JP7013138B2 - Compressor and refrigeration cycle equipment - Google Patents

Compressor and refrigeration cycle equipment Download PDF

Info

Publication number
JP7013138B2
JP7013138B2 JP2017063566A JP2017063566A JP7013138B2 JP 7013138 B2 JP7013138 B2 JP 7013138B2 JP 2017063566 A JP2017063566 A JP 2017063566A JP 2017063566 A JP2017063566 A JP 2017063566A JP 7013138 B2 JP7013138 B2 JP 7013138B2
Authority
JP
Japan
Prior art keywords
discharge valve
shape
support portion
discharge
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017063566A
Other languages
Japanese (ja)
Other versions
JP2018165503A (en
Inventor
卓也 平山
茂喜 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2017063566A priority Critical patent/JP7013138B2/en
Publication of JP2018165503A publication Critical patent/JP2018165503A/en
Application granted granted Critical
Publication of JP7013138B2 publication Critical patent/JP7013138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明の実施形態は、圧縮機及び該圧縮機を備えた冷凍サイクル装置に関する。 Embodiments of the present invention relate to a compressor and a refrigeration cycle device including the compressor.

空気調和機等の冷凍サイクル装置は、作動流体を圧縮する圧縮機を備えている。圧縮機は、作動流体を圧縮する圧縮室と、圧縮室で圧縮された作動流体が供給される密閉容器と、圧縮室内の圧力が密閉容器内の圧力よりも高圧になると圧縮室の吐出孔を開放する吐出弁と、を備えている。冷凍サイクルの効率を高めるために、吐出弁は、圧縮室内の圧力と密閉容器内の圧力との差圧が小さくても、迅速に応答することが好ましい。 Refrigeration cycle devices such as air conditioners are equipped with a compressor that compresses the working fluid. The compressor has a compression chamber that compresses the working fluid, a closed container to which the working fluid compressed in the compression chamber is supplied, and a discharge hole in the compression chamber when the pressure in the compression chamber becomes higher than the pressure in the closed container. It is equipped with a discharge valve that opens. In order to increase the efficiency of the refrigeration cycle, it is preferable that the discharge valve responds quickly even if the pressure difference between the pressure in the compression chamber and the pressure in the closed container is small.

吐出弁の応答性は、吐出弁の受圧面積に左右される。特許文献1には、吐出孔に拡幅部を形成して吐出弁の受圧面積を大きくしたロータリ圧縮機が提案されている。特許文献1の拡幅部は、拡幅角度αが30°≦α≦60°となっていることを特徴とし、吐出方向へ向けて拡幅するように形成されている。しかるに、吐出弁は、非常に薄く形成されている。吐出弁の受圧面積を大きくすると、吐出弁の応答性が向上する反面、吐出弁が割れて破損しやすくなる。 The responsiveness of the discharge valve depends on the pressure receiving area of the discharge valve. Patent Document 1 proposes a rotary compressor in which a widening portion is formed in a discharge hole to increase the pressure receiving area of a discharge valve. The widening portion of Patent Document 1 is characterized in that the widening angle α is 30 ° ≦ α ≦ 60 °, and is formed so as to widen in the discharge direction. However, the discharge valve is formed very thin. When the pressure receiving area of the discharge valve is increased, the responsiveness of the discharge valve is improved, but the discharge valve is easily cracked and damaged.

特開2011-43084号公報Japanese Unexamined Patent Publication No. 2011-43084

本発明の目的は、小さな差圧でも応答し、大きな差圧を受けても壊れにくい吐出弁を備えた圧縮機及び該圧縮機を備えた冷凍サイクル装置を提供することにある。 An object of the present invention is to provide a compressor provided with a discharge valve which responds even with a small differential pressure and is not easily broken even when subjected to a large differential pressure, and a refrigeration cycle device provided with the compressor.

一実施形態の圧縮機は、圧縮室と、回転軸と、軸受と、吐出孔と、吐出弁と、吐出弁座と、を備えている。圧縮室は、作動流体を圧縮する。回転軸は、圧縮室に配置されたローラを転動させる。軸受は、回転軸を回転自在に支持する。吐出孔は、軸受の上面よりも低い軸受の凹部に形成され、圧縮された作動流体を吐出する。吐出弁は、吐出孔を開放又は閉塞する。吐出孔を閉塞している状態において、吐出弁は、第1形状と、第2形状との間で変形可能である。第1形状は、圧縮室に向かって撓んでいる。第2形状は、第1形状よりも撓み量が小さい。吐出弁座は、吐出孔の周囲に環状に形成されている。吐出弁座は、吐出孔を囲う内輪部と、前記凹部の上面から突出し、該凹部の上面から最も遠い頂点を繋いだ円形の稜線と、内輪部の外周に配されて稜線から内側に広がり、第1形状の吐出弁とは当接するが、第2形状の吐出弁とは当接しない形状の支持部と、稜線から外側に広がる外輪部と、を有している。支持部の形状は、外周側から吐出孔の中心に向かうに従って圧縮室に近づくように傾斜した円錐面である。内輪部は、吐出孔と支持部の円錐面との間を滑らかに繋いでいる。第1形状の吐出弁は、支持部と面接触する。第2形状の吐出弁は、吐出弁座の稜線と線接触する。第1形状の吐出弁が作動流体から圧力を受ける受圧面積は、支持部と当接している分だけ第2形状の吐出弁が作動流体から圧力を受ける受圧面積よりも小さいThe compressor of one embodiment includes a compression chamber, a rotating shaft, a bearing, a discharge hole, a discharge valve, and a discharge valve seat. The compression chamber compresses the working fluid. The axis of rotation rolls a roller arranged in the compression chamber. The bearing rotatably supports the axis of rotation. The discharge hole is formed in the recess of the bearing, which is lower than the upper surface of the bearing, and discharges the compressed working fluid. The discharge valve opens or closes the discharge hole. With the discharge hole closed, the discharge valve can be deformed between the first shape and the second shape. The first shape bends toward the compression chamber. The second shape has a smaller amount of deflection than the first shape. The discharge valve seat is formed in an annular shape around the discharge hole. The discharge valve seat has an inner ring portion that surrounds the discharge hole , a circular ridge line that protrudes from the upper surface of the recess and connects the apex farthest from the upper surface of the recess, and is arranged on the outer periphery of the inner ring portion and spreads inward from the ridge line. It has a support portion having a shape that abuts on the discharge valve of the first shape but does not abut on the discharge valve of the second shape, and an outer ring portion that extends outward from the ridgeline . The shape of the support portion is a conical surface inclined so as to approach the compression chamber from the outer peripheral side toward the center of the discharge hole. The inner ring portion smoothly connects the discharge hole and the conical surface of the support portion. The first-shaped discharge valve comes into surface contact with the support portion. The second-shaped discharge valve makes line contact with the ridgeline of the discharge valve seat. The pressure receiving area where the first-shaped discharge valve receives pressure from the working fluid is smaller than the pressure receiving area where the second-shaped discharge valve receives pressure from the working fluid because it is in contact with the support portion .

一実施形態の冷凍サイクル装置は、前述の圧縮機と、冷凍サイクル回路と、を備えている。冷凍サイクル回路は、放熱器、膨張装置及び吸熱器が順に接続されており、作動流体が循環する。圧縮機は、放熱器と吸熱器との間で冷凍サイクル回路に接続されている。 The refrigeration cycle apparatus of one embodiment includes the above-mentioned compressor and a refrigeration cycle circuit. In the refrigeration cycle circuit, a radiator, an expansion device, and a heat absorber are connected in order, and a working fluid circulates. The compressor is connected to a refrigeration cycle circuit between the radiator and the heat absorber.

図1は、一実施形態の圧縮機の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a compressor of one embodiment. 図2は、図1に示された第1シリンダ室の断面図である。FIG. 2 is a cross-sectional view of the first cylinder chamber shown in FIG. 図3は、図1に示された吐出孔の平面図である。FIG. 3 is a plan view of the discharge hole shown in FIG. 図4は、図3中のF4-F4線に沿う断面図である。FIG. 4 is a cross-sectional view taken along the line F4-F4 in FIG. 図5は、吐出弁の第1形状と第2形状とを説明する断面図である。FIG. 5 is a cross-sectional view illustrating the first shape and the second shape of the discharge valve.

以下、一実施形態の圧縮機について、図1乃至図5を参照して説明する。図1は、一実施形態の圧縮機2の一例を示す断面図である。また、図1は、圧縮機2を備えた冷凍サイクル装置1の冷凍サイクル回路も併せて示している。 Hereinafter, the compressor of one embodiment will be described with reference to FIGS. 1 to 5. FIG. 1 is a cross-sectional view showing an example of the compressor 2 of one embodiment. FIG. 1 also shows the refrigeration cycle circuit of the refrigeration cycle apparatus 1 provided with the compressor 2.

図1に示すように、冷凍サイクル装置1は、圧縮機2と、放熱器である凝縮器3と、膨張装置4と、吸熱器である蒸発器5と、を主要な要素として備えている。凝縮器3、膨張装置4及び蒸発器5は、冷媒管7で順次接続されている。圧縮機2は、凝縮器3と蒸発器5との間に接続されている。圧縮機2には、アキュームレータ6が付設されている。冷凍サイクル装置1の主要な要素は、作動流体が循環する冷凍サイクル回路を構成している。 As shown in FIG. 1, the refrigerating cycle device 1 includes a compressor 2, a condenser 3 which is a radiator, an expansion device 4, and an evaporator 5 which is a heat absorber as main elements. The condenser 3, the expansion device 4, and the evaporator 5 are sequentially connected by a refrigerant pipe 7. The compressor 2 is connected between the condenser 3 and the evaporator 5. An accumulator 6 is attached to the compressor 2. The main element of the refrigeration cycle device 1 constitutes a refrigeration cycle circuit in which the working fluid circulates.

圧縮機2は、密閉容器10と、電動機部11と、圧縮機構部12と、回転軸13と、を備えている。密閉容器10は、中空の円筒状に形成されている。電動機部11及び圧縮機構部12は、密閉容器10に収容され、回転軸13を介して互いに連結されている。密閉容器10は筐体の一例であり、電動機部11は駆動要素の一例であり、圧縮機構部12は圧縮要素の一例である。 The compressor 2 includes a closed container 10, an electric motor unit 11, a compression mechanism unit 12, and a rotating shaft 13. The closed container 10 is formed in a hollow cylindrical shape. The motor unit 11 and the compression mechanism unit 12 are housed in a closed container 10 and are connected to each other via a rotating shaft 13. The closed container 10 is an example of a housing, the motor unit 11 is an example of a driving element, and the compression mechanism unit 12 is an example of a compression element.

図1に示す例では、圧縮機2が、縦型の回転式圧縮機として構成されている。なお、圧縮機2は、縦型に限られず横型であってもよい。図1の説明において、回転軸13に沿って電動機部11から圧縮機構部12に向かう方向を「下方」或いは「下」と呼び、その逆方向を「上方」或いは「上」と呼ぶ。また、回転軸13の軸方向における長さを単に「高さ」と呼ぶ。 In the example shown in FIG. 1, the compressor 2 is configured as a vertical rotary compressor. The compressor 2 is not limited to the vertical type but may be a horizontal type. In the description of FIG. 1, the direction from the motor unit 11 to the compression mechanism unit 12 along the rotating shaft 13 is referred to as "downward" or "downward", and the opposite direction is referred to as "upward" or "upper". Further, the length of the rotating shaft 13 in the axial direction is simply referred to as "height".

密閉容器10の内部は、底部に潤滑油が貯留され、残りの空間に作動流体であるガス冷媒が満たされている。密閉容器10には、吸込管14,15及び吐出管16が取り付けられている。吸込管14,15は、密閉容器10の胴部を貫通しており、密閉容器10の内外を連通させる。吐出管16は、密閉容器10の蓋部を貫通しており、密閉容器10の内外を連通させる。吸込管14,15は、アキュームレータ6を介して蒸発器5に接続されている。吐出管16は、凝縮器3に接続されている。 Lubricating oil is stored in the bottom of the closed container 10, and the remaining space is filled with a gas refrigerant as a working fluid. The suction pipes 14 and 15 and the discharge pipe 16 are attached to the closed container 10. The suction pipes 14 and 15 penetrate the body of the closed container 10 and allow the inside and outside of the closed container 10 to communicate with each other. The discharge pipe 16 penetrates the lid portion of the closed container 10 and communicates the inside and outside of the closed container 10. The suction pipes 14 and 15 are connected to the evaporator 5 via an accumulator 6. The discharge pipe 16 is connected to the condenser 3.

電動機部11は、ステータ17と、ロータ18と、を備えている。ステータ17は、密閉容器10の内周面に固定されている。ロータ18は、回転軸13に固定されている。ロータ18の外周面は、ステータ17の内周面と僅かな間隙をあけて対向している。 The motor unit 11 includes a stator 17 and a rotor 18. The stator 17 is fixed to the inner peripheral surface of the closed container 10. The rotor 18 is fixed to the rotating shaft 13. The outer peripheral surface of the rotor 18 faces the inner peripheral surface of the stator 17 with a slight gap.

圧縮機構部12は、電動機部11の下方に位置している。圧縮機構部12は、例えば、第1シリンダ21と、第2シリンダ22と、中間仕切板23と、主軸受24と、副軸受25と、バルブカバー26,27,28と、を備えている。第1シリンダ21は、例えば溶接によって密閉容器10の内周面に固定されている。第1シリンダ21ではなく、主軸受24を密閉容器10の内周面に固定してもよい。バルブカバー26,27、主軸受24、第1シリンダ21、中間仕切板23、第2シリンダ22、副軸受25及びバルブカバー28は、電動機部11側から順次重ねられ、例えば共締めによって互いに固定されている。 The compression mechanism unit 12 is located below the motor unit 11. The compression mechanism unit 12 includes, for example, a first cylinder 21, a second cylinder 22, an intermediate partition plate 23, a main bearing 24, an auxiliary bearing 25, and valve covers 26, 27, 28. The first cylinder 21 is fixed to the inner peripheral surface of the closed container 10 by welding, for example. The main bearing 24 may be fixed to the inner peripheral surface of the closed container 10 instead of the first cylinder 21. The valve covers 26 and 27, the main bearing 24, the first cylinder 21, the intermediate partition plate 23, the second cylinder 22, the auxiliary bearing 25 and the valve cover 28 are sequentially stacked from the motor portion 11 side and fixed to each other by, for example, co-tightening. ing.

主軸受24及び副軸受25は、回転軸13を回転自在に支持している。主軸受24及び副軸受25には、吐出孔41,42がそれぞれ形成されている。主軸受24の吐出孔41は、バルブカバー26,27に覆われ、副軸受25の吐出孔42は、バルブカバー28に覆われている。 The main bearing 24 and the auxiliary bearing 25 rotatably support the rotating shaft 13. Discharge holes 41 and 42 are formed in the main bearing 24 and the auxiliary bearing 25, respectively. The discharge hole 41 of the main bearing 24 is covered with the valve covers 26 and 27, and the discharge hole 42 of the auxiliary bearing 25 is covered with the valve cover 28.

第1シリンダ21には、主軸受24及び中間仕切板23に挟まれた円形の第1シリンダ室31が形成されている。第2シリンダ22には、中間仕切板23及び副軸受25に挟まれた円形の第2シリンダ室32が形成されている。回転軸13は、軸方向と直交する方向に突出した偏心部13A,13Bを有している。偏心部13A,13Bは、回転軸13の回転方向において例えば180°ずらして配置されている。偏心部13A,13Bには、円筒状のローラ33,34がそれぞれ嵌合されている。 The first cylinder 21 is formed with a circular first cylinder chamber 31 sandwiched between the main bearing 24 and the intermediate partition plate 23. The second cylinder 22 is formed with a circular second cylinder chamber 32 sandwiched between the intermediate partition plate 23 and the auxiliary bearing 25. The rotating shaft 13 has eccentric portions 13A and 13B protruding in a direction orthogonal to the axial direction. The eccentric portions 13A and 13B are arranged so as to be offset by, for example, 180 ° in the rotation direction of the rotation shaft 13. Cylindrical rollers 33 and 34 are fitted to the eccentric portions 13A and 13B, respectively.

偏心部13A及びローラ33は、第1シリンダ室31に配置されている。偏心部13B及びローラ34は、第2シリンダ室32に配置されている。回転軸13が回転すると、ローラ33は、第1シリンダ室31に接した状態で転動し、ローラ34は、シリンダ室32に接した状態で転動する。 The eccentric portion 13A and the roller 33 are arranged in the first cylinder chamber 31. The eccentric portion 13B and the roller 34 are arranged in the second cylinder chamber 32. When the rotating shaft 13 rotates, the roller 33 rolls in contact with the first cylinder chamber 31, and the roller 34 rolls in contact with the cylinder chamber 32.

図2は、第1シリンダ室31の断面図である。なお、第2シリンダ室32は、第1シリンダ室31と略同一の形状及び機能を有している。そのため、代表して第1シリンダ室31を詳しく説明し、第2シリンダ室32については重複する説明を省略する。図2に示すように、第1シリンダ21には、第1シリンダ室31の径方向に延びるベーンスロット35が形成されている。 FIG. 2 is a cross-sectional view of the first cylinder chamber 31. The second cylinder chamber 32 has substantially the same shape and function as the first cylinder chamber 31. Therefore, the first cylinder chamber 31 will be described in detail as a representative, and the duplicate description of the second cylinder chamber 32 will be omitted. As shown in FIG. 2, the first cylinder 21 is formed with a vane slot 35 extending in the radial direction of the first cylinder chamber 31.

ベーンスロット35には、ベーン36が突没自在に収容されている。ベーン36の先端は、ローラ33の外周面に摺動可能に接触し、第1シリンダ室31を二分している。ベーン36の基端は、ベーンスロット35に設置されたコイルスプリング37によって、第1シリンダ室31に向けて付勢されている。 The vane 36 is housed in the vane slot 35 so as to be retractable. The tip of the vane 36 is slidably in contact with the outer peripheral surface of the roller 33, and divides the first cylinder chamber 31 into two. The base end of the vane 36 is urged toward the first cylinder chamber 31 by a coil spring 37 installed in the vane slot 35.

第1シリンダ21には、第1シリンダ室31の内外を連通させる吸込孔40が形成されている。吸込孔40には、図1に示された吸込管14が接続されている。冷凍サイクル回路から供給される作動流体は、吸込孔40から第1シリンダ室31に導かれる。作動流体は、回転軸13の回転に伴い第1及び第2シリンダ室31,32で圧縮される。第1及び第2シリンダ室31,32は、作動流体を圧縮する圧縮室の一例である。 The first cylinder 21 is formed with a suction hole 40 that allows the inside and outside of the first cylinder chamber 31 to communicate with each other. The suction pipe 14 shown in FIG. 1 is connected to the suction hole 40. The working fluid supplied from the refrigeration cycle circuit is guided from the suction hole 40 to the first cylinder chamber 31. The working fluid is compressed in the first and second cylinder chambers 31 and 32 as the rotating shaft 13 rotates. The first and second cylinder chambers 31 and 32 are examples of compression chambers for compressing the working fluid.

図1に示すように、第1シリンダ室31で圧縮された作動流体は、吐出孔41を通じてバルブカバー27内に吐出される。第2シリンダ室32で圧縮された作動流体は、副軸受25の吐出孔42を通じてバルブカバー28内に吐出される。なお、中間仕切板23を中空構造にして中間仕切板23内に作動流体を吐出してもよい。その場合、中間仕切板23に吐出孔41,42と同様の吐出孔を形成する。 As shown in FIG. 1, the working fluid compressed in the first cylinder chamber 31 is discharged into the valve cover 27 through the discharge hole 41. The working fluid compressed in the second cylinder chamber 32 is discharged into the valve cover 28 through the discharge hole 42 of the auxiliary bearing 25. The intermediate partition plate 23 may have a hollow structure and the working fluid may be discharged into the intermediate partition plate 23. In that case, the same discharge holes as the discharge holes 41 and 42 are formed in the intermediate partition plate 23.

バルブカバー28内は、副軸受25、第2シリンダ22、中間仕切板23、第1シリンダ21及び主軸受24を貫通する連通路43(図2に示す)を通じてバルブカバー27内と連通している。第1及び第2シリンダ室31,32からバルブカバー27,28内に吐出された作動流体は、バルブカバー26に形成された開口を通じて密閉容器10内に供給される。 The inside of the valve cover 28 communicates with the inside of the valve cover 27 through a communication passage 43 (shown in FIG. 2) penetrating the auxiliary bearing 25, the second cylinder 22, the intermediate partition plate 23, the first cylinder 21, and the main bearing 24. .. The working fluid discharged from the first and second cylinder chambers 31 and 32 into the valve covers 27 and 28 is supplied into the closed container 10 through the opening formed in the valve cover 26.

密閉容器10内の作動流体は、吐出管16及び冷媒管7を通じて凝縮器3に導かれ、蒸発器3において凝縮される。凝縮された作動流体は、膨張装置4において膨張及び減圧されたのち、蒸発器5において蒸発し、アキュームレータ6において気液分離される。アキュームレータ6で気液分離された作動流体は、吸込管14,15を通じて第1及び第2シリンダ室31,32にそれぞれ供給される。第1及び第2シリンダ室31,32に供給された作動流体は、再び圧縮されて密閉容器10内に供給される。 The working fluid in the closed container 10 is guided to the condenser 3 through the discharge pipe 16 and the refrigerant pipe 7, and is condensed in the evaporator 3. The condensed working fluid is expanded and depressurized in the expansion device 4, then evaporated in the evaporator 5, and gas-liquid separated in the accumulator 6. The working fluid separated by the accumulator 6 is supplied to the first and second cylinder chambers 31 and 32 through the suction pipes 14 and 15, respectively. The working fluid supplied to the first and second cylinder chambers 31 and 32 is compressed again and supplied into the closed container 10.

主軸受24の吐出孔41には、吐出孔41を開放又は閉塞する吐出弁機構50が設けられている。以下、図3乃至図5を参照して本実施形態に係る吐出弁機構50について詳しく説明する。なお、副軸受25や中間仕切板23の吐出孔に設けられた吐出弁機構50は、吐出孔41に設けられた吐出弁機構50と略同一の形状及び機能を有している。そのため、代表して吐出孔41に設けられた吐出弁機構50を詳しく説明し、他の吐出孔に設けられた吐出弁機構50については重複する説明を省略する。 The discharge hole 41 of the main bearing 24 is provided with a discharge valve mechanism 50 that opens or closes the discharge hole 41. Hereinafter, the discharge valve mechanism 50 according to the present embodiment will be described in detail with reference to FIGS. 3 to 5. The discharge valve mechanism 50 provided in the discharge holes of the auxiliary bearing 25 and the intermediate partition plate 23 has substantially the same shape and function as the discharge valve mechanism 50 provided in the discharge hole 41. Therefore, the discharge valve mechanism 50 provided in the discharge hole 41 will be described in detail as a representative, and the overlapping description of the discharge valve mechanism 50 provided in the other discharge holes will be omitted.

図3は、主軸受24に形成された吐出孔41の平面図である。主軸受24には、第1シリンダ室31と連通する吐出孔41が形成されている。図3に示すように、吐出孔41は、主軸受24の上面24Aよりも低い凹部44に形成されている。主軸受24の上面24Aと凹部44とは、案内溝45で滑らかに連続している。吐出弁機構50は、凹部44内に設けられている。 FIG. 3 is a plan view of the discharge hole 41 formed in the main bearing 24. The main bearing 24 is formed with a discharge hole 41 that communicates with the first cylinder chamber 31. As shown in FIG. 3, the discharge hole 41 is formed in a recess 44 lower than the upper surface 24A of the main bearing 24. The upper surface 24A and the recess 44 of the main bearing 24 are smoothly continuous with the guide groove 45. The discharge valve mechanism 50 is provided in the recess 44.

吐出弁機構50は、吐出弁座51と、吐出弁52と、弁押さえ53と、を備えている。吐出弁座51は、吐出孔41の周囲に環状に形成されている。吐出弁52は、ばね鋼等の弾性体から短冊状に形成されている。吐出弁52の基端(固定端)52Pは、主軸受24に固定されている。 The discharge valve mechanism 50 includes a discharge valve seat 51, a discharge valve 52, and a valve retainer 53. The discharge valve seat 51 is formed in an annular shape around the discharge hole 41. The discharge valve 52 is formed in a strip shape from an elastic body such as spring steel. The base end (fixed end) 52P of the discharge valve 52 is fixed to the main bearing 24.

吐出弁52の先端(自由端)52Dは、吐出孔41よりも大きい円形に形成されている。第1シリンダ室31内の圧力が密閉容器10内の圧力よりも低圧の間、先端52Dは、吐出弁座51に着座して吐出孔41を閉塞する。第1シリンダ室31内の圧力は、回転軸13の回転に伴い徐々に高まる。第1シリンダ室31内と密閉容器10内との圧力が逆転し、第1シリンダ室31内の圧力が密閉容器10内の圧力よりも高圧になったとき、先端52Dは、吐出弁座51から浮上して吐出孔41を開放する。 The tip (free end) 52D of the discharge valve 52 is formed in a circular shape larger than the discharge hole 41. While the pressure in the first cylinder chamber 31 is lower than the pressure in the closed container 10, the tip 52D sits on the discharge valve seat 51 and closes the discharge hole 41. The pressure in the first cylinder chamber 31 gradually increases with the rotation of the rotating shaft 13. When the pressure in the first cylinder chamber 31 and the pressure in the closed container 10 are reversed and the pressure in the first cylinder chamber 31 becomes higher than the pressure in the closed container 10, the tip 52D is moved from the discharge valve seat 51. Ascend to open the discharge hole 41.

先端52Dは、吐出弁座51を形成する材料よりも硬度が小さい皮膜を有していてもよい。吐出弁座51は、例えば鋼材から形成されている。吐出弁52の皮膜は、例えば樹脂から形成され、吐出弁52が閉じる際の衝撃を緩和する。弁押さえ53は、吐出弁52の先端52Dに間隔をあけて上方から対向し、吐出弁52の最大開度を規制する。図3に示す例では、弁押さえ53は、上方に反った短冊状に形成された吐出弁52よりも厚い鋼板である。 The tip 52D may have a film having a hardness lower than that of the material forming the discharge valve seat 51. The discharge valve seat 51 is made of, for example, a steel material. The film of the discharge valve 52 is formed of, for example, resin, and cushions the impact when the discharge valve 52 is closed. The valve retainer 53 faces the tip 52D of the discharge valve 52 from above with an interval, and regulates the maximum opening degree of the discharge valve 52. In the example shown in FIG. 3, the valve retainer 53 is a steel plate thicker than the discharge valve 52 formed in a strip shape curved upward.

図4は、図3中のF4-F4線に沿う断面図である。図4に示すように、吐出弁座51は、凹部44の上面44Aから突出している。吐出弁座51において、凹部44の上面44Aから最も遠い頂点を繋いだ線を稜線51Rとする。稜線51Rは、円形である。 FIG. 4 is a cross-sectional view taken along the line F4-F4 in FIG. As shown in FIG. 4, the discharge valve seat 51 projects from the upper surface 44A of the recess 44. In the discharge valve seat 51, the line connecting the vertices farthest from the upper surface 44A of the recess 44 is referred to as a ridge line 51R. The ridge line 51R is circular.

吐出弁座51は、吐出孔41を囲う内輪部54と、稜線51Rから内側に広がる支持部55と、稜線51Rから外側に広がる外輪部56と、を有している。内輪部54、支持部55及び外輪部56は、それぞれ環状に形成されている。内輪部54は、吐出孔41と支持部55との間を滑らかに繋いでいる。外輪部56は、稜線51Rと凹部44の上面44Aとの間を滑らかに繋いでいる。支持部55は、吐出弁座51を形成する材料よりも硬度が小さい皮膜を有していてもよい。支持部55の皮膜は、吐出弁52の皮膜と同様に、例えば樹脂から形成され、吐出弁52が閉じる際の衝撃を緩和する。 The discharge valve seat 51 has an inner ring portion 54 surrounding the discharge hole 41, a support portion 55 extending inward from the ridge line 51R, and an outer ring portion 56 extending outward from the ridge line 51R. The inner ring portion 54, the support portion 55, and the outer ring portion 56 are each formed in an annular shape. The inner ring portion 54 smoothly connects the discharge hole 41 and the support portion 55. The outer ring portion 56 smoothly connects the ridge line 51R and the upper surface 44A of the recess 44. The support portion 55 may have a film having a hardness lower than that of the material forming the discharge valve seat 51. The film of the support portion 55 is formed of, for example, resin, like the film of the discharge valve 52, and cushions the impact when the discharge valve 52 is closed.

支持部55は、吐出孔41の中心41Xに向かうに従って第1シリンダ室31に近づくように僅かに傾斜している。つまり、支持部55は、第1シリンダ室31側に凹んだ円錐面に形成されている。吐出弁座51の稜線51Rを含む平面に対する支持部55の円錐面の勾配を、傾斜角度θとする。吐出孔41の中心41Xから稜線51Rまでの長さを、支持部55の最大半径aとする。 The support portion 55 is slightly inclined toward the center 41X of the discharge hole 41 so as to approach the first cylinder chamber 31. That is, the support portion 55 is formed on a conical surface recessed toward the first cylinder chamber 31 side. The gradient of the conical surface of the support portion 55 with respect to the plane including the ridge line 51R of the discharge valve seat 51 is defined as the inclination angle θ. The length from the center 41X of the discharge hole 41 to the ridge line 51R is defined as the maximum radius a of the support portion 55.

図5は、吐出弁52の第1形状S1と第2形状S2とを説明する断面図である。図5に示すように、弾性体である吐出弁52の先端52Dは、吐出孔41を閉塞している状態、つまり吐出弁座51に着座した状態において、密閉容器10内の圧力と第1シリンダ室31内の圧力との差圧に応じて変形可能に構成されている。 FIG. 5 is a cross-sectional view illustrating the first shape S1 and the second shape S2 of the discharge valve 52. As shown in FIG. 5, the tip 52D of the discharge valve 52, which is an elastic body, has the pressure in the closed container 10 and the first cylinder in a state where the discharge hole 41 is closed, that is, when the discharge valve seat 51 is seated. It is configured to be deformable according to the differential pressure with the pressure in the chamber 31.

密閉容器10内の圧力と第1シリンダ室31内の圧力との差圧が大きく、第1シリンダ室31に向かって吐出弁52の先端52Dが大きく撓んだ第1形状の一例を、図5中にS1で示す。密閉容器10内の圧力と第1シリンダ室31内の圧力との差圧が徐々に小さくなって、第1形状S1よりも吐出弁52の先端52Dの撓み量が小さくなった第2形状の一例を、図5中にS2で示す。 FIG. 5 shows an example of the first shape in which the pressure difference between the pressure in the closed container 10 and the pressure in the first cylinder chamber 31 is large and the tip 52D of the discharge valve 52 is greatly bent toward the first cylinder chamber 31. It is indicated by S1 inside. An example of the second shape in which the differential pressure between the pressure in the closed container 10 and the pressure in the first cylinder chamber 31 gradually becomes smaller, and the amount of bending of the tip 52D of the discharge valve 52 becomes smaller than that in the first shape S1. Is shown by S2 in FIG.

最大差圧を受けた際の吐出弁52の先端52Dの形状について計算する。
吐出弁52の先端52Dが最大差圧を受けたとき、円形の先端52Dの半径rに対するたわみ曲線wは、

Figure 0007013138000001
である。
P:先端52Dに作用する最大差圧[N/m
a:支持部55の最大半径[m]
ν:先端52Dのポアソン比
D:先端52Dの曲げ剛性[Nm]
ここで、吐出弁52の先端52Dの曲げ剛性Dは、
Figure 0007013138000002
である。
E:吐出弁52の先端52Dの縦弾性係数[N/m
h:吐出弁52の先端52Dの厚み[m]
r=aにおけるたわみ曲線の傾きw´r=aは、wをrで微分して、
Figure 0007013138000003
となる。 The shape of the tip 52D of the discharge valve 52 when receiving the maximum differential pressure is calculated.
When the tip 52D of the discharge valve 52 receives the maximum differential pressure, the deflection curve w with respect to the radius r of the circular tip 52D is
Figure 0007013138000001
Is.
P: Maximum differential pressure acting on the tip 52D [N / m 2 ]
a: Maximum radius of the support portion 55 [m]
ν: Poisson's ratio of tip 52D
D: Flexural rigidity of the tip 52D [Nm]
Here, the bending rigidity D of the tip 52D of the discharge valve 52 is
Figure 0007013138000002
Is.
E: Young's modulus of the tip 52D of the discharge valve 52 [N / m 2 ]
h: Thickness [m] of the tip 52D of the discharge valve 52
The slope w'r = a of the deflection curve at r = a is obtained by differentiating w with r.
Figure 0007013138000003
Will be.

本実施形態に係る支持部55は、傾斜角度θが

Figure 0007013138000004
となる形状を有していることが特徴である。
仮に、支持部55の傾斜角度θが、
Figure 0007013138000005
であれば、
吐出弁52が最大差圧を受けても、支持部55と吐出弁52とは接触しない。
本実施形態のように、支持部55の傾斜角度θが、
Figure 0007013138000006
であれば、
吐出弁52が最大差圧を受ける前に、支持部55と吐出弁52とは接触する。 The support portion 55 according to the present embodiment has an inclination angle θ.
Figure 0007013138000004
It is characterized by having a shape that becomes.
Temporarily, the inclination angle θ of the support portion 55 is
Figure 0007013138000005
If,
Even if the discharge valve 52 receives the maximum differential pressure, the support portion 55 and the discharge valve 52 do not come into contact with each other.
As in the present embodiment, the inclination angle θ of the support portion 55 is
Figure 0007013138000006
If,
The support portion 55 and the discharge valve 52 come into contact with each other before the discharge valve 52 receives the maximum differential pressure.

なお、図4及び図5では、発明の説明のために吐出弁52の変形や傾斜角度θを誇張して描いているが、実際の傾斜角度θは、図示できない僅かな角度でよい。傾斜角度θは、圧縮機2の作動圧力や吐出弁52の材質によって適宜選択され、例えば1~2°程度であり、大きくても5°以下である。

Figure 0007013138000007
In FIGS. 4 and 5, the deformation of the discharge valve 52 and the inclination angle θ are exaggerated for the sake of explaining the invention, but the actual inclination angle θ may be a slight angle (not shown). The inclination angle θ is appropriately selected depending on the operating pressure of the compressor 2 and the material of the discharge valve 52, and is, for example, about 1 to 2 °, and at most 5 ° or less.
Figure 0007013138000007

図5に示す例では、吐出弁52が吐出弁座51に着座した状態において、第1形状S1の吐出弁52は支持部55に当接している。つまり、吐出弁座51と第1形状S1の吐出弁52とは、支持部55において面接触している。第1形状の吐出弁52が、密閉容器10内や第1シリンダ室31内の作動流体から圧力を受ける受圧面積を、図5中にA1で示す。 In the example shown in FIG. 5, the discharge valve 52 of the first shape S1 is in contact with the support portion 55 in a state where the discharge valve 52 is seated on the discharge valve seat 51. That is, the discharge valve seat 51 and the discharge valve 52 of the first shape S1 are in surface contact with each other at the support portion 55. The pressure receiving area where the discharge valve 52 of the first shape receives pressure from the working fluid in the closed container 10 and the first cylinder chamber 31 is shown by A1 in FIG.

一方で、第1形状S1よりも撓み量が小さい第2形状S2の吐出弁52は、支持部55に当接していない。吐出弁座51と第2形状S2の先端52Dとは、稜線51Rにおいて線接触している。第2形状の吐出弁52が、密閉容器10内や第1シリンダ室31内の作動流体から圧力を受ける受圧面積を、図5中にA2で示す。 On the other hand, the discharge valve 52 of the second shape S2, which has a smaller amount of deflection than the first shape S1, does not abut on the support portion 55. The discharge valve seat 51 and the tip 52D of the second shape S2 are in line contact with each other at the ridge line 51R. The pressure receiving area where the second-shaped discharge valve 52 receives pressure from the working fluid in the closed container 10 and the first cylinder chamber 31 is shown by A2 in FIG.

稜線51Rと線接触している第2形状S2の吐出弁52の受圧面積A2は、支持部55と面接触している第1形状S1の吐出弁52の受圧面積A1よりも大きい。吐出弁52が受ける力は、吐出弁52の受圧面積と、密閉容器10内及び第1シリンダ室31内の差圧との積によって決まる。大きな差圧を受けても吐出弁52が破損しないようにしたければ、吐出弁52の受圧面積を小さくすればよい。小さな差圧でも吐出弁52が迅速に応答するようにしたければ、吐出弁52の受圧面積を大きくすればよい。 The pressure receiving area A2 of the discharge valve 52 of the second shape S2 in line contact with the ridge line 51R is larger than the pressure receiving area A1 of the discharge valve 52 of the first shape S1 in surface contact with the support portion 55. The force received by the discharge valve 52 is determined by the product of the pressure receiving area of the discharge valve 52 and the differential pressure in the closed container 10 and the first cylinder chamber 31. If it is desired to prevent the discharge valve 52 from being damaged even if it receives a large differential pressure, the pressure receiving area of the discharge valve 52 may be reduced. If it is desired that the discharge valve 52 responds quickly even with a small differential pressure, the pressure receiving area of the discharge valve 52 may be increased.

以上のように構成された本実施形態の圧縮機2は、第1形状S1の吐出弁52が当接するが、第2形状S2の吐出弁52が当接しない形状の支持部55を有している。第1形状S1の吐出弁52の受圧面積A1は、支持部55と当接している分だけ第2形状S2の吐出弁52の受圧面積A2よりも小さい。 The compressor 2 of the present embodiment configured as described above has a support portion 55 having a shape in which the discharge valve 52 of the first shape S1 abuts but the discharge valve 52 of the second shape S2 does not abut. There is. The pressure receiving area A1 of the discharge valve 52 of the first shape S1 is smaller than the pressure receiving area A2 of the discharge valve 52 of the second shape S2 by the amount of contact with the support portion 55.

大きな差圧を受けている第1形状S1において、吐出弁52の受圧面積A1を小さくできるため、吐出弁52が受ける力を小さくして吐出弁52の破損を防止できる。このとき、吐出弁座51と吐出弁52とは面接触している。吐出弁座51が受ける力を支持部55全体に分散できるため、吐出弁52の局所的な割れを防止できる。吐出弁座51と吐出弁52とが線ではなく幅を持った面で接触するため、密閉容器10から第1シリンダ室31に逆流する漏れ損失を低減できる。 In the first shape S1 that receives a large differential pressure, the pressure receiving area A1 of the discharge valve 52 can be reduced, so that the force received by the discharge valve 52 can be reduced to prevent damage to the discharge valve 52. At this time, the discharge valve seat 51 and the discharge valve 52 are in surface contact with each other. Since the force received by the discharge valve seat 51 can be dispersed over the entire support portion 55, local cracking of the discharge valve 52 can be prevented. Since the discharge valve seat 51 and the discharge valve 52 come into contact with each other on a surface having a width instead of a line, it is possible to reduce the leakage loss that flows back from the closed container 10 to the first cylinder chamber 31.

また、第2形状S2の吐出弁52の受圧面積A2は、支持部55と当接していない分だけ第1形状S1の吐出弁52の受圧面積A1よりも大きい。密閉容器10内の圧力と第1シリンダ室31内の圧力との差圧が小さくなった第2形状S2において、吐出弁52の受圧面積A2を大きくできるため、第1シリンダ室31内の圧力が密閉容器10内の圧力よりも高圧になったとき、時間のロスなく迅速に吐出孔41を開放できる。その結果、第1シリンダ室31の過圧縮損失や吐出弁52の開閉に伴う騒音を低減できる。 Further, the pressure receiving area A2 of the discharge valve 52 of the second shape S2 is larger than the pressure receiving area A1 of the discharge valve 52 of the first shape S1 by the amount not in contact with the support portion 55. In the second shape S2 in which the pressure difference between the pressure in the closed container 10 and the pressure in the first cylinder chamber 31 is small, the pressure receiving area A2 of the discharge valve 52 can be increased, so that the pressure in the first cylinder chamber 31 can be increased. When the pressure becomes higher than the pressure in the closed container 10, the discharge hole 41 can be quickly opened without loss of time. As a result, it is possible to reduce the overcompression loss of the first cylinder chamber 31 and the noise caused by opening and closing the discharge valve 52.

吐出弁座51と第2形状S2の吐出弁52とは、稜線51Rで線接触している。仮に、潤滑油が付着した吐出弁座51と吐出弁52とが面接触していると、潤滑油の付着力によって吐出弁52の応答が遅れることがある。本実施形態では、吐出弁52が吐出弁座51と密着していないため、時間のロスなく迅速に吐出孔41を開放できる。 The discharge valve seat 51 and the discharge valve 52 of the second shape S2 are in line contact with each other at the ridge line 51R. If the discharge valve seat 51 to which the lubricating oil is attached and the discharge valve 52 are in surface contact with each other, the response of the discharge valve 52 may be delayed due to the adhesive force of the lubricating oil. In the present embodiment, since the discharge valve 52 is not in close contact with the discharge valve seat 51, the discharge hole 41 can be quickly opened without loss of time.

仮に、傾斜角度θが30°≦θ≦60°のように大きいと、支持部55によって吐出弁52を支持することができない。
これに対し、本実施形態に係る支持部55は、傾斜角度θが

Figure 0007013138000008
となる形状を有していることが特徴である。
本実施形態によれば、吐出弁52が最大差圧を受ける前の第1形状S1において、支持部55と吐出弁52とを確実に接触させることができる。 If the inclination angle θ is as large as 30 ° ≦ θ ≦ 60 °, the discharge valve 52 cannot be supported by the support portion 55.
On the other hand, the support portion 55 according to the present embodiment has an inclination angle θ.
Figure 0007013138000008
It is characterized by having a shape that becomes.
According to the present embodiment, the support portion 55 and the discharge valve 52 can be reliably brought into contact with each other in the first shape S1 before the discharge valve 52 receives the maximum differential pressure.

支持部55及び吐出弁52のいずれか一方、或いはその両方は、吐出弁座51を形成する材料よりも硬度が小さい皮膜を有している。支持部55や吐出弁52に形成された皮膜は、吐出弁52が閉じる際の衝撃を緩和して吐出弁52の破損を防止する。さらに、密閉容器10内の圧力と第1シリンダ室31内の圧力との差圧が大きいとき、皮膜が変形して支持部55及び吐出弁52の密着性が向上するため、漏れ損失を低減できる。 Either one or both of the support portion 55 and the discharge valve 52 has a film having a hardness lower than that of the material forming the discharge valve seat 51. The film formed on the support portion 55 and the discharge valve 52 alleviates the impact when the discharge valve 52 closes and prevents the discharge valve 52 from being damaged. Further, when the differential pressure between the pressure in the closed container 10 and the pressure in the first cylinder chamber 31 is large, the film is deformed and the adhesion between the support portion 55 and the discharge valve 52 is improved, so that the leakage loss can be reduced. ..

吐出弁52に皮膜を形成する場合、吐出弁52が後付けで固定できる部材であるため、支持部55に皮膜を形成するよりも製造しやすい利点がある。これに対し、吐出弁52に皮膜を形成する代わりに支持部55に皮膜を形成すれば、吐出弁52が軽量になるため吐出弁52の応答性を向上できる利点がある。 When forming a film on the discharge valve 52, since the discharge valve 52 is a member that can be fixed afterwards, there is an advantage that it is easier to manufacture than forming a film on the support portion 55. On the other hand, if a film is formed on the support portion 55 instead of forming a film on the discharge valve 52, the discharge valve 52 becomes lighter and has an advantage that the responsiveness of the discharge valve 52 can be improved.

本実施形態によれば、小さな差圧でも応答し、大きな差圧を受けても壊れにくい吐出弁52を備えているため、高性能で信頼性が高い圧縮機2や該圧縮機2を備えた冷凍サイクル装置1を提供できる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
According to the present embodiment, the compressor 2 is provided with a high-performance and highly reliable compressor 2 because it is provided with a discharge valve 52 that responds even with a small differential pressure and is not easily broken even with a large differential pressure. The refrigeration cycle device 1 can be provided.
Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

例えば、前述の説明では、二気筒タイプの回転式圧縮機の例を挙げたが、単気筒タイプでもよいし、三気筒以上の多気筒タイプでもよい。回転式圧縮機として、ローラを転動させる例を挙げたが、ベーンと一体になったローラを揺動させるスイングタイプでもよいし、ローラではなく渦巻き状の羽根を旋回させるスクロールタイプでもよい。 For example, in the above description, an example of a two-cylinder type rotary compressor has been given, but a single-cylinder type or a multi-cylinder type having three or more cylinders may be used. As an example of rolling a roller as a rotary compressor, a swing type that swings a roller integrated with a vane may be used, or a scroll type that swings a spiral blade instead of a roller may be used.

1…冷凍サイクル装置、2…圧縮機、3…凝縮器(放熱器の一例)、4…膨張装置、5…蒸発器(吸熱器の一例)、31,32…第1及び第2シリンダ室(圧縮室の一例)、41,42…吐出孔、51…吐出弁座、52…吐出弁、55…支持部、a…支持部の最大半径、h…吐出弁の厚み、S1…第1形状、S2…第2形状、θ…傾斜角度。 1 ... Refrigeration cycle device, 2 ... Compressor, 3 ... Condenser (example of radiator), 4 ... Expansion device, 5 ... Evaporator (example of heat absorber), 31, 32 ... 1st and 2nd cylinder chambers (1) Example of compression chamber), 41, 42 ... Discharge hole, 51 ... Discharge valve seat, 52 ... Discharge valve, 55 ... Support part, a ... Maximum radius of support part, h ... Discharge valve thickness, S1 ... First shape, S2 ... second shape, θ ... tilt angle.

Claims (4)

作動流体を圧縮する圧縮室と、
前記圧縮室に配置されたローラを転動させる回転軸と、
前記回転軸を回転自在に支持する軸受と、
前記軸受の上面よりも低い前記軸受の凹部に形成され、圧縮された前記作動流体を吐出する吐出孔と、
前記吐出孔を開放又は閉塞する吐出弁と、
前記吐出孔の周囲に形成された環状の吐出弁座と、を備えた圧縮機において、
前記吐出弁は、前記吐出孔を閉塞している状態において、前記圧縮室に向かって撓んだ第1形状と、該第1形状よりも撓み量が小さい第2形状と、の間で変形可能であり、
前記吐出弁座は、前記吐出孔を囲う内輪部と、前記凹部の上面から突出し、前記凹部の上面から最も遠い頂点を繋いだ円形の稜線と、前記内輪部の外周に配されて前記稜線から内側に広がり、前記第1形状の前記吐出弁とは当接するが、前記第2形状の前記吐出弁とは当接しない形状の支持部と、前記稜線から外側に広がる外輪部と、を有し、
前記支持部の形状は、外周側から前記吐出孔の中心に向かうに従って前記圧縮室に近づくように傾斜した円錐面であり、
前記内輪部は、前記吐出孔と前記支持部の円錐面との間を滑らかに繋ぎ、
前記第1形状の前記吐出弁は、前記支持部と面接触し、前記第2形状の前記吐出弁は、前記稜線と線接触し、前記第1形状の前記吐出弁が前記作動流体から圧力を受ける受圧面積は、前記支持部と当接している分だけ前記第2形状の前記吐出弁が前記作動流体から圧力を受ける受圧面積よりも小さいことを特徴とする圧縮機。
A compression chamber that compresses the working fluid,
A rotating shaft that rolls the rollers arranged in the compression chamber, and
A bearing that rotatably supports the axis of rotation,
A discharge hole formed in the recess of the bearing, which is lower than the upper surface of the bearing, and discharges the compressed working fluid.
A discharge valve that opens or closes the discharge hole,
In a compressor provided with an annular discharge valve seat formed around the discharge hole.
The discharge valve can be deformed between a first shape that bends toward the compression chamber and a second shape that bends less than the first shape while the discharge hole is closed. And
The discharge valve seat has an inner ring portion that surrounds the discharge hole , a circular ridge line that protrudes from the upper surface of the recess and connects the apex farthest from the upper surface of the recess, and is arranged on the outer periphery of the inner ring portion from the ridge line . It has a support portion that spreads inward and abuts on the discharge valve of the first shape but does not abut on the discharge valve of the second shape, and an outer ring portion that extends outward from the ridgeline. ,
The shape of the support portion is a conical surface inclined so as to approach the compression chamber from the outer peripheral side toward the center of the discharge hole.
The inner ring portion smoothly connects the discharge hole and the conical surface of the support portion.
The first-shaped discharge valve is in surface contact with the support portion, the second-shaped discharge valve is in line contact with the ridgeline, and the first-shaped discharge valve applies pressure from the working fluid. The compressor is characterized in that the pressure receiving area is smaller than the pressure receiving area where the discharge valve having the second shape receives pressure from the working fluid by the amount of contact with the support portion .
前記支持部の円錐面の傾斜角度θが
Figure 0007013138000009
P:吐出弁に作用する最大差圧[N/m
a:支持部の最大半径[m]
ν:吐出弁のポアソン比
D:吐出弁の曲げ剛性[Nm]
を満たすことを特徴とする請求項1に記載の圧縮機。
The inclination angle θ of the conical surface of the support portion is
Figure 0007013138000009
P: Maximum differential pressure acting on the discharge valve [N / m 2 ]
a: Maximum radius of the support [m]
ν: Poisson's ratio of the discharge valve D: Flexural rigidity of the discharge valve [Nm]
The compressor according to claim 1, wherein the compressor is characterized by satisfying the above conditions.
前記支持部及び前記吐出弁の少なくとも一方は、前記吐出弁座を形成する材料よりも硬度が小さい皮膜を有している請求項1又は2に記載の圧縮機。 The compressor according to claim 1 or 2, wherein at least one of the support portion and the discharge valve has a film having a hardness lower than that of the material forming the discharge valve seat. 放熱器、膨張装置及び吸熱器が順に接続されており、前記作動流体が循環する冷凍サイクル回路と、
前記放熱器と前記吸熱器との間で前記冷凍サイクル回路に接続された前記請求項1乃至3のいずれか一項に記載の前記圧縮機と、
を備えた冷凍サイクル装置。
A refrigeration cycle circuit in which a radiator, an inflator, and a heat absorber are connected in order and the working fluid circulates,
The compressor according to any one of claims 1 to 3, which is connected to the refrigeration cycle circuit between the radiator and the heat absorber.
Refrigeration cycle device equipped with.
JP2017063566A 2017-03-28 2017-03-28 Compressor and refrigeration cycle equipment Active JP7013138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017063566A JP7013138B2 (en) 2017-03-28 2017-03-28 Compressor and refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017063566A JP7013138B2 (en) 2017-03-28 2017-03-28 Compressor and refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2018165503A JP2018165503A (en) 2018-10-25
JP7013138B2 true JP7013138B2 (en) 2022-01-31

Family

ID=63921714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063566A Active JP7013138B2 (en) 2017-03-28 2017-03-28 Compressor and refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP7013138B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120563A (en) 2001-10-09 2003-04-23 Seiko Instruments Inc Gas compressor
JP2005307799A (en) 2004-04-20 2005-11-04 Matsushita Electric Ind Co Ltd Refrigerant compressor
WO2015025457A1 (en) 2013-08-23 2015-02-26 東芝キヤリア株式会社 Compressor and refrigeration cycle device
WO2015194181A1 (en) 2014-06-19 2015-12-23 パナソニックIpマネジメント株式会社 Refrigerant compressor and refrigeration appliance using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120563A (en) 2001-10-09 2003-04-23 Seiko Instruments Inc Gas compressor
JP2005307799A (en) 2004-04-20 2005-11-04 Matsushita Electric Ind Co Ltd Refrigerant compressor
WO2015025457A1 (en) 2013-08-23 2015-02-26 東芝キヤリア株式会社 Compressor and refrigeration cycle device
WO2015194181A1 (en) 2014-06-19 2015-12-23 パナソニックIpマネジメント株式会社 Refrigerant compressor and refrigeration appliance using same

Also Published As

Publication number Publication date
JP2018165503A (en) 2018-10-25

Similar Documents

Publication Publication Date Title
US7704059B2 (en) Compressor having a helmholtz type resonance chamber with a lowermost end connected to a gas passage
WO2009145232A1 (en) Enclosed compressor and refrigeration cycle device
JP5810221B2 (en) Rotary compressor and refrigeration cycle equipment
JP2010071265A (en) Rotary compressor and refrigeration cycle device
US10968912B2 (en) Scroll compressor
JP6418329B2 (en) Compressor
JP7013138B2 (en) Compressor and refrigeration cycle equipment
WO2016027413A1 (en) Rotary compressor and refrigeration cycle device
US9945378B2 (en) Scroll compressor
JP6267360B2 (en) Rotary compressor and refrigeration cycle apparatus
JP7262932B2 (en) Compressor and refrigeration cycle equipment
US11028848B2 (en) Scroll compressor having a fitted bushing and weight arrangement
JP2564998B2 (en) Scroll type fluid machine
US20080056925A1 (en) Vane room unit and rotary compressor having the same
JP6927731B2 (en) Closed compressor and refrigeration cycle equipment
JP6930026B2 (en) Rotary compressor and refrigeration cycle equipment
JPH06264881A (en) Rotary compressor
JP2016160793A (en) Rotary compressor and refrigerating cycle device
US20230064536A1 (en) Compressor and air conditioner
US11512699B1 (en) Compressor and air conditioner
JP7400080B2 (en) Rotary compressor and refrigeration cycle equipment
WO2022070382A1 (en) Scroll compressor and refrigeration cycle device
JP4910440B2 (en) Compressor
JP7170547B2 (en) Rotary compressor and refrigeration cycle equipment
JP6743277B2 (en) Rotary compressor and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210104

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210114

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210119

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210226

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210302

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210622

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210713

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211130

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220111

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220119

R150 Certificate of patent or registration of utility model

Ref document number: 7013138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150