JPH02178B2 - - Google Patents

Info

Publication number
JPH02178B2
JPH02178B2 JP56017732A JP1773281A JPH02178B2 JP H02178 B2 JPH02178 B2 JP H02178B2 JP 56017732 A JP56017732 A JP 56017732A JP 1773281 A JP1773281 A JP 1773281A JP H02178 B2 JPH02178 B2 JP H02178B2
Authority
JP
Japan
Prior art keywords
cylinder
resistant
holes
core
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56017732A
Other languages
Japanese (ja)
Other versions
JPS57131532A (en
Inventor
Morimichi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP56017732A priority Critical patent/JPS57131532A/en
Publication of JPS57131532A publication Critical patent/JPS57131532A/en
Publication of JPH02178B2 publication Critical patent/JPH02178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/6801Barrels or cylinders characterised by the material or their manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Description

【発明の詳細な説明】 本発明はプラスチツク押出成形機に使用する多
孔シリンダの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a perforated cylinder for use in a plastic extrusion machine.

プラスチツク押出成形機用シリンダは合成樹脂
により摩耗や腐食作用を受ける。例えば、強化プ
ラスチツクの成形ではガラス繊維等の硬質物質に
よつて摩耗作用を受け、難然性プラスチツクの成
形ではハロゲンによつて腐食作用を受ける。従来
から、プラスチツク押出成形機用シリンダには窒
素処理が施されたシリンダが使用されているが、
耐摩耗性や耐食性が悪く、強化プラスチツクや難
燃性プラスチツクの成形には耐えない。そこで、
このようなプラスチツクの成形にはシリンダ内壁
面に耐摩耗性または耐食性合金を被着したバイメ
タル製シリンダが使用されている。
Cylinders for plastic extrusion molding machines are subject to wear and corrosion due to the synthetic resin. For example, when molding reinforced plastics, hard materials such as glass fibers are abrasive, and when molding refractory plastics, halogens cause corrosion. Conventionally, cylinders for plastic extrusion molding machines have been treated with nitrogen.
It has poor wear resistance and corrosion resistance, and cannot withstand molding into reinforced plastics or flame-retardant plastics. Therefore,
A bimetallic cylinder whose inner wall surface is coated with a wear-resistant or corrosion-resistant alloy is used for forming such plastics.

プラスチツク押出成形機用シリンダにはスクリ
ユー孔が1つの単軸シリンダとスクリユー孔が2
つの二軸シリンダとが、実用されている。単軸の
バイメタル製シリンダは、例えば特公昭51−7126
号公報に記載されているように、耐摩耗性または
耐食性合金を遠心鋳造法によつてシリンダ内壁面
に被着させる方法で容易に製造することができ
る。しかし、二軸シリンダでは2つのスクリユー
孔が存在するため遠心鋳造法によつて合金を孔に
内壁面に被着させることができない。このため二
軸シリンダでは種々の工夫がなされて製造されて
いる。
Cylinders for plastic extrusion molding machines include single-shaft cylinders with one screw hole and two screw holes.
Two twin-shaft cylinders are in practical use. For example, a single shaft bimetallic cylinder is manufactured by Japanese Patent Publication No. 51-7126.
As described in the above publication, it can be easily manufactured by applying a wear-resistant or corrosion-resistant alloy to the inner wall surface of the cylinder by centrifugal casting. However, since two screw holes are present in a biaxial cylinder, it is not possible to apply the alloy to the inner wall surface of the hole by centrifugal casting. For this reason, biaxial cylinders are manufactured using various techniques.

第1図は英国特許第1080430号公報に記載され
ているもので、バイメタル製ライナ2を中実の棒
鋼からくりぬかれ平行した穿孔を持つ鋼製の二軸
シリンダ胴1内に挿入した従来の二軸シリンダ例
である。このライナ2は単軸のバイメタル製ライ
ナの1部を切除した2つのライナを断面が8の字
状に合体溶接したものである。しかし、このシリ
ンダは非常に多大な機械加工を要し経済性に劣る
とともにライナ2の外周面が必ずしもシリンダ胴
1の内周面に完全に密接することがないので熱伝
達作用が劣る欠点がある。第2図は特公昭55−
1910号公報に記載されたいもので、単軸のバイメ
タルシリンダの一部をその軸線方向に切除した残
余の切欠きシリンダを相互に溶接手段により接合
して形成された他の従来の二軸シリンダ例であ
る。このシリンダ3は前記のライナ挿入方式のシ
リンダの持つ欠点を補なつている。しかし、2つ
の単軸シリンダの一部を切除する工程と相互に溶
接接合する工程とを必要とするため製造時の経済
的負担が大きい。さらに、溶接接合する際に被着
合金層の溶損や破壊が生じるため合金層とその近
辺では溶接接合ができず、未溶接接合面への樹脂
の浸透や発生ガスの浸透によつてシリンダが腐食
するので構造的にも問題がある。
Figure 1 shows a conventional bimetallic cylinder body 1, which is described in British Patent No. 1080430, in which a bimetallic liner 2 is inserted into a steel biaxial cylinder body 1 which is hollowed out from a solid steel bar and has parallel perforations. This is an example of a shaft cylinder. This liner 2 is made by welding together two liners obtained by cutting out a portion of a uniaxial bimetallic liner so as to have a figure-eight cross section. However, this cylinder requires a very large amount of machining, making it less economical, and the outer peripheral surface of the liner 2 does not necessarily come into close contact with the inner peripheral surface of the cylinder body 1, resulting in poor heat transfer. . Figure 2 is the special public service issued in 1977.
Another example of a conventional two-shaft cylinder, which is described in Publication No. 1910, is formed by cutting out a part of a single-shaft bimetal cylinder in the axial direction and joining the remaining notched cylinders to each other by welding means. It is. This cylinder 3 compensates for the drawbacks of the liner insertion type cylinder described above. However, this requires a step of cutting out a part of the two uniaxial cylinders and a step of welding them together, which imposes a heavy economic burden during manufacturing. Furthermore, when welding and joining, the adhered alloy layer is eroded and destroyed, making it impossible to weld the alloy layer and its surroundings, and the cylinder is damaged due to penetration of the resin and generated gas into the unwelded joint surfaces. There is also a structural problem as it corrodes.

また、耐摩耗性または耐食性の合金層を孔の内
面に形成する方法として、前記の特公昭51−7126
号公報の記載以外に、例えば特公昭43−7528号公
報または特公昭55−16751号公報にはアルミニウ
ム合金母材の内面に耐摩耗材の層を形成する方法
が記載されている。すなわち、表面に耐摩耗性材
料の層を溶射により形成した中子(または芯金)
を鋳型に配置し、母材の溶湯を注入して中子を鋳
造した後、中子部のみを除去し、形成された耐摩
耗材料の層を残しておくことにより母材の孔の内
面に耐摩耗材の層を形成する方法である。この方
法は、所望成分の溶射用耐摩耗合金材料をあらか
じめ調製しておくとともに耐摩耗合金層を溶射に
より中子の表面に形成しておく必要があり工程が
複雑なこと、溶射による形成であるため溶湯状態
から凝固して形成された合金層に比べて強度的に
劣ること、強度が必要なため母材を鋼材質にする
と合金層に比べて容積的に多量の高温の鋼母材溶
湯が注入されるので形成済みの合金層が溶けて所
望する均一な厚みの合金層を得にくいこと、逆に
溶けにくい合金層材質の場合は母材と合金層との
金属的な融合接合が起こりにくいこと等があり本
発明が対象とするシリンダへの適用は困難であ
る。
In addition, as a method for forming a wear-resistant or corrosion-resistant alloy layer on the inner surface of a hole,
In addition to the description in this publication, for example, Japanese Patent Publication No. 43-7528 or Japanese Patent Publication No. 55-16751 describes a method of forming a layer of wear-resistant material on the inner surface of an aluminum alloy base material. In other words, a core (or core metal) with a layer of wear-resistant material formed on its surface by thermal spraying.
is placed in a mold, molten base metal is injected to cast the core, and then only the core is removed, leaving the formed layer of wear-resistant material on the inner surface of the hole in the base metal. This method forms a layer of wear-resistant material. This method requires preparing a wear-resistant alloy material for thermal spraying with the desired components in advance and forming a wear-resistant alloy layer on the surface of the core by thermal spraying, which makes the process complicated. Therefore, it is inferior in strength to an alloy layer formed by solidifying from a molten metal state, and if the base material is made of steel because strength is required, a volumetrically larger amount of high-temperature molten steel base material than the alloy layer is produced. Since the alloy layer is injected, the already formed alloy layer melts, making it difficult to obtain an alloy layer with the desired uniform thickness.On the other hand, if the alloy layer material is difficult to melt, metallic fusion bonding between the base material and the alloy layer is difficult to occur. For these reasons, it is difficult to apply the present invention to the cylinder targeted by the present invention.

本発明は上記従来技術に存する問題点を解消す
るとともに、耐摩耗性または、耐食性合金層を内
面に健全に被着した二軸以上のバイメタル製多孔
シリンダを得ることを目的とする。
It is an object of the present invention to solve the problems existing in the above-mentioned prior art and to obtain a bimetallic porous cylinder having two or more shafts and having a wear-resistant or corrosion-resistant alloy layer firmly adhered to the inner surface.

本発明によつて製造されるバイメタル製多孔シ
リンダの例として二軸シリンダを第3図に示す。
同図にて示すように、本発明により得られるシリ
ンダは単一の鋼製シリンダ胴4の内壁面に耐摩耗
性または耐食性の合金層5を被着したものであ
り、第1図及び第2図にて示す2つの単軸バイメ
タル製ライナまたは2つの単軸のバイメタル製シ
リンダの組合せによつて構成された従来型式のも
のではない。本発明によるシリンダの製造法は以
下のとおりである。
A biaxial cylinder is shown in FIG. 3 as an example of a bimetallic porous cylinder manufactured according to the present invention.
As shown in the figure, the cylinder obtained by the present invention has a wear-resistant or corrosion-resistant alloy layer 5 coated on the inner wall surface of a single steel cylinder body 4. This is not the conventional type shown in the figure, which is constructed by a combination of two uniaxial bimetallic liners or two uniaxial bimetallic cylinders. The method for manufacturing the cylinder according to the present invention is as follows.

第4図は本発明の製造法における合金層5を被
着する直前の状態を示し、同図aはシリンダ中央
部のシリンダ軸に直角の断面を示し、同図bは同
図aにおけるA―A断面を示す図である。第4図
にて示すように、先ず、1対の平行した隣接孔を
有する鋼材からなるシリンダ胴4、1対の孔のそ
れぞれの軸芯と同一軸に設置された鋼棒材の中実
中子6,6a、シリンダの端面に接合された鋼材
の下板7、合金溶湯注入孔8aを中心に有する鋼
材の上板8等からなる構造物を準備する。この構
造物を無酸化雰囲気炉に装入して1000〜1200℃に
加熱する。これにより、孔内面の酸化を防止する
とともに、注入された合金溶湯を孔内面と金属的
に融合付着させる。加熱温度が1000℃未満のとき
は、注入された合金溶湯はすぐに凝固するので、
孔内面と融合付着しない。加熱温度が1200℃を越
えると、孔内面すなわち鋼材成分中の特にFe合
金溶湯への溶け込みが大きくなつて合金成分が大
きく変化し、耐摩耗性または耐食性を低下させる
結果となる。このようにして、シリンダ胴4の1
対の孔と中子6,6aとの間に形成されている断
面が8の字状の空間9にC2〜4%、Ni2.5〜6
%、B0.2〜2.5%、Si2.5%以下、残量Feの耐摩耗
性合金またはNi40〜45%、Co40〜45%、Cr6〜
8%、B3〜4%、Si1〜2%、Mn1%以下の耐食
性合金(上記各元素の%は重量%)の溶湯を合金
溶湯注入孔8aより注入し、空間9を充填する。
次に、注入充填された合金溶湯を凝固させるとと
もに、形成された合金層が冷却の途中で割れない
ようにするため、合金溶湯が充填された構造物の
全体を20〜100℃/Hrの冷却速度で室温まで冷却
する。次に、下板7、上板8、中子6,6aも付
随的に合金層と融合付着しているので、これらを
機械加工により削除し、所望の合金層厚みならび
に孔の寸法が確保されるまで通常の加工方法で孔
加工を施し、第3図に示すバイメタル製二軸シリ
ンダが完成するのである。なお、前記実施例に示
した中実中子6,6aは第5図に示すような中空
中子10,10aまたは第6図に示すような中子
の1部を切欠きその切欠面を合せた中子11,1
1aであつてもよい。
Figure 4 shows the state just before the alloy layer 5 is deposited in the manufacturing method of the present invention, Figure a shows a cross section at right angles to the cylinder axis at the center of the cylinder, and Figure b shows the A-- It is a figure showing A cross section. As shown in FIG. 4, first, a cylinder body 4 is made of steel having a pair of parallel adjacent holes, and a solid cylinder body 4 of a steel bar is installed coaxially with the axis of each of the pair of holes. A structure is prepared which includes the cylinders 6 and 6a, a lower steel plate 7 joined to the end face of the cylinder, and an upper steel plate 8 having a molten alloy injection hole 8a in the center. This structure is placed in a non-oxidizing atmosphere furnace and heated to 1000-1200°C. This prevents oxidation of the inner surface of the hole and causes the injected molten alloy to be metallically fused and adhered to the inner surface of the hole. When the heating temperature is less than 1000℃, the injected molten alloy will solidify immediately, so
It does not fuse with the inner surface of the hole. If the heating temperature exceeds 1200°C, the melting into the inner surface of the hole, that is, into the steel material components, especially the molten Fe alloy, will increase, resulting in a large change in the alloy components, resulting in a decrease in wear resistance or corrosion resistance. In this way, one of the cylinder bodies 4
A space 9 with a figure-8 cross section formed between the pair of holes and the cores 6, 6a contains 2 to 4% C and 2.5 to 6 Ni.
%, B0.2~2.5%, Si2.5% or less, residual amount Fe or Ni40~45%, Co40~45%, Cr6~
A molten metal of a corrosion-resistant alloy containing 8% B, 3 to 4%, Si 1 to 2%, and Mn 1% or less (the % of each element is weight %) is injected from the alloy molten metal injection hole 8a to fill the space 9.
Next, in order to solidify the injected molten alloy and prevent the formed alloy layer from cracking during cooling, the entire structure filled with the molten alloy is cooled at a rate of 20 to 100°C/Hr. Cool to room temperature at high speed. Next, since the lower plate 7, upper plate 8, and cores 6, 6a are incidentally fused and adhered to the alloy layer, these are removed by machining to ensure the desired alloy layer thickness and hole dimensions. Holes are machined using normal machining methods until the holes are completed, and the bimetal biaxial cylinder shown in Fig. 3 is completed. The solid cores 6, 6a shown in the above embodiments are obtained by cutting out a part of the hollow cores 10, 10a as shown in FIG. 5 or in the core as shown in FIG. 6, and aligning the cut surfaces. Tanakako 11,1
It may be 1a.

第7図はスクリユー孔がななめに配置された斜
交型二軸押出機用バイメタル製シリンダの製造途
中過程を示す図であり、同図aはシリンダ中央部
のシリンダ軸に直角な断面を示し、同図bは同図
aのB―B断面を示す。同図に示すように、シリ
ンダ胴12に1対の斜交して隣接する孔をあけ、
それぞれの孔の軸芯と同一軸に中実中子13,1
3aを配置し、前記第4図実施例にて述べた方法
で製作すれば斜交型二軸押出用バイメタル製シリ
ンダが得られる。
FIG. 7 is a diagram showing the manufacturing process of a bimetallic cylinder for an oblique twin-screw extruder in which screw holes are arranged diagonally; FIG. Figure b shows the BB cross section of figure a. As shown in the figure, a pair of diagonally adjacent holes are bored in the cylinder body 12,
A solid core 13,1 is placed on the same axis as the axis of each hole.
3a and manufactured by the method described in the embodiment shown in FIG. 4, a bimetallic cylinder for diagonal twin-screw extrusion can be obtained.

第8図はスクリユー孔が3軸配置された場合の
製造途中過程を示すシリンダ胴中央部の断面図で
ある。同図において、14はシリンダ胴であり、
スクリユー孔部に中子15,15a,15bを配
置して前記第4図実施例と同様の方法で製造す
る。
FIG. 8 is a cross-sectional view of the central part of the cylinder body showing the manufacturing process when the screw holes are arranged in three axes. In the figure, 14 is a cylinder body,
The cores 15, 15a, 15b are placed in the screw holes and manufactured in the same manner as in the embodiment shown in FIG. 4.

このようにして製造されるバイメタル製多孔シ
リンダは、前述した先行技術のもつ問題点を生ず
ることなく、バイメタル製シリンダがもつ顕著な
耐摩耗性あるいは耐食性を発揮し、しかも、製造
工程数が少なく経済的に製造することができるの
で工業的価値は非常に大きなものである。
The bimetallic porous cylinder manufactured in this way does not have the problems of the prior art described above, exhibits the outstanding wear resistance and corrosion resistance of the bimetallic cylinder, and is economical due to the small number of manufacturing steps. It has great industrial value as it can be produced in a number of ways.

なお、本発明においてはシリンダ胴の外周が円
形のものについて述べたが他の形状であつてもよ
く、また、実施例で述べた合金に代る耐摩耗性あ
るいは耐食性合金を用いてもよい。説明した実施
例は本発明の現実の具体例として取上げただけで
あり、本発明は請求範囲の精神を逸脱することな
く他の態様でも実施可能である。
In the present invention, the outer periphery of the cylinder body has been described as circular, but other shapes may be used, and wear-resistant or corrosion-resistant alloys may be used instead of the alloys described in the embodiments. The described embodiments are merely taken as actual embodiments of the invention, and the invention may be embodied in other forms without departing from the spirit of the claims.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のバイメタル製ライナ組立方式の
シリンダ断面図、第2図は従来のバイメタル製シ
リンダ接合方式のシリンダ断面図、第3図は本発
明により製造したバイメタル製シリンダの断面
図、第4図、第5図、第6図はスクリユー孔が平
行に配置された本発明による二軸押出機用バイメ
タル製シリンダの製造途中過程を説明する断面
図、第7図はスクリユー軸がななめに配置された
本発明による斜交型二軸押出機用バイメタル製シ
リンダの製造途中過程を説明する断面図、第8図
はスクリユー孔を3軸有する本発明によるシリン
ダの製造途中過程を示す断面図である。 2:バイメタル製ライナ、3:バイメタル製シ
リンダ、4,12,14:シリンダ胴、5:合金
層、6,6a,10,10a,11,11a,1
3,13a,15,15a,15b:中子、7:
下板、8:上板、9:空間。
FIG. 1 is a cross-sectional view of a cylinder using a conventional bimetallic liner assembly method, FIG. 2 is a cross-sectional view of a cylinder using a conventional bimetallic cylinder joining method, FIG. 3 is a cross-sectional view of a bimetallic cylinder manufactured according to the present invention, and FIG. Figures 5 and 6 are cross-sectional views illustrating the manufacturing process of a bimetallic cylinder for a twin-screw extruder according to the present invention in which the screw holes are arranged in parallel, and Figure 7 is a sectional view in which the screw holes are arranged diagonally. FIG. 8 is a cross-sectional view illustrating an intermediate manufacturing process of a bimetal cylinder for an oblique twin-screw extruder according to the present invention, and FIG. 8 is a cross-sectional view illustrating an intermediate manufacturing process of a cylinder having three screw holes according to the present invention. 2: Bimetal liner, 3: Bimetal cylinder, 4, 12, 14: Cylinder body, 5: Alloy layer, 6, 6a, 10, 10a, 11, 11a, 1
3, 13a, 15, 15a, 15b: Core, 7:
Lower board, 8: Upper board, 9: Space.

Claims (1)

【特許請求の範囲】 1 一体鋼材にてなるシリンダ胴に形成した複数
のスクリユー孔用の孔内部に中子を配置し、無酸
化雰囲気中にて1000〜1200℃に加熱したた状態
で、孔と中子によつてできた空間に耐摩耗性また
は耐食性の合金溶湯を注入し、20〜100℃/Hrの
冷却速度にて常温まで冷却した後、中子部分を除
去することにより、スクリユー孔内壁面に前記合
金溶湯の凝固層を被着形成することを特徴とする
プラスチツク押出成形機用多孔シリンダの製造
法。 2 スクリユー孔を平行に形成することを特徴と
する特許請求の範囲第1項記載のプラスチツク押
出成形機用多孔シリンダの製造法。 3 スクリユー孔を斜交して形成することを特徴
とする特許請求の範囲第1項記載のプラスチツク
押出成形機用多孔シリンダの製造法。 4 スクリユー孔を二軸で形成することを特徴と
する特許請求の範囲第2項または第3項記載のプ
ラスチツク押出成形機用多孔シリンダの製造法。
[Claims] 1. A core is placed inside the holes for a plurality of screw holes formed in a cylinder body made of an integral steel material, and the holes are heated to 1000 to 1200°C in a non-oxidizing atmosphere. A wear-resistant or corrosion-resistant molten alloy is injected into the space created by the screw hole and the core is cooled to room temperature at a cooling rate of 20 to 100°C/Hr, and the core is removed. 1. A method for producing a porous cylinder for a plastic extrusion molding machine, comprising forming a solidified layer of the molten alloy on an inner wall surface. 2. A method for manufacturing a porous cylinder for a plastic extrusion molding machine according to claim 1, characterized in that the screw holes are formed in parallel. 3. A method for manufacturing a porous cylinder for a plastic extrusion molding machine according to claim 1, wherein the screw holes are formed obliquely. 4. A method for manufacturing a porous cylinder for a plastic extrusion molding machine according to claim 2 or 3, characterized in that the screw hole is formed with two screws.
JP56017732A 1981-02-09 1981-02-09 Multiple hole cylinder for plastic extrusion-molding machine Granted JPS57131532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56017732A JPS57131532A (en) 1981-02-09 1981-02-09 Multiple hole cylinder for plastic extrusion-molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56017732A JPS57131532A (en) 1981-02-09 1981-02-09 Multiple hole cylinder for plastic extrusion-molding machine

Publications (2)

Publication Number Publication Date
JPS57131532A JPS57131532A (en) 1982-08-14
JPH02178B2 true JPH02178B2 (en) 1990-01-05

Family

ID=11951918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56017732A Granted JPS57131532A (en) 1981-02-09 1981-02-09 Multiple hole cylinder for plastic extrusion-molding machine

Country Status (1)

Country Link
JP (1) JPS57131532A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181208A (en) * 1984-02-28 1985-09-14 Hitachi Metals Ltd Manufacture of multi-shaft cylinder for plastic molding machine
JPS60203354A (en) * 1984-03-27 1985-10-14 Toshiba Mach Co Ltd Production of corrosion- and wear-resistant member for plastic or ceramic molding machine
JP2540510B2 (en) * 1986-02-20 1996-10-02 東芝機械株式会社 Abrasion resistant member and manufacturing method thereof
JPH0669711B2 (en) * 1986-08-11 1994-09-07 大同特殊鋼株式会社 Coating cylinder-
CN108790092A (en) * 2018-05-15 2018-11-13 河北工业职业技术学院 The preparation method of wall wear-resistant coating in a kind of twin screw extruder barrel body
CN108819162A (en) * 2018-05-18 2018-11-16 河北工业职业技术学院 The preparation method of wall wear-resistant coating in a kind of twin screw extruder barrel body

Also Published As

Publication number Publication date
JPS57131532A (en) 1982-08-14

Similar Documents

Publication Publication Date Title
US5079974A (en) Sprayed metal dies
US5737838A (en) Method of making a piston unit for an internal combustion engine
KR100240855B1 (en) Mold for continuous casting and method of making the mold
JPH02178B2 (en)
US4693293A (en) Method of casting a machine part by fusing metal layers on both sides of a separting plate
JP3053042B2 (en) Manufacturing method of molding die having heating / cooling passage hole
JPS60181208A (en) Manufacture of multi-shaft cylinder for plastic molding machine
JPH023662B2 (en)
JPH023661B2 (en)
WO2022009369A1 (en) Moulding tool with heat sink
JPS60130460A (en) Production of heat insulating composite pipe
JP2000042717A (en) Die with built-in pipe for adjusting temperature
JP3293420B2 (en) Engine cylinder block and method of manufacturing the same
JPS59220272A (en) Embedding method by casting
JPH06198388A (en) Molding method using special core for molding
JPH09220658A (en) Manufacture of manifold
JPH05329844A (en) Mold
SU565775A1 (en) Method of manufacturing bimetal cutting tools
JP4475427B2 (en) Plunger sleeve and manufacturing method thereof
JPH06147002A (en) Cylinder block structure
JP2734074B2 (en) Leachable core for resin molding
JPH01138049A (en) Mold for centrifugal casting
JPH06269925A (en) Production of composite material having excellent wear resistance and toughness and composite material having excellent wear resistance and toughness
JP2000271729A (en) Composite roll for rolling
JPH03264607A (en) Manufacture of complex cylinder and screw for injection and extrusion compacting machine