JP7013838B2 - Curved surface forming method and curved surface forming device for laminated substrate - Google Patents

Curved surface forming method and curved surface forming device for laminated substrate Download PDF

Info

Publication number
JP7013838B2
JP7013838B2 JP2017242181A JP2017242181A JP7013838B2 JP 7013838 B2 JP7013838 B2 JP 7013838B2 JP 2017242181 A JP2017242181 A JP 2017242181A JP 2017242181 A JP2017242181 A JP 2017242181A JP 7013838 B2 JP7013838 B2 JP 7013838B2
Authority
JP
Japan
Prior art keywords
substrate
laminated substrate
curved surface
conductive layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017242181A
Other languages
Japanese (ja)
Other versions
JP2019107817A (en
Inventor
徹 八代
弘司 竹内
泰裕 高橋
碩燦 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2017242181A priority Critical patent/JP7013838B2/en
Priority to EP18212353.9A priority patent/EP3498452A3/en
Priority to US16/220,084 priority patent/US11833800B2/en
Publication of JP2019107817A publication Critical patent/JP2019107817A/en
Application granted granted Critical
Publication of JP7013838B2 publication Critical patent/JP7013838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

本発明は、積層基板の曲面形成方法及び曲面形成装置に関する。 The present invention relates to a curved surface forming method and a curved surface forming apparatus for a laminated substrate.

タッチパネルやディスプレイなどの電子デバイスのアプリケーションでは、利用シーンに適した、軽量で割れにくく3次元(3D)曲面状の電子デバイスが要望されている。特に、車載用途、ウェアラブル用途では、デザイン性やフィット感に優れた3D曲面状の電子デバイスが求められる。このような電子デバイスには、透明な樹脂基板及び導電層が含まれる。導電層の材料としては、インジウム酸化物等の透明無機酸化物、カーボン(CNT,グラフェン)、メタルナノワーヤー、メタルグリッド、導電性高分子等が挙げられる。ただし、透明性、導電性及び耐久性を総合的に判断すると、3D曲面状の電子デバイスには透明無機酸化物が最も適している。 In the application of electronic devices such as touch panels and displays, there is a demand for lightweight, hard-to-break, three-dimensional (3D) curved electronic devices suitable for usage scenes. In particular, for in-vehicle applications and wearable applications, a 3D curved electronic device having excellent design and fit is required. Such electronic devices include a transparent resin substrate and a conductive layer. Examples of the material of the conductive layer include transparent inorganic oxides such as indium oxide, carbon (CNT, graphene), metal nanowayers, metal grids, conductive polymers and the like. However, when the transparency, conductivity and durability are comprehensively judged, the transparent inorganic oxide is most suitable for the electronic device having a 3D curved surface.

3D曲面状の電子デバイスの製造方法は、3D曲面状の基板を予め準備し、その表面に導電層や有機電子材料層を製膜する方法と、平板状の基板に導電層や有機電子材料層を製膜した後に3D曲面状に加工する方法とに大別できる。そして、いずれについても種々の方法が検討されている。 The method for manufacturing a 3D curved electronic device is a method of preparing a 3D curved substrate in advance and forming a conductive layer or an organic electronic material layer on the surface thereof, or a method of forming a conductive layer or an organic electronic material layer on a flat plate-shaped substrate. It can be roughly divided into a method of forming a film and then processing it into a 3D curved surface. And various methods are being studied for each of them.

しかしながら、前者の方法においては、3D曲面状の基板上への均一な製膜が困難であったり、3D曲面状の基板同士の貼り合わせが困難であったりする。また、平板状の基板に適した一般的な製膜装置等をそのまま使用することができないため、3D曲面状の基板のための製膜装置等を準備することになり、著しいコストアップにつながる。 However, in the former method, it is difficult to form a uniform film on a 3D curved substrate, or it is difficult to bond the 3D curved substrates to each other. Further, since a general film-forming device or the like suitable for a flat plate-shaped substrate cannot be used as it is, a film-forming device or the like for a 3D curved substrate is prepared, which leads to a significant cost increase.

後者の方法においては、無機酸化物のヤング率が大きく、無機酸化物は脆く、破壊されやすいため、3D曲面状に加工することが困難である。また、無機酸化物の曲面に沿った方向での歪みが大きくなりやすい。その上、無機酸化物の導電層上に有機電子材料層等の機能層を含む基板を凸状に加工する場合には、導電層に生じた歪みが機能層に伝播し、機能層に大きな歪みが生じやすい。更に、導電層に複数の薄膜トランジスタ(Thin Film Transistor:TFT)がマトリクス状に配置されている場合等、導電層内で機械的特性が不均一になっている場合は、機能層の歪みのばらつきが大きく、性能のばらつきが大きくなりやすい。従って、従来の技術では、コストアップを抑制しながら優れた信頼性を得ることが困難である。 In the latter method, the Young's modulus of the inorganic oxide is large, and the inorganic oxide is brittle and easily broken, so that it is difficult to process it into a 3D curved surface. In addition, the strain of the inorganic oxide in the direction along the curved surface tends to be large. Further, when a substrate including a functional layer such as an organic electronic material layer is processed into a convex shape on a conductive layer of an inorganic oxide, the strain generated in the conductive layer propagates to the functional layer, and a large strain is generated in the functional layer. Is likely to occur. Further, when the mechanical properties are non-uniform in the conductive layer, such as when a plurality of thin film transistors (TFTs) are arranged in a matrix on the conductive layer, the distortion of the functional layer varies. It is large and the variation in performance tends to be large. Therefore, it is difficult to obtain excellent reliability while suppressing cost increase with the conventional technique.

特許文献1に、3D曲面状の加飾フィルムの成形に関する技術が記載されているが、この加飾フィルムは電子デバイスに適用できるようなものではない。 Patent Document 1 describes a technique for forming a decorative film having a 3D curved surface, but this decorative film is not applicable to an electronic device.

本発明は、コストアップを抑制しながら3D曲面状の電子デバイスの信頼性を高めることができる積層基板の曲面形成方法および曲面形成装置を提供することを目的とする。 An object of the present invention is to provide a curved surface forming method and a curved surface forming apparatus for a laminated substrate, which can improve the reliability of a 3D curved surface electronic device while suppressing an increase in cost.

積層基板の曲面形成方法の一態様は、熱可塑性樹脂の樹脂基板を含む支持基板と、前記支持基板上の導電層と、を備えた積層基板を3次元曲面状に加工する積層基板の曲面形成方法であって、前記積層基板を弾性シートに密着させながら前記弾性シートを変形させ、温調した金型に前記積層基板を密着させることにより、前記樹脂基板を軟化させる工程を有することを特徴とする。 One aspect of the method for forming a curved surface of a laminated substrate is to form a curved surface of a laminated substrate for processing a laminated substrate including a support substrate including a resin substrate of a thermoplastic resin and a conductive layer on the support substrate into a three-dimensional curved surface. The method is characterized by having a step of deforming the elastic sheet while adhering the laminated substrate to the elastic sheet, and adhering the laminated substrate to a temperature-controlled mold to soften the resin substrate. do.

本発明によれば、コストアップを抑制しながら3D曲面状の電子デバイスの信頼性を高めることができる。 According to the present invention, it is possible to improve the reliability of a 3D curved electronic device while suppressing an increase in cost.

第1の実施形態に係る積層基板の曲面形成方法に好適な曲面形成装置を示す図である。It is a figure which shows the curved surface forming apparatus suitable for the curved surface forming method of the laminated substrate which concerns on 1st Embodiment. 第1の実施形態に係る積層基板の曲面形成方法を工程順に示す図である。It is a figure which shows the curved surface formation method of the laminated substrate which concerns on 1st Embodiment in the order of a process. 第1の実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第2の実施形態に係る積層基板の曲面形成方法に好適な曲面形成装置を示す図である。It is a figure which shows the curved surface forming apparatus suitable for the curved surface forming method of the laminated substrate which concerns on 2nd Embodiment. 第2の実施形態に係る積層基板の曲面形成方法を工程順に示す図である。It is a figure which shows the curved surface formation method of the laminated substrate which concerns on 2nd Embodiment in the order of a process. 第2の実施形態の変形例を示す図である。It is a figure which shows the modification of the 2nd Embodiment. 積層基板の第1の例を示す断面図である。It is sectional drawing which shows the 1st example of a laminated substrate. 積層基板の第2の例を示す断面図である。It is sectional drawing which shows the 2nd example of a laminated substrate. 積層基板の第3の例を示す断面図である。It is sectional drawing which shows the 3rd example of a laminated substrate. 積層基板の第4の例を示す断面図である。It is sectional drawing which shows the 4th example of a laminated substrate. 積層基板の第5の例を示す断面図である。It is sectional drawing which shows the 5th example of a laminated substrate. 積層基板の第5の例内の層の位置関係を示す図である。It is a figure which shows the positional relationship of the layer in the 5th example of a laminated substrate. 積層基板の第6の例を示す断面図である。It is sectional drawing which shows the 6th example of a laminated substrate. 積層基板の第7の例を示す断面図である。It is sectional drawing which shows the 7th example of a laminated substrate. 積層基板の第8の例を示す断面図である。It is sectional drawing which shows the 8th example of a laminated substrate. 積層基板の平面形状を示す図である。It is a figure which shows the planar shape of a laminated substrate. 導電層に生じたクラックを示す図である。It is a figure which shows the crack which occurred in the conductive layer. 実施例14の加工後の積層基板を示す図である。It is a figure which shows the laminated substrate after processing of Example 14. 比較例の曲面形成方法を工程順に示す図である。It is a figure which shows the curved surface formation method of the comparative example in the order of a process.

以下、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
まず、第1の実施形態に係る積層基板の曲面形成方法について説明する。図1は、第1の実施形態に係る積層基板の曲面形成方法に好適な曲面形成装置を示す図である。図2は、第1の実施形態に係る積層基板の曲面形成方法を工程順に示す図である。
(First Embodiment)
First, a method for forming a curved surface of a laminated substrate according to the first embodiment will be described. FIG. 1 is a diagram showing a curved surface forming apparatus suitable for the curved surface forming method of the laminated substrate according to the first embodiment. FIG. 2 is a diagram showing the method of forming a curved surface of the laminated substrate according to the first embodiment in the order of processes.

この曲面形成装置100は、凹金型111及びこの凹金型111の温度を調整する温調部116を含む。凹金型111には、3次元(3D)曲面状の、例えば球面状の凹面112の底と裏面とを結ぶ孔115が形成されており、孔115にポンプ117が繋げられる。曲面形成装置100は、凹金型111の凹面112の周囲の平面113上に凹面112を塞ぐように配置される弾性ゴムシート131を含む。弾性ゴムシート131には、その表裏を貫通する孔132が形成されている。 The curved surface forming device 100 includes a concave mold 111 and a temperature control unit 116 for adjusting the temperature of the concave mold 111. The concave mold 111 is formed with a hole 115 connecting the bottom surface and the back surface of a three-dimensional (3D) curved surface, for example, a spherical concave surface 112, and the pump 117 is connected to the hole 115. The curved surface forming apparatus 100 includes an elastic rubber sheet 131 arranged so as to close the concave surface 112 on the flat surface 113 around the concave surface 112 of the concave mold 111. The elastic rubber sheet 131 is formed with holes 132 penetrating the front and back surfaces thereof.

曲面形成装置100を用いて積層基板を3D曲面状に加工する場合、まず、図2(a)に示すように、熱可塑性樹脂の樹脂基板を含む支持基板及びこの支持基板上の導電層を備えた積層基板151を準備する。また、温調部116により樹脂基板の軟化温度(Tg)付近に凹金型111を加熱温調する。そして、孔132を塞ぐようにして積層基板151を弾性ゴムシート131上に載置する。例えば、温調の温度は軟化温度(Tg)より低くする。積層基板151が導電層上に有機電子材料層等の機能層を有していてもよい。 When the laminated substrate is processed into a 3D curved surface using the curved surface forming apparatus 100, first, as shown in FIG. 2A, a support substrate including a resin substrate of a thermoplastic resin and a conductive layer on the support substrate are provided. Prepare the laminated substrate 151. Further, the temperature control portion 116 heats and controls the concave mold 111 near the softening temperature (Tg) of the resin substrate. Then, the laminated substrate 151 is placed on the elastic rubber sheet 131 so as to close the holes 132. For example, the temperature of the temperature control is lower than the softening temperature (Tg). The laminated substrate 151 may have a functional layer such as an organic electronic material layer on the conductive layer.

次いで、ポンプ117を稼働させて、凹面112と弾性ゴムシート131との間の空間の排気を行う。この結果、弾性ゴムシート131が伸展しながら凹面112に密着する。また、積層基板151が弾性ゴムシート131に密着し、弾性ゴムシート131の変形に伴って凹金型111に近づくため、凹金型111から積層基板151に熱が伝達され、積層基板151に含まれる樹脂基板が軟化する。そして、図2(b)に示すように、凹金型111に積層基板151が密着し、積層基板151が凹面112に倣うように塑性変形する。 Next, the pump 117 is operated to exhaust the space between the concave surface 112 and the elastic rubber sheet 131. As a result, the elastic rubber sheet 131 is in close contact with the concave surface 112 while being stretched. Further, since the laminated substrate 151 is in close contact with the elastic rubber sheet 131 and approaches the concave mold 111 as the elastic rubber sheet 131 is deformed, heat is transferred from the concave mold 111 to the laminated substrate 151 and is included in the laminated substrate 151. The resin substrate softens. Then, as shown in FIG. 2B, the laminated substrate 151 is in close contact with the concave mold 111, and the laminated substrate 151 is plastically deformed so as to imitate the concave surface 112.

その後、ポンプ117の稼働を停止し、孔115を大気開放することで、弾性ゴムシート131が元の形状に戻ると共に、積層基板151を凹金型111から離型できるようになる。樹脂基板が塑性変形しているため、積層基板151は凹金型111から離型しても凹面112に倣った形状を維持する。 After that, by stopping the operation of the pump 117 and opening the hole 115 to the atmosphere, the elastic rubber sheet 131 returns to its original shape, and the laminated substrate 151 can be released from the concave mold 111. Since the resin substrate is plastically deformed, the laminated substrate 151 maintains its shape following the concave surface 112 even when it is released from the concave mold 111.

このようにして積層基板151を3D曲面状に加工することができる。 In this way, the laminated substrate 151 can be processed into a 3D curved surface.

第1の実施形態では、加工中に弾性ゴムシート131が等方的に伸縮するため、積層基板151が凹金型111に均一に加圧されて密着する。また、積層基板151に含まれる樹脂基板は、予め加熱軟化されることなく、温調した凹金型111に密着して徐々に熱を受けて軟化する。従って、第1の実施形態によれば、曲面に沿った方向の歪み及びクラックを抑制しながら、積層基板151に含まれる導電層を変形させることができ、導電層上の機能層が含まれる場合には機能層の歪みおよびクラックも抑制することができる。導電層に複数のTFTがマトリクス状に配置されている場合等、導電層内で機械的特性が不均一になっている場合でも、機能層の歪みのばらつきを抑制し、均一な性能を得ることができる。 In the first embodiment, since the elastic rubber sheet 131 expands and contracts isotropically during processing, the laminated substrate 151 is uniformly pressed against the concave mold 111 and adheres to the concave mold 111. Further, the resin substrate contained in the laminated substrate 151 is not softened by heating in advance, but is in close contact with the temperature-controlled concave mold 111 and gradually receives heat to soften. Therefore, according to the first embodiment, the conductive layer contained in the laminated substrate 151 can be deformed while suppressing distortion and cracks in the direction along the curved surface, and the functional layer on the conductive layer is included. It is also possible to suppress distortion and cracks in the functional layer. Even when the mechanical properties are non-uniform in the conductive layer, such as when a plurality of TFTs are arranged in a matrix on the conductive layer, variation in distortion of the functional layer is suppressed and uniform performance is obtained. Can be done.

曲面形成装置100が、図3に示すように、凹金型111に嵌まる凸金型121及びこの凸金型121の温度を調整する温調部126を含んでもよい。この曲面形成装置100を用いる場合、積層基板151が凹金型111に密着した後に、温調部126で加熱温調した凸金型121で積層基板151をプレスすることにより、曲面精度を更に向上することが可能である。 As shown in FIG. 3, the curved surface forming device 100 may include a convex mold 121 fitted in the concave mold 111 and a temperature control unit 126 for adjusting the temperature of the convex mold 121. When this curved surface forming device 100 is used, the curved surface accuracy is further improved by pressing the laminated substrate 151 with the convex mold 121 heated and temperature-controlled by the temperature control portion 126 after the laminated substrate 151 is in close contact with the concave mold 111. It is possible to do.

(第2の実施形態)
次に、第2の実施形態に係る積層基板の曲面形成方法について説明する。図4は、第2の実施形態に係る積層基板の曲面形成方法に好適な曲面形成装置を示す図である。図5は、第2の実施形態に係る積層基板の曲面形成方法を工程順に示す図である。
(Second embodiment)
Next, a method for forming a curved surface of the laminated substrate according to the second embodiment will be described. FIG. 4 is a diagram showing a curved surface forming apparatus suitable for the curved surface forming method of the laminated substrate according to the second embodiment. FIG. 5 is a diagram showing the method of forming a curved surface of the laminated substrate according to the second embodiment in the order of processes.

この曲面形成装置200は、密閉容器(チャンバ)241、この密閉容器241内の凹金型211及びこの凹金型211の温度を調整する温調部216を含む。曲面形成装置200は、密閉容器241内で凹金型211上方の空間を上下に二分する弾性ゴムシート231を含む。曲面形成装置200は、凹金型211の3D曲面状の、例えば球面状の凹面212の周囲の平面213上に隙間をあけながら凹面212を覆うように配置される基板保持ゴムシート233を含む。基板保持ゴムシート233には、加工対象の積層基板よりも狭く、かつこの積層基板により覆われる孔234が形成されている。基板保持ゴムシート233は、凹面212の一部を露出するように設けられており、積層基板が載置された状態でも、基板保持ゴムシート233の上下の空間の圧力は等しくなる。例えば、基板保持ゴムシート233に孔234から離間して積層基板には覆われない孔が形成されていてもよく、基板保持ゴムシート233の端部が凹面212と平面213との境界から凹面212側に位置していてもよい。曲面形成装置200には、弾性ゴムシート231上の空間と弾性ゴムシート231下の空間とを繋ぐ配管が設けられており、この配管にバイパスバルブ218が設けられている。弾性ゴムシート231上の空間にはガス供給部219が繋がれ、弾性ゴムシート231下の空間にはポンプ217が繋げられる。 The curved surface forming device 200 includes a closed container (chamber) 241, a concave mold 211 in the closed container 241 and a temperature control unit 216 for adjusting the temperature of the concave mold 211. The curved surface forming device 200 includes an elastic rubber sheet 231 that vertically divides the space above the concave mold 211 in the closed container 241. The curved surface forming apparatus 200 includes a substrate holding rubber sheet 233 arranged so as to cover the concave surface 212 with a gap on the flat surface 213 around the 3D curved surface, for example, the spherical concave surface 212 of the concave mold 211. The substrate holding rubber sheet 233 is formed with holes 234 that are narrower than the laminated substrate to be processed and are covered by the laminated substrate. The substrate holding rubber sheet 233 is provided so as to expose a part of the concave surface 212, and even when the laminated substrate is placed, the pressures in the spaces above and below the substrate holding rubber sheet 233 are equal. For example, the substrate holding rubber sheet 233 may have a hole separated from the hole 234 and not covered by the laminated substrate, and the end portion of the substrate holding rubber sheet 233 is a concave surface 212 from the boundary between the concave surface 212 and the flat surface 213. It may be located on the side. The curved surface forming device 200 is provided with a pipe connecting the space on the elastic rubber sheet 231 and the space under the elastic rubber sheet 231, and the bypass valve 218 is provided in this pipe. The gas supply unit 219 is connected to the space above the elastic rubber sheet 231 and the pump 217 is connected to the space below the elastic rubber sheet 231.

曲面形成装置200を用いて積層基板を3D曲面状に加工する場合、まず、図5(a)に示すように、熱可塑性樹脂の樹脂基板を含む支持基板及びこの支持基板上の導電層を備えた積層基板251を準備する。また、温調部216により樹脂基板の軟化温度(Tg)付近に凹金型211を加熱温調する。そして、密閉容器241を開き、孔234を塞ぐようにして積層基板251を基板保持ゴムシート233上に載置し、密閉容器241を閉じる。積層基板251が導電層上に有機電子材料層等の機能層を有していてもよい。 When the laminated substrate is processed into a 3D curved surface using the curved surface forming apparatus 200, first, as shown in FIG. 5A, a support substrate including a resin substrate of a thermoplastic resin and a conductive layer on the support substrate are provided. Prepare the laminated substrate 251. Further, the temperature control portion 216 heats and controls the concave mold 211 near the softening temperature (Tg) of the resin substrate. Then, the closed container 241 is opened, the laminated substrate 251 is placed on the substrate holding rubber sheet 233 so as to close the hole 234, and the closed container 241 is closed. The laminated substrate 251 may have a functional layer such as an organic electronic material layer on the conductive layer.

次いで、バイパスバルブ218を開き、ポンプ217を稼働させる。この結果、密閉容器241の内部全体が減圧状態となる。その後、バイパスバルブ218を閉じ、ガス供給部219から弾性ゴムシート231上の空間にガスを供給する。ガスとしては、例えば空気又は窒素ガスを供給する。この結果、弾性ゴムシート231が伸展して積層基板251に密着し、積層基板251及び基板保持ゴムシート233が凹面212に押し当てられて密着する。このとき、凹金型211から積層基板251に熱が伝達されるため、積層基板251に含まれる樹脂基板が軟化する。そして、図5(b)に示すように、積層基板251が凹面212に倣うように塑性変形する。 The bypass valve 218 is then opened to operate the pump 217. As a result, the entire inside of the closed container 241 is in a reduced pressure state. After that, the bypass valve 218 is closed, and gas is supplied from the gas supply unit 219 to the space on the elastic rubber sheet 231. As the gas, for example, air or nitrogen gas is supplied. As a result, the elastic rubber sheet 231 extends and adheres to the laminated substrate 251, and the laminated substrate 251 and the substrate holding rubber sheet 233 are pressed against the concave surface 212 and adhere to the laminated substrate 251. At this time, heat is transferred from the concave mold 211 to the laminated substrate 251 so that the resin substrate contained in the laminated substrate 251 is softened. Then, as shown in FIG. 5B, the laminated substrate 251 is plastically deformed so as to imitate the concave surface 212.

その後、ポンプ217の稼働及びガス供給部219からのガスの供給を停止し、密閉容器241を大気開放することで、弾性ゴムシート231が元の形状に戻ると共に、積層基板251を凹金型211から離型できるようになる。樹脂基板が塑性変形しているため、積層基板251は凹金型211から離型しても凹面212に倣った形状を維持する。 After that, by stopping the operation of the pump 217 and the supply of gas from the gas supply unit 219 and opening the closed container 241 to the atmosphere, the elastic rubber sheet 231 returns to its original shape and the laminated substrate 251 is formed into a concave mold 211. You will be able to release the mold from. Since the resin substrate is plastically deformed, the laminated substrate 251 maintains a shape that follows the concave surface 212 even when the resin substrate is released from the concave mold 211.

このようにして積層基板251を3D曲面状に加工することができる。 In this way, the laminated substrate 251 can be processed into a 3D curved surface.

第2の実施形態では、加工中に弾性ゴムシート231が等方的に伸縮するため、積層基板251が凹金型211に均一に加圧されて密着する。また、積層基板251に含まれる樹脂基板は、予め加熱軟化されることなく、温調した凹金型211に押し当てられて密着し、徐々に熱を受けて軟化する。従って、第2の実施形態によれば、曲面に沿った方向の歪み及びクラックを抑制しながら、積層基板251に含まれる導電層を変形させることができ、導電層上の機能層が含まれる場合には機能層の歪みおよびクラックも抑制することができる。導電層に複数のTFTがマトリクス状に配置されている場合等、導電層内で機械的特性が不均一になっている場合でも、機能層の歪みのばらつきを抑制し、均一な性能を得ることができる。機能層を含む積層基板は、プラスチック電子デバイスの作製に好適である。 In the second embodiment, since the elastic rubber sheet 231 expands and contracts isotropically during processing, the laminated substrate 251 is uniformly pressed against the concave mold 211 and adheres to the concave mold 211. Further, the resin substrate contained in the laminated substrate 251 is pressed against the temperature-controlled concave mold 211 and adheres to the laminated substrate 251 without being preheated and softened, and gradually receives heat to soften. Therefore, according to the second embodiment, the conductive layer contained in the laminated substrate 251 can be deformed while suppressing distortion and cracks in the direction along the curved surface, and the functional layer on the conductive layer is included. It is also possible to suppress distortion and cracks in the functional layer. Even when the mechanical properties are non-uniform in the conductive layer, such as when a plurality of TFTs are arranged in a matrix on the conductive layer, variation in distortion of the functional layer is suppressed and uniform performance is obtained. Can be done. Laminated substrates including functional layers are suitable for making plastic electronic devices.

曲面形成装置200が、図6に示すように、凹金型211に嵌まる凸金型221及びこの凸金型221の温度を調整する温調部226を含んでもよい。この曲面形成装置200を用いる場合、積層基板251が凹金型211に密着した後に、温調部226で加熱温調した凸金型221で積層基板251をプレスすることにより、曲面精度を更に向上することが可能である。 As shown in FIG. 6, the curved surface forming device 200 may include a convex mold 221 fitted in the concave mold 211 and a temperature control unit 226 for adjusting the temperature of the convex mold 221. When this curved surface forming device 200 is used, the curved surface accuracy is further improved by pressing the laminated substrate 251 with the convex die 221 heated and temperature-controlled by the temperature control portion 226 after the laminated substrate 251 is in close contact with the concave die 211. It is possible to do.

なお、バイパスバルブ218を開き、ポンプ217を稼働させる工程において、密閉容器241内の圧力は80000Pa以下とすることが好ましく、ガス供給部219からのガスを供給する工程において、弾性ゴムシート231上の空間の圧力は0.05MPa~1MPaとすることが好ましい。これらの条件の範囲外では、良好な曲面精度を得にくいことがある。 In the step of opening the bypass valve 218 and operating the pump 217, the pressure in the closed container 241 is preferably 80,000 Pa or less, and in the step of supplying gas from the gas supply unit 219, the pressure on the elastic rubber sheet 231 is reached. The pressure in the space is preferably 0.05 MPa to 1 MPa. Outside the range of these conditions, it may be difficult to obtain good curved surface accuracy.

第1および第2の実施形態において、凹金型の凹面の範囲は、平面視で加工対象の積層基板よりも広いことが好ましい。この場合、拘束することなく積層基板の全体を凹面に密着することが可能となり、歪みをより一層抑制しながら3D曲面状に加工することができる。これに対し、積層基板の端部を可動できない状態で固定しながら加工したり、積層基板の端部を金型の加工面以外に接する状態で加工したりすると、積層基板の固定された部分や加工面以外に接する部分から歪みが生じやすい。凸金型を使用する場合は、積層基板と凸金型とが点で接することがあるため、そこに応力が集中して歪みが生じやすいことがある。曲面に沿った方向における歪の好ましい大きさ(伸縮量)は1%以下である。 In the first and second embodiments, it is preferable that the range of the concave surface of the concave mold is wider than that of the laminated substrate to be processed in a plan view. In this case, the entire laminated substrate can be brought into close contact with the concave surface without restraint, and the 3D curved surface can be processed while further suppressing distortion. On the other hand, if the end of the laminated board is fixed in a state where it cannot be moved, or if the end of the laminated board is processed in a state where it is in contact with a surface other than the machined surface of the mold, the fixed part of the laminated board or Distortion is likely to occur from the part that comes into contact with other than the machined surface. When a convex mold is used, the laminated substrate and the convex mold may come into contact with each other at points, so that stress may be concentrated there and distortion may easily occur. The preferred magnitude (stretching amount) of strain in the direction along the curved surface is 1% or less.

温調では、例えば、凹金型及び凸金型の温度は樹脂基板の軟化温度(Tg)よりも低く設定され、凹金型に密着させる前の平板状の積層基板の温度は室温または軟化温度よりも20℃以上低い温度に設定される。 In the temperature control, for example, the temperature of the concave mold and the convex mold is set lower than the softening temperature (Tg) of the resin substrate, and the temperature of the flat plate-shaped laminated substrate before being brought into close contact with the concave mold is room temperature or the softening temperature. The temperature is set to be 20 ° C. or more lower than that.

第1または第2の実施形態で積層基板を3D曲面状に加工した後に、3D曲面の精度を向上するために、追加加工してもよい。具体的には、金型に保持して再加熱、加圧する方式を採用することができ、例えば、インジェクション成型などのモールディング方式、オートクレーブなどのフォーミング方式を採用できる。 After processing the laminated substrate into a 3D curved surface in the first or second embodiment, additional processing may be performed in order to improve the accuracy of the 3D curved surface. Specifically, a method of holding in a mold, reheating and pressurizing can be adopted, and for example, a molding method such as injection molding and a forming method such as autoclave can be adopted.

導電層が無機酸化物の透明導電層である場合、そのクラックを抑制するには、導電層の支持基板の表面の硬さは180MPa以上であることが好ましい。支持基板は、例えば、樹脂基板であるか、樹脂基板とその上に形成された下地層を含む。支持基板の表面の硬さはナノインデンターで測定される。本発明者らにより、表面の硬さが180MPa以上で、長軸の寸法が85mm、短軸の寸法が54.5mmの平面楕円基板上に、無機酸化物としてインジウム酸化物を用いた厚さが110nmの透明導電層を形成し、この積層基板を曲率半径が86mmの球面形状に加工したところ、クラックが生じないことが確認された。表面が硬い支持基板を用いることで、加工時の透明導電層の歪みを低減できる。 When the conductive layer is a transparent conductive layer of an inorganic oxide, the hardness of the surface of the supporting substrate of the conductive layer is preferably 180 MPa or more in order to suppress the cracks. The support substrate is, for example, a resin substrate or includes a resin substrate and a base layer formed on the resin substrate. The hardness of the surface of the support substrate is measured with a nano indenter. According to the present inventors, a thickness using indium oxide as an inorganic oxide on a flat elliptical substrate having a surface hardness of 180 MPa or more, a major axis dimension of 85 mm, and a minor axis dimension of 54.5 mm. When a transparent conductive layer having a diameter of 110 nm was formed and the laminated substrate was processed into a spherical shape having a radius of curvature of 86 mm, it was confirmed that cracks did not occur. By using a support substrate having a hard surface, it is possible to reduce the distortion of the transparent conductive layer during processing.

ここで、曲面形成装置100又は200に含まれる構成要素について説明する。 Here, the components included in the curved surface forming apparatus 100 or 200 will be described.

[弾性ゴムシート131、231]
弾性ゴムシート131、231は減圧又は加圧されることにより伸縮し、積層基板を金型に密着させる機能を有する。また、弾性ゴムシート131は金型の熱を積層基板に伝達する機能も有する。弾性ゴムシートの材料としては、公知の弾性ゴム材料をそのまま用いることができる。例えば、天然ゴム、スチレン・ブタジエンゴム(SBR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、アクリロニトリル・ブタジエンゴム(NBR)、ブチルゴム(イソブチエン・イソプレンゴム(IIR))、エチレン・プロピレンゴム(EPM)、エチレン・プロピレン・ジエンゴム(EPDM)、ウレタンゴム(U)、シリコーンゴム(シリコーンゴム(Si,Q))、フッ素ゴム(FKM)等を弾性ゴムシートの材料に用いることができる。スチレン系、オレフィン系、エステル系、ウレタン系、アミド系、ポリ塩化ビニル(PVC)系、フッ素系等の熱可塑性エラストマーを弾性ゴムシートの材料に用いることもできる。弾性ゴムシートの材料は、積層基板に曲面を形成する際の温度や圧力等の条件に応じて選択することが好ましい。例えば条件に応じて、耐熱性、弾性等を考慮して材料を選択することが好ましい。弾性ゴムシートの厚さは、例えば0.01mm~2.0mmの曲面の形成が容易な範囲とする。
[Elastic rubber sheet 131, 231]
The elastic rubber sheets 131 and 231 expand and contract by being depressurized or pressurized, and have a function of bringing the laminated substrate into close contact with the mold. The elastic rubber sheet 131 also has a function of transferring the heat of the mold to the laminated substrate. As the material of the elastic rubber sheet, a known elastic rubber material can be used as it is. For example, natural rubber, styrene-butadiene rubber (SBR), isoprene rubber (IR), butadiene rubber (BR), chloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), butyl rubber (isobutyene isoprene rubber (IIR)), Use ethylene / propylene rubber (EPM), ethylene / propylene / diene rubber (EPDM), urethane rubber (U), silicone rubber (silicone rubber (Si, Q)), fluororubber (FKM), etc. as materials for elastic rubber sheets. Can be done. Thermoplastic elastomers such as styrene-based, olefin-based, ester-based, urethane-based, amide-based, polyvinyl chloride (PVC) -based, and fluorine-based thermoplastic elastomers can also be used as the material of the elastic rubber sheet. The material of the elastic rubber sheet is preferably selected according to conditions such as temperature and pressure when forming a curved surface on the laminated substrate. For example, it is preferable to select a material in consideration of heat resistance, elasticity, etc., depending on the conditions. The thickness of the elastic rubber sheet is, for example, in the range where a curved surface of 0.01 mm to 2.0 mm can be easily formed.

積層基板の変形の均一性の観点から、弾性ゴムシートは積層基板及び金型に固着しにくく、弾性ゴムシートの積層基板又は金型と接する面が滑りやすくなっていることが好ましい。また、曲面形成後には、弾性ゴムシートを金型から剥離し、積層基板を弾性ゴムシートから外すため、弾性ゴムシートの表面には摩擦を低減する表面加工等が施されていることが好ましい。弾性ゴムシートの材料としては、特に、シリコーンゴム及びフッ素ゴムが好ましい。 From the viewpoint of the uniformity of deformation of the laminated substrate, it is preferable that the elastic rubber sheet does not easily adhere to the laminated substrate and the mold, and the surface of the elastic rubber sheet in contact with the laminated substrate or the mold becomes slippery. Further, after the curved surface is formed, the elastic rubber sheet is peeled off from the mold and the laminated substrate is removed from the elastic rubber sheet. Therefore, it is preferable that the surface of the elastic rubber sheet is surface-treated to reduce friction. Silicone rubber and fluororubber are particularly preferable as the material of the elastic rubber sheet.

弾性ゴムシート131の孔132は積層基板151を弾性ゴムシート131に吸着保持するために設けられており、孔132の数は1でも2以上でもよい。孔132の位置は積層基板151の形状に合わせて任意に設定することができる。 The holes 132 of the elastic rubber sheet 131 are provided to attract and hold the laminated substrate 151 to the elastic rubber sheet 131, and the number of holes 132 may be 1 or 2 or more. The position of the hole 132 can be arbitrarily set according to the shape of the laminated substrate 151.

[金型111、121、211、221]
凹金型及び凸金型は、積層基板に形成する3D曲面形状、例えば球面形状に合わせた曲面及び加工に好適な熱容量を有するものであれば、一般的な金型をそのまま用いることができる。具体的には、金型の材料としては、例えばアルミニウム(Al)及びニッケル(Ni)等のメタル材料、ガラス、セラミックス等を用いることができる。温調部は金型の内部又は金型の外面に付された温度調節ヒーターを有する。金型の表面に一般的な耐熱処理若しくは離型処理又はこれらの両方が施されていてもよい。
[Molds 111, 121, 211, 221]
As the concave mold and the convex mold, a general mold can be used as it is as long as it has a 3D curved surface shape formed on the laminated substrate, for example, a curved surface matching the spherical shape and a heat capacity suitable for processing. Specifically, as the mold material, for example, metal materials such as aluminum (Al) and nickel (Ni), glass, ceramics and the like can be used. The temperature control unit has a temperature control heater attached to the inside of the mold or the outer surface of the mold. The surface of the mold may be subjected to general heat resistance treatment, mold release treatment, or both.

凹金型111の孔115の位置は積層基板151の形状に合わせて任意に設定することができる。 The position of the hole 115 of the concave mold 111 can be arbitrarily set according to the shape of the laminated substrate 151.

[基板保持ゴムシート]
基板保持ゴムシートは積層基板を保持すると共に、積層基板と凹金型との間の空間を維持する機能を有する。基板保持ゴムシートの材料としては、弾性ゴムシートの材料と同様のものを用いることできる。基板保持ゴムシートの厚さ及び形状は、積層基板の保持及び空間の維持という上記機能に合わせて設定することができる。なお、積層基板251を凹金型211上に直接載置した場合でも積層基板251の上下の空間が連通し、これらの間で圧力が等しくなるのであれば、基板保持ゴムシート233を用いなくてもよい。
[Substrate holding rubber sheet]
The substrate holding rubber sheet has a function of holding a laminated substrate and maintaining a space between the laminated substrate and the concave mold. As the material of the substrate holding rubber sheet, the same material as that of the elastic rubber sheet can be used. The thickness and shape of the substrate holding rubber sheet can be set according to the above-mentioned functions of holding the laminated substrate and maintaining the space. Even when the laminated substrate 251 is directly placed on the concave mold 211, if the spaces above and below the laminated substrate 251 communicate with each other and the pressures are equal between them, the substrate holding rubber sheet 233 is not used. It is also good.

次に、曲面を形成する対象の積層基板の例について説明する。 Next, an example of a laminated substrate to be formed to form a curved surface will be described.

(積層基板の第1の例)
図7は、積層基板の第1の例を示す断面図である。図7(a)は曲面を形成する前の状態を示し、図7(b)は凸加工が行われた後の状態を示し、図7(c)は凹加工が行われた後の状態を示す。第1の積層基板10は、熱可塑性樹脂の樹脂基板11及びこの樹脂基板11上の導電層12を有する導電層形成基板である。樹脂基板11は支持基板の一例である。
(First example of laminated substrate)
FIG. 7 is a cross-sectional view showing a first example of the laminated substrate. FIG. 7 (a) shows a state before forming a curved surface, FIG. 7 (b) shows a state after convex processing is performed, and FIG. 7 (c) shows a state after concave processing is performed. show. The first laminated substrate 10 is a conductive layer-forming substrate having a resin substrate 11 made of a thermoplastic resin and a conductive layer 12 on the resin substrate 11. The resin substrate 11 is an example of a support substrate.

樹脂基板11の材料としては、公知の熱可塑性樹脂をそのまま用いることができる。例えば、ポリカーボネイト、ポリエチレンテレフタレート、ポリエチレンナフタレートアクリル(ポリメチルメタクリレート)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリスチレン、スチレンアクリロニトリル共重合体、スチレンブタジエンアクリロ二トリル共重合体、ポリエチレン、エチレン酢酸ビニル共重合体、ポリプロピレン、ポリアセタール、酢酸セルロース、ポリアミド(ナイロン)、ポリウレタン、フッ素系(テフロン(登録商標))等を樹脂基板11の材料に用いることができる。特に、成形性、透明性及びコストの点で、ポリカーボネイト及びポリエチレンテレフタレートが好ましい。樹脂基板11の厚さは、例えば0.03mm~2.0mmの曲面の形成が容易な範囲とする。 As the material of the resin substrate 11, a known thermoplastic resin can be used as it is. For example, polycarbonate, polyethylene terephthalate, polyethylene naphthalate acrylic (polymethylmethacrylate), polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polystyrene, styrene acrylonitrile copolymer, styrene butadiene acrylonitril copolymer, polyethylene, ethylene acetate. Vinyl copolymers, polypropylene, polyacetal, cellulose acetate, polyamide (nylon), polyurethane, fluorine-based (Teflon (registered trademark)) and the like can be used as the material of the resin substrate 11. In particular, polycarbonate and polyethylene terephthalate are preferable in terms of moldability, transparency and cost. The thickness of the resin substrate 11 is, for example, in the range where a curved surface of 0.03 mm to 2.0 mm can be easily formed.

導電層12の材料としては、公知の導電材料を用いることができ、透明であっても不透明であってもよい。不透明な材料としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、タングステン(W)及びモリブデン(Mo)等のメタル材料が挙げられる。透明な材料としては、前述の無機酸化物、カーボン(カーボンナノチューブ(CNT)、グラフェン)、メタルナノワーヤー、メタルグリッド、導電性高分子等が挙げられる。導電層12の用途にもよるが、無機酸化物は緻密で導電性を有しており、導電性、透明性(透過率及びヘイズ)並びに信頼性の点で優れており、特に好ましい。無機酸化物としては、例えば、インジウム(In)、スズ(Sn)、亜鉛(Zn)、アルミニウム(Al)等の酸化物が挙げられ、これら無機酸化物に、例えばタングステン(W)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、アンチモン(Sb)、ガリウム(Ga)、ゲルマニウム(Ge)、フッ素(F)等が添加されていてもよい。例えば、導電層12の厚さは電子デバイスに求められる電流量に合わせて調整され、導電層12が無機酸化物から構成される場合、その厚さは50nm~500nmであり、200nm以下が好ましい。導電層12が厚いほど、曲面形成加工時にクラックなどのダメージが生じやすくなるためである。例えば、導電層12のシート抵抗は300Ω/□以下である。例えば、導電層12は真空成膜方法で形成することができ、真空成膜方法としては、真空蒸着法、スパッタ法、イオンプレーティング法、化学気相成長(Chemical Vapor Deposition:CVD)法等が挙げられる。これらのうちでは、高速成膜が可能なスパッタ法が好ましい。 As the material of the conductive layer 12, a known conductive material can be used, and it may be transparent or opaque. Examples of the opaque material include metal materials such as gold (Au), silver (Ag), copper (Cu), aluminum (Al), nickel (Ni), tungsten (W) and molybdenum (Mo). Examples of the transparent material include the above-mentioned inorganic oxide, carbon (carbon nanotube (CNT), graphene), metal nanowayer, metal grid, conductive polymer and the like. Although it depends on the use of the conductive layer 12, the inorganic oxide is dense and has conductivity, and is excellent in conductivity, transparency (transmittance and haze) and reliability, which is particularly preferable. Examples of the inorganic oxide include oxides such as indium (In), tin (Sn), zinc (Zn), and aluminum (Al), and examples of these inorganic oxides include tungsten (W) and titanium (Ti). ), Zinc (Zr), zinc (Zn), antimony (Sb), gallium (Ga), germanium (Ge), fluorine (F) and the like may be added. For example, the thickness of the conductive layer 12 is adjusted according to the amount of current required for the electronic device, and when the conductive layer 12 is composed of an inorganic oxide, the thickness is 50 nm to 500 nm, preferably 200 nm or less. This is because the thicker the conductive layer 12, the more easily damage such as cracks occurs during the curved surface forming process. For example, the sheet resistance of the conductive layer 12 is 300Ω / □ or less. For example, the conductive layer 12 can be formed by a vacuum deposition method, and the vacuum deposition method includes a vacuum deposition method, a sputtering method, an ion plating method, a chemical vapor deposition (CVD) method, and the like. Can be mentioned. Of these, the sputtering method capable of forming a high-speed film is preferable.

積層基板10の導電層12を凹金型側にして第1又は第2の実施形態の処理を行うことで、図7(b)に示す凸型の3D曲面を積層基板10に形成することができる。また、積層基板10の樹脂基板11を凹金型側にして第1又は第2の実施形態の処理を行うことで、図7(c)に示す凹型の3D曲面を積層基板10に形成することができる。 By performing the processing of the first or second embodiment with the conductive layer 12 of the laminated substrate 10 on the concave mold side, the convex 3D curved surface shown in FIG. 7B can be formed on the laminated substrate 10. can. Further, by performing the processing of the first or second embodiment with the resin substrate 11 of the laminated substrate 10 on the concave mold side, the concave 3D curved surface shown in FIG. 7C is formed on the laminated substrate 10. Can be done.

導電層12は樹脂基板11の全面または一部に形成される。また、図7(b)及び図7(c)では、積層基板10の全体が3D曲面状に加工されているが、積層基板10の一部のみが3D曲面状に加工されていてもよい。 The conductive layer 12 is formed on the entire surface or a part of the resin substrate 11. Further, in FIGS. 7 (b) and 7 (c), the entire laminated substrate 10 is processed into a 3D curved surface shape, but only a part of the laminated substrate 10 may be processed into a 3D curved surface shape.

積層基板10では、樹脂基板11上に直接導電層12が形成されているため、樹脂基板11の表面の硬さは180MPa以上であることが好ましい。このような材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート系材料が挙げられる。 In the laminated substrate 10, since the conductive layer 12 is directly formed on the resin substrate 11, the hardness of the surface of the resin substrate 11 is preferably 180 MPa or more. Examples of such a material include polyethylene terephthalate and polyethylene naphthalate-based materials.

(積層基板の第2の例)
図8は、積層基板の第2の例を示す断面図である。図8(a)は曲面を形成する前の状態を示し、図8(b)は凸加工が行われた後の状態を示し、図8(c)は凹加工が行われた後の状態を示す。第2の積層基板20は、樹脂基板11上に下地層13を有する導電層形成基板であり、導電層12が下地層13上に形成されている。樹脂基板11及び下地層13が支持基板に含まれる。他の構成は第1の積層基板10と同様である。
(Second example of laminated substrate)
FIG. 8 is a cross-sectional view showing a second example of the laminated substrate. FIG. 8A shows a state before forming a curved surface, FIG. 8B shows a state after convex processing is performed, and FIG. 8C shows a state after concave processing is performed. show. The second laminated substrate 20 is a conductive layer forming substrate having a base layer 13 on the resin substrate 11, and the conductive layer 12 is formed on the base layer 13. The resin substrate 11 and the base layer 13 are included in the support substrate. Other configurations are the same as those of the first laminated substrate 10.

下地層13は、例えば樹脂基板11の機械的特性を補うために用いられる。例えば、導電層12の下地として樹脂基板11が十分な硬さを有していない場合でも、樹脂基板11よりも硬い下地層13を形成することで、十分な硬さの下地を得ることができる。下地層13が熱膨張率の調整のために用いられてもよい。このように、下地層13を含むことにより、樹脂基板11の材料選択範囲を広げることができ、加工性に優れた熱可塑性樹脂を樹脂基板11に使用することができる。下地層13の材料としては、例えば紫外線(UltraViolet:UV)硬化樹脂材料及び熱硬化樹脂材料が挙げられる。より具体的には、アクリル樹脂、ウレタン樹脂、エポキシ樹脂等が挙げられる。下地層13の硬さは180MPa以上であることが好ましい。硬さが180MPa以上の下地層13を用いることで、導電層12が無機酸化物層である場合の曲面形成時の歪みをより一層低減できる。UV硬化樹脂、熱硬化樹脂で形成される下地層13の硬さ及び熱膨張率は、モノマー材料、架橋密度及び反応開始剤量等で調整することができる。下地層13は、少なくとも反応基を有する有機モノマー材料及び開始剤を混合した材料を樹脂基板11上に塗工し、UV照射又は熱処理等の硬化処理により形成することができる。下地層13の厚さは、例えば0.1μm~10μmである。塗工方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の各種印刷法を用いることができる。 The base layer 13 is used, for example, to supplement the mechanical properties of the resin substrate 11. For example, even when the resin substrate 11 does not have sufficient hardness as the base of the conductive layer 12, the base layer 13 having a hardness higher than that of the resin substrate 11 can be formed to obtain a base having sufficient hardness. .. The base layer 13 may be used for adjusting the thermal expansion rate. By including the base layer 13 in this way, the material selection range of the resin substrate 11 can be expanded, and a thermoplastic resin having excellent processability can be used for the resin substrate 11. Examples of the material of the base layer 13 include an ultraviolet (UltraViolet: UV) curable resin material and a thermosetting resin material. More specifically, acrylic resin, urethane resin, epoxy resin and the like can be mentioned. The hardness of the base layer 13 is preferably 180 MPa or more. By using the base layer 13 having a hardness of 180 MPa or more, it is possible to further reduce the strain at the time of forming a curved surface when the conductive layer 12 is an inorganic oxide layer. The hardness and thermal expansion rate of the base layer 13 formed of the UV curable resin and the thermosetting resin can be adjusted by adjusting the monomer material, the cross-linking density, the amount of the reaction initiator, and the like. The base layer 13 can be formed by applying a material obtained by mixing at least an organic monomer material having a reactive group and an initiator on the resin substrate 11 and performing a curing treatment such as UV irradiation or heat treatment. The thickness of the base layer 13 is, for example, 0.1 μm to 10 μm. Examples of the coating method include spin coat method, casting method, microgravure coat method, gravure coat method, bar coat method, roll coat method, wire bar coat method, dip coat method, slit coat method, capillary coat method, and spray. Various printing methods such as a coating method, a nozzle coating method, a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, and an inkjet printing method can be used.

積層基板20の導電層12を凹金型側にして第1又は第2の実施形態の処理を行うことで、図8(b)に示す凸型の3D曲面を積層基板20に形成することができる。また、積層基板20の樹脂基板11を凹金型側にして第1又は第2の実施形態の処理を行うことで、図8(c)に示す凹型の3D曲面を積層基板20に形成することができる。 By performing the processing of the first or second embodiment with the conductive layer 12 of the laminated substrate 20 on the concave mold side, the convex 3D curved surface shown in FIG. 8B can be formed on the laminated substrate 20. can. Further, by performing the processing of the first or second embodiment with the resin substrate 11 of the laminated substrate 20 on the concave mold side, the concave 3D curved surface shown in FIG. 8C is formed on the laminated substrate 20. Can be done.

(積層基板の第3の例)
図9は、積層基板の第3の例を示す断面図である。図9(a)は曲面を形成する前の状態を示し、図9(b)は凸加工が行われた後の状態を示し、図9(c)は凹加工が行われた後の状態を示す。第3の積層基板30は、導電層12上に有機電子材料層14を有する有機電子デバイス基板である。他の構成は第2の積層基板20と同様である。
(Third example of laminated substrate)
FIG. 9 is a cross-sectional view showing a third example of the laminated substrate. FIG. 9A shows a state before forming a curved surface, FIG. 9B shows a state after convex processing is performed, and FIG. 9C shows a state after concave processing is performed. show. The third laminated substrate 30 is an organic electronic device substrate having an organic electronic material layer 14 on the conductive layer 12. Other configurations are the same as those of the second laminated substrate 20.

有機電子材料層14は、単層又は積層で構成され、例えば、電気印加により発色、発光、偏光、変形等の機能を発現する。エレクトロクロミック、エレクトロルミネッセンス、ケミカルルミネッセンス、エレクトロフォレティック、エレクトロウエッティング、液晶、圧電等の従来の有機電子材料層をそのまま有機電子材料層14に用いることができる。有機電子材料層14に無機ナノ粒子等の無機材料が混合されていてもよい。有機電子材料層14の合計の厚さは一般に50μm以下である。塗工方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の各種印刷法を用いることができる。 The organic electronic material layer 14 is composed of a single layer or a laminated layer, and exhibits functions such as color development, light emission, polarization, and deformation by applying electricity, for example. Conventional organic electronic material layers such as electrochromic, electroluminescence, chemical luminescence, electrophoretic, electrowetting, liquid crystal, and piezoelectric can be used as they are for the organic electronic material layer 14. Inorganic materials such as inorganic nanoparticles may be mixed in the organic electronic material layer 14. The total thickness of the organic electronic material layer 14 is generally 50 μm or less. Examples of the coating method include spin coat method, casting method, microgravure coat method, gravure coat method, bar coat method, roll coat method, wire bar coat method, dip coat method, slit coat method, capillary coat method, and spray. Various printing methods such as a coating method, a nozzle coating method, a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, and an inkjet printing method can be used.

積層基板30の有機電子材料層14を凹金型側にして第1又は第2の実施形態の処理を行うことで、図9(b)に示す凸型の3D曲面を積層基板30に形成することができる。また、積層基板30の樹脂基板11を凹金型側にして第1又は第2の実施形態の処理を行うことで、図9(c)に示す凹型の3D曲面を積層基板30に形成することができる。そして、3D曲面が形成された積層基板30は、例えば、有機電子デバイス基板として用いることができる。従って、3D曲面を備えた有機電子デバイス基板を優れた生産性で得ることができる。 By performing the processing of the first or second embodiment with the organic electronic material layer 14 of the laminated substrate 30 on the concave mold side, the convex 3D curved surface shown in FIG. 9B is formed on the laminated substrate 30. be able to. Further, by performing the processing of the first or second embodiment with the resin substrate 11 of the laminated substrate 30 on the concave mold side, the concave 3D curved surface shown in FIG. 9C is formed on the laminated substrate 30. Can be done. The laminated substrate 30 on which the 3D curved surface is formed can be used, for example, as an organic electronic device substrate. Therefore, an organic electronic device substrate having a 3D curved surface can be obtained with excellent productivity.

(積層基板の第4の例)
図10は、積層基板の第4の例を示す断面図である。図10(a)は曲面を形成する前の状態を示し、図10(b)は曲面加工が行われた後の状態を示す。第4の積層基板40は、積層基板20と同様の構成の積層基板20a及び積層基板20bを有する導電層形成基板である。積層基板20aは、樹脂基板11a、下地層13a及び導電層12aを有し、積層基板20bは、樹脂基板11b、下地層13b及び導電層12bを有する。積層基板40は、導電層12a及び導電層12bを互いに接着する両面接着層41を有する。つまり、積層基板40は、積層基板20a及び積層基板20bが両面接着層41により互いに貼り合わされた構造を備える。樹脂基板11a及び11b、導電層12a及び12b、下地層13a及び13bは、それぞれ樹脂基板11、導電層12及び下地層13と同様の構成を備える。樹脂基板11a及び下地層13aが一つの支持基板に含まれ、樹脂基板11b及び下地層13bが他の一つの支持基板に含まれる。両面接着層41は、例えばOCA(Optical Clear Adhesive)テープである。
(Fourth example of laminated substrate)
FIG. 10 is a cross-sectional view showing a fourth example of the laminated substrate. FIG. 10A shows a state before the curved surface is formed, and FIG. 10B shows a state after the curved surface is processed. The fourth laminated substrate 40 is a conductive layer forming substrate having a laminated substrate 20a and a laminated substrate 20b having the same configuration as the laminated substrate 20. The laminated substrate 20a has a resin substrate 11a, a base layer 13a, and a conductive layer 12a, and the laminated substrate 20b has a resin substrate 11b, a base layer 13b, and a conductive layer 12b. The laminated substrate 40 has a double-sided adhesive layer 41 that adheres the conductive layer 12a and the conductive layer 12b to each other. That is, the laminated substrate 40 has a structure in which the laminated substrate 20a and the laminated substrate 20b are bonded to each other by the double-sided adhesive layer 41. The resin substrates 11a and 11b, the conductive layers 12a and 12b, and the base layers 13a and 13b have the same configurations as the resin substrate 11, the conductive layer 12, and the base layer 13, respectively. The resin substrate 11a and the base layer 13a are included in one support substrate, and the resin substrate 11b and the base layer 13b are included in the other support substrate. The double-sided adhesive layer 41 is, for example, an OCA (Optical Clear Adhesive) tape.

図10(a)に示す積層基板40は、例えば、両面接着層41を用いて積層基板20aと積層基板20bとを貼り合わせることで得られる。この貼り合わせには従来の貼り合わせ装置を用いることができる。そして、積層基板40の積層基板20aを凹金型側にして第1又は第2の実施形態の処理を行うことで、図10(b)に示す3D曲面を積層基板40に形成することができる。そして、曲面が形成された積層基板40は、例えば、貼り合せ構成の導電層形成基板として用いることができる。 The laminated substrate 40 shown in FIG. 10A can be obtained by, for example, bonding the laminated substrate 20a and the laminated substrate 20b using the double-sided adhesive layer 41. A conventional bonding device can be used for this bonding. Then, by performing the processing of the first or second embodiment with the laminated substrate 20a of the laminated substrate 40 on the concave mold side, the 3D curved surface shown in FIG. 10B can be formed on the laminated substrate 40. .. The laminated substrate 40 on which the curved surface is formed can be used, for example, as a conductive layer forming substrate having a bonded structure.

一般に、2つの曲面基板を貼り合せるためには、高精度に曲率を制御した曲面基板を用意し、その上で、高精度の専用貼り合せ装置が必要とされる。これに対し、第1又は第2の実施形態によれば、平板状の基板に用いられる従来の貼り合せ装置を使用して、3D曲面を有する貼り合せ構成の積層基板40を得ることができる。つまり、低コストかつ優れた生産性で、導電層形成基板として使用可能な積層基板40を得ることができる。 Generally, in order to bond two curved substrates, a curved substrate whose curvature is controlled with high accuracy is prepared, and a dedicated bonding device with high accuracy is required on the curved substrate. On the other hand, according to the first or second embodiment, it is possible to obtain a laminated substrate 40 having a bonded structure having a 3D curved surface by using a conventional bonding device used for a flat plate-shaped substrate. That is, it is possible to obtain a laminated substrate 40 that can be used as a conductive layer forming substrate at low cost and excellent productivity.

両面接着層41には光学特性及び膜厚の均一性の点からOCAテープを用いることが好ましい。一般的な接着剤(光硬化型、熱硬化型)を用いることもできる。両面接着層41の厚さは、例えば20μm~200μmとする。 It is preferable to use OCA tape for the double-sided adhesive layer 41 from the viewpoint of optical characteristics and film thickness uniformity. A general adhesive (photo-curing type, thermosetting type) can also be used. The thickness of the double-sided adhesive layer 41 is, for example, 20 μm to 200 μm.

(積層基板の第5の例)
図11は、積層基板の第5の例を示す断面図である。図11(a)は曲面を形成する前の状態を示し、図11(b)は曲面加工が行われた後の状態を示す。第5の積層基板50は、積層基板30と同様の構成の積層基板30a及び積層基板30bを有する有機電子デバイス基板である。積層基板30aは、樹脂基板11a、下地層13a、導電層12a及び有機電子材料層14aを有し、積層基板30bは、樹脂基板11b、下地層13b、導電層12b及び有機電子材料層14bを有する。積層基板50は、有機電子材料層14a及び有機電子材料層14bに挟まれる有機電子材料層14cを有する。つまり、積層基板50は、積層基板30a及び積層基板30bが有機電子材料層14cを挟み込んだ構造を備える。樹脂基板11a及び11b、導電層12a及び12b、下地層13a及び13bは、それぞれ樹脂基板11、導電層12及び下地層13と同様の構成を備える。また、例えば、有機電子材料層14aは酸化エレクトロクロミック(EC)層であり、有機電子材料層14bは還元EC層であり、有機電子材料層14cは固体電解質層である。積層基板50は、導電層12a、有機電子材料層14a、有機電子材料層14c、有機電子材料層14b及び導電層12bを側方から覆って保護する保護層51を有する。導電層12aの一部及び導電層12bの一部が引き出し部として保護層51から露出している。図12に、保護層とこの保護層に覆われる各層との平面視での位置関係を示す。図12(a)は、保護層51と導電層12bとの位置関係を示し、図12(b)は、保護層51と導電層12aとの位置関係を示し、図12(c)は、保護層51と有機電子材料層14b、14c及び14aとの位置関係を示す。
(Fifth example of laminated substrate)
FIG. 11 is a cross-sectional view showing a fifth example of the laminated substrate. FIG. 11A shows a state before the curved surface is formed, and FIG. 11B shows a state after the curved surface is processed. The fifth laminated substrate 50 is an organic electronic device substrate having a laminated substrate 30a and a laminated substrate 30b having the same configuration as the laminated substrate 30. The laminated substrate 30a has a resin substrate 11a, a base layer 13a, a conductive layer 12a and an organic electronic material layer 14a, and the laminated substrate 30b has a resin substrate 11b, a base layer 13b, a conductive layer 12b and an organic electronic material layer 14b. .. The laminated substrate 50 has an organic electronic material layer 14c sandwiched between the organic electronic material layer 14a and the organic electronic material layer 14b. That is, the laminated substrate 50 has a structure in which the laminated substrate 30a and the laminated substrate 30b sandwich the organic electronic material layer 14c. The resin substrates 11a and 11b, the conductive layers 12a and 12b, and the base layers 13a and 13b have the same configurations as the resin substrate 11, the conductive layer 12, and the base layer 13, respectively. Further, for example, the organic electronic material layer 14a is an oxide electrochromic (EC) layer, the organic electronic material layer 14b is a reduced EC layer, and the organic electronic material layer 14c is a solid electrolyte layer. The laminated substrate 50 has a protective layer 51 that covers and protects the conductive layer 12a, the organic electronic material layer 14a, the organic electronic material layer 14c, the organic electronic material layer 14b, and the conductive layer 12b from the side. A part of the conductive layer 12a and a part of the conductive layer 12b are exposed from the protective layer 51 as a drawing portion. FIG. 12 shows the positional relationship between the protective layer and each layer covered by the protective layer in a plan view. 12 (a) shows the positional relationship between the protective layer 51 and the conductive layer 12b, FIG. 12 (b) shows the positional relationship between the protective layer 51 and the conductive layer 12a, and FIG. 12 (c) shows the positional relationship between the protective layer 51 and the conductive layer 12a. The positional relationship between the layer 51 and the organic electronic material layers 14b, 14c and 14a is shown.

保護層51は積層基板50(有機電子デバイス基板)の側面部を物理的および化学的に保護するように形成されている。保護層51は、例えば、UV硬化性や熱硬化性の絶縁性樹脂等を、側面及び/又は上面を覆うように塗布し、硬化させることにより形成できる。保護層51の厚みは、特に制限はなく、目的に応じて適宜選択することができ、0.5μm~10μmであることが好ましい。 The protective layer 51 is formed so as to physically and chemically protect the side surface portion of the laminated substrate 50 (organic electronic device substrate). The protective layer 51 can be formed by, for example, applying a UV curable or thermosetting insulating resin so as to cover the side surface and / or the upper surface and curing the protective layer 51. The thickness of the protective layer 51 is not particularly limited and may be appropriately selected depending on the intended purpose, and is preferably 0.5 μm to 10 μm.

図11(a)に示す積層基板50は、例えば、積層基板30aと積層基板30bとを、これらの間に有機電子材料層14cを挟んで貼り合わせ、次いで保護層51を形成することで得られる。この貼り合わせには従来の貼り合わせ装置を用いることができる。そして、積層基板50の積層基板30を凹金型側にして第1又は第2の実施形態の処理を行うことで、図11(b)に示す3D曲面を積層基板50に形成することができる。そして、曲面が形成された積層基板50は、例えば、貼り合せ構成の有機電子デバイス基板として用いることができる。 The laminated substrate 50 shown in FIG. 11A is obtained, for example, by laminating a laminated substrate 30a and a laminated substrate 30b with an organic electronic material layer 14c sandwiched between them, and then forming a protective layer 51. .. A conventional bonding device can be used for this bonding. Then, by performing the processing of the first or second embodiment with the laminated substrate 30 of the laminated substrate 50 on the concave mold side, the 3D curved surface shown in FIG. 11B can be formed on the laminated substrate 50. .. The laminated substrate 50 on which the curved surface is formed can be used, for example, as an organic electronic device substrate having a bonded structure.

第1又は第2の実施形態によれば、平板状の基板に用いられる従来の貼り合せ装置を使用して、3D曲面を有する貼り合せ構成の積層基板50を得ることができる。つまり、低コストかつ優れた生産性で、有機電子デバイス基板として使用可能な積層基板50を得ることができる。 According to the first or second embodiment, it is possible to obtain a laminated substrate 50 having a bonded structure having a 3D curved surface by using a conventional bonding device used for a flat plate-shaped substrate. That is, it is possible to obtain a laminated substrate 50 that can be used as an organic electronic device substrate at low cost and excellent productivity.

なお、有機電子材料層14a及び14cの発色が樹脂基板11a又は11bの一方のみから視認される用途では、視認される側の樹脂基板は透明であるが、他方の樹脂基板は透明でなくてもよい。 In applications where the color development of the organic electronic material layers 14a and 14c is visually recognized from only one of the resin substrates 11a or 11b, the resin substrate on the visually recognized side is transparent, but the other resin substrate is not transparent. good.

(積層基板の第6の例)
図13は、積層基板の第6の例を示す断面図である。図13(a)は曲面を形成する前の状態を示し、図13(b)は曲面加工が行われた後の状態を示す。第6の積層基板60は、積層基板63a及び積層基板63bを有する有機電子デバイス基板である。積層基板63aは、樹脂基板11a、導電層12a及び有機電子材料層14aを有し、積層基板63bは、樹脂基板11b、導電層12b及び有機電子材料層14bを有する。積層基板63aは、更に、加工用樹脂基板61a及び両面接着層62aを有し、両面接着層62aにより加工用樹脂基板61a及び樹脂基板11aが互いに接着されている。積層基板63bは、更に、加工用樹脂基板61b及び両面接着層62bを有し、両面接着層62bにより加工用樹脂基板61b及び樹脂基板11bが互いに接着されている。積層基板60は、有機電子材料層14a及び有機電子材料層14bに挟まれる有機電子材料層14cを有する。つまり、積層基板60は、積層基板63a及び積層基板63bが有機電子材料層14cを挟み込んだ構造を備える。積層基板50と同様に、積層基板60は保護層51を有し、導電層12aの一部及び導電層12bの一部が引き出し部として保護層51から露出している。
(Sixth example of laminated substrate)
FIG. 13 is a cross-sectional view showing a sixth example of the laminated substrate. FIG. 13A shows a state before the curved surface is formed, and FIG. 13B shows a state after the curved surface is processed. The sixth laminated substrate 60 is an organic electronic device substrate having a laminated substrate 63a and a laminated substrate 63b. The laminated substrate 63a has a resin substrate 11a, a conductive layer 12a, and an organic electronic material layer 14a, and the laminated substrate 63b has a resin substrate 11b, a conductive layer 12b, and an organic electronic material layer 14b. The laminated substrate 63a further has a processing resin substrate 61a and a double-sided adhesive layer 62a, and the processing resin substrate 61a and the resin substrate 11a are bonded to each other by the double-sided adhesive layer 62a. The laminated substrate 63b further has a processing resin substrate 61b and a double-sided adhesive layer 62b, and the processing resin substrate 61b and the resin substrate 11b are bonded to each other by the double-sided adhesive layer 62b. The laminated substrate 60 has an organic electronic material layer 14c sandwiched between the organic electronic material layer 14a and the organic electronic material layer 14b. That is, the laminated substrate 60 has a structure in which the laminated substrate 63a and the laminated substrate 63b sandwich the organic electronic material layer 14c. Like the laminated substrate 50, the laminated substrate 60 has a protective layer 51, and a part of the conductive layer 12a and a part of the conductive layer 12b are exposed from the protective layer 51 as a drawing portion.

両面接着層62a及び62bは両面接着層41と同様の構成を備える。加工用樹脂基板61a及び61bは、それぞれ両面接着層62a及び62bにより樹脂基板11a及び11bの外側に貼り付けられ、曲面加工精度を向上する。加工用樹脂基板61a及び61bには、樹脂基板11a、11bに使用可能な材料を用いることができ、例えば、加工用樹脂基板61a及び61bの厚さは、樹脂基板11a及び11bの厚さと同程度である。ただし、加工用樹脂基板61a及び61bの弾性率は樹脂基板11a及び11bの弾性率よりも小さいことが好ましい。加工用樹脂基板61a及び61bの弾性率が樹脂基板11a及び11bの弾性率より大きい場合、曲げ加工時の中立軸が導電層12a及び12b並びに有機電子材料層14a~14c等の機能層が形成された膜厚中心部から遠くなることがある。このような場合、無機酸化物等の導電層12a及び12bの歪みが大きくなりやすい。加工用樹脂基板61a及び61bに特に好適な材料は透明性及び加工性に優れるポリカーボネイトである。 The double-sided adhesive layers 62a and 62b have the same configuration as the double-sided adhesive layer 41. The processing resin substrates 61a and 61b are attached to the outside of the resin substrates 11a and 11b by the double-sided adhesive layers 62a and 62b, respectively, to improve the curved surface processing accuracy. Materials that can be used for the resin substrates 11a and 11b can be used for the processing resin substrates 61a and 61b. For example, the thickness of the processing resin substrates 61a and 61b is about the same as the thickness of the resin substrates 11a and 11b. Is. However, it is preferable that the elastic modulus of the processing resin substrates 61a and 61b is smaller than the elastic modulus of the resin substrates 11a and 11b. When the elastic modulus of the resin substrates 61a and 61b for processing is larger than the elastic modulus of the resin substrates 11a and 11b, the neutral axis during bending is formed with the conductive layers 12a and 12b and functional layers such as the organic electronic material layers 14a to 14c. It may be far from the center of the film thickness. In such a case, the strain of the conductive layers 12a and 12b such as the inorganic oxide tends to be large. A material particularly suitable for the resin substrates 61a and 61b for processing is polycarbonate having excellent transparency and processability.

図13(a)に示す積層基板60を得るには、例えば、積層基板63aと積層基板63bとを、これらの間に有機電子材料層14cを挟んで貼り合わせ、次いで保護層51を形成することで得られる。この貼り合わせには従来の貼り合わせ装置を用いることができる。そして、積層基板60の積層基板63aを凹金型側にして第1又は第2の実施形態の処理を行うことで、図13(b)に示す3D曲面を積層基板60に形成することができる。そして、曲面が形成された積層基板60は、例えば、貼り合せ構成の有機電子デバイス基板として用いることができる。 In order to obtain the laminated substrate 60 shown in FIG. 13 (a), for example, the laminated substrate 63a and the laminated substrate 63b are bonded together with the organic electronic material layer 14c sandwiched between them, and then the protective layer 51 is formed. Obtained at. A conventional bonding device can be used for this bonding. Then, by performing the processing of the first or second embodiment with the laminated substrate 63a of the laminated substrate 60 on the concave mold side, the 3D curved surface shown in FIG. 13B can be formed on the laminated substrate 60. .. The laminated substrate 60 on which the curved surface is formed can be used, for example, as an organic electronic device substrate having a bonded structure.

第1又は第2の実施形態によれば、平板状の基板に用いられる従来の貼り合せ装置を使用して、3D曲面を有する貼り合せ構成の積層基板60を得ることができる。つまり、低コストかつ優れた生産性で、有機電子デバイス基板として使用可能な積層基板60を得ることができる。特に、積層基板60が加工用樹脂基板61a及び61bを含むため、加工性に優れた加工用樹脂基板61a及び61bを選択することで、積層基板60全体の加工性をより向上することができ、曲面精度に優れた積層基板60を得ることができる。 According to the first or second embodiment, it is possible to obtain a laminated substrate 60 having a bonded structure having a 3D curved surface by using a conventional bonding device used for a flat plate-shaped substrate. That is, it is possible to obtain a laminated substrate 60 that can be used as an organic electronic device substrate at low cost and excellent productivity. In particular, since the laminated substrate 60 includes the processing resin substrates 61a and 61b, the processability of the entire laminated substrate 60 can be further improved by selecting the processing resin substrates 61a and 61b having excellent processability. It is possible to obtain a laminated substrate 60 having excellent curved surface accuracy.

積層基板60を3D曲面状に加工した後に、両面接着層62aを樹脂基板11aから剥離し、両面接着層62bを樹脂基板11bから剥離してもよい。この場合、加工用樹脂基板61aおよび61bが除去されて、第5の積層基板50が得られる。 After processing the laminated substrate 60 into a 3D curved surface shape, the double-sided adhesive layer 62a may be peeled off from the resin substrate 11a, and the double-sided adhesive layer 62b may be peeled off from the resin substrate 11b. In this case, the processing resin substrates 61a and 61b are removed to obtain a fifth laminated substrate 50.

(積層基板の第7の例)
図14は、積層基板の第7の例を示す断面図である。図14(a)は曲面を形成する前の状態を示し、図14(b)は曲面加工が行われた後の状態を示す。第7の積層基板70は、積層基板73a及び薄膜トランジスタ(Thin Film Transistor:TFT)基板73bを有する有機電子デバイス基板である。TFT基板73bは基板及びその上にマトリクス状に配置された電極を含み、これら電極は導電層に含まれる。TFT基板73bに含まれる導電層はマトリクス状に分割されている。積層基板70は、導電層12a及びTFT基板73bに挟まれる有機電子材料層74を有する。つまり、積層基板70は、積層基板73a及びTFT基板73bが有機電子材料層74を挟み込んだ構造を備える。有機電子材料層74は、例えばマイクロカプセル電気泳動層である。積層基板70は、導電層12a及び有機電子材料層74を側方から覆って保護する保護層71を有し、導電層12aの一部が引き出し部として保護層71から露出している。
(7th example of laminated substrate)
FIG. 14 is a cross-sectional view showing a seventh example of the laminated substrate. FIG. 14A shows a state before the curved surface is formed, and FIG. 14B shows a state after the curved surface is processed. The seventh laminated substrate 70 is an organic electronic device substrate having a laminated substrate 73a and a thin film transistor (TFT) substrate 73b. The TFT substrate 73b includes a substrate and electrodes arranged in a matrix on the substrate, and these electrodes are included in the conductive layer. The conductive layer contained in the TFT substrate 73b is divided into a matrix. The laminated substrate 70 has an organic electronic material layer 74 sandwiched between the conductive layer 12a and the TFT substrate 73b. That is, the laminated substrate 70 has a structure in which the laminated substrate 73a and the TFT substrate 73b sandwich the organic electronic material layer 74. The organic electronic material layer 74 is, for example, a microcapsule electrophoresis layer. The laminated substrate 70 has a protective layer 71 that covers and protects the conductive layer 12a and the organic electronic material layer 74 from the side, and a part of the conductive layer 12a is exposed from the protective layer 71 as a drawer portion.

(積層基板の第8の例)
図15は、積層基板の第8の例を示す断面図である。図15(a)は曲面を形成する前の状態を示し、図15(b)は曲面加工が行われた後の状態を示す。第8の積層基板80は、第5の積層基板50及び両面接着層62aを有する有機電子デバイス基板である。両面接着層62aの一方の面に樹脂基板11aが接着され、両面接着層62aの他方の面は、この面から剥離可能な保護シート81で覆われている。保護シート81は、両面接着層62aを保護し、積層基板80の取り扱い性を向上するために用いられる。保護シート81としては、例えばポリエチレンフィルム、ポリプロピレンフィルム等のエチレン系フィルムが用いられる。保護シート81の材料は、曲面形成時の温度等を考慮して選択することができる。保護シート81の厚さは、例えば10μm~500μmである。両面接着層62a及び保護シート81として、離型フィルム又は離型紙を用いてもよい。
(8th example of laminated substrate)
FIG. 15 is a cross-sectional view showing an eighth example of a laminated substrate. FIG. 15A shows a state before the curved surface is formed, and FIG. 15B shows a state after the curved surface is processed. The eighth laminated substrate 80 is an organic electronic device substrate having a fifth laminated substrate 50 and a double-sided adhesive layer 62a. The resin substrate 11a is adhered to one surface of the double-sided adhesive layer 62a, and the other surface of the double-sided adhesive layer 62a is covered with a protective sheet 81 that can be peeled off from this surface. The protective sheet 81 is used to protect the double-sided adhesive layer 62a and improve the handleability of the laminated substrate 80. As the protective sheet 81, for example, an ethylene film such as a polyethylene film or a polypropylene film is used. The material of the protective sheet 81 can be selected in consideration of the temperature at the time of forming the curved surface and the like. The thickness of the protective sheet 81 is, for example, 10 μm to 500 μm. A release film or a release paper may be used as the double-sided adhesive layer 62a and the protective sheet 81.

図15(a)に示す積層基板80は、例えば、積層基板50の樹脂基板11aに、保護シート81が片面に設けられた両面接着層62aを貼り付けることで得られる。そして、積層基板80の保護シート81を凹金型側にして第1又は第2の実施形態の処理を行うことで、図15(b)に示す3D曲面を積層基板80に形成することができる。そして、曲面が形成された積層基板80は、例えば、貼り合せ構成の有機電子デバイス基板として用いることができる。また、本実施形態では、保護シート81を剥離して、所望の曲面部位に両面接着層62aを貼り付けることができる。従って、積層基板80とは同時に曲面を形成することができない部位に対しても積層基板80を貼り付けて配置することができる。 The laminated substrate 80 shown in FIG. 15A can be obtained, for example, by attaching a double-sided adhesive layer 62a having a protective sheet 81 on one side to the resin substrate 11a of the laminated substrate 50. Then, by performing the processing of the first or second embodiment with the protective sheet 81 of the laminated substrate 80 on the concave mold side, the 3D curved surface shown in FIG. 15B can be formed on the laminated substrate 80. .. The laminated substrate 80 on which the curved surface is formed can be used, for example, as an organic electronic device substrate having a bonded structure. Further, in the present embodiment, the protective sheet 81 can be peeled off and the double-sided adhesive layer 62a can be attached to a desired curved surface portion. Therefore, the laminated substrate 80 can be attached and arranged even on a portion where a curved surface cannot be formed at the same time as the laminated substrate 80.

積層基板60において、加工用樹脂基板61a及び61bに代えて保護シート81を用いてもよい。 In the laminated substrate 60, the protective sheet 81 may be used instead of the processing resin substrates 61a and 61b.

平板状の有機電子デバイス基板を貼り合わせた素子構造を得た後に3D曲面状に加工することで、従来の貼り合せ装置をそのまま活用することができるため、生産性に優れた、貼り合せ構成のエレクトロクロミック基板等の有機電子デバイス基板を得ることができる。同様に、生産性に優れた、貼り合わせ構成の透明導電基板を得ることもできる。 By obtaining an element structure in which a flat plate-shaped organic electronic device substrate is bonded and then processing it into a 3D curved surface, the conventional bonding device can be used as it is, so that the bonding configuration is excellent in productivity. An organic electronic device substrate such as an electrochromic substrate can be obtained. Similarly, it is possible to obtain a transparent conductive substrate having a bonded structure with excellent productivity.

以下に、本発明の実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.

Figure 0007013838000001
Figure 0007013838000001

(実施例1)
実施例1では、第1の積層基板10の形態の導電層形成基板を用いた。樹脂基板として、厚さが0.3mm、直径が100mmの平面延伸ポリカーボネイトシート(PC)基板を準備し、その上に導電層をスパッタ法により形成した。導電層の形成では、フルヤ金属社製のAgPdCu合金(APC)ターゲットを用いた。製膜時のスパッタパワーは3kWに設定し、製膜時間を調整して導電層の厚さを100nmとした。スパッタ装置にはOerlikon社のソラリスを用いた。導電層の厚さはKLA-Tenchore社製のαステップD-500で測定した。4端子抵抗測定機として株式会社三菱化学アナリテック製のロレスタ-GPを用いて導電層のシート抵抗を測定したところ、導電層のシート抵抗は10mΩ/□以下であった。
(Example 1)
In Example 1, the conductive layer-forming substrate in the form of the first laminated substrate 10 was used. As a resin substrate, a planar stretched polycarbonate sheet (PC) substrate having a thickness of 0.3 mm and a diameter of 100 mm was prepared, and a conductive layer was formed on the planar stretched polycarbonate sheet (PC) substrate by a sputtering method. For the formation of the conductive layer, an AgPdCu alloy (APC) target manufactured by Furuya Metals Co., Ltd. was used. The sputtering power at the time of film formation was set to 3 kW, and the film formation time was adjusted so that the thickness of the conductive layer was 100 nm. A Solaris manufactured by Oerlikon was used as the sputtering apparatus. The thickness of the conductive layer was measured by α step D-500 manufactured by KLA-Tenchore. When the sheet resistance of the conductive layer was measured using Loresta-GP manufactured by Mitsubishi Chemical Analytec Co., Ltd. as a 4-terminal resistance measuring machine, the sheet resistance of the conductive layer was 10 mΩ / □ or less.

その後、曲面形成装置100を用いて導電層形成基板を3D曲面状に加工した。この加工では、曲率半径が131mmで直径が200mmの球面凹金型を準備し、弾性ゴムシートとして厚さが0.3mmのシリコーンゴムシートを用いた。用いた球面凹金型は、JIS A7075のアルミニウム合金製である。凹金型を146℃で温調した後、弾性ゴムシートの上に導電層形成基板を載せ、ポンプ吸引により、凹金型に弾性ゴムシートと導電層形成基板を90秒密着させて塑性変形させた。その後、ポンプ吸引孔の排気を大気圧に戻すことで、弾性ゴムシートと導電層形成基板が金型から離型して、球面状の3D曲面を形成した導電層形成基板を得た。曲げ加工としては、凸加工及び凹加工の両方を行った。 Then, the conductive layer forming substrate was processed into a 3D curved surface shape by using the curved surface forming apparatus 100. In this processing, a spherical concave mold having a radius of curvature of 131 mm and a diameter of 200 mm was prepared, and a silicone rubber sheet having a thickness of 0.3 mm was used as the elastic rubber sheet. The spherical concave mold used is made of JIS A7075 aluminum alloy. After adjusting the temperature of the concave mold at 146 ° C, the conductive layer forming substrate is placed on the elastic rubber sheet, and the elastic rubber sheet and the conductive layer forming substrate are brought into close contact with the concave mold for 90 seconds by pump suction to be plastically deformed. rice field. Then, by returning the exhaust of the pump suction hole to atmospheric pressure, the elastic rubber sheet and the conductive layer forming substrate were separated from the mold to obtain a conductive layer forming substrate having a spherical 3D curved surface. As the bending process, both convex and concave processing were performed.

そして、加工後の導電層について、散乱回折光による観察、及び走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いた観察により、破壊(クラック)の有無の確認を行った。この結果、凸加工及び凹加工のいずれにおいてもクラックは発生していなかった。 Then, the presence or absence of breakage (cracks) was confirmed in the processed conductive layer by observing with scattered diffracted light and observing with a scanning electron microscope (SEM). As a result, no cracks were generated in either the convex processing or the concave processing.

(実施例2~5)
実施例2~5では、第2の積層基板20の形態の導電層形成基板を用いた。樹脂基板として、厚さが0.3mm、156mm角の平面延伸ポリカーボネイトシート基板を準備し、その上に下地層を形成した。下地層の材料としては、名阪真空社製の架橋密度を調整した4種類のUV硬化型のアクリル樹脂を用いた。実施例2では、UC1-088(アクリル1)を用い、実施例3では、UC1-094(アクリル2)を用い、実施例4では、UC1-077(アクリル3)を用い、実施例5では、UC1-090(アクリル4)を用いた。実施例2及び5の下地層の厚さは9μm、実施例3及び4の下地層の厚さは5μmであった。そして、下地層の硬さ(HIT)をナノインデンター(エリオニクス社製,ENT-3100)で測定した。次いで、下地層上に、In:90質量%、SnO:10質量%のITOターゲットを用いて、スパッタ法により無機酸化物の導電層を形成した。製膜時のスパッタパワーは6.5kWに設定し、酸素/アルゴン(Ar)流量比は3.6%に設定し、製膜時間で導電層の厚さを調整した。スパッタ装置にはOerlikon社のソラリスを用いた。導電層の厚さはKLA-Tenchore社製のαステップD-500で測定した。4端子抵抗測定機として株式会社三菱化学アナリテック製のロレスタ-GPを用いて導電層のシート抵抗を測定した。更に、分光光度計として日立ハイテクサイエンス株式会社製のUH4150を用いて550nmの透過率を測定した。これらの結果を表1に示す。
(Examples 2 to 5)
In Examples 2 to 5, the conductive layer forming substrate in the form of the second laminated substrate 20 was used. As a resin substrate, a planar stretched polycarbonate sheet substrate having a thickness of 0.3 mm and a square of 156 mm was prepared, and a base layer was formed on the planar stretched polycarbonate sheet substrate. As the material of the base layer, four types of UV-curable acrylic resins manufactured by Meihan Vacuum Co., Ltd. with adjusted cross-linking densities were used. In Example 2, UC1-088 (acrylic 1) is used, in Example 3, UC1-094 (acrylic 2) is used, in Example 4, UC1-077 (acrylic 3) is used, and in Example 5, UC1-090 (acrylic 4) was used. The thickness of the base layer of Examples 2 and 5 was 9 μm, and the thickness of the base layer of Examples 3 and 4 was 5 μm. Then, the hardness (HIT) of the base layer was measured with a nano indenter (ENT-3100 manufactured by Elionix Inc.). Next, a conductive layer of an inorganic oxide was formed on the base layer by a sputtering method using an ITO target of In 2O 3 : 90% by mass and SnO 2 : 10% by mass. The sputtering power at the time of film formation was set to 6.5 kW, the oxygen / argon (Ar) flow rate ratio was set to 3.6%, and the thickness of the conductive layer was adjusted by the film formation time. A Solaris manufactured by Oerlikon was used as the sputtering apparatus. The thickness of the conductive layer was measured by α step D-500 manufactured by KLA-Tenchore. The sheet resistance of the conductive layer was measured using Loresta-GP manufactured by Mitsubishi Chemical Analytec Co., Ltd. as a 4-terminal resistance measuring machine. Further, a transmittance of 550 nm was measured using a UH4150 manufactured by Hitachi High-Tech Science Co., Ltd. as a spectrophotometer. These results are shown in Table 1.

次いで、レーザ光を用いて導電層形成基板を図16に示す平面形状に加工した。この導電層形成基板の輪郭は、互いに平行な2本の直線部及びこれら直線部の両端を繋ぐ2本の円弧状の曲線部を含む。直線部の間の距離は54.5mmであり、曲線部の間の距離(円弧の直径に相当)は75.5mmである。その後、図3に示す凸金型を備えた曲面形成装置100を用いて導電層形成基板を3D曲面状に加工した。この加工では、曲率半径が131mmで直径が200mmの球面凹金型及びこれと対になる凸金型を準備し、基板保持ゴムシート及び弾性ゴムシートとして厚さが0.3mmのシリコーンゴムシートを用いた。用いた球面凹金型及び凸金型は、JIS A7075のアルミニウム合金製である。凹金型を146℃に温調した後、弾性ゴムシートの上に導電層形成基板を載せ、ポンプ吸引により、凹金型に弾性ゴムシートと導電層形成基板を60秒密着させて塑性変形させた。続いて、146℃に温調した凸金型を下降させ、90秒のプレスを行った。その後、ポンプ吸引孔の排気を大気圧に戻すことで、弾性ゴムシートと導電層形成基板が金型から離型して、球面状の3D曲面を形成した導電層形成基板を得た。曲げ加工としては、凸加工及び凹加工の両方を行った。 Next, the conductive layer-forming substrate was processed into a planar shape shown in FIG. 16 using laser light. The contour of the conductive layer forming substrate includes two linear portions parallel to each other and two arcuate curved portions connecting both ends of the straight portions. The distance between the straight portions is 54.5 mm, and the distance between the curved portions (corresponding to the diameter of the arc) is 75.5 mm. Then, the conductive layer forming substrate was processed into a 3D curved surface shape by using the curved surface forming apparatus 100 provided with the convex mold shown in FIG. In this processing, a spherical concave mold having a radius of curvature of 131 mm and a diameter of 200 mm and a convex mold paired with the spherical concave mold are prepared, and a silicone rubber sheet having a thickness of 0.3 mm is prepared as a substrate holding rubber sheet and an elastic rubber sheet. Using. The spherical concave mold and the convex mold used are made of JIS A7075 aluminum alloy. After the temperature of the concave mold is adjusted to 146 ° C, the conductive layer forming substrate is placed on the elastic rubber sheet, and the elastic rubber sheet and the conductive layer forming substrate are brought into close contact with the concave mold for 60 seconds by pump suction to be plastically deformed. rice field. Subsequently, the convex die whose temperature was adjusted to 146 ° C. was lowered, and a press was performed for 90 seconds. Then, by returning the exhaust of the pump suction hole to atmospheric pressure, the elastic rubber sheet and the conductive layer forming substrate were separated from the mold to obtain a conductive layer forming substrate having a spherical 3D curved surface. As the bending process, both convex and concave processing were performed.

そして、加工後の導電層について、散乱回折光による観察、及びSEMを用いた観察により、破壊(クラック)の有無の確認を行った。この結果、表1に示すように、実施例2及び3では凸加工及び凹加工のいずれにおいてもクラックは発生せず、実施例4及び5では、凹加工でクラックが発生せず、凸加工でのみクラックが発生した。図17に、実施例4の凸加工で観察されたクラックを示す。図17(a)は、散乱回折光による回折結果を示し、図17(b)は、SEMによる観察結果を示す。図17(a)に示すように、クラックは円状又は楕円状に形成されていた。実施例5の凸加工でも、同様のクラックが観察された。 Then, the presence or absence of fracture (crack) was confirmed by observing the processed conductive layer with scattered diffracted light and observing with SEM. As a result, as shown in Table 1, in Examples 2 and 3, no cracks were generated in either the convex processing or the concave processing, and in Examples 4 and 5, no cracks were generated in the concave processing and the convex processing was performed. Only cracks occurred. FIG. 17 shows the cracks observed in the convex processing of Example 4. FIG. 17 (a) shows the diffraction result by the scattered diffracted light, and FIG. 17 (b) shows the observation result by SEM. As shown in FIG. 17 (a), the cracks were formed in a circular or elliptical shape. Similar cracks were observed in the convex processing of Example 5.

(実施例6~8)
実施例6では、導電層として、In:99質量%、ZrO:1質量%のターゲットを用いて、スパッタ法により無機酸化物の導電層を形成した。製膜時のスパッタパワーは6.5kWに設定し、酸素/アルゴン流量比は2.5%に設定した。他の条件は実施例3と同様である。実施例7では、曲率半径が86mmの凹金型を用いた。他の条件は実施例6と同様である。実施例8では、導電層の厚さを220nmとした。他の条件は実施例6と同様である。
(Examples 6 to 8)
In Example 6, a conductive layer of an inorganic oxide was formed by a sputtering method using a target of In 2O 3 : 99% by mass and ZrO 2 : 1% by mass as the conductive layer. The sputtering power at the time of film formation was set to 6.5 kW, and the oxygen / argon flow rate ratio was set to 2.5%. Other conditions are the same as in Example 3. In Example 7, a concave mold having a radius of curvature of 86 mm was used. Other conditions are the same as in Example 6. In Example 8, the thickness of the conductive layer was set to 220 nm. Other conditions are the same as in Example 6.

そして、実施例2と同様の評価を行った。この結果、表1に示すように、実施例6~8のいずれにおいてもクラックは発生しなかった。 Then, the same evaluation as in Example 2 was performed. As a result, as shown in Table 1, no cracks were generated in any of Examples 6 to 8.

(実施例9)
実施例9では、図4に示す曲面形成装置200を用いて導電層形成基板を3D曲面状に加工した。この加工では、曲率半径が131mmで直径が200mmの球面凹金型を準備し、基板保持ゴムシート及び弾性ゴムシートとして厚さが0.3mmのシリコーンゴムシートを用いた。用いた球面凹金型は、JIS A7075のアルミニウム合金製である。弾性ゴムシートの上に導電層形成基板を載せ、凹金型を141℃に温調した後、バイパスバルブを開き、ポンプ吸引によりチャンバ内の圧力を300Paまで減圧した。次いで、バイパスバルブを閉めて、ガス注入出孔からガス(空気)を弾性ゴムシートの上方の空間に注入した。空気圧は0.1MPaとし、凹金型に弾性ゴムシートと導電層形成基板を90秒密着させて塑性変形させた。その後、チャンバ内の圧力を大気圧に戻すことで、弾性ゴムシートと導電層形成基板が金型から離型して、球面状の3D曲面を形成した導電層形成基板を得た。曲げ加工としては、凸加工及び凹加工の両方を行った。他の条件は実施例2と同様である。
(Example 9)
In Example 9, the conductive layer forming substrate was processed into a 3D curved surface using the curved surface forming apparatus 200 shown in FIG. In this processing, a spherical concave mold having a radius of curvature of 131 mm and a diameter of 200 mm was prepared, and a silicone rubber sheet having a thickness of 0.3 mm was used as a substrate holding rubber sheet and an elastic rubber sheet. The spherical concave mold used is made of JIS A7075 aluminum alloy. The conductive layer forming substrate was placed on the elastic rubber sheet, the temperature of the concave mold was adjusted to 141 ° C., the bypass valve was opened, and the pressure in the chamber was reduced to 300 Pa by pump suction. Then, the bypass valve was closed and gas (air) was injected into the space above the elastic rubber sheet through the gas injection port. The air pressure was 0.1 MPa, and the elastic rubber sheet and the conductive layer-forming substrate were brought into close contact with the concave mold for 90 seconds to be plastically deformed. Then, by returning the pressure in the chamber to atmospheric pressure, the elastic rubber sheet and the conductive layer forming substrate were separated from the mold to obtain a conductive layer forming substrate having a spherical 3D curved surface. As the bending process, both convex and concave processing were performed. Other conditions are the same as in Example 2.

そして、実施例2と同様の評価を行った。この結果、表1に示すように、実施例9においてもクラックは発生しなかった。 Then, the same evaluation as in Example 2 was performed. As a result, as shown in Table 1, no cracks were generated in Example 9.

(実施例10)
実施例10では、第3の積層基板30の形態の有機電子デバイス基板を用いた。有機電子材料層として、(a)下記構造式Aで示されるトリアリールアミンを有するラジカル重合性化合物、(b)ポリエチレングリコールジアクリレート、(c)光重合開始剤、及び(d)テトラヒドロフランを、a:b:c:d=10:5:0.15:85(質量比)となるように混合した溶液を塗布し、窒素雰囲気下でUV硬化させることで、1.5μm膜厚の酸化反応性のエレクトロクロミック層を形成した。ポリエチレングリコールジアクリレートとしては、日本化薬株式会社製のKAYARAD PEG400DAを用いた。光重合開始剤としては、BASF社製のIRGACURE 184を用いた。なお、第3の積層基板30では、導電層12及び有機電子材料層14が樹脂基板11及び下地層13より狭く形成されているが、実施例10では、樹脂基板の上面上の全体に下地層、導電層及び有機電子材料層を形成した。他の条件は実施例2と同様である。
[構造式A]
(Example 10)
In Example 10, the organic electronic device substrate in the form of the third laminated substrate 30 was used. As the organic electronic material layer, (a) a radically polymerizable compound having a triarylamine represented by the following structural formula A, (b) polyethylene glycol diacrylate, (c) a photopolymerization initiator, and (d) tetrahydrofuran are used. A mixture of solutions having a ratio of: b: c: d = 10: 5: 0.15: 85 (mass ratio) is applied and UV-cured in a nitrogen atmosphere to have an oxidation reactivity of 1.5 μm film thickness. Formed an electrochromic layer. As the polyethylene glycol diacrylate, KAYARAD PEG400DA manufactured by Nippon Kayaku Co., Ltd. was used. As the photopolymerization initiator, IRGACURE 184 manufactured by BASF was used. In the third laminated substrate 30, the conductive layer 12 and the organic electronic material layer 14 are formed narrower than the resin substrate 11 and the base layer 13, but in the tenth embodiment, the base layer is entirely on the upper surface of the resin substrate. , Conductive layer and organic electronic material layer were formed. Other conditions are the same as in Example 2.
[Structural formula A]

Figure 0007013838000002
Figure 0007013838000002

そして、実施例2と同様の評価を行った。この結果、表1に示すように、実施例10においてもクラックは発生しなかった。 Then, the same evaluation as in Example 2 was performed. As a result, as shown in Table 1, no cracks were generated in Example 10.

(実施例11)
実施例11では、第4の積層基板40の形態の導電層形成基板を用いた。第2の積層基板20の形態の曲げ加工前の導電層形成基板を2つ準備し、これらを厚さが50μmの両面接着層で貼り合せた。両面接着層としては、日東電工製のLA50(OCAテープ)を用いた。他の条件は実施例2と同様である。
(Example 11)
In Example 11, the conductive layer-forming substrate in the form of the fourth laminated substrate 40 was used. Two conductive layer-forming substrates in the form of the second laminated substrate 20 before bending were prepared, and these were bonded together with a double-sided adhesive layer having a thickness of 50 μm. LA50 (OCA tape) manufactured by Nitto Denko was used as the double-sided adhesive layer. Other conditions are the same as in Example 2.

そして、実施例2と同様の評価を行った。この結果、表1に示すように、実施例11においてもクラックは発生しなかった。 Then, the same evaluation as in Example 2 was performed. As a result, as shown in Table 1, no cracks were generated in Example 11.

(実施例12)
実施例12では、第5の積層基板50の形態の有機電子デバイス基板を用いた。樹脂基板として、厚さが0.3mm、156mm角の平面延伸ポリカーボネイトシート基板を2つ準備し、それらの上に下地層を形成した。下地層の材料としては、名阪真空社製のUC1-088(アクリル1)を用いた。下地層の厚さは9μmであった。そして、下地層の硬さ(HIT)をナノインデンター(エリオニクス社製,ENT-3100)で測定した。次いで、下地層上に、In:90質量%、SnO:10質量%のITOターゲットを用いて、スパッタ法により無機酸化物の導電層を形成した。製膜時のスパッタパワーは6.5kWに設定し、酸素/アルゴン流量比は3.6%に設定し、製膜時間で導電層の厚さを110nmに調整した。スパッタ装置にはOerlikon社のソラリスを用いた。導電層は、一方の樹脂基板については図12(a)に示す領域に、他方の樹脂基板については図12(b)に示す領域に、マスクを用いて形成した。導電層の厚さはKLA-Tenchore社製のαステップD-500で測定した。4端子抵抗測定機として株式会社三菱化学アナリテック製のロレスタ-GPを用いて導電層のシート抵抗を測定した。更に、分光光度計として日立ハイテクサイエンス株式会社製のUH4150を用いて550nmの透過率を測定した。
(Example 12)
In Example 12, the organic electronic device substrate in the form of the fifth laminated substrate 50 was used. As the resin substrate, two plane-stretched polycarbonate sheet substrates having a thickness of 0.3 mm and a square of 156 mm were prepared, and a base layer was formed on them. As the material of the base layer, UC1-088 (acrylic 1) manufactured by Meihan Vacuum Co., Ltd. was used. The thickness of the base layer was 9 μm. Then, the hardness (HIT) of the base layer was measured with a nano indenter (ENT-3100 manufactured by Elionix Inc.). Next, a conductive layer of an inorganic oxide was formed on the base layer by a sputtering method using an ITO target of In 2O 3 : 90% by mass and SnO 2 : 10% by mass. The sputtering power at the time of film formation was set to 6.5 kW, the oxygen / argon flow rate ratio was set to 3.6%, and the thickness of the conductive layer was adjusted to 110 nm during the film formation time. A Solaris manufactured by Oerlikon was used as the sputtering apparatus. The conductive layer was formed by using a mask in the region shown in FIG. 12 (a) for one resin substrate and in the region shown in FIG. 12 (b) for the other resin substrate. The thickness of the conductive layer was measured by α step D-500 manufactured by KLA-Tenchore. The sheet resistance of the conductive layer was measured using Loresta-GP manufactured by Mitsubishi Chemical Analytec Co., Ltd. as a 4-terminal resistance measuring machine. Further, a transmittance of 550 nm was measured using a UH4150 manufactured by Hitachi High-Tech Science Co., Ltd. as a spectrophotometer.

次いで、図12(b)に示す領域に導電層を形成した樹脂基板において、図12(c)に示す領域に、酸化反応性のエレクトロクロミック層を塗布法により形成した。エレクトロクロミック層は実施例10と同様の条件で形成した。 Next, in the resin substrate in which the conductive layer was formed in the region shown in FIG. 12 (b), an oxidation-reactive electrochromic layer was formed in the region shown in FIG. 12 (c) by a coating method. The electrochromic layer was formed under the same conditions as in Example 10.

また、図12(a)に示す領域に導電層を形成した樹脂基板において、図12(c)に示す領域に、還元反応性のエレクトロクロミック層を形成した。還元反応性のエレクトロクロミック層の形成では、酸化スズのメタノール分散液にポリビニルブチラールを1質量%添加した溶液を塗布し、120℃で5分間アニールすることにより、厚さ3μmのナノ粒子酸化スズ層を形成した。次いで、下記構造式Bで表される化合物を2,2,3,3-テトラフロロプロパノールに2質量%溶解した溶液を、ナノ粒子酸化スズ層の表面に塗布吸着処理した後、120℃で5分間アニールした。酸化スズのメタノール分散液としては、日産化学株式会社製のセルナックスを用いた。
[構造式B]
Further, in the resin substrate in which the conductive layer was formed in the region shown in FIG. 12 (a), a reduction-reactive electrochromic layer was formed in the region shown in FIG. 12 (c). In the formation of a reduction-reactive electrochromic layer, a solution containing 1% by mass of polyvinyl butyral added to a methanol dispersion of tin oxide is applied and annealed at 120 ° C. for 5 minutes to form a nanoparticle tin oxide layer having a thickness of 3 μm. Formed. Next, a solution prepared by dissolving 2% by mass of the compound represented by the following structural formula B in 2,2,3,3-tetrafluoropropanol was applied to the surface of the nanoparticle tin oxide layer and adsorbed, and then at 120 ° C. 5 Annealed for minutes. As the methanol dispersion of tin oxide, Cernax manufactured by Nissan Chemical Industries, Ltd. was used.
[Structural formula B]

Figure 0007013838000003
Figure 0007013838000003

次いで、(a)1-エチル-3-メチルイミダゾリウムの(FSON-塩、(b)ポリエチレングリコールジアクリレート、及び(c)光重合開始剤を、a:b:c=2:1:0.01(質量比)となるように混合した電解質溶液を調製した。そして、この電解質溶液を、酸化反応性エレクトロクロミック層と還元反応性エレクトロクロミック層との間に充填した後、60℃のアニール処理を1分間行い、紫外線照射により硬化させて貼り合せて、貼り合わせ体を作製した。このとき、固体電解質層の平均厚みが30μmとなるように電解質溶液の充填量を調整した。ポリエチレングリコールジアクリレートとしては、日本化薬株式会社製のKAYARAD PEG400DAを用いた。光重合開始剤としては、BASF社製のIRGACURE 184を用いた。更に、有機電子材料層の周囲に、UV硬化性のアクリル材料を充填してUV硬化させて保護層を形成した。UV硬化性のアクリル材料としては、スリーボンド社製のTB3050を用いた。 Then, (a) (FSO 2 ) 2N -salt of 1-ethyl-3-methylimidazolium, (b) polyethylene glycol diacrylate, and (c) photopolymerization initiator were added to a: b: c = 2: An electrolyte solution was prepared by mixing so as to have a ratio of 1: 0.01 (mass ratio). Then, after filling this electrolyte solution between the oxidation-reactive electrochromic layer and the reduction-reactive electrochromic layer, an annealing treatment at 60 ° C. is performed for 1 minute, and the solution is cured by ultraviolet irradiation and bonded to each other. The body was made. At this time, the filling amount of the electrolyte solution was adjusted so that the average thickness of the solid electrolyte layer was 30 μm. As the polyethylene glycol diacrylate, KAYARAD PEG400DA manufactured by Nippon Kayaku Co., Ltd. was used. As the photopolymerization initiator, IRGACURE 184 manufactured by BASF was used. Further, a UV-curable acrylic material was filled around the organic electronic material layer and UV-cured to form a protective layer. As the UV curable acrylic material, TB3050 manufactured by ThreeBond Co., Ltd. was used.

そして、実施例2と同様の評価を行った。この結果、表1に示すように、実施例12においてもクラックは発生しなかった。 Then, the same evaluation as in Example 2 was performed. As a result, as shown in Table 1, no cracks were generated in Example 12.

また、有機電子デバイス基板の発消色評価を行った。この評価では、保護層から露出した有機電子材料層の一方の引き出し部がプラス極、他方の引き出し部がマイナス極となるように2.0Vの電圧を印加して7mC/cmの電荷を注入した。この結果、酸化反応性のエレクトロクロミック層が青緑色に、還元反応性のエレクトロクロミック層が青色に発色することが確認された。また、-0.6Vを印加することで透明に消色し、正常に発消色動作することも確認された。なお、光透過率は、光透過率を紫外可視近赤外分光光度計 UH4150(日立ハイテクサイエンス株式会社製)で測定した。 In addition, the color development and decolorization of the organic electronic device substrate was evaluated. In this evaluation, a voltage of 2.0 V was applied so that one drawer of the organic electronic material layer exposed from the protective layer had a positive pole and the other drawer had a negative pole, and a charge of 7 mC / cm 2 was injected. did. As a result, it was confirmed that the oxidation-reactive electrochromic layer developed a blue-green color and the reduction-reactive electrochromic layer developed a blue color. It was also confirmed that the color was transparently decolorized by applying −0.6 V, and the decoloring operation was performed normally. The light transmittance was measured with an ultraviolet-visible near-infrared spectrophotometer UH4150 (manufactured by Hitachi High-Tech Science Co., Ltd.).

(実施例13)
実施例13では、第6の積層基板60の形態の有機電子デバイス基板を用いた。樹脂基板として、厚さが0.1mm、156mm角の光学用延伸ポリエチレンテレフタレート(PET)を用い、下地層を形成しないことを除き、実施例12と同様にして平面形状の有機電子デバイス基板(エレクトロクロミック基板)を作製した。次いで、両樹脂基板の外面に、厚さが50μmの両面接着層を用いて、図16に示す平面形状の加工用樹脂基板を貼り合わせた。加工用樹脂基板としては、厚さが0.3mmのポリカーボネイトシート基板を用い、両面接着層としては、日東電工製のLA50(OCAテープ)を用いた。
(Example 13)
In Example 13, the organic electronic device substrate in the form of the sixth laminated substrate 60 was used. As the resin substrate, an optically stretched polyethylene terephthalate (PET) having a thickness of 0.1 mm and a 156 mm square is used, and a planar organic electronic device substrate (electro) is used in the same manner as in Example 12 except that a base layer is not formed. A chromic substrate) was produced. Next, a planar processing resin substrate shown in FIG. 16 was bonded to the outer surfaces of both resin substrates using a double-sided adhesive layer having a thickness of 50 μm. A polycarbonate sheet substrate having a thickness of 0.3 mm was used as the resin substrate for processing, and LA50 (OCA tape) manufactured by Nitto Denko was used as the double-sided adhesive layer.

そして、実施例2と同様の評価を行った。この結果、表1に示すように、実施例12においてもクラックは発生しなかった。また、実施例12と同様の発消色評価も行った。この結果、正常に発消色動作することが確認された。 Then, the same evaluation as in Example 2 was performed. As a result, as shown in Table 1, no cracks were generated in Example 12. In addition, the same color development and decolorization evaluation as in Example 12 was also performed. As a result, it was confirmed that the color development and decolorization operation was normal.

(実施例14)
実施例14では、第7の積層基板70の形態の有機電子デバイス基板を用いた。樹脂基板、導電層、有機電子材料層及び保護層に相当する部分には、市販の電気泳動表示方式電子ペーパーを用い、その表示面側の樹脂基板上に、厚さ50μmの両面接着層を用いて、図16に示す平面形状の加工用樹脂基板を貼り合わせた。電気泳動表示方式電子ペーパーとしては、Eink社製のGDEP014TT1を用い、加工用樹脂基板としては、厚さが0.3mmで平面延伸ポリカーボネイトシート基板を用い、両面接着層としては、日東電工製のLA50(OCAテープ)を用いた。この電気泳動表示方式電子ペーパーはアクティブマトリクス駆動であり、導電層がマトリクス状に分割形成されている。GDEP014TT1の概要は下記のとおりである。
(Example 14)
In Example 14, the organic electronic device substrate in the form of the seventh laminated substrate 70 was used. Commercially available electrophoretic display electronic paper is used for the parts corresponding to the resin substrate, the conductive layer, the organic electronic material layer and the protective layer, and a double-sided adhesive layer having a thickness of 50 μm is used on the resin substrate on the display surface side. Then, the plane-shaped processing resin substrate shown in FIG. 16 was bonded. As the electrophoretic display method electronic paper, GDEP014TT1 manufactured by Eink is used, as the processing resin substrate, a plane-stretched polycarbonate sheet substrate having a thickness of 0.3 mm is used, and as the double-sided adhesive layer, LA50 manufactured by Nitto Denko Co., Ltd. is used. (OCA tape) was used. This electrophoresis display type electronic paper is driven by an active matrix, and the conductive layer is divided and formed in a matrix shape. The outline of GDEP014TT1 is as follows.

Screen Size :1.43 Inch
Display Resolution :128 (H) ×296(V) Pixel
Active Area :14.464 (H)×33.448 (V) mm
Pixel Pitch :0.113 (H)×0.113 (V) mm
Pixel Configuration :Rectangle
Outline Dimension :18.3(H)*42.7(V)*0.607(D) mm
Module Weight :0.87±0.1 g
Screen Size: 1.43 Inch
Display Resolution: 128 (H) x 296 (V) Pixel
Active Area: 14.464 (H) x 33.448 (V) mm
Pixel Pitch: 0.113 (H) x 0.113 (V) mm
Pixel Configuration: Rectangle
Outline Dimension: 18.3 (H) * 42.7 (V) * 0.607 (D) mm
Module Weight: 0.87 ± 0.1 g

曲面加工では、図1に示す曲面形成装置100を用いた。この加工では、曲率半径が86mmで直径が200mmの球面凹金型を準備し、弾性ゴムシートとして厚さが0.3mmのシリコーンゴムシートを用いた。用いた球面凹金型は、JIS A7075のアルミニウム合金製である。凹金型を146℃に温調した後、加工用樹脂基板が下になるように弾性ゴムシートの上に有機電子デバイス基板を載せ、ポンプ吸引により、凹金型に弾性ゴムシートと有機電子デバイス基板を150秒密着させて塑性変形させた。その後、ポンプ吸引孔の排気を大気圧に戻すことで、弾性ゴムシートと有機電子デバイス基板が金型から離型して、球面状の3D曲面を形成した有機電子デバイス基板を得た。 In the curved surface processing, the curved surface forming device 100 shown in FIG. 1 was used. In this processing, a spherical concave mold having a radius of curvature of 86 mm and a diameter of 200 mm was prepared, and a silicone rubber sheet having a thickness of 0.3 mm was used as the elastic rubber sheet. The spherical concave mold used is made of JIS A7075 aluminum alloy. After the temperature of the concave mold is adjusted to 146 ° C, the organic electronic device substrate is placed on the elastic rubber sheet so that the resin substrate for processing is on the bottom, and the elastic rubber sheet and the organic electronic device are placed on the concave mold by pump suction. The substrate was brought into close contact for 150 seconds and plastically deformed. Then, by returning the exhaust of the pump suction hole to atmospheric pressure, the elastic rubber sheet and the organic electronic device substrate were separated from the mold to obtain an organic electronic device substrate having a spherical 3D curved surface.

そして、実施例2と同様の評価を行った。この結果、表1に示すように、実施例14においてもクラックは発生しなかった。また、図18に示すように、正常に表示動作することも確認された。図18(a)は実施例14の加工後の状態を示す写真であり、図18(b)は、その模式図である。図18に示すように、表示エリアの全域でムラの無い表示が可能であった。 Then, the same evaluation as in Example 2 was performed. As a result, as shown in Table 1, no cracks were generated in Example 14. Further, as shown in FIG. 18, it was also confirmed that the display operation was normal. FIG. 18A is a photograph showing the state after processing of Example 14, and FIG. 18B is a schematic diagram thereof. As shown in FIG. 18, it was possible to display evenly over the entire display area.

(実施例15)
実施例15では、第5の積層基板50の形態の有機電子デバイス基板を用いた。実施例12で作製した有機電子デバイス基板の一方の樹脂基板上に、片面に保護シートが設けられた厚さが50μmの両面接着層を貼り付けた。両面接着層としては、日東電工製のLA50(OCAテープ)を用い、保護シートとしては、厚さが25μmのポリプロピレンフィルムを用いた。
(Example 15)
In Example 15, the organic electronic device substrate in the form of the fifth laminated substrate 50 was used. On one of the resin substrates of the organic electronic device substrate produced in Example 12, a double-sided adhesive layer having a thickness of 50 μm provided with a protective sheet on one side was attached. LA50 (OCA tape) manufactured by Nitto Denko was used as the double-sided adhesive layer, and a polypropylene film having a thickness of 25 μm was used as the protective sheet.

そして、実施例2と同様の評価を行った。この結果、表1に示すように、実施例15においてもクラックは発生しなかった。また、実施例12と同様の発消色評価も行った。この結果、正常に発消色動作することが確認された。更に、保護シートを剥離し、真空貼り合せ装置を用いて曲率半径が130mmの球面基板に貼り付けることもできた。 Then, the same evaluation as in Example 2 was performed. As a result, as shown in Table 1, no cracks were generated in Example 15. In addition, the same color development and decolorization evaluation as in Example 12 was also performed. As a result, it was confirmed that the color development and decolorization operation was normal. Further, the protective sheet could be peeled off and attached to a spherical substrate having a radius of curvature of 130 mm using a vacuum bonding device.

(比較例1)
比較例1では、実施例2と同様にして準備した導電層形成基板を、真空成形装置を用いて3D曲面状に加工した。図19は、比較例の曲面形成方法を工程順に示す図である。
(Comparative Example 1)
In Comparative Example 1, the conductive layer-forming substrate prepared in the same manner as in Example 2 was processed into a 3D curved surface using a vacuum forming apparatus. FIG. 19 is a diagram showing the curved surface forming method of the comparative example in the order of processes.

まず、図19(a)に示すように、下部ヒーター301及び上部ヒーター302を用いて導電層形成基板351を加熱して軟化させた。下部ヒーター301及び上部ヒーター302はハロゲンヒーターであり、加熱温度は146℃とした。次いで、図19(b)に示すように、軟化させた導電層形成基板351の端部を真空成形装置のチャンバ303内に固定した。その後、図19(c)に示すように、チャンバ303内を減圧し、146℃に温調した凸金型304に導電層形成基板351を押し当てて塑性変形させた。凸金型304としては、曲率半径が131mm、直径が85mmでJIS A7075のアルミニウム合金製の球面金型を用いた。導電層形成基板351を塑性変形させた後には、チャンバ303内を大気圧に戻し、導電層形成基板351を凸金型304から離型して、球面状の3D曲面を形成した導電層形成基板351を得た。曲げ加工としては、凸加工及び凹加工の両方を行った。 First, as shown in FIG. 19A, the conductive layer forming substrate 351 was heated and softened by using the lower heater 301 and the upper heater 302. The lower heater 301 and the upper heater 302 were halogen heaters, and the heating temperature was 146 ° C. Then, as shown in FIG. 19B, the end portion of the softened conductive layer forming substrate 351 was fixed in the chamber 303 of the vacuum forming apparatus. Then, as shown in FIG. 19 (c), the inside of the chamber 303 was depressurized, and the conductive layer forming substrate 351 was pressed against the convex mold 304 whose temperature was adjusted to 146 ° C. to be plastically deformed. As the convex mold 304, a spherical mold made of JIS A7075 aluminum alloy having a radius of curvature of 131 mm and a diameter of 85 mm was used. After the conductive layer forming substrate 351 is plastically deformed, the inside of the chamber 303 is returned to atmospheric pressure, and the conductive layer forming substrate 351 is separated from the convex mold 304 to form a spherical 3D curved surface. Obtained 351. As the bending process, both convex and concave processing were performed.

そして、実施例2と同様の評価を行った。この結果、表1に示すように、比較例1では凸加工及び凹加工のいずれにおいてもクラックが発生していた。このクラックは、図17に示す実施例4の凸加工で観察されたものと同様であった。 Then, the same evaluation as in Example 2 was performed. As a result, as shown in Table 1, in Comparative Example 1, cracks were generated in both the convex processing and the concave processing. This crack was similar to that observed in the convex processing of Example 4 shown in FIG.

以上、好ましい実施の形態及び実施例について詳説したが、上述した実施の形態及び実施例に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態及び実施例に種々の変形及び置換を加えることができる。例えば、上記各実施の形態は適宜組み合わせることができる。 Although the preferred embodiments and examples have been described in detail above, the embodiments are not limited to the above-described embodiments and examples, and the above-described embodiments are not deviated from the scope of claims. And various modifications and substitutions can be made to the examples. For example, each of the above embodiments can be combined as appropriate.

10、20、30、40、50、60、70、80、151、251 積層基板
11 樹脂基板
12 導電層
13 下地層
14、74 有機電子材料層
41、62a、62b 両面接着層
51、71 保護層
61a、61b 加工用樹脂基板
81 保護シート
100、200 曲面形成装置
111、211 凹金型
112、212 凹面
113、213 平面
115 孔
116、126、216 温調部
117、217 ポンプ
121、221 凸金型
131、231 弾性ゴムシート
132 孔
218 バイパスバルブ
219 ガス供給部
233 基板保持ゴムシート
234 孔
241 密閉容器
10, 20, 30, 40, 50, 60, 70, 80, 151, 251 Laminated substrate 11 Resin substrate 12 Conductive layer 13 Underlayer layer 14,74 Organic electronic material layer 41, 62a, 62b Double-sided adhesive layer 51, 71 Protective layer 61a, 61b Resin substrate for processing 81 Protective sheet 100, 200 Curved surface forming device 111, 211 Concave mold 112, 212 Concave surface 113, 213 Flat surface 115 hole 116, 126, 216 Temperature control part 117, 217 Pump 121, 221 Convex mold 131, 231 Elastic rubber sheet 132 holes 218 Bypass valve 219 Gas supply unit 233 Substrate holding rubber sheet 234 holes 241 Sealed container

特開2006-82463号公報Japanese Unexamined Patent Publication No. 2006-82463

Claims (14)

熱可塑性樹脂の樹脂基板を含む支持基板と、前記支持基板上の導電層と、を備えた積層基板を3次元曲面状に加工する積層基板の曲面形成方法であって、
前記支持基板は、前記樹脂基板上に硬さが440MPa以上680Mpa以下の下地層を有し、
前記積層基板を弾性シートに密着させながら前記弾性シートを変形させ、温調した金型に前記積層基板を密着させることにより、前記樹脂基板を軟化させる工程を有することを特徴とする積層基板の曲面形成方法。
It is a curved surface forming method of a laminated substrate for processing a laminated substrate including a support substrate including a resin substrate of a thermoplastic resin and a conductive layer on the support substrate into a three-dimensional curved surface.
The support substrate has a base layer having a hardness of 440 MPa or more and 680 MPa or less on the resin substrate.
The curved surface of the laminated substrate is characterized by having a step of softening the resin substrate by deforming the elastic sheet while bringing the laminated substrate into close contact with the elastic sheet and bringing the laminated substrate into close contact with a temperature-controlled mold. Forming method.
前記弾性シートを挟む空間の間の気圧差により前記弾性シートを変形させることを特徴とする請求項1に記載の積層基板の曲面形成方法。 The method for forming a curved surface of a laminated substrate according to claim 1, wherein the elastic sheet is deformed by a pressure difference between spaces sandwiching the elastic sheet. 前記導電層が無機酸化物を含む透明導電層であることを特徴とする請求項1又は2に記載の積層基板の曲面形成方法。 The method for forming a curved surface of a laminated substrate according to claim 1 or 2, wherein the conductive layer is a transparent conductive layer containing an inorganic oxide. 前記導電層がマトリクス状に分割されていることを特徴とする請求項1乃至3のいずれか1項に記載の積層基板の曲面形成方法。 The method for forming a curved surface of a laminated substrate according to any one of claims 1 to 3, wherein the conductive layer is divided into a matrix. 前記金型の前記積層基板が密着する面に、前記積層基板よりも大きな3次元曲面が形成されていることを特徴とする請求項1乃至4のいずれか1項に記載の積層基板の曲面形成方法。 The curved surface formation of the laminated substrate according to any one of claims 1 to 4, wherein a three-dimensional curved surface larger than the laminated substrate is formed on the surface of the mold in which the laminated substrate is in close contact. Method. 前記金型は凹金型であることを特徴とする請求項5に記載の積層基板の曲面形成方法。 The method for forming a curved surface of a laminated substrate according to claim 5, wherein the mold is a concave mold. 前記熱可塑性樹脂がポリカーボネイト又はポリエチレンテレフタレートであることを特徴とする請求項1乃至のいずれか1項に記載の積層基板の曲面形成方法。 The method for forming a curved surface of a laminated substrate according to any one of claims 1 to 6 , wherein the thermoplastic resin is polycarbonate or polyethylene terephthalate. 前記積層基板は、前記導電層上に有機電子材料層を有することを特徴とする請求項1乃至のいずれか1項に記載の積層基板の曲面形成方法。 The method for forming a curved surface of a laminated substrate according to any one of claims 1 to 7 , wherein the laminated substrate has an organic electronic material layer on the conductive layer. 前記積層基板は、前記支持基板の前記金型に密着する側の面上に加工用樹脂基板を有することを特徴とする請求項1乃至のいずれか1項に記載の積層基板の曲面形成方法。 The curved surface forming method for a laminated substrate according to any one of claims 1 to 8 , wherein the laminated substrate has a processing resin substrate on a surface of the support substrate on the side in close contact with the mold. .. 前記加工用樹脂基板が前記支持基板に剥離可能な貼り合わせ層により接着されていることを特徴とする請求項に記載の積層基板の曲面形成方法。 The curved surface forming method for a laminated substrate according to claim 9 , wherein the processing resin substrate is adhered to the support substrate by a peelable bonded layer. 前記積層基板を3次元曲面状に加工した後に、前記加工用樹脂基板を前記支持基板から剥離する工程を有することを特徴とする請求項1に記載の積層基板の曲面形成方法。 The curved surface forming method for a laminated substrate according to claim 10, further comprising a step of peeling the processing resin substrate from the support substrate after processing the laminated substrate into a three-dimensional curved surface. 前記積層基板を3次元曲面状に加工した後に、前記積層基板を支持体に貼り付ける工程を有することを特徴とする請求項1乃至1のいずれか1項に記載の積層基板の曲面形成方法。 The curved surface forming method for a laminated substrate according to any one of claims 1 to 11, wherein the laminated substrate is processed into a three-dimensional curved surface and then the laminated substrate is attached to a support. .. 前記積層基板は、接着層を介して前記支持基板に接着された保護シートを有し、
前記保護シートは、前記接着層を前記支持基板上に残したまま剥離可能であることを特徴とする請求項1に記載の曲面形成方法。
The laminated substrate has a protective sheet adhered to the support substrate via an adhesive layer.
The curved surface forming method according to claim 12 , wherein the protective sheet can be peeled off while leaving the adhesive layer on the support substrate.
前記下地層は、0.1μm~10μmであることを特徴とする請求項1乃至1に記載の曲面形成方法。 The curved surface forming method according to claim 1 to 13, wherein the base layer is 0.1 μm to 10 μm.
JP2017242181A 2017-12-18 2017-12-18 Curved surface forming method and curved surface forming device for laminated substrate Active JP7013838B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017242181A JP7013838B2 (en) 2017-12-18 2017-12-18 Curved surface forming method and curved surface forming device for laminated substrate
EP18212353.9A EP3498452A3 (en) 2017-12-18 2018-12-13 Method and apparatus for forming three-dimensional curved surface on laminated substrate, and three-dimensional curved laminated substrate
US16/220,084 US11833800B2 (en) 2017-12-18 2018-12-14 Method and apparatus for forming three-dimensional curved surface on laminated substrate, and three-dimensional curved laminated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242181A JP7013838B2 (en) 2017-12-18 2017-12-18 Curved surface forming method and curved surface forming device for laminated substrate

Publications (2)

Publication Number Publication Date
JP2019107817A JP2019107817A (en) 2019-07-04
JP7013838B2 true JP7013838B2 (en) 2022-02-01

Family

ID=67178644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242181A Active JP7013838B2 (en) 2017-12-18 2017-12-18 Curved surface forming method and curved surface forming device for laminated substrate

Country Status (1)

Country Link
JP (1) JP7013838B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210132459A1 (en) * 2019-11-04 2021-05-06 E Ink Corporation Three-dimensional, color-changing objects including a light-transmissive substrate and an electrophoretic medium
WO2024096005A1 (en) * 2022-10-31 2024-05-10 住友ベークライト株式会社 Electrochromic sheet and electrochromic device
JP7327622B1 (en) 2022-10-31 2023-08-16 住友ベークライト株式会社 Electrochromic sheet and electrochromic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246174A (en) 2001-02-15 2002-08-30 Nec Corp Organic electroluminescence element and manufacturing method for the same
JP2002264131A (en) 2001-03-09 2002-09-18 Kawasaki Heavy Ind Ltd Method and apparatus for correcting shape of molded object
CN1794019A (en) 2005-12-30 2006-06-28 友达光电股份有限公司 Colour optical filter and its manufacturing method
US20070052122A1 (en) 2003-05-22 2007-03-08 Webasto Ag Process for producing a curved pane arrangement for a motor vehicle
JP2008251529A (en) 2007-03-02 2008-10-16 Nitto Denko Corp Transparent conductive film with adhesive layer, and its forming method
JP2010224110A (en) 2009-03-23 2010-10-07 Citizen Holdings Co Ltd Method for manufacturing plastic liquid crystal panel
JP2016206463A (en) 2015-04-24 2016-12-08 株式会社トクヤマ Photochromic laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246174A (en) 2001-02-15 2002-08-30 Nec Corp Organic electroluminescence element and manufacturing method for the same
JP2002264131A (en) 2001-03-09 2002-09-18 Kawasaki Heavy Ind Ltd Method and apparatus for correcting shape of molded object
US20070052122A1 (en) 2003-05-22 2007-03-08 Webasto Ag Process for producing a curved pane arrangement for a motor vehicle
CN1794019A (en) 2005-12-30 2006-06-28 友达光电股份有限公司 Colour optical filter and its manufacturing method
JP2008251529A (en) 2007-03-02 2008-10-16 Nitto Denko Corp Transparent conductive film with adhesive layer, and its forming method
JP2010224110A (en) 2009-03-23 2010-10-07 Citizen Holdings Co Ltd Method for manufacturing plastic liquid crystal panel
JP2016206463A (en) 2015-04-24 2016-12-08 株式会社トクヤマ Photochromic laminate

Also Published As

Publication number Publication date
JP2019107817A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
US11833800B2 (en) Method and apparatus for forming three-dimensional curved surface on laminated substrate, and three-dimensional curved laminated substrate
JP7151437B2 (en) 3D CURVED LAMINATED SUBSTRATE AND PRODUCTION METHOD THEREOF
TWI536238B (en) Method for manufacturing touch panel
JP7013838B2 (en) Curved surface forming method and curved surface forming device for laminated substrate
CN105358320B (en) Reinforced thin glass-polymer laminates
CN104024994B (en) Touch sensor with ornament, method of manufacturing same, and touch sensor used in same
JP5056207B2 (en) Conductive film for in-mold molding and method for producing plastic molded article with transparent conductive layer
JP5235315B2 (en) Manufacturing method of substrate with transparent electrode
JP2010103041A (en) Transparent film heater, glass with heater function, laminated glass with heater function, and automobile pane
JP2012079257A (en) Transparent conductive film laminate using double-coated adhesive sheet and touch panel device
US20100189837A1 (en) System and Method for Depositing Thin Layers on Non-Planar Substrates by Stamping
EP3711920B1 (en) Laminated structure, multiple laminated structure, lens, and method for producing laminated structure
WO2004009352A1 (en) Functional film for transfer having functional layer, object furnished with functional layer and process for producing the same
KR101372534B1 (en) Touch panel
EP3734620B1 (en) Method for producing transparent electrode
JP7415667B2 (en) Laminated structure, multi-layered structure, lens, and method for manufacturing the layered structure
JP5282991B1 (en) Substrate with transparent conductive layer and method for producing the same
JP5430792B1 (en) Transfer film and method for producing transparent conductive laminate
KR101079664B1 (en) Post treatment method of carbon nanotube film
US20240168352A1 (en) Curved surface resin structure, electronic light control lens, and method for producing curved surface resin structure
JP2022151701A (en) Curved surface resin structure, electronic dimming lens and method for manufacturing curved surface resin structure
JP2007012354A (en) Conductive layered film, and resin molding with transparent conductive film
KR102234305B1 (en) Metal nanowire embedded transparent electrode having concavoconvex structure integrated on both sides and method for manufacturing the same
JP5056208B2 (en) Conductive film for in-mold molding and method for producing plastic molded article with transparent conductive layer
KR20190042438A (en) Method for producing an inorganic layer laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103