の構成であるため、異なる部分についてのみ、詳しく説明する。
受歯の芯部31は、その長さ方向に分割された複数(ここでは3個)の分割芯部32で構成されている。このため、使用する型枠33も、分割芯部22ごとに配置される複数(ここでは、分割芯部22の個数に対応して3個)の分割型枠34で構成されている。これは、芯部31に対する溶湯の溶着性を良好にするためである。
なお、型枠33(分割型枠34)の内側(溶湯との接触面)には耐火物層がある。
Next, with reference to FIG. 2, a method for manufacturing a sinter crushing tooth according to another embodiment of the present invention will be described. The sintered ore crushing tooth according to the present embodiment is a receiving tooth, and since this receiving tooth has substantially the same structure as the above-mentioned receiving tooth 10 in appearance, only different parts will be described in detail.
The core portion 31 of the receiving tooth is composed of a plurality of (here, three) divided core portions 32 divided in the length direction thereof. Therefore, the formwork 33 to be used is also composed of a plurality of divided formwork 34 (here, three corresponding to the number of the divided core portions 22) arranged for each divided core portion 22. This is to improve the weldability of the molten metal to the core portion 31.
There is a refractory layer inside the formwork 33 (divided formwork 34) (contact surface with the molten metal).

芯部が長尺の場合、例えば、長さが1000mm超の場合、型枠の長さも芯部の長さに対応して1000mm超となり、このような型枠の上方から溶湯を供給すると、高さ方向途中位置で溶湯の流れが乱れ、溶湯が溶着しづらくなる。
そこで、上記したように、芯部と型枠をそれぞれ複数に分割することで、溶湯の流れを安定にでき、溶湯の溶着を良好にできる。なお、分割芯部と分割型枠の各長さは、溶湯の溶着を安定に行うことができれば、特に限定されるものではないが、例えば、1000mm以下(好ましくは800mm以下、更には600mm以下)程度にすればよい。一方、下限値については、特に限定されるものではないが、例えば、200mm程度である。
If the core is long, for example, if the length is more than 1000 mm, the length of the formwork will also be more than 1000 mm corresponding to the length of the core, and if the molten metal is supplied from above the formwork, it will be high. The flow of the molten metal is disturbed in the middle of the vertical direction, making it difficult for the molten metal to weld.
Therefore, as described above, by dividing the core portion and the mold into a plurality of pieces, the flow of the molten metal can be stabilized and the welding of the molten metal can be improved. The lengths of the split core portion and the split mold are not particularly limited as long as the molten metal can be welded stably, but are, for example, 1000 mm or less (preferably 800 mm or less, further 600 mm or less). It should be about the same. On the other hand, the lower limit value is not particularly limited, but is, for example, about 200 mm.

まず、図2の左図に示すように、土台35上に、形成する耐摩耗層36(上記した耐摩耗層13と同様)の形状(長手方向長さは分割分)に対応した空洞部37を有する分割型枠34を、その長さ方向が鉛直方向となるように立設配置する。なお、分割型枠34内には、断面逆T字状の分割芯部32を、その幅広面が分割型枠34の一つの内側面38に接するように、しかも、その長さ方向が鉛直方向となるように、立設配置されている(分割芯部32が分割型枠34で囲まれている)。
この分割型枠34には、その長さ方向(高さ方向)に間隔を有して複数(ここでは5個)の開口部39が形成されている。この開口部39は溶湯の排出口であり、分割型枠34の空洞部37と外部とを連通させるものである。
First, as shown in the left figure of FIG. 2, the cavity 37 corresponding to the shape (longitudinal length is divided) of the wear-resistant layer 36 (similar to the above-mentioned wear-resistant layer 13) formed on the base 35. The split formwork 34 having the above is erected and arranged so that its length direction is the vertical direction. In the split formwork 34, a split core portion 32 having an inverted T-shaped cross section is provided so that its wide surface is in contact with one inner side surface 38 of the split formwork 34, and its length direction is the vertical direction. (The split core portion 32 is surrounded by the split formwork 34) so as to be vertically arranged.
A plurality of (here, five) openings 39 are formed in the divided formwork 34 at intervals in the length direction (height direction). The opening 39 is a discharge port for molten metal, and communicates the hollow portion 37 of the split form 34 with the outside.

この5個の開口部39のうち、最下部に位置する開口部39のみ開状態(他の4個の開口部39は閉状態)とし、分割型枠34内(空洞部37)への溶湯の供給と該溶湯の分割型枠34内からの排出を連続的に行って溶湯を分割芯部32に溶着させた後、最下部に位置する開口部39を閉状態とし、更に溶湯を分割型枠34内に貯留して凝固させる、耐摩耗層形成工程を行う(耐摩耗層形成工程を各開口部39の開閉により行う)。
このとき、分割芯部32の上側領域に対して溶湯の溶着が悪い場合、例えば、溶着させようとする高さ位置よりも低い位置にある開口部39を閉状態とし、その上の開口部39を開状態として、分割型枠34内(空洞部37)への溶湯の供給と該溶湯の分割型枠34内からの排出を連続的に行うこともできる。
Of these five openings 39, only the opening 39 located at the bottom is in the open state (the other four openings 39 are in the closed state), and the molten metal is melted into the split form 34 (cavity 37). After the molten metal is welded to the split core portion 32 by continuously supplying and discharging the molten metal from the split mold 34, the opening 39 located at the lowermost portion is closed, and the molten metal is further divided into the split mold. A wear-resistant layer forming step of storing and solidifying in 34 is performed (the wear-resistant layer forming step is performed by opening and closing each opening 39).
At this time, if the welding of the molten metal is poor with respect to the upper region of the split core portion 32, for example, the opening 39 at a position lower than the height position to be welded is closed, and the opening 39 above the opening 39 is closed. It is also possible to continuously supply the molten metal into the split mold 34 (cavity 37) and discharge the molten metal from the split mold 34 in the open state.

上記した耐摩耗層形成工程を行った後、図2の中図に示すように、この耐摩耗層形成工程で使用した分割芯部32及び分割型枠34の上に、芯部31の長さ方向に沿って次の耐摩耗層形成工程で使用する分割芯部32及び分割型枠34を載せ、この耐摩耗層形成工程を行う(即ち、最下部に位置する開口部39のみ開状態とし、溶湯の供給と排出を連続的に行った後、最下部に位置する開口部39を閉状態として溶湯を凝固させる)。この長さ方向に隣り合う分割型枠34は、その長さ方向端部に設けられたフランジ部40をボルト等の締結手段で連結することで、位置ずれが防止できる。 After performing the wear-resistant layer forming step described above, as shown in the middle figure of FIG. 2, the length of the core portion 31 is placed on the split core portion 32 and the split formwork 34 used in the wear-resistant layer forming step. The split core portion 32 and the split formwork 34 to be used in the next wear-resistant layer forming step are placed along the direction, and this wear-resistant layer forming step is performed (that is, only the opening 39 located at the bottom is opened. After the molten metal is continuously supplied and discharged, the molten metal is solidified by closing the opening 39 located at the lowermost part). The split formwork 34 adjacent to each other in the length direction can be prevented from being displaced by connecting the flange portions 40 provided at the end portions in the length direction with fastening means such as bolts.

この分割型枠34及び分割芯部32の配置と耐摩耗層形成工程を、図2の右図に示すように、芯部31の長さ方向に渡って複数回繰り返し行う。なお、耐摩耗層形成工程の繰り返し回数は、分割型枠34及び分割芯部32の個数(形成する耐摩耗層36の長さ)により決まる。
上記した2回目以降の耐摩耗層形成工程は、前回行った耐摩耗層形成工程により形成された半凝固部位に発生した引け巣を無くしながら(壊しながら)行う。なお、2回目以降の耐摩耗層形成工程は、前記したように、前回の耐摩耗層形成工程(溶湯の注湯)が終了した後、形成された半凝固部位の上部が軟化状態(更には、上側中央部が溶融状態)にある状態で行うことが、耐摩耗層36を一体的に形成する上で好ましい。
As shown in the right figure of FIG. 2, the arrangement of the divided formwork 34 and the divided core portion 32 and the wear-resistant layer forming step are repeated a plurality of times in the length direction of the core portion 31. The number of repetitions of the wear-resistant layer forming step is determined by the number of the divided formwork 34 and the divided core portion 32 (the length of the wear-resistant layer 36 to be formed).
The second and subsequent wear-resistant layer forming steps described above are performed while eliminating (breaking) the shrinkage cavities generated in the semi-solidified sites formed by the wear-resistant layer forming step performed last time. In the second and subsequent wear-resistant layer forming steps, as described above, after the previous wear-resistant layer forming step (pouring of molten metal) is completed, the upper part of the semi-solidified portion formed is in a softened state (further. It is preferable to carry out the process in a state where the upper central portion is in a molten state) in order to integrally form the wear-resistant layer 36.

最後に押湯を行うことにより、芯部31に耐摩耗層36が形成される。
上記した方法で耐摩耗層36を製造した後、芯部31と耐摩耗層36から型枠33(全ての分割型枠34)を取外す。
ここで、芯部31を構成する各分割芯部32は、耐摩耗層36のみでその長さ方向に一体となっているため、長さ方向に隣り合う分割芯部32同士を、例えば、溶接等により一体的に接合することで、その強度を向上できる。また、製造した耐摩耗層36には、必要に応じて表面加工処理を行うことができる。
上記した耐摩耗層36を、芯部31を介して歯本体(歯本体11と同様)に取付けた後、歯本体の隣り合う耐摩耗層36の間、及び、歯本体の上側側部に、鋳掛肉盛層(鋳掛肉盛層14と同様)を形成することで、受歯として使用できる。
Finally, by pressing the hot water, the wear-resistant layer 36 is formed on the core portion 31.
After the wear-resistant layer 36 is manufactured by the above method, the formwork 33 (all the divided formwork 34) is removed from the core portion 31 and the wear-resistant layer 36.
Here, since each of the divided core portions 32 constituting the core portion 31 is integrated in the length direction only with the wear resistant layer 36, the divided core portions 32 adjacent to each other in the length direction are welded together, for example. The strength can be improved by integrally joining them. Further, the manufactured wear-resistant layer 36 can be surface-treated if necessary.
After the above-mentioned wear-resistant layer 36 is attached to the tooth body (similar to the tooth body 11) via the core portion 31, the wear-resistant layer 36 is attached between the adjacent wear-resistant layers 36 of the tooth body and on the upper side of the tooth body. By forming a tinker overlay layer (similar to the tinker overlay layer 14), it can be used as a receiving tooth.

実験例Experimental example

次に、本発明の作用効果を確認するために行った実験例について説明する。
ここでは、本発明の焼結鉱破砕用歯の製造方法を用いて製造した受歯(実験例)と、従来法である肉盛鋳掛技術を用いて製造した受歯(比較例:図6(A)に相当)を、それぞれ実際の操業で使用し、その摩耗状況を比較検討した。
実験例の結果を図3(A)~(G)、及び、図4(A)、(D)に、比較例の結果を図4(B)、(C)にそれぞれ示す。なお、図4(A)は図3(D)と、図4(D)は図3(E)と、それぞれ同一のグラフである。
Next, an experimental example conducted for confirming the action and effect of the present invention will be described.
Here, a tooth receiving tooth manufactured by using the method for manufacturing a tooth for sinter crushing of the present invention (experimental example) and a tooth receiving tooth manufactured by using a conventional overlay casting technique (comparative example: FIG. 6). A) and) were used in actual operations, and their wear conditions were compared and examined.
The results of the experimental examples are shown in FIGS. 3 (A) to (G) and 4 (A) and (D), and the results of the comparative example are shown in FIGS. 4 (B) and 4 (C), respectively. Note that FIG. 4A is the same graph as FIG. 3D, and FIG. 4D is the same graph as FIG. 3E.

図3(A)~(G)はそれぞれ、耐摩耗層の長さ方向一端からの距離が、90mm、190mm、290mm、390mm、490mm、590mm、690mm位置での耐摩耗層の摩耗状況を示すグラフである。また、図4(B)、(C)は、耐摩耗層の長さ方向一端からの距離が、450mm位置での耐摩耗層の摩耗状況を示すグラフである。
ここで、各グラフの縦軸は、測定基準位置からの耐摩耗層の高さ(mm)を、横軸は、耐摩耗層の幅(0が幅方向中心位置:mm)を、それぞれ示している。
また、各グラフにおいて、一点鎖線は、使用前の耐摩耗層の輪郭形状を、点線は、試験開始から3ヶ月経過時点の耐摩耗層の輪郭形状を、実線は、試験開始から6ヶ月経過時点の耐摩耗層の輪郭形状を、それぞれ示している。
3A to 3G are graphs showing the wear status of the wear-resistant layer at positions of 90 mm, 190 mm, 290 mm, 390 mm, 490 mm, 590 mm, and 690 mm, respectively, from one end in the length direction of the wear-resistant layer. Is. Further, FIGS. 4B and 4C are graphs showing the wear state of the wear-resistant layer at a position where the distance from one end in the length direction of the wear-resistant layer is 450 mm.
Here, the vertical axis of each graph indicates the height (mm) of the wear-resistant layer from the measurement reference position, and the horizontal axis indicates the width of the wear-resistant layer (0 is the center position in the width direction: mm). There is.
In each graph, the alternate long and short dash line is the contour shape of the wear-resistant layer before use, the dotted line is the contour shape of the wear-resistant layer 3 months after the start of the test, and the solid line is the contour shape of the wear-resistant layer 6 months after the start of the test. The contour shape of the wear-resistant layer is shown.

図3(A)~(G)に示すように、実験例では、耐摩耗層の幅方向角部の摩耗、及び、鬼歯が接近する箇所の摩耗が、他の部分よりも大きい傾向が現れているが、耐摩耗層の長さ方向に渡って略均等な摩耗状況が得られた(摩耗による減肉厚みは、最大でも8mm程度、最小は2mm程度)。
一方、比較例では、図4(B)、(C)に示すように、耐摩耗層の幅方向角部の摩耗、及び、鬼歯が接近する箇所の摩耗が、実験例と比較して大きいことが分かる。これは、図4(B)、(C)の摩耗状況を示す位置と略同様の位置である図4(A)、(D)と比較して明らかであることによる(摩耗による減肉厚みは12mmであり、実験例の最大値に対して1.5倍、略同様の位置である図4(D)の減肉厚みに対して3倍、多く摩耗している)。
As shown in FIGS. 3 (A) to 3 (G), in the experimental example, the wear of the corner portion in the width direction of the wear-resistant layer and the wear of the portion where the demon teeth approach are larger than those of the other portions. However, a substantially uniform wear condition was obtained over the length direction of the wear-resistant layer (the thickness of the wall thinning due to wear is about 8 mm at the maximum and about 2 mm at the minimum).
On the other hand, in the comparative example, as shown in FIGS. You can see that. This is because it is clear in comparison with FIGS. 4 (A) and 4 (D), which are positions substantially similar to the positions showing the wear status in FIGS. 4 (B) and 4 (C). It is 12 mm, which is 1.5 times as much as the maximum value of the experimental example, and 3 times as much as the thickness reduction in FIG. 4 (D), which is a substantially similar position).

以上のことから、本発明の焼結鉱破砕用歯の製造方法により、焼結鉱破砕用歯を作業性よく経済的に製造でき、しかも、製造した焼結鉱破砕用歯は、従来よりも耐摩耗性の向上が図れることを確認できた。 From the above, by the method for manufacturing a sinter crushing tooth of the present invention, a sinter crushing tooth can be manufactured economically with good workability, and the manufactured sinter crushing tooth is more than before. It was confirmed that the wear resistance could be improved.

以上、本発明を、実施例を参照して説明してきたが、本発明は何ら上記した実施例に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。例えば、前記したそれぞれの実施例や変形例の一部又は全部を組合せて本発明の焼結鉱破砕用歯の製造方法を構成する場合も本発明の権利範囲に含まれる。
前記実施例においては、本発明の焼結鉱破砕用歯の製造方法を用いて、受歯と鬼歯を製造した場合について説明したが、受歯と鬼歯のいずれか一方のみを製造することもできる(他方は肉盛鋳掛技術を用いた従来法でもよい)。
また、本発明の焼結鉱破砕用歯の製造方法は、前記した構成の受歯と鬼歯に適用することに限定されるものではなく、他の構成の焼結鉱破砕機に用いられる焼結鉱破砕用歯に適用することもできる。
Although the present invention has been described above with reference to Examples, the present invention is not limited to the configuration described in the above-described Examples, but is within the scope of the matters described in the claims. It also includes other examples and modifications that can be considered in. For example, the case where a part or all of each of the above-mentioned Examples and Modifications is combined to form the method for producing a tooth for sinter crushing of the present invention is also included in the scope of rights of the present invention.
In the above embodiment, the case where the receiving tooth and the devil tooth are manufactured by using the method for manufacturing the sintered ore crushing tooth of the present invention has been described, but only one of the receiving tooth and the devil tooth is manufactured. (The other may be a conventional method using overlay casting technology).
Further, the method for producing a tooth for crushing a sintered ore of the present invention is not limited to being applied to a receiving tooth and a devil tooth having the above-described configuration, and is used for a sinter crushing machine having another configuration. It can also be applied to teeth for crushing ore.

そして、前記実施例においては、芯部のみを用いて(歯本体に取付けられていない状態で)耐摩耗層を形成した(耐摩耗層形成工程を行った)場合について説明したが、歯本体に取付けられた状態の芯部に対して、耐摩耗層を形成することもできる。また、芯部(歯本体に取付けられた状態でもよい)は、常温の状態で耐摩耗層を形成しているが、耐摩耗層を形成する前に少なくとも耐摩耗層の形成部分(芯部全体でもよく、更には歯本体が含まれてもよい)を予熱することが好ましい。この予熱温度は、芯部の融点Ctmより低い温度、例えば、(Ctm-20℃)以下程度、更には、(Ctm-50℃)以下程度であり、下限は200℃程度、更には500℃程度である。これにより、耐摩耗層形成工程を行うに際し、芯部の表層部が軟化状態(更には溶融状態)になるまでの時間を短縮できる。 Then, in the above-described embodiment, the case where the wear-resistant layer is formed (the wear-resistant layer forming step is performed) using only the core portion (in a state where the wear-resistant layer is not attached to the tooth body) has been described. A wear-resistant layer can also be formed on the core portion in the attached state. Further, the core portion (which may be attached to the tooth body) forms the wear-resistant layer at room temperature, but at least the wear-resistant layer is formed before the wear-resistant layer is formed (the entire core portion). However, it is preferable to preheat the tooth body). This preheating temperature is lower than the melting point Ctm of the core, for example, (Ctm-20 ° C) or lower, further (Ctm-50 ° C) or lower, and the lower limit is about 200 ° C, further about 500 ° C. Is. As a result, when performing the wear-resistant layer forming step, it is possible to shorten the time until the surface layer portion of the core portion becomes a softened state (further, a molten state).

本発明に係る焼結鉱破砕用歯の製造方法により、焼結鉱破砕用歯(例えば、受歯と鬼歯)を作業性よく経済的に製造でき、しかも、製造した焼結鉱破砕用歯は、従来よりも耐摩耗性の向上が図れる。これによって、焼結機で製造された高温の焼結鉱の破砕に有効に利用できる。 According to the method for manufacturing a sinter crushing tooth according to the present invention, a sinter crushing tooth (for example, a receiving tooth and a demon tooth) can be manufactured economically with good workability, and the manufactured sinter crushing tooth can be manufactured. Can improve wear resistance as compared with the conventional method. As a result, it can be effectively used for crushing high-temperature sinter produced by a sinter.

10:受歯(焼結鉱破砕用歯)、11:歯本体、12:芯部、13:耐摩耗層、14:鋳掛肉盛層、15:空洞部、16:型枠、17:半凝固部位、18:空洞部、19:型枠、20:引け巣、31:芯部、32:分割芯部、33:型枠、34:分割型枠、35:土台、36:耐摩耗層、37:空洞部、38:内側面、39:開口部、40:フランジ部 10: Receiving tooth (sintered ore crushing tooth), 11: Tooth body, 12: Core part, 13: Abrasion resistant layer, 14: Casting overlay layer, 15: Cavity part, 16: Formwork, 17: Semi-solidification Part, 18: Cavity, 19: Formwork, 20: Sinter, 31: Core, 32: Divided core, 33: Formwork, 34: Formwork, 35: Base, 36: Abrasion resistant layer, 37 : Cavity, 38: Inner surface, 39: Opening, 40: Flange

Claims (8)

焼結鉱破砕機に供給される焼結鉱を破砕する焼結鉱破砕用の歯であって、該焼結鉱破砕用の歯が、長尺の歯本体部と、該歯本体部の長さ方向に沿って該歯本体部と一体に構成される芯材と、該芯材を囲うように成形され前記焼結鉱と接触する耐摩耗層からなる破砕部と、を備えた焼結鉱破砕用歯の製造方法において、
a)前記芯材を、その長さ方向が鉛直方向となるように立設配置する工程と、
b)前記芯材の最下部領域を囲んで前記耐摩耗層の形状に対応した空洞部Aを前記芯材との間に形成する型枠Aを配置する工程と、
c)前記空洞部Aへの溶湯供給と該溶湯の前記空洞部Aからの排出を連続的に行い、溶湯を前記芯材と接触させることにより、前記芯材の表層部を軟化状態もしくは溶融状態とし、溶湯を前記芯材に溶着させる工程と、
d)溶湯を前記空洞部Aに充填して部分耐摩耗層を成形する工程と、
e)成形した前記部分耐摩耗層の上側領域を含めて前記芯材の次の対象領域を囲んで前記耐摩耗層の形状に対応した空洞部Bを前記芯材との間に形成する型枠Bを配置する工程と、
f)前記空洞部Bに溶湯を供給して、前記部分耐摩耗層に発生した引け巣を含む欠陥を消失させながら凝固させる工程と、
g)前記空洞部Bへの溶湯の供給と該溶湯の前記空洞部Bからの排出を連続的に行い、溶湯を前記芯材と接触させることにより、前記芯材の表層部を軟化状態もしくは溶融状態とし、溶湯を前記芯材に溶着させる工程と、
h)溶湯を前記空洞部Bに充填して新たな部分耐摩耗層を成形する工程と、を有し、
以後、前記e)から前記h)までの各工程を、前記芯材の長さ方向に渡って複数回行い、前記耐摩耗層を形成することを特徴とする焼結鉱破砕用歯の製造方法。
A tooth for sinter crushing that crushes the sinter supplied to the sinter crusher, and the sinter crushing tooth is a long tooth body portion and the length of the tooth body portion. Sintered ore provided with a core material integrally formed with the tooth body along the sinter direction and a crushed portion formed of a wear-resistant layer formed so as to surround the core material and in contact with the sintered ore. In the method of manufacturing teeth for crushing
a) A step of erection and arranging the core material so that its length direction is the vertical direction.
b) A step of arranging a formwork A that surrounds the lowermost region of the core material and forms a cavity A corresponding to the shape of the wear-resistant layer between the core material and the core material.
c) The surface layer portion of the core material is softened or melted by continuously supplying the molten metal to the cavity A and discharging the molten metal from the cavity A and bringing the molten metal into contact with the core material. The process of welding the molten metal to the core material in a state and
d) The step of filling the cavity A with the molten metal to form a partial wear-resistant layer, and
e) A formwork that surrounds the next target area of the core material including the upper region of the molded partial wear-resistant layer and forms a cavity B corresponding to the shape of the wear-resistant layer between the core material and the hollow portion B. The process of arranging B and
f) A step of supplying molten metal to the cavity B and solidifying it while eliminating defects including shrinkage cavities generated in the partial wear-resistant layer.
g) By continuously supplying the molten metal to the cavity B and discharging the molten metal from the cavity B and bringing the molten metal into contact with the core material, the surface layer portion of the core material is softened or melted. The process of welding the molten metal to the core material in a state and
h) It has a step of filling the cavity B with molten metal to form a new partial wear-resistant layer.
Hereinafter, each step from e) to h) is performed a plurality of times in the length direction of the core material to form the wear-resistant layer, which is a method for producing a tooth for sinter crushing. ..
焼結鉱破砕機に供給される焼結鉱を破砕する焼結鉱破砕用の歯であって、該焼結鉱破砕用の歯が、長尺の歯本体部と、該歯本体部の長さ方向に沿って該歯本体部と一体に構成される芯材と、該芯材を囲うように成形され前記焼結鉱と接触する耐摩耗層からなる破砕部と、を備えた焼結鉱破砕用歯の製造方法において、
前記芯材を、成形する前記焼結鉱破砕用の歯の長さ方向に分割されて、最下部に配置される分割芯材Aと、該分割芯材Aの上側に鉛直方向に載置される複数の分割芯材Bで構成し、
a)前記分割芯材Aを最下部に配置される型枠Aの内側面に接して配置して、前記耐摩耗層の形状に対応した空洞部Aを前記分割芯材Aと前記型枠Aとの間に形成する工程と、
b)前記空洞部Aへの溶湯供給と該溶湯の前記空洞部Aからの排出を連続的に行い、溶湯を前記分割芯材と接触させることにより、前記分割芯材Aの表層部を軟化状態もしくは溶融状態とし、溶湯を前記分割芯材Aに溶着させる工程と、
c)溶湯を前記空洞部Aに充填して部分耐摩耗層を成形する工程と、
d)前記分割芯材Bを囲み前記分割芯材Bが内側面に接する型枠Bを配置して、前記耐摩耗層の形状に対応して前記分割芯材Bと前記型枠Bとの間に形成される空洞部Bを、前記部分耐摩耗層の上側に位置させる工程と、
e)前記空洞部Bに溶湯を供給して、前記部分耐摩耗層に発生した引け巣を含む欠陥を消失させながら凝固させる工程と、
f)前記空洞部Bへの溶湯の供給と該溶湯の前記空洞部Bからの排出を連続的に行い、溶湯を前記分割芯材Bと接触させることにより、前記分割芯材Bの表層部を軟化状態もしくは溶融状態とし、溶湯を前記分割芯材Bに溶着させる工程と、
g)溶湯を前記空洞部Bに充填して新たな部分耐摩耗層を成形する工程と、を有し、
以後、前記d)から前記g)までの各工程を、前記芯材の長さ方向に渡って複数回行い、前記耐摩耗層を形成することを特徴とする焼結鉱破砕用歯の製造方法。
A tooth for sinter crushing that crushes the sinter supplied to the sinter crusher, and the sinter crushing tooth is a long tooth body portion and the length of the tooth body portion. Sintered ore provided with a core material integrally formed with the tooth body along the sinter direction and a crushed portion formed of a wear-resistant layer formed so as to surround the core material and in contact with the sintered ore. In the method of manufacturing teeth for crushing
The core material is divided in the length direction of the teeth for sinter crushing to be molded, and is placed vertically on the divided core material A arranged at the lowermost portion and on the upper side of the divided core material A. It is composed of a plurality of split core materials B,
a) The split core material A is arranged in contact with the inner side surface of the formwork A arranged at the lowermost portion, and the cavity portion A corresponding to the shape of the wear-resistant layer is formed between the split core material A and the formwork A. And the process of forming between
b) The surface layer portion of the divided core material A is formed by continuously supplying the molten metal to the cavity A and discharging the molten metal from the cavity A and bringing the molten metal into contact with the divided core material A. A step of welding the molten metal to the split core material A in a softened or melted state, and
c) The step of filling the cavity A with the molten metal to form a partial wear-resistant layer, and
d) A formwork B is arranged so as to surround the divided core material B and the divided core material B is in contact with the inner side surface, and between the divided core material B and the formwork B corresponding to the shape of the wear-resistant layer. The step of locating the cavity portion B formed in the above portion above the partial wear resistant layer, and
e) A step of supplying molten metal to the cavity B and solidifying it while eliminating defects including shrinkage cavities generated in the partial wear-resistant layer.
f) The surface layer portion of the divided core material B is formed by continuously supplying the molten metal to the cavity B and discharging the molten metal from the cavity B and bringing the molten metal into contact with the divided core material B. A step of welding the molten metal to the split core material B in a softened or melted state, and
g) It has a step of filling the cavity B with molten metal to form a new partial wear-resistant layer.
Hereinafter, each step from d) to g) is performed a plurality of times in the length direction of the core material to form the wear-resistant layer, which is a method for producing a tooth for sinter crushing. ..
請求項2記載の焼結鉱破砕用歯の製造方法において、前記d)から前記g)までの各工程を複数回行って前記耐摩耗層を形成した後、前記分割芯材A、Bで構成される前記芯材、及び、前記芯材に形成された前記耐摩耗層から、前記型枠A、Bを取外し、長さ方向に隣り合う前記分割芯材A、B同士を溶接により一体的に接合することを特徴とする焼結鉱破砕用歯の製造方法。 In the method for producing a tooth for sinter crushing according to claim 2, each step from d) to g) is performed a plurality of times to form the wear-resistant layer, and then the divided core materials A and B are formed. The molds A and B are removed from the core material and the wear-resistant layer formed on the core material, and the divided core materials A and B adjacent to each other in the length direction are integrally welded to each other. A method for producing a tooth for sinter crushing, which comprises joining. 請求項1~3のいずれか1項に記載の焼結鉱破砕用歯の製造方法において、前記型枠A、Bには、溶湯の排出口が前記芯材の長さ方向に渡って複数形成され、該各排出口の開閉により、前記空洞部A、Bへの溶湯の供給と前記空洞部A、Bからの溶湯の排出を連続的に行って前記芯材の表層部を軟化状態もしくは溶融状態とした後、前記部分耐摩耗層を成形することを特徴とする焼結鉱破砕用歯の製造方法。 In the method for producing a tooth for sinter crushing according to any one of claims 1 to 3, a plurality of molten metal discharge ports are formed in the molds A and B in the length direction of the core material. By opening and closing each of the discharge ports, the molten metal is continuously supplied to the cavities A and B and the molten metal is continuously discharged from the cavities A and B to soften or melt the surface layer portion of the core material. A method for producing a tooth for sinter crushing, which comprises forming the partial wear-resistant layer after the state is set. 請求項1~4のいずれか1項に記載の焼結鉱破砕用歯の製造方法において、予め前記芯材の表面に凹凸処理を施すことを特徴とする焼結鉱破砕用歯の製造方法。 The method for producing a tooth for sinter crushing according to any one of claims 1 to 4, wherein the surface of the core material is subjected to unevenness treatment in advance. 請求項5記載の焼結鉱破砕用歯の製造方法において、前記凹凸処理を施した前記芯材の表面に、前記耐摩耗層が溶着し易くなるように溶着促進剤を塗布することを特徴とする焼結鉱破砕用歯の製造方法。 The method for producing a tooth for sinter crushing according to claim 5 is characterized in that a welding accelerator is applied to the surface of the core material that has been subjected to the unevenness treatment so that the wear-resistant layer can be easily welded. A method for manufacturing teeth for sinter crushing. 請求項1~6のいずれか1項に記載の焼結鉱破砕用歯の製造方法において、前記焼結鉱破砕機は、間隔を有して配置された複数の受歯を備えた固定歯と、該固定歯の上方に配置された回転軸に放射状に突設され、該回転軸の回転により隣り合う前記受歯の間に進入する複数の鬼歯を備えた回転歯とを有し、製造する前記焼結鉱破砕用の歯が前記受歯であることを特徴とする焼結鉱破砕用歯の製造方法。 In the method for producing a tooth for crushing a sintered ore according to any one of claims 1 to 6, the sintered ore crusher is a fixed tooth having a plurality of receiving teeth arranged at intervals. , Has and manufactures a rotating tooth provided with a plurality of demon teeth that are radially projected onto a rotating shaft arranged above the fixed tooth and that enter between adjacent receiving teeth due to the rotation of the rotating shaft. A method for manufacturing a tooth for crushing a sintered ore, wherein the tooth for crushing the sintered ore is the receiving tooth. 請求項1~6のいずれか1項に記載の焼結鉱破砕用歯の製造方法において、前記焼結鉱破砕機は、間隔を有して配置された複数の受歯を備えた固定歯と、該固定歯の上方に配置された回転軸に放射状に突設され、該回転軸の回転により隣り合う前記受歯の間に進入する複数の鬼歯を備えた回転歯とを有し、製造する前記焼結鉱破砕用の歯が前記鬼歯であることを特徴とする焼結鉱破砕用歯の製造方法。 In the method for producing a tooth for crushing a sintered ore according to any one of claims 1 to 6, the sintered ore crusher is a fixed tooth having a plurality of receiving teeth arranged at intervals. , Has and manufactures a rotating tooth provided with a plurality of demon teeth that are radially projected onto a rotating shaft arranged above the fixed tooth and that enter between adjacent receiving teeth due to the rotation of the rotating shaft. A method for manufacturing a tooth for crushing a sintered ore, characterized in that the tooth for crushing the sintered ore is the demon tooth.
JP2021546785A 2020-04-01 2021-04-01 Manufacturing method of sinter crushing teeth Active JP7015607B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020066006 2020-04-01
JP2020066006 2020-04-01
PCT/JP2021/014209 WO2021201244A1 (en) 2020-04-01 2021-04-01 Long hardened material production method, sintered ore crushing tooth, and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2021201244A1 JPWO2021201244A1 (en) 2021-10-07
JP7015607B1 true JP7015607B1 (en) 2022-02-03

Family

ID=77927359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021546785A Active JP7015607B1 (en) 2020-04-01 2021-04-01 Manufacturing method of sinter crushing teeth

Country Status (2)

Country Link
JP (1) JP7015607B1 (en)
WO (1) WO2021201244A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114472856B (en) * 2022-04-14 2022-06-28 唐山贵金甲科技有限公司 Roller tooth sleeve of steel slag treatment crushing roller press and production process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537773U (en) * 1976-07-06 1978-01-23
JPS58183245U (en) * 1982-05-31 1983-12-06 新日本製鐵株式会社 Sintered ore crusher
JPS6434567A (en) * 1987-07-30 1989-02-06 Honda Motor Co Ltd Method for cast-in of long sized metal member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919786B2 (en) * 1980-12-25 1984-05-08 株式会社富士工業所 Method of forming cast overlay reclad material on the outer periphery of base material
JPS5838655A (en) * 1981-09-02 1983-03-07 Fuji Kogyosho:Kk Production of rolling roll for bar steel
JPS60180660A (en) * 1984-02-28 1985-09-14 Hitachi Metals Ltd Composite roll for rolling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537773U (en) * 1976-07-06 1978-01-23
JPS58183245U (en) * 1982-05-31 1983-12-06 新日本製鐵株式会社 Sintered ore crusher
JPS6434567A (en) * 1987-07-30 1989-02-06 Honda Motor Co Ltd Method for cast-in of long sized metal member

Also Published As

Publication number Publication date
JPWO2021201244A1 (en) 2021-10-07
WO2021201244A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7015607B1 (en) Manufacturing method of sinter crushing teeth
CN106077507A (en) The casting die of a kind of automobile water-cooling motor casing foundry goods and casting technique
CN106040347B (en) Compression roller covers and its manufacture method
US4250944A (en) Process for performing aluminothermic rail connection weldings as well as multipart casting mold for performing the process
CN101811076B (en) Composite toothed plate and casting method thereof
CN110863142A (en) Processing method of fire grate
CN109897922A (en) A kind of large-scale metallurgical slag ladle
TW201532707A (en) Casting facility
CN104827013B (en) Method for forming golf iron club head by vacuum gravity casting
CN109249012A (en) A kind of production of abnormity liner in dundish loose tool
JP2012218057A (en) Casting core and method of manufacturing the same
CN113337657B (en) Blast furnace iron tapping channel operation and maintenance method and iron tapping channel
CN104801366B (en) The breaking wall of spindle breaker and method be made of Mn13 and rich chromium cast iron
CN109825655A (en) A kind of large-scale metallurgical slag ladle manufacturing method
CN105252202A (en) Repair welding reworking method for crack defects of flange disc casting with rib plate
US8366990B2 (en) Repairable slide shutter plate and/or bottom nozzle brick and methods for the manufacture and repair of a repairable slide shutter plate and/or bottom nozzle brick
KR20020050455A (en) Method for manufacturing bimetallic cast with superior wear resistance and toughness
JPH02178B2 (en)
CN104801369B (en) The gyratory crusher rolled mortar wall and method being made of Mn13 and rich chromium cast iron
US3142114A (en) Method of filling fused or burnt portions and cracks in molds, especially ingot molds, consisting of cast iron or hematite iron
US1562227A (en) Method of welding metals
JP2544720Y2 (en) Tuyere structure of gas injection nozzle for molten metal container
CN107513590A (en) A kind of prefabricated part of embedded swing nozzle
KR20060024163A (en) A mold for casting of compound cast-iron metallic pattern
JPH0650671A (en) Installing method for refractory of tuyere part

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210820

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7015607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150