JP7015339B2 - Ultraviolet light emitting element - Google Patents

Ultraviolet light emitting element Download PDF

Info

Publication number
JP7015339B2
JP7015339B2 JP2020053030A JP2020053030A JP7015339B2 JP 7015339 B2 JP7015339 B2 JP 7015339B2 JP 2020053030 A JP2020053030 A JP 2020053030A JP 2020053030 A JP2020053030 A JP 2020053030A JP 7015339 B2 JP7015339 B2 JP 7015339B2
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor layer
ultraviolet light
nitride semiconductor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020053030A
Other languages
Japanese (ja)
Other versions
JP2021153121A (en
Inventor
俊介 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=77886713&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7015339(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2020053030A priority Critical patent/JP7015339B2/en
Publication of JP2021153121A publication Critical patent/JP2021153121A/en
Application granted granted Critical
Publication of JP7015339B2 publication Critical patent/JP7015339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は紫外線発光素子に関する。 The present invention relates to an ultraviolet light emitting device.

近年、III―V族窒化物半導体からなる紫外線発光素子に多くの関心が集まっている。これまで、III―V族窒化物半導体からなる発光素子におけるn型窒化物半導体層とn型電極の間の電流集中を緩和する方法が種々検討されてきた(例えば、特許文献1参照)。 In recent years, much interest has been focused on ultraviolet light emitting devices made of III-V nitride semiconductors. So far, various methods for relaxing the current concentration between the n-type nitride semiconductor layer and the n-type electrode in a light emitting device made of a III-V nitride semiconductor have been studied (see, for example, Patent Document 1).

特開2008-078525号公報Japanese Unexamined Patent Publication No. 2008-07825

図3(a)は、第1の従来例に係る紫外線発光素子の構成を示す断面模式図である。図3(b)は、図3(a)に示す紫外線発光素子における電流集中を視覚的に示す図である。図4(a)は、第2の従来例に係る紫外線発光素子の構成を示す断面模式図である。図4(b)は、図4(a)に示す紫外線発光素子における電流集中を視覚的に示す図である。図3(a)及び(b)と、図4(a)及び(b)とにおいて、100は基板、200は第1導電型窒化物半導体層、210は第1領域、220は第2領域、300は発光層、400は第2導電型窒化物半導体層、500はn型電極、510は第1電極要素、520はオーミック電極、600はp型電極である。また、矢印は電流の経路を示している。 FIG. 3A is a schematic cross-sectional view showing the configuration of the ultraviolet light emitting element according to the first conventional example. FIG. 3B is a diagram visually showing the current concentration in the ultraviolet light emitting device shown in FIG. 3A. FIG. 4A is a schematic cross-sectional view showing the configuration of the ultraviolet light emitting element according to the second conventional example. FIG. 4B is a diagram visually showing the current concentration in the ultraviolet light emitting device shown in FIG. 4A. In FIGS. 3A and 3B and FIGS. 4A and 4B, 100 is a substrate, 200 is a first conductive nitride semiconductor layer, 210 is a first region, and 220 is a second region. 300 is a light emitting layer, 400 is a second conductive nitride semiconductor layer, 500 is an n-type electrode, 510 is a first electrode element, 520 is an ohmic electrode, and 600 is a p-type electrode. In addition, the arrow indicates the path of the electric current.

図3(a)に示すようなメサ構造を有する紫外線発光素子では、n型窒化物半導体層200のシート抵抗が大きいために、n型電極500の端部(図3(a)中の点線円部)における電流集中が著しく、発光分布の不均一や熱などの影響による劣化が生じる(図3(b)のn型窒化物半導体層200とn型電極500との間の半透明のグラデーション領域が、当該電流集中の様子を視覚的に表現している)。
特許文献1では、図4(a)に示すように、n型窒化物半導体層200との接触抵抗が高い接点電極510をオーミック電極520を取り囲むように形成して、オーミック電極とn型窒化物半導体層200とのコンタクト抵抗と、接点電極510とn型窒化物半導体層200とのコンタクト抵抗とのバランスにより、電流集中を回避する方法が提案されている。
In the ultraviolet light emitting device having a mesa structure as shown in FIG. 3A, the sheet resistance of the n-type nitride semiconductor layer 200 is large, so that the end portion of the n-type electrode 500 (dotted circle in FIG. 3A). (Part), the current concentration is remarkable, and deterioration occurs due to the influence of uneven emission distribution and heat (semi-transparent gradation region between the n-type nitride semiconductor layer 200 and the n-type electrode 500 in FIG. 3B). However, the state of the current concentration is visually expressed).
In Patent Document 1, as shown in FIG. 4A, a contact electrode 510 having a high contact resistance with the n-type nitride semiconductor layer 200 is formed so as to surround the ohmic electrode 520, and the ohmic electrode and the n-type nitride are formed. A method of avoiding current concentration has been proposed by balancing the contact resistance with the semiconductor layer 200 and the contact resistance between the contact electrode 510 and the n-type nitride semiconductor layer 200.

しかしこの構造では、電流集中箇所が接点電極510の端部とオーミック電極520の端部の2か所(図4(a)中の点線円部)に分散されたにすぎず、結局この2か所で電流集中が生じる(図4(b)のn型窒化物半導体層200とn型電極500との間の半透明のグラデーション領域が、当該2箇所の電流集中の様子を視覚的に表現している)。
したがって、従来技術では紫外線発光素子におけるn型窒化物半導体層200とn型電極500との間の電流集中が避けられなかった。
本発明は、このような事情に鑑みてなされたものであって、電流集中が緩和された紫外線発光素子を提供することを課題とする。
However, in this structure, the current concentration points are only dispersed in two places (dotted circles in FIG. 4A), one at the end of the contact electrode 510 and the other at the end of the ohmic electrode 520. Where current concentration occurs (the translucent gradation region between the n-type nitride semiconductor layer 200 and the n-type electrode 500 in FIG. 4B visually expresses the state of current concentration at these two locations. ing).
Therefore, in the prior art, current concentration between the n-type nitride semiconductor layer 200 and the n-type electrode 500 in the ultraviolet light emitting device cannot be avoided.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an ultraviolet light emitting device in which current concentration is relaxed.

本発明者らは上記課題を解決するために鋭意検討した結果、本発明を完成させた。
本発明の第1の態様においては、基板と、第1導電型窒化物半導体層の第1領域と、第1導電型窒化物半導体層の第2領域と、発光層と、第2導電型窒化物半導体層と、を一方向に向けてこの順で備え、前記第1導電型窒化物半導体層の第2領域と、前記発光層と、前記第2導電型窒化物半導体層はメサ構造であり、前記第1導電型窒化物半導体層の前記第1領域の表面の一部に、第1電極を有し、前記第2導電型窒化物半導体層の表面の一部に第2電極を有し、前記第1電極は、前記メサ構造に近づくにつれて膜厚が連続的又は段階的、若しくは連続的及び段階的に小さくなる膜厚変化部を含む第1電極要素を有する紫外線発光素子を提供する。
なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
The present inventors have completed the present invention as a result of diligent studies to solve the above problems.
In the first aspect of the present invention, the substrate, the first region of the first conductive nitride semiconductor layer, the second region of the first conductive nitride semiconductor layer, the light emitting layer, and the second conductive nitride are used. The material semiconductor layer is provided in this order in one direction, and the second region of the first conductive type nitride semiconductor layer, the light emitting layer, and the second conductive type nitride semiconductor layer have a mesa structure. The first electrode is provided on a part of the surface of the first region of the first conductive nitride semiconductor layer, and the second electrode is provided on a part of the surface of the second conductive nitride semiconductor layer. The first electrode provides an ultraviolet light emitting element having a first electrode element including a film thickness changing portion in which the film thickness becomes continuously or stepwise, or continuously and stepwise as the film approaches the mesa structure.
The outline of the above invention does not list all the features of the present invention. A subcombination of these feature groups can also be an invention.

本発明によれば、電流集中が緩和された紫外線発光素子を提供することが可能になる。 According to the present invention, it becomes possible to provide an ultraviolet light emitting device in which current concentration is relaxed.

図1(a)及び(b)は、本発明の第1の実施形態に係る紫外線発光素子の構成例を示す断面模式図である。1 (a) and 1 (b) are schematic cross-sectional views showing a configuration example of an ultraviolet light emitting device according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る紫外線発光素子の構成例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing a configuration example of an ultraviolet light emitting device according to a second embodiment of the present invention. 図3(a)及び(b)は、第1の従来例に係る紫外線発光素子の構成を示す断面模式図である。3A and 3B are schematic cross-sectional views showing the configuration of the ultraviolet light emitting element according to the first conventional example. 図4(a)及び(b)は、第2の従来例に係る紫外線発光素子の構成を示す断面模式図である。4 (a) and 4 (b) are schematic cross-sectional views showing the configuration of the ultraviolet light emitting element according to the second conventional example.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention to which the claims are made. Also, not all combinations of features described in the embodiments are essential to the means of solving the invention.
Further, in the description of the following drawings, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness of each device and each member, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, it goes without saying that parts having different dimensional relationships and ratios are included between the drawings.

(紫外線発光素子)
本実施形態に係る紫外線発光素子は、基板と、第1導電型窒化物半導体層の第1領域と、第1導電型窒化物半導体層の第2領域と、発光層と、第2導電型窒化物半導体層と、を一方向(例えば、紫外線発光素子の厚さ方向)に向けてこの順で備える。第1導電型窒化物半導体層の第2領域と、発光層と、第2導電型窒化物半導体層はメサ構造である。第1導電型半導体層の第1領域の表面の一部に、第1電極を有する。第1電極は、メサ構造に近づくにつれて膜厚が連続的又は段階的、若しくは連続的及び段階的(以下、連続的及び/又は段階的)に小さくなる膜厚変化部を含む第1電極要素を有する。
本実施形態に係る紫外線発光素子は、第1電極が、メサ構造に近づくにつれて膜厚が連続的及び/又は段階的に小さくなる膜厚変化部を含む第1電極要素を有することにより、第1電極と第2電極との間の電流経路における電流集中を抑制し、均一な発光分布及び紫外線発光素子の長寿命化という効果を奏する。
次に、本実施形態に係る紫外線発光素子の各構成要素について説明する。
(Ultraviolet light emitting element)
The ultraviolet light emitting device according to the present embodiment includes a substrate, a first region of the first conductive nitride semiconductor layer, a second region of the first conductive nitride semiconductor layer, a light emitting layer, and a second conductive type nitride. The semiconductor layer is provided in this order in one direction (for example, in the thickness direction of the ultraviolet light emitting device). The second region of the first conductive nitride semiconductor layer, the light emitting layer, and the second conductive nitride semiconductor layer have a mesa structure. A first electrode is provided on a part of the surface of the first region of the first conductive semiconductor layer. The first electrode is a first electrode element including a film thickness change portion in which the film thickness becomes continuously or stepwise, or continuously and stepwise (hereinafter, continuous and / or stepwise) as it approaches the mesa structure. Have.
The ultraviolet light emitting element according to the present embodiment has a first electrode element including a film thickness changing portion in which the film thickness continuously and / or gradually decreases as the first electrode approaches the mesa structure. It suppresses current concentration in the current path between the electrode and the second electrode, and has the effects of uniform emission distribution and extension of the life of the ultraviolet light emitting element.
Next, each component of the ultraviolet light emitting element according to this embodiment will be described.

(基板)
本実施形態に係る紫外線発光素子における基板は、その上に第1導電型窒化物半導体を有することができるものであれば特に制限されない。
基板の具体的な材料は特に制限されないが、窒化アルミニウム(AlN)単結晶基板やサファイア基板等が挙げられる。紫外線発光素子では発光層との格子定数の観点からAlNを好ましい材料として挙げることができる。
(substrate)
The substrate in the ultraviolet light emitting device according to the present embodiment is not particularly limited as long as it can have a first conductive nitride semiconductor on the substrate.
The specific material of the substrate is not particularly limited, and examples thereof include an aluminum nitride (AlN) single crystal substrate and a sapphire substrate. In the ultraviolet light emitting device, AlN can be mentioned as a preferable material from the viewpoint of the lattice constant with the light emitting layer.

(第1導電型窒化物半導体層)
本実施形態に係る紫外線発光素子における第1導電型窒化物半導体層は、第1領域と第2領域を備える。第1領域はメサ構造の一部となる領域であり、第2領域はそれ以外の領域である。
第1導電型窒化物半導体層の材料としては、AlGaNやAlInNが挙げられるがこの限りではない。紫外線発光素子では結晶性の観点からAlGaNを好ましい材料として挙げることができる。
本実施形態において、「第1導電型」及び「第2導電型」は、一方が負の電荷を持つ自由電子がキャリアとして移動して電流が生じるn型の半導体層の特性を意味し、他方が正の電荷を持つ正孔が移動して電流が生じるp型の半導体層の特性を意味する。
第1導電型窒化物半導体層は、結晶性の観点からn型であることが好ましい。
第1領域の膜厚は特に制限されないが、シート抵抗の観点から0.1μm以上10μm以下が好ましく、0.3μm以上5μm以下がより好ましく、0.5μm以上3μm以下がより更に好ましい。
第2領域の膜厚は特に制限されないが、プロセスの容易性から0.1μm以上5μm以下が好ましく、0.2μm以上3μmいかがより好ましく、0.3μm以上1μm以下がより更に好ましい。
(First Conductive Nitride Semiconductor Layer)
The first conductive nitride semiconductor layer in the ultraviolet light emitting device according to the present embodiment includes a first region and a second region. The first region is a region that becomes a part of the mesa structure, and the second region is a region other than that.
Examples of the material of the first conductive type nitride semiconductor layer include AlGaN and AlInN, but the present invention is not limited to this. In the ultraviolet light emitting device, AlGaN can be mentioned as a preferable material from the viewpoint of crystallinity.
In the present embodiment, the "first conductive type" and the "second conductive type" mean the characteristics of an n-type semiconductor layer in which free electrons having a negative charge on one side move as carriers to generate an electric current, and the other side. Means the characteristics of a p-type semiconductor layer in which positively charged holes move to generate an electric current.
The first conductive type nitride semiconductor layer is preferably n-type from the viewpoint of crystallinity.
The film thickness of the first region is not particularly limited, but is preferably 0.1 μm or more and 10 μm or less, more preferably 0.3 μm or more and 5 μm or less, and even more preferably 0.5 μm or more and 3 μm or less from the viewpoint of sheet resistance.
The film thickness of the second region is not particularly limited, but is preferably 0.1 μm or more and 5 μm or less, more preferably 0.2 μm or more and 3 μm, and even more preferably 0.3 μm or more and 1 μm or less from the viewpoint of process easiness.

(発光層)
本実施形態に係る紫外線発光素子における発光層は、紫外線を発光する層である。発光層の材料としては、AlGaNやAlInNが挙げられるがこの限りではない。また、発光層の構造としては特に制限されないが、多重量子井戸(Multi Quantum Well)構造等が挙げられる。例えば、組成比が異なる(バンドギャップが異なる)AlGaN層を多数積層した多重量子井戸構造が採用可能である。
(Light emitting layer)
The light emitting layer in the ultraviolet light emitting device according to the present embodiment is a layer that emits ultraviolet rays. Examples of the material of the light emitting layer include, but are not limited to, AlGaN and AlInN. The structure of the light emitting layer is not particularly limited, and examples thereof include a multiple quantum well structure. For example, a multiple quantum well structure in which a large number of AlGaN layers having different composition ratios (different band gaps) are laminated can be adopted.

(第2導電型窒化物半導体層)
本実施形態に係る紫外線発光素子における第2導電型窒化物半導体層は、発光層上に形成される。
第2導電型窒化物半導体層の材料としては、GaNやAlGaNが挙げられるがこの限りではない。第2導電型窒化物半導体層は結晶性の観点からp型であることが好ましい。このとき第2導電型窒化物半導体上に形成される電極とのオーミック電極形成の観点からGaNを好ましい材料として挙げることができる。
(Second Conductive Nitride Semiconductor Layer)
The second conductive nitride semiconductor layer in the ultraviolet light emitting device according to the present embodiment is formed on the light emitting layer.
Examples of the material of the second conductive type nitride semiconductor layer include GaN and AlGaN, but the present invention is not limited to this. The second conductive type nitride semiconductor layer is preferably p-type from the viewpoint of crystallinity. At this time, GaN can be mentioned as a preferable material from the viewpoint of forming an ohmic electrode with the electrode formed on the second conductive type nitride semiconductor.

(メサ構造)
本実施形態に係る紫外線発光素子は、第1導電型窒化物半導体層の第2領域と、発光層と、第2導電型窒化物半導体層を含んだメサ構造を有する。メサ構造とは、特定の平面(本実施形態においては第1導電型窒化物半導体層の第1領域の平面)よりも高いところに頂部(本実施形態においては、窒化物半導体積層部における第2導電型窒化物半導体層が最頂層の場合は第2導電型窒化物半導体層の上面)を有し、頂部と特定の平面の間に斜面(斜面の角度は問わない)を有する形状を意味する。
(Mesa structure)
The ultraviolet light emitting device according to the present embodiment has a mesa structure including a second region of the first conductive type nitride semiconductor layer, a light emitting layer, and a second conductive type nitride semiconductor layer. The mesa structure is a top portion (in this embodiment, a second in the nitride semiconductor laminated portion) higher than a specific plane (in the present embodiment, the plane of the first region of the first conductive type nitride semiconductor layer). When the conductive nitride semiconductor layer is the top layer, it means a shape having an upper surface of the second conductive nitride semiconductor layer) and having a slope (regardless of the angle of the slope) between the top and a specific plane. ..

(第1電極)
本実施形態に係る紫外線発光素子は、第1導電型半導体層の第1領域の表面の一部に、第1電極を有する。第1電極は、メサ構造のある方向に近づくにつれて膜厚が連続的及び/又は段階的に小さくなる膜厚変化部を含む第1電極要素を有する。
「膜厚が連続的に小さくなる」とは、断面視したときに第1電極の底部側から垂直方向の厚みが連続的に小さくなることを意味し、形状としては斜面構造となることを意味する。「膜厚が段階的に小さくなる」とは、第1電極の底部からの厚みが段階的に小さくなることを意味し、形状としては階段構造となる。
第1導電型窒化物半導体層の第2領域の平面に対する膜厚変化部の上面の傾斜角度は特に制限されないが、電流集中の観点から1度以上45度以下であることが好ましく、2度以上30度以下であることがより好ましく、3度以上10度以下であることがさらに好ましい。また、膜厚変化部の作製方法は特に制限されないが、例えば金属蒸着時に入射角を制御する方法等が挙げられる。
(1st electrode)
The ultraviolet light emitting device according to the present embodiment has a first electrode on a part of the surface of the first region of the first conductive semiconductor layer. The first electrode has a first electrode element including a film thickness change portion in which the film thickness decreases continuously and / or gradually as the mesa structure approaches a certain direction.
"The film thickness is continuously reduced" means that the thickness in the vertical direction from the bottom side of the first electrode is continuously reduced when viewed in cross section, and the shape is a slope structure. do. "The film thickness is gradually reduced" means that the thickness from the bottom of the first electrode is gradually reduced, and the shape is a staircase structure.
The inclination angle of the upper surface of the film thickness changing portion with respect to the plane of the second region of the first conductive type nitride semiconductor layer is not particularly limited, but is preferably 1 degree or more and 45 degrees or less from the viewpoint of current concentration, and is preferably 2 degrees or more. It is more preferably 30 degrees or less, and further preferably 3 degrees or more and 10 degrees or less. Further, the method of manufacturing the film thickness changing portion is not particularly limited, and examples thereof include a method of controlling the incident angle at the time of metal vapor deposition.

第1電極要素は膜厚変化部を備えるものであれば特に制限されない。第1電極要素を構成する成分(すなわち、構成成分)としては、アルミニウム、ニッケルなどが挙げられる。結晶性の観点から第1導電型窒化物半導体層はn型であることが望ましく、n型窒化物半導体層とのオーミック電極形成の観点から、アルミニウムが好ましい成分となり得る。
第1電極要素の膜厚変化部以外の膜厚については、特に制限されないが、接触抵抗の観点から0.05μm以上3μm以下であることが好ましく、0.1μm以上1μm以下であることがより好ましく、0.2μm以上0.5μm以下であることがさらに好ましい。
The first electrode element is not particularly limited as long as it includes a film thickness changing portion. Examples of the component (that is, the component) constituting the first electrode element include aluminum and nickel. From the viewpoint of crystallinity, the first conductive type nitride semiconductor layer is preferably n-type, and from the viewpoint of forming an ohmic electrode with the n-type nitride semiconductor layer, aluminum may be a preferable component.
The film thickness other than the film thickness change portion of the first electrode element is not particularly limited, but is preferably 0.05 μm or more and 3 μm or less, and more preferably 0.1 μm or more and 1 μm or less from the viewpoint of contact resistance. , 0.2 μm or more and 0.5 μm or less is more preferable.

本実施形態に係る紫外線発光素子は、膜厚変化部の一部と第1導電型窒化物半導体層の第1領域の間に、第1電極要素の構成成分の酸化物を含む第1の界面部を更に備えることが好ましい。第1の界面部を更に備えることにより、第1電極と第1導電型窒化物半導体層の接触抵抗を大きくすることができ、電流集中を緩和させることができる。特に制限されないが、第1の界面部の膜厚は1nm以上100nm以下であることが好ましく、10nm以上80nm以下であることがより好ましく、20nm以上60nm以下であることが更に好ましい。第1の界面部の構成成分として、酸化アルミニウム等が挙げられる。 The ultraviolet light emitting device according to the present embodiment has a first interface containing an oxide of a constituent component of the first electrode element between a part of the film thickness changing portion and the first region of the first conductive type nitride semiconductor layer. It is preferable to further provide a portion. By further providing the first interface portion, the contact resistance between the first electrode and the first conductive nitride semiconductor layer can be increased, and the current concentration can be relaxed. Although not particularly limited, the film thickness of the first interface portion is preferably 1 nm or more and 100 nm or less, more preferably 10 nm or more and 80 nm or less, and further preferably 20 nm or more and 60 nm or less. Examples of the constituent component of the first interface portion include aluminum oxide and the like.

(第2電極要素、第3電極要素)
第1電極は、第1電極要素上に、第2電極要素と第3電極要素を更に備えていても良い。第2電極要素と第3電極要素を更に備える場合、第1電極要素の膜厚変化部の一部と第2電極要素との界面に第2の界面部を有することが好ましい。第2の界面部の構成成分は特に制限されないが、密着性の観点からチタンであることが好ましい。特に制限されないが、第2界面部の膜厚は、1nm以上100nm以下であることが好ましく、10nm以上80nm以下であることがより好ましく、20nm以上60nm以下であることが更に好ましい。また、密着性の観点から第2の界面部は第3電極要素の構成成分の少なくとも1つを含むことも好ましい。
第2電極要素の構成成分は特に制限されないが、アルミニウム等が挙げられる。密着性と製造コストの観点から、ニッケルが好ましい。
第3電極要素の構成成分は特に制限されないが、アルミニウム等が挙げられる。密着性と酸化防止の観点から金とチタンの合金が好ましい。
(2nd electrode element, 3rd electrode element)
The first electrode may further include a second electrode element and a third electrode element on the first electrode element. When the second electrode element and the third electrode element are further provided, it is preferable to have a second interface portion at the interface between a part of the film thickness changing portion of the first electrode element and the second electrode element. The constituent component of the second interface portion is not particularly limited, but titanium is preferable from the viewpoint of adhesion. Although not particularly limited, the film thickness of the second interface portion is preferably 1 nm or more and 100 nm or less, more preferably 10 nm or more and 80 nm or less, and further preferably 20 nm or more and 60 nm or less. Further, from the viewpoint of adhesion, it is also preferable that the second interface portion contains at least one of the constituent components of the third electrode element.
The constituent components of the second electrode element are not particularly limited, and examples thereof include aluminum and the like. Nickel is preferred from the standpoint of adhesion and manufacturing cost.
The constituent components of the third electrode element are not particularly limited, and examples thereof include aluminum and the like. An alloy of gold and titanium is preferable from the viewpoint of adhesion and antioxidant.

(絶縁層)
本実施形態に係る紫外線発光素子は、信頼性の観点から表面の少なくとも一部が絶縁層で覆われていても良い。絶縁層の材料としては特に制限されないが、酸化ケイ素や窒化ケイ素などが挙げられる。
(Insulation layer)
From the viewpoint of reliability, at least a part of the surface of the ultraviolet light emitting device according to the present embodiment may be covered with an insulating layer. The material of the insulating layer is not particularly limited, and examples thereof include silicon oxide and silicon nitride.

(第1の実施形態)
図1(a)は、本発明の第1の実施形態に係る紫外線発光素子の構成例を示す断面模式図である。図1(b)は、図1(a)に示す紫外線発光素子における電流集中を視覚的に示す図である。図1(a)中、10は基板、20は第1導電型窒化物半導体層、21は第1領域、22は第2領域、30は発光層、40は第2導電型窒化物半導体層、50は第1電極、51は第1電極要素、51aは膜厚変化部、52bは膜厚変化部以外、52は第2電極要素、53は第3電極要素、60は第2電極、71は第1絶縁層、72は第2絶縁層である。また、矢印は電流の経路を示しており、太さは電流の密度を示している(以下、同一の符号については説明を省略する)。また、図1(b)において、第1導電型窒化物半導体層20と第1電極50との間の半透明グラデーションが、電流密度を視覚的に示している。
第1の実施形態に係る紫外線発光素子は、膜厚変化部51aを有しているため、図3(a)や図4(a)に示した従来技術と比較して、第1電極50と第1導電型窒化物半導体層20の界面における電流集中が緩和される。
(First Embodiment)
FIG. 1A is a schematic cross-sectional view showing a configuration example of an ultraviolet light emitting device according to the first embodiment of the present invention. FIG. 1B is a diagram visually showing the current concentration in the ultraviolet light emitting device shown in FIG. 1A. In FIG. 1A, 10 is a substrate, 20 is a first conductive nitride semiconductor layer, 21 is a first region, 22 is a second region, 30 is a light emitting layer, and 40 is a second conductive nitride semiconductor layer. 50 is the first electrode, 51 is the first electrode element, 51a is the film thickness changing portion, 52b is other than the film thickness changing portion, 52 is the second electrode element, 53 is the third electrode element, 60 is the second electrode, and 71 is. The first insulating layer and 72 are the second insulating layer. In addition, the arrow indicates the path of the current, and the thickness indicates the density of the current (hereinafter, the description of the same reference numeral is omitted). Further, in FIG. 1 (b), the translucent gradation between the first conductive type nitride semiconductor layer 20 and the first electrode 50 visually indicates the current density.
Since the ultraviolet light emitting element according to the first embodiment has the film thickness changing portion 51a, the first electrode 50 and the first electrode 50 are compared with the prior art shown in FIGS. 3A and 4A. The current concentration at the interface of the first conductive type nitride semiconductor layer 20 is relaxed.

従来技術では、図3(b)に示したように、n型電極500とn型窒化物半導体層200との接触抵抗が均一な場合は、n型電極500とn型窒化物半導体層200との界面の中でメサ構造に近い領域に電流集中が生じていた。または、図4(b)に示したように、特定の領域の接触抵抗が特異的に均一な場合は、その領域に電流集中が生じていた。
しかし、第1の実施形態に係る紫外線発光素子は、第1電極50の第1電極要素51がメサ構造に近づくにつれて膜厚が連続的及び/又は段階的に小さくなる膜厚変化部51aを有する。メサ構造に近づくにつれて、膜厚変化部51a内の電気抵抗が大きくなっていく。これにより、従来技術と比べて、バランス良く第1導電型窒化物半導体層20に電流が流れ、電流集中が緩和される。
In the prior art, as shown in FIG. 3B, when the contact resistance between the n-type electrode 500 and the n-type nitride semiconductor layer 200 is uniform, the n-type electrode 500 and the n-type nitride semiconductor layer 200 are used. Current concentration occurred in the region near the mesa structure in the interface of. Or, as shown in FIG. 4 (b), when the contact resistance in a specific region is specifically uniform, current concentration occurs in that region.
However, the ultraviolet light emitting element according to the first embodiment has a film thickness changing portion 51a whose film thickness gradually and / or gradually decreases as the first electrode element 51 of the first electrode 50 approaches the mesa structure. .. As the structure approaches the mesa structure, the electrical resistance in the film thickness changing portion 51a increases. As a result, a current flows through the first conductive type nitride semiconductor layer 20 in a well-balanced manner as compared with the prior art, and the current concentration is alleviated.

(第2の実施形態)
図2(a)は、本実施形態の第2の実施形態に係る紫外線発光素子の構成例を示す断面模式図である。図2(b)は、図2(a)に示す紫外線発光素子における電流集中を視覚的に示す図である。第2の実施形態に係る紫外線発光素子は、第1の実施形態と比較して、第1の界面部54及び第2の界面部55を有する点で異なる。
第2の実施形態に係る紫外線発光素子は、第1の界面部54及び第2の界面部55を有することにより、メサ構造に近づくにつれて膜厚変化部51a内の電気抵抗及び第1電極要素51と第1導電型窒化物半導体層20との接触抵抗が大きくなっていく。これにより、第2の実施形態に係る紫外線発光素子は、第1の実施形態よりも更にバランス良く第1導電型窒化物半導体層20に電流が流れ、電流集中が緩和される。
(Second embodiment)
FIG. 2A is a schematic cross-sectional view showing a configuration example of an ultraviolet light emitting device according to a second embodiment of the present embodiment. FIG. 2B is a diagram visually showing the current concentration in the ultraviolet light emitting device shown in FIG. 2A. The ultraviolet light emitting device according to the second embodiment is different from the first embodiment in that it has a first interface portion 54 and a second interface portion 55.
The ultraviolet light emitting element according to the second embodiment has the first interface portion 54 and the second interface portion 55, so that the electric resistance and the first electrode element 51 in the film thickness changing portion 51a as the film approaches the mesa structure. And the contact resistance between the first conductive type nitride semiconductor layer 20 and the first conductive type nitride semiconductor layer 20 increases. As a result, in the ultraviolet light emitting device according to the second embodiment, a current flows through the first conductive type nitride semiconductor layer 20 in a more balanced manner than in the first embodiment, and the current concentration is relaxed.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments. It will be apparent to those skilled in the art that various changes or improvements can be made to the above embodiments. It is clear from the description of the claims that the form with such changes or improvements may be included in the technical scope of the present invention.

10 基板
20 第1導電型窒化物半導体層
21 第1領域
22 第2領域
30 発光層
40 第2導電型窒化物半導体層
50 第1電極
51 第1電極要素
51a 膜厚変化部
52b 膜厚変化部以外
52 第2電極要素
53 第3電極要素
54 第1の界面部
55 第2の界面部
60 第2電極
71 第1絶縁層
72 第2絶縁層
100 基板
200 n型窒化物半導体層
210 第1領域
220 第2領域
300 発光層
400 p型窒化物半導体層
500 n型電極
510 接点電極
520 オーミック電極
600 p型電極
10 Substrate 20 1st conductive type nitride semiconductor layer 21 1st region 22 2nd region 30 light emitting layer 40 2nd conductive type nitride semiconductor layer 50 1st electrode 51 1st electrode element 51a film thickness change part 52b film thickness change part Other than 52 Second electrode element 53 Third electrode element 54 First interface portion 55 Second interface portion 60 Second electrode 71 First insulating layer 72 Second insulating layer 100 Substrate 200 n-type nitride semiconductor layer 210 First region 220 Second region 300 Light emitting layer 400 p-type nitride semiconductor layer 500 n-type electrode 510 Contact electrode 520 Ohmic electrode 600 p-type electrode

Claims (13)

基板と、第1導電型窒化物半導体層の第1領域と、第1導電型窒化物半導体層の第2領域と、発光層と、第2導電型窒化物半導体層と、を一方向に向けてこの順で備え、
前記第1導電型窒化物半導体層の第2領域と、前記発光層と、前記第2導電型窒化物半導体層はメサ構造であり、
前記第1導電型窒化物半導体層の前記第1領域の表面の一部に、第1電極を有し、
前記第2導電型窒化物半導体層の表面の一部に第2電極を有し、
前記第1電極は、前記メサ構造に近づくにつれて膜厚が連続的又は段階的、若しくは連続的及び段階的に小さくなる膜厚変化部を含む第1電極要素を有し、
前記膜厚変化部の一部と前記第1導電型窒化物半導体層の前記第1領域との間に、前記第1電極要素の構成成分の酸化物を含む第1の界面部、を更に備える、紫外線発光素子。
The substrate, the first region of the first conductive nitride semiconductor layer, the second region of the first conductive nitride semiconductor layer, the light emitting layer, and the second conductive nitride semiconductor layer are oriented in one direction. Prepare in the order of the conductor,
The second region of the first conductive nitride semiconductor layer, the light emitting layer, and the second conductive nitride semiconductor layer have a mesa structure.
A first electrode is provided on a part of the surface of the first region of the first conductive nitride semiconductor layer.
A second electrode is provided on a part of the surface of the second conductive nitride semiconductor layer.
The first electrode has a first electrode element including a film thickness change portion in which the film thickness becomes continuously or stepwise, or continuously and stepwise as the film thickness approaches the mesa structure.
A first interface portion containing an oxide of a constituent component of the first electrode element is further provided between a part of the film thickness changing portion and the first region of the first conductive type nitride semiconductor layer. , Ultraviolet light emitting element.
前記第1電極が、前記第1電極要素上に、第2電極要素と、第3電極要素とをこの順で更に有し、
前記第1電極要素の前記膜厚変化部の一部と前記第2電極要素との界面に、チタンで構成される第2の界面部を有する、請求項1に記載の紫外線発光素子。
The first electrode further has a second electrode element and a third electrode element on the first electrode element in this order .
The ultraviolet light emitting device according to claim 1 , further comprising a second interface portion made of titanium at an interface between a part of the film thickness changing portion of the first electrode element and the second electrode element.
前記第1導電型窒化物半導体層の前記第2領域の平面に対する前記膜厚変化部の上面の傾斜角度が1度以上45度以下ある請求項1又は2に記載の紫外線発光素子。 The ultraviolet light emitting device according to claim 1 or 2 , wherein the inclination angle of the upper surface of the film thickness changing portion with respect to the plane of the second region of the first conductive type nitride semiconductor layer is 1 degree or more and 45 degrees or less. 前記第1の界面部の膜厚が、1nm以上100nm以下である請求項に記載の紫外線発光素子。 The ultraviolet light emitting device according to claim 1 , wherein the film thickness of the first interface portion is 1 nm or more and 100 nm or less. 前記第2の界面部の膜厚が、1nm以上100nm以下である請求項に記載の紫外線発光素子。 The ultraviolet light emitting device according to claim 2 , wherein the film thickness of the second interface portion is 1 nm or more and 100 nm or less. 前記第1電極要素の構成成分がアルミニウムである請求項1からのいずれか一項に記載の紫外線発光素子。 The ultraviolet light emitting device according to any one of claims 1 to 5 , wherein the component of the first electrode element is aluminum. 前記第1の界面部の構成成分が、酸化アルミニウムである請求項に記載の紫外線発光素子。 The ultraviolet light emitting device according to claim 1 , wherein the constituent component of the first interface portion is aluminum oxide. 前記第3電極要素の構成成分が、金とチタンの合金である請求項に記載の紫外線発光素子。 The ultraviolet light emitting element according to claim 2 , wherein the constituent component of the third electrode element is an alloy of gold and titanium. 前記第2電極要素の構成成分が、ニッケルである請求項2又は8に記載の紫外線発光素子。 The ultraviolet light emitting device according to claim 2 or 8 , wherein the component of the second electrode element is nickel. 前記第2の界面部が、前記第3電極要素の構成成分の少なくとも1つを含む請求項2、8及び9のいずれか一項に記載の紫外線発光素子。 The ultraviolet light emitting device according to any one of claims 2, 8 and 9 , wherein the second interface portion contains at least one of the constituent components of the third electrode element. 前記基板が窒化アルミニウムである請求項1から10のいずれか一項に記載の紫外線発光素子。 The ultraviolet light emitting device according to any one of claims 1 to 10 , wherein the substrate is aluminum nitride. 前記第1導電型窒化物半導体層が、AlGaNである請求項1から11のいずれか一項に記載の紫外線発光素子。 The ultraviolet light emitting device according to any one of claims 1 to 11 , wherein the first conductive nitride semiconductor layer is AlGaN. 前記第2導電型窒化物半導体層が、GaNである請求項1から12のいずれか一項に記載の紫外線発光素子。 The ultraviolet light emitting device according to any one of claims 1 to 12 , wherein the second conductive nitride semiconductor layer is GaN.
JP2020053030A 2020-03-24 2020-03-24 Ultraviolet light emitting element Active JP7015339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020053030A JP7015339B2 (en) 2020-03-24 2020-03-24 Ultraviolet light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020053030A JP7015339B2 (en) 2020-03-24 2020-03-24 Ultraviolet light emitting element

Publications (2)

Publication Number Publication Date
JP2021153121A JP2021153121A (en) 2021-09-30
JP7015339B2 true JP7015339B2 (en) 2022-02-02

Family

ID=77886713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020053030A Active JP7015339B2 (en) 2020-03-24 2020-03-24 Ultraviolet light emitting element

Country Status (1)

Country Link
JP (1) JP7015339B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147195A (en) 2008-12-17 2010-07-01 Showa Denko Kk Method for manufacturing semiconductor light-emitting element, method for manufacturing electrode structure, semiconductor light-emitting element, electrode structure
WO2011033625A1 (en) 2009-09-16 2011-03-24 株式会社 東芝 Semiconductor light emitting element
JP2011187670A (en) 2010-03-08 2011-09-22 Toshiba Corp Semiconductor light-emitting element
US20110266519A1 (en) 2010-04-28 2011-11-03 Hwang Sung Min Light emitting device, light emitting device package and lighting system
WO2016163083A1 (en) 2015-04-09 2016-10-13 パナソニックIpマネジメント株式会社 Nitride semiconductor light emitting element
JP2019110195A (en) 2017-12-18 2019-07-04 旭化成株式会社 Nitride semiconductor light-emitting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147195A (en) 2008-12-17 2010-07-01 Showa Denko Kk Method for manufacturing semiconductor light-emitting element, method for manufacturing electrode structure, semiconductor light-emitting element, electrode structure
WO2011033625A1 (en) 2009-09-16 2011-03-24 株式会社 東芝 Semiconductor light emitting element
JP2011187670A (en) 2010-03-08 2011-09-22 Toshiba Corp Semiconductor light-emitting element
US20110266519A1 (en) 2010-04-28 2011-11-03 Hwang Sung Min Light emitting device, light emitting device package and lighting system
WO2016163083A1 (en) 2015-04-09 2016-10-13 パナソニックIpマネジメント株式会社 Nitride semiconductor light emitting element
JP2019110195A (en) 2017-12-18 2019-07-04 旭化成株式会社 Nitride semiconductor light-emitting element

Also Published As

Publication number Publication date
JP2021153121A (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US11489087B2 (en) Light emitting device
US20150263223A1 (en) Semiconductor light emitting element
JP5377725B1 (en) Semiconductor light emitting device
JP5095785B2 (en) Semiconductor light emitting device and manufacturing method thereof
TW201832294A (en) Semiconductor device
TWI594459B (en) Light-emitting device and the manufacturing method thereof
US8829558B2 (en) Semiconductor light-emitting device
US20230044446A1 (en) Light emitting device
TW201637240A (en) Semiconductor light emitting element and method of manufacturing the same
US20190189848A1 (en) Semiconductor light emitting device
US20160276539A1 (en) Semiconductor light-emitting element
US9006013B2 (en) Method for manufacturing semiconductor light emitting device and semiconductor light emitting device wafer
US9136425B2 (en) Semiconductor light emitting element and light emitting device
JP5646545B2 (en) Semiconductor light emitting device and manufacturing method thereof
US9590009B2 (en) Semiconductor light emitting element
JP7015339B2 (en) Ultraviolet light emitting element
JP2006228817A (en) Semiconductor device and its manufacturing method
JP5865870B2 (en) Semiconductor light emitting device
JP5158813B2 (en) Nitride-based semiconductor light-emitting device and manufacturing method thereof
JP2016167512A (en) Semiconductor light emitting element
US9231160B1 (en) Semiconductor light emitting element
JP2015233086A (en) Semiconductor light emitting element and manufacturing method of the same
JP5834120B2 (en) Semiconductor light emitting device
US20230197885A1 (en) Method for manufacturing a device for emitting radiation
JP5951732B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220121

R150 Certificate of patent or registration of utility model

Ref document number: 7015339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157