JP7009737B2 - Control circuit for lighting equipment - Google Patents

Control circuit for lighting equipment Download PDF

Info

Publication number
JP7009737B2
JP7009737B2 JP2016252367A JP2016252367A JP7009737B2 JP 7009737 B2 JP7009737 B2 JP 7009737B2 JP 2016252367 A JP2016252367 A JP 2016252367A JP 2016252367 A JP2016252367 A JP 2016252367A JP 7009737 B2 JP7009737 B2 JP 7009737B2
Authority
JP
Japan
Prior art keywords
led
current path
series
voltage
leds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016252367A
Other languages
Japanese (ja)
Other versions
JP2018106929A (en
Inventor
潤一 大久保
直史 諸橋
正二 羽田
Original Assignee
株式会社新陽社
Anp株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新陽社, Anp株式会社 filed Critical 株式会社新陽社
Priority to JP2016252367A priority Critical patent/JP7009737B2/en
Publication of JP2018106929A publication Critical patent/JP2018106929A/en
Application granted granted Critical
Publication of JP7009737B2 publication Critical patent/JP7009737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

この発明は、電源に直流電圧を用いる、直流を給電するシステムに特化した照明装置において、幅広い電源電圧に対応を可能な制御回路に関するものである。 The present invention relates to a control circuit capable of supporting a wide range of power supply voltages in a lighting device specialized in a system for supplying direct current, which uses a direct current voltage as a power source.

近年のLED(発光ダイオード)技術の進化に伴い、LED照明装置は、様々なものが使用されている。そのため、LED照明装置には、小型化、高効率化、低価格化等が要求されている。 With the recent evolution of LED (light emitting diode) technology, various LED lighting devices are used. Therefore, LED lighting devices are required to be smaller, more efficient, and less expensive.

その中で、直流電圧を電源とするLED照明装置の電源供給元は、一つとは限らず、近年の省エネ意識の高まりにより、再生可能エネルギーである太陽光発電電力や、各種バッテリー電力等、多岐にわたる。 Among them, the power supply source of LED lighting devices that use DC voltage as the power source is not limited to one, and due to the growing awareness of energy saving in recent years, there are various power sources such as photovoltaic power generation, which is renewable energy, and various battery power. Over.

これらの電源から出力される直流電圧の違いに対しては、電源変換ユニットを用いることで対応していた。しかし、電源変換ユニットを用いる構成は、変換によるロスが発生し、効率が低下する問題があった。 The difference in DC voltage output from these power supplies was dealt with by using a power conversion unit. However, the configuration using the power conversion unit has a problem that a loss due to conversion occurs and the efficiency is lowered.

また、電源変換ユニットの多くは、特定の周波数でスイッチングして、出力を一定に保つ構成である。この様な電源変換ユニットは、スイッチング動作により、電磁ノイズが発生するという大きなデメリットがあった。 In addition, most of the power supply conversion units are configured to keep the output constant by switching at a specific frequency. Such a power supply conversion unit has a great demerit that electromagnetic noise is generated by the switching operation.

一方、電源変換ユニットを使用しない構成では、一定の範囲の直流電圧に対しては、LEDに流れる電流を一定に保つことは可能であるが、その範囲外の直流電圧の僅かな変動に対して、LEDに流れる電流が大きく変化してしまう。そのため、LED照明から出力される光の質が低下したり、LEDの寿命が短縮される。 On the other hand, in a configuration that does not use a power conversion unit, it is possible to keep the current flowing through the LED constant for a DC voltage in a certain range, but for slight fluctuations in the DC voltage outside that range. , The current flowing through the LED changes significantly. Therefore, the quality of the light output from the LED lighting is deteriorated, and the life of the LED is shortened.

また、所定の値以下に、直流電圧が低下すると、LEDを点灯させるために必要な順(方向)電圧VFが足りなくなり、LEDが消灯してしまう。そのため、広範囲の電源電圧に対応させることができないという問題があった。 Further, when the DC voltage drops below a predetermined value, the order (direction) voltage VF required for lighting the LED becomes insufficient, and the LED is turned off. Therefore, there is a problem that it cannot correspond to a wide range of power supply voltages.

従って、電源変換ユニットを用いることなく、幅広い電源電圧に対応可能なLED照明装置用の制御回路が望まれている。特許文献1及び2では、電源電圧の増減に合わせてLEDの点灯と消灯を制御することによって幅広い電源電圧に対応しながらLEDに流れる電流を一定に保つ構成が開示されている。 Therefore, there is a demand for a control circuit for an LED lighting device that can handle a wide range of power supply voltages without using a power supply conversion unit. Patent Documents 1 and 2 disclose a configuration in which the current flowing through an LED is kept constant while corresponding to a wide range of power supply voltages by controlling the lighting and extinguishing of the LED according to the increase and decrease of the power supply voltage.

特開2013-179279号公報Japanese Unexamined Patent Publication No. 2013-179279 特開2016-46228号公報Japanese Unexamined Patent Publication No. 2016-46228

しかしながら、これらの特許文献1及び2の構成では、電源電圧が低下すると、一定電流を保ちながら電圧下位から上位へ順にLEDが消灯していくため、周囲の者が電源電圧の変動に気づいてしまうという問題があった。 However, in these configurations of Patent Documents 1 and 2, when the power supply voltage drops, the LEDs are turned off in order from the lower voltage to the upper voltage while maintaining a constant current, so that the surrounding people notice the fluctuation of the power supply voltage. There was a problem.

そこで、この発明は、上述の課題を解決するものとして、電源電圧の変動に応じて、LEDの直並列の接続を自動的に変換することにより、幅広い電源電圧の範囲に対応可能な照明装置用の制御回路を提供することを目的としたものである。 Therefore, as a solution to the above-mentioned problems, the present invention is for a lighting device capable of supporting a wide range of power supply voltage by automatically converting the series-parallel connection of LEDs according to the fluctuation of the power supply voltage. The purpose is to provide a control circuit for the above.

請求項1の発明は、
直流電源の正極に、第1電流路と、第2電流路とがそれぞれ接続されており、
前記第1電流路では、常時点灯するLEDが直列に設けられており、当該LEDから電圧下位方向に向かって、第3電流路と第4電流路の2つに分岐し、
前記第3電流路では、直並列の接続が変換する第1のLEDが直列に設けられており、電圧下位方向に向かって、当該第1のLEDと、当該第1のLEDの直並列の接続を変換させるFETが直列に接続されて設けられ、
前記第4電流路では、直並列の接続が変換する第2のLEDの直並列の接続を変換させるFETが直列に設けられており、電圧下位方向に向かって、当該FETと、前記第2のLEDが直列に接続されて設けられ、
前記第3電流路に係る前記FETと、前記第4電流路に係る前記第2のLEDは接続され、2つに分岐していた前記第1電流路は1つに戻り、
1つに戻った前記第1電流路では、前記第1のLED及び前記第2のLEDに流す電流の量を決定する抵抗素子が直列に設けられると共に、1つに戻った前記第1電流路は、前記第2電流路に直列に設けられ、前記第1のLED及び前記第2のLEDに流す電流の量を決定するトランジスタと第5電流路によって接続され、
前記抵抗素子と、前記トランジスタは前記直流電源の負極に接続され、
前記第3電流路に係る前記FET及び前記第4電流路に係る前記FETは、前記トランジスタと接続され、
前記第3電流路に係る前記第1のLEDの合計インピーダンスと、前記第4電流路に係る前記第2のLEDの合計インピーダンスは等しく、
前記第3電流路に係る前記FETの合計インピーダンスと、前記第4電流路に係る前記FETの合計インピーダンスは等しい、照明装置用の制御回路とした。
また、請求項2の発明は、
前記第3電流路に係る前記LEDと前記FETの間と、前記第4電流路に係る前記FETと前記LEDの間を接続する第6電流路が更に設けられ、
前記第6電流路では、半導体整流素子が設けられている、請求項1に記載の照明装置用の制御回路とした。
The invention of claim 1 is
The first current path and the second current path are connected to the positive electrode of the DC power supply, respectively.
In the first current path, LEDs that are always lit are provided in series, and the LEDs are branched into two, a third current path and a fourth current path, in the lower voltage direction.
In the third current path, a first LED converted by the series-parallel connection is provided in series, and the first LED and the first LED are connected in series-parallel toward the voltage lower direction. FETs that convert the current are connected in series and provided.
In the fourth current path, a FET for converting the series-parallel connection of the second LED converted by the series-parallel connection is provided in series, and the FET and the second LED are provided in the lower voltage direction. LEDs are connected in series and provided,
The FET related to the third current path and the second LED related to the fourth current path are connected, and the first current path branched into two returns to one.
In the first current path returned to one, a resistance element for determining the amount of current flowing through the first LED and the second LED is provided in series, and the first current path returned to one. Is provided in series with the second current path and is connected by a fifth current path to a transistor that determines the amount of current flowing through the first LED and the second LED .
The resistance element and the transistor are connected to the negative electrode of the DC power supply, and the resistance element and the transistor are connected to the negative electrode of the DC power supply.
The FET related to the third current path and the FET related to the fourth current path are connected to the transistor.
The total impedance of the first LED related to the third current path and the total impedance of the second LED related to the fourth current path are equal.
The control circuit for the lighting device has the same total impedance of the FET related to the third current path and the total impedance of the FET related to the fourth current path.
Further, the invention of claim 2 is
A sixth current path connecting the LED and the FET related to the third current path and the FET and the LED related to the fourth current path is further provided.
The control circuit for the lighting device according to claim 1, wherein the sixth current path is provided with a semiconductor rectifying element.

また、請求項3の発明は、
前記第3電流路に係る前記第1のLED及び前記第4電流路に係る前記第2のLEDの数が、各1個である、請求項1又は2に記載の照明装置用の制御回路とした。
Further, the invention of claim 3 is
The control circuit for a lighting device according to claim 1 or 2, wherein the number of the first LED related to the third current path and the number of the second LED related to the fourth current path are one each. did.

また、請求項4の発明は、
1つに戻った前記第1電流路に更に、常時点灯するLEDが直列に設けられている、請求項1~3のいずれかに記載の照明装置用の制御回路とした。
Further, the invention of claim 4 is
The control circuit for a lighting device according to any one of claims 1 to 3, further comprising an LED that is always lit in series in the first current path that has returned to one.

請求項1~4の発明によれば、電源電圧の変動に応じて、LEDの直並列の接続を自動的に変換することにより、電源変換ユニットを用いることなく、幅広い電源電圧の範囲に対応可能である。 According to the inventions of claims 1 to 4, a wide range of power supply voltage can be supported without using a power supply conversion unit by automatically converting the series-parallel connection of LEDs according to the fluctuation of the power supply voltage. Is.

また、電源変換ユニットを使用しない構成であるため、照明装置の小型化、高効率化、低価格化が実現できる。また、電磁ノイズが発生せず、病院や精密機械室等の電磁ノイズを嫌う環境でも使用可能である。さらに照明装置の故障リスクも低減できる。 In addition, since the configuration does not use a power conversion unit, it is possible to reduce the size, efficiency, and price of the lighting device. In addition, it does not generate electromagnetic noise and can be used in environments such as hospitals and precision machine rooms where electromagnetic noise is disliked. Furthermore, the risk of failure of the lighting device can be reduced.

さらに、電源電圧の変動に応じて、LEDの直並列の接続を自動的に変換する構成であるため、ほとんどLEDが消灯することはなく、周囲の者が電源電圧の変動に気づきにくい。 Further, since the configuration is such that the series-parallel connection of the LEDs is automatically converted according to the fluctuation of the power supply voltage, the LED is hardly turned off, and it is difficult for the surrounding people to notice the fluctuation of the power supply voltage.

また特に、請求項3の発明のように、前記第3電流路及び前記第4電流路に、前記LED直並列変換部として設けられているLEDの数が各1個の場合には、当該1個分の順(方向)電圧に相当する電源電圧の変動に応じて、直並列の接続が変換され、分解能・感度が高い。 Further, in particular, when the number of LEDs provided as the LED series-parallel conversion unit in the third current path and the fourth current path is one, as in the invention of claim 3, the first The series-parallel connection is converted according to the fluctuation of the power supply voltage corresponding to the order (direction) voltage of each piece, and the resolution and sensitivity are high.

また特に、請求項4の発明によれば、電源電圧が不足した際に、直列から並列に変換されるLED直並列変換部に係るLED(=流れる電流が半減する箇所)を分散できるため、照明装置の明るさの隔たりを少なくでき、便宜である。 Further, in particular, according to the invention of claim 4, when the power supply voltage is insufficient, the LED (= the place where the flowing current is halved) related to the LED series-parallel conversion unit converted from series to parallel can be dispersed, so that the lighting It is convenient because the difference in the brightness of the device can be reduced.

この発明の概念構成図である。It is a conceptual block diagram of this invention. この発明の実施の形態例1の構成回路図である。It is a block diagram of Embodiment 1 of this invention. この発明の実施の形態例1の構成回路図である。It is a block diagram of Embodiment 1 of this invention. この発明の実施の形態例1の構成回路図である。It is a block diagram of Embodiment 1 of this invention. この発明の実施の形態例1の構成回路図である。It is a block diagram of Embodiment 1 of this invention. この発明の他の実施の形態例の構成回路図である。It is a block diagram of the other embodiment of this invention. この発明の他の実施の形態例の構成回路図である。It is a block diagram of the other embodiment of this invention. この発明の他の実施の形態例の構成回路図である。It is a block diagram of the other embodiment of this invention. この発明の他の実施の形態例の構成回路図である。It is a block diagram of the other embodiment of this invention.

まず、この発明の概念構成図である図1に基づいて説明する。この発明の照明装置用の制御回路は、直流電源50の電圧の印加によりLEDが常時点灯するLED常時点灯部51を設け、また、直流電源50の電圧値の変動によってLEDの直並列の接続が変換されるLED直並列変換部52を設け、また、電圧値の変動によって、LED直並列変換部52に係るLEDの直並列の接続を自動的に変換させるLED直並列制御部53を設け、さらに、LED常時点灯部51及びLED直並列変換部52に流す電流値を決定するLED電流値決定部54を設けた構成となっている。また、各部は電流路55を通じて接続されている。 First, it will be described based on FIG. 1, which is a conceptual configuration diagram of the present invention. The control circuit for the lighting device of the present invention is provided with the LED always-on unit 51 in which the LED is always lit by applying the voltage of the DC power supply 50, and the series-parallel connection of the LEDs is made by the fluctuation of the voltage value of the DC power supply 50. An LED series-parallel conversion unit 52 to be converted is provided, and an LED series-parallel control unit 53 that automatically converts the LED series-parallel connection of the LED series-parallel conversion unit 52 according to the fluctuation of the voltage value is provided. The LED current value determining unit 54 for determining the current value to be passed through the LED constantly lit unit 51 and the LED series-parallel conversion unit 52 is provided. Further, each part is connected through a current path 55.

この照明装置用の制御回路では、直流電源50から印加される直流電圧によりLED常時点灯部51及びLED直並列変換部52に係るLEDは点灯しているが、直流電源50の変動等により直流電圧が変動すると、LED直並列制御部53が動作し、LED直並列変換部52の直並列の接続が変換される。従って、この制御回路を設けた照明装置では、LED常時点灯部51及びLED直並列変換部52に係る全てのLEDが点灯状態となり、周囲の者が電源電圧の変動に気付きにくい。 In the control circuit for this lighting device, the LED related to the LED constant lighting unit 51 and the LED series-parallel conversion unit 52 is lit by the DC voltage applied from the DC power supply 50, but the DC voltage is caused by the fluctuation of the DC power supply 50 or the like. When is changed, the LED series-parallel control unit 53 operates, and the series-parallel connection of the LED series-parallel conversion unit 52 is converted. Therefore, in the lighting device provided with this control circuit, all the LEDs related to the LED constant lighting unit 51 and the LED series-parallel conversion unit 52 are in the lighting state, and it is difficult for the surrounding people to notice the fluctuation of the power supply voltage.

(実施の形態例1)
以下、この発明の実施の形態例1の照明装置用の制御回路Aの構成を図2に基づいて説明する。
(Example 1 of the embodiment)
Hereinafter, the configuration of the control circuit A for the lighting device according to the first embodiment of the present invention will be described with reference to FIG.

図2に示すように、直流電源1の正極に、電流路2(第1電流路の一例)と、電流路3(第2電流路の一例)とがそれぞれ接続されている。 As shown in FIG. 2, a current path 2 (an example of a first current path) and a current path 3 (an example of a second current path) are connected to the positive electrode of the DC power supply 1, respectively.

電流路2では、LEDから成る半導体発光素子LED1~3が同一極性方向に直列に接続されて設けられており、半導体発光素子LED3のカソード側から電圧下位方向に向かって、電流路21(第3電流路の一例)と電流路22(第4電流路の一例)の2つに分岐している。 In the current path 2, semiconductor light emitting devices LEDs 1 to 3 made of LEDs are connected in series in the same polar direction, and the current path 21 (third) is provided from the cathode side of the semiconductor light emitting device LED 3 toward the lower voltage direction. It is branched into two (an example of a current path) and a current path 22 (an example of a fourth current path).

電流路21では、LEDから成る半導体発光素子LED4~6が同一極性方向に直列に接続されて設けられており、半導体発光素子LED6のカソードと、半導体制御素子FET(電界効果トランジスタ)2のドレインが直列に接続されている。また、電流路22では、半導体制御素子FET1のソースが、同一極性方向に直列に接続されて設けられている、LEDから成る半導体発光素子LED7~9のうち、半導体発光素子LED7のアノードと直列に接続されている。 In the current path 21, semiconductor light emitting devices LEDs 4 to 6 composed of LEDs are connected in series in the same polar direction, and the cathode of the semiconductor light emitting device LED 6 and the drain of the semiconductor control element FET (field effect transistor) 2 are provided. They are connected in series. Further, in the current path 22, the source of the semiconductor control element FET1 is connected in series in the same polar direction, and among the semiconductor light emitting elements LEDs 7 to 9 made of LEDs, the source is connected in series with the anode of the semiconductor light emitting element LED7. It is connected.

さらに、半導体発光素子LED6のカソードと半導体制御素子FET2のドレイン間の電流路21と、半導体制御素子FET1のソースと半導体発光素子LED7のアノード間の電流路22とを結ぶ電流路4に、ダイオードから成る半導体整流素子D1が設けられている。詳しくは、半導体整流素子D1のアノードが、半導体発光素子LED6のカソードと半導体制御素子FET2のドレイン間の電流路21に接続され、半導体整流素子D1のカソードが、半導体制御素子FET1のソースと半導体発光素子LED7のアノード間の電流路22に接続されている。この半導体整流素子D1は、順方向にしか電流を流さない特性を活かして、半導体制御素子FET1がONした際に、半導体制御素子FET1のソースから半導体制御素子FET2のドレインに電流が流れないように、電流を遮断する役割を果たす。このように半導体整流素子D1が設けられていることによって、半導体制御素子FET1及び半導体制御素子FET2がONした際に、電流路21と電流路22にほぼ等しく電流が流れることになる。 Further, from the diode, the current path 21 connecting the current path 21 between the cathode of the semiconductor light emitting element LED 6 and the drain of the semiconductor control element FET 2 and the current path 22 between the source of the semiconductor control element FET 1 and the anode of the semiconductor light emitting element LED 7 is connected to the current path 4. The semiconductor rectifying element D1 is provided. Specifically, the anode of the semiconductor rectifying element D1 is connected to the current path 21 between the cathode of the semiconductor light emitting element LED6 and the drain of the semiconductor control element FET2, and the cathode of the semiconductor rectifying element D1 is connected to the source of the semiconductor control element FET1 and semiconductor light emission. It is connected to the current path 22 between the anodes of the element LED 7. Taking advantage of the characteristic that the current flows only in the forward direction, the semiconductor rectifying element D1 prevents the current from flowing from the source of the semiconductor control element FET1 to the drain of the semiconductor control element FET2 when the semiconductor control element FET1 is turned on. , Plays the role of cutting off the current. By providing the semiconductor rectifying element D1 in this way, when the semiconductor control element FET1 and the semiconductor control element FET2 are turned on, a current flows substantially equally in the current path 21 and the current path 22.

半導体制御素子FET2のソースと半導体発光素子LED9のカソードは接続され、電流路21と電流路22との2つに分岐していた電流路2は、ここで1つの電流路2に戻り、これより下の電圧下位方向には、抵抗素子R3が設けられている。 The source of the semiconductor control element FET 2 and the cathode of the semiconductor light emitting element LED 9 are connected, and the current path 2 that has branched into two, the current path 21 and the current path 22, returns to one current path 2 here, and from this. A resistance element R3 is provided in the lower voltage lower direction.

一方、電流路3では、抵抗素子R4と半導体制御素子TR(トランジスタ)のコレクタが直列に接続されて設けられている。 On the other hand, in the current path 3, the resistance element R4 and the collector of the semiconductor control element TR (transistor) are connected in series and provided.

また、電流路2の抵抗素子R3と、電流路3の半導体制御素子TRのエミッタが直流電源1の負極(≒GND)に夫々接続されている。 Further, the resistance element R3 of the current path 2 and the emitter of the semiconductor control element TR of the current path 3 are connected to the negative electrode (≈ GND) of the DC power supply 1, respectively.

半導体制御素子FET1のゲートは、半導体制御素子TRのコレクタと、抵抗素子R1を介して接続され、半導体制御素子FET2のゲートは、半導体制御素子TRのコレクタと、抵抗素子R2を介して接続されている。また、半導体制御素子FET1のソースとゲート間には、半導体定電圧素子ZD1が設けられ、半導体制御素子FET2のソースとゲート間には、半導体定電圧素子ZD2が設けられている。これら半導体定電圧素子ZD1、ZD2は、ツェナーダイオードから成り、電流の変化に対し電圧が一定になるというツェナーダイオードの特性を活かして、ソースとゲート間に加わる電圧を制限する。そのため、サージ電流や静電気が発生した場合等に、半導体制御素子FET1、FET2を保護する役割を果たす。 The gate of the semiconductor control element FET1 is connected to the collector of the semiconductor control element TR via the resistance element R1, and the gate of the semiconductor control element FET2 is connected to the collector of the semiconductor control element TR via the resistance element R2. There is. Further, a semiconductor constant voltage element ZD1 is provided between the source and the gate of the semiconductor control element FET1, and a semiconductor constant voltage element ZD2 is provided between the source and the gate of the semiconductor control element FET2. These semiconductor constant voltage elements ZD1 and ZD2 are composed of Zener diodes, and take advantage of the characteristics of Zener diodes that the voltage becomes constant with respect to changes in current to limit the voltage applied between the source and the gate. Therefore, it plays a role of protecting the semiconductor control elements FET1 and FET2 when a surge current or static electricity is generated.

また、半導体制御素子FET2のソースと半導体発光素子LED9のカソードとの接続点と、抵抗素子R3との間と、半導体制御素子TRのベースとが接続された電流路5(第5電流路の一例)に、抵抗素子R3に近い順に、ツェナーダイオードから成る半導体定電圧素子ZD3及び抵抗素子R5が直列に接続されて設けられている。このように、印加される電圧に関わらず出力電圧が一定になる半導体定電圧素子ZD3が設けられていることによって、抵抗素子R3に印加される電圧を設定することができる。また、このように抵抗素子R5が設けられていることによって、半導体制御素子TRのベースに流れる電流を一定値以下に制限することができる。また、電流路5の半導体定電圧素子ZD3と抵抗素子R5との間と、抵抗素子R3と半導体制御素子TRとの間とを結ぶ電流路6に抵抗素子R6が設けられ、抵抗素子R6は直流電源1の負極(≒GND)に接続されている。 Further, a current path 5 (an example of a fifth current path) in which the connection point between the source of the semiconductor control element FET 2 and the cathode of the semiconductor light emitting element LED 9 and the resistance element R3 and the base of the semiconductor control element TR are connected. ), The semiconductor constant voltage element ZD3 made of a Zener diode and the resistance element R5 are connected in series in the order of proximity to the resistance element R3. As described above, by providing the semiconductor constant voltage element ZD3 in which the output voltage is constant regardless of the applied voltage, the voltage applied to the resistance element R3 can be set. Further, by providing the resistance element R5 in this way, the current flowing through the base of the semiconductor control element TR can be limited to a certain value or less. Further, the resistance element R6 is provided in the current path 6 connecting between the semiconductor constant voltage element ZD3 and the resistance element R5 in the current path 5 and between the resistance element R3 and the semiconductor control element TR, and the resistance element R6 is DC. It is connected to the negative voltage (≈GND) of the power supply 1.

次に、図1で説明したこの発明の概念構成と、図2で説明した照明装置用の制御回路Aの回路構成との対応関係について説明する。図1の直流電源50は、図2の直流電源1と対応する。また、図1のLED常時点灯部51は、図2の半導体発光素子LED1~3が対応する。また、図1のLED直並列変換部52は、図2の半導体発光素子LED4~6及び半導体発光素子LED7~9が対応する。また、図1のLED直並列制御部53は、図2の半導体制御素子FET1及び半導体制御素子FET2が対応する。さらに、図1のLED電流値決定部54は、図2の半導体制御素子TR、半導体定電圧素子ZD3、抵抗素子R3が対応する。また、図1の電流路55は、図2の電流路2~6、電流路21及び電流路22が対応する。 Next, the correspondence between the conceptual configuration of the present invention described with reference to FIG. 1 and the circuit configuration of the control circuit A for the lighting device described with reference to FIG. 2 will be described. The DC power supply 50 of FIG. 1 corresponds to the DC power supply 1 of FIG. Further, the LED constantly lit unit 51 of FIG. 1 corresponds to the semiconductor light emitting elements LEDs 1 to 3 of FIG. Further, the LED series-parallel conversion unit 52 of FIG. 1 corresponds to the semiconductor light emitting elements LEDs 4 to 6 and the semiconductor light emitting elements LEDs 7 to 9 of FIG. Further, the LED series-parallel control unit 53 of FIG. 1 corresponds to the semiconductor control element FET1 and the semiconductor control element FET2 of FIG. Further, the LED current value determining unit 54 in FIG. 1 corresponds to the semiconductor control element TR, the semiconductor constant voltage element ZD3, and the resistance element R3 in FIG. Further, the current path 55 in FIG. 1 corresponds to the current paths 2 to 6, the current path 21 and the current path 22 in FIG.

なお、LED常時点灯部51に相当する図2の半導体発光素子LED1~3は、半導体制御素子FET1を動作させるためのものである。詳しく説明する。半導体制御素子FET1のゲートの電位が、ソースの電位より高くないと、ゲートに電圧を印加しても、半導体制御素子FET1がONしないため、ドレインとソース間で電流が流れない。そのため、LED常時点灯部51を設けることによって、半導体制御素子FET1のソースの電位をゲートの電位に比して、ゲートとソース間閾値電圧分以上低下させ、半導体制御素子FET1が動作するようにする。 The semiconductor light emitting elements LEDs 1 to 3, which correspond to the LED constantly lit unit 51, are for operating the semiconductor control element FET1. explain in detail. If the potential of the gate of the semiconductor control element FET1 is not higher than the potential of the source, even if a voltage is applied to the gate, the semiconductor control element FET1 does not turn on, so that no current flows between the drain and the source. Therefore, by providing the LED constantly lit unit 51, the potential of the source of the semiconductor control element FET1 is lowered by the threshold voltage between the gate and the source with respect to the potential of the gate, so that the semiconductor control element FET1 operates. ..

また、LED直並列変換部52に相当する図2の半導体発光素子LED4~6及び半導体発光素子LED7~9は、2つのブロックに分けられるが、直流電圧の低下に伴い並列回路に接続が変換され、電流路が分かれた際に、各電流路に流れる電流の量を等しくするため、ブロック間相互の合計のインピーダンスが等しくなるように構成する。ブロック間相互の合計のインピーダンスが異なると、並列回路に接続が変換された際に、電流が均等に分かれなくなり、一方のブロックの半導体発光素子LEDが消灯することも考えられる。 Further, the semiconductor light emitting element LEDs 4 to 6 and the semiconductor light emitting element LEDs 7 to 9 of FIG. 2, which correspond to the LED series-parallel conversion unit 52, are divided into two blocks, but the connection is converted to the parallel circuit as the DC voltage decreases. In order to equalize the amount of current flowing in each current path when the current paths are separated, the total impedance between the blocks is configured to be equal. If the total impedance between the blocks is different, the current may not be evenly divided when the connection is converted to the parallel circuit, and the semiconductor light emitting element LED of one block may be turned off.

さらに、LED直並列制御部53に相当する図2の半導体制御素子FET1及び半導体制御素子FET2についても、直流電圧の低下に伴い並列回路に接続が変換された際に流れる電流を等しくするため、相互のインピーダンスが等しくなるように構成する。 Further, the semiconductor control element FET1 and the semiconductor control element FET2 in FIG. 2, which correspond to the LED series-parallel control unit 53, also have the same current flowing when the connection is converted to the parallel circuit as the DC voltage decreases. The impedances of the are equal to each other.

また、LED電流値決定部54について、以下詳しく説明する。LED電流値決定部54が決定する「LED電流値」は、LED常時点灯部51及びLED直並列変換部52を流れる電流値である。そして、LED常時点灯部51及びLED直並列変換部52を流れた電流は、その殆どが抵抗素子R3へ流れる。従って、抵抗素子R3を流れる電流が、LED常時点灯部51及びLED直並列変換部52に流れる電流ということになる。抵抗素子R3は、抵抗値が変わらない固定抵抗器であるため、抵抗素子R3に印加される電圧(以降、「VR3」という)が一定であれば、抵抗素子R3を流れる電流も一定になる。 Further, the LED current value determining unit 54 will be described in detail below. The "LED current value" determined by the LED current value determining unit 54 is a current value flowing through the LED constantly lit unit 51 and the LED series-parallel conversion unit 52. Most of the current flowing through the LED constantly lit unit 51 and the LED series-parallel conversion unit 52 flows to the resistance element R3. Therefore, the current flowing through the resistance element R3 is the current flowing through the LED constantly lit unit 51 and the LED series-parallel conversion unit 52. Since the resistance element R3 is a fixed resistor whose resistance value does not change, if the voltage applied to the resistance element R3 (hereinafter referred to as “VR3”) is constant, the current flowing through the resistance element R3 is also constant.

VR3は、電流路5のZD3のツェナー電圧と、抵抗素子R5に印加される電圧(以降、「VR5」という)と、TRのベース・エミッタ間電圧(一般的には0.6V)で構成されるが、抵抗素子R5を流れる電流(=TRのベース電流)は小さいため、VR5は無視してよい大きさである。従って、VR3は、主としてTRのベース・エミッタ間電圧とZD3のツェナー電圧の合算値Bで決まる。一方で、VR3は、直流電源50の印加する電圧から、LED常時点灯部51及びLED直並列変換部52に印加された電圧を減算した減算値Cでも決まる。VR3が、合算値Bで決まるか、減算値Cで決まるかは、LED直並列変換部52に係る、半導体発光素子LED4~6及び半導体発光素子LED7~9が直列で接続されるか、並列で接続されるかということと、直流電源50によって印加される電圧値による。このことについては、以下で説明する照明装置用の制御回路Aの動作と併せて説明する。 The VR3 is composed of a Zener voltage of the ZD3 of the current path 5, a voltage applied to the resistance element R5 (hereinafter referred to as “VR5”), and a voltage between the base and the emitter of the TR (generally 0.6V). However, since the current flowing through the resistance element R5 (= base current of TR) is small, VR5 is a negligible magnitude. Therefore, VR3 is mainly determined by the total value B of the base-emitter voltage of TR and the Zener voltage of ZD3. On the other hand, VR3 is also determined by a subtraction value C obtained by subtracting the voltage applied to the LED constantly lit unit 51 and the LED series-parallel conversion unit 52 from the voltage applied by the DC power supply 50. Whether VR3 is determined by the total value B or the subtraction value C depends on whether the semiconductor light emitting elements LEDs 4 to 6 and the semiconductor light emitting elements LEDs 7 to 9 related to the LED series-parallel conversion unit 52 are connected in series or in parallel. It depends on whether it is connected and the voltage value applied by the DC power supply 50. This will be described together with the operation of the control circuit A for the lighting device described below.

次に、照明装置用の制御回路Aの動作について図2~5を用いて説明する。直流電源1から十分な電圧が印加されている時は(例えば、29.3V以上)、半導体制御素子TRに十分なベース電流が流れ、半導体制御素子TRがONし、半導体制御素子TRのコレクタ電圧と、半導体制御素子FET1及び半導体制御素子FET2のゲート電圧が0Vで等しくなるため、半導体制御素子FET1及び半導体制御素子FET2はONしない。そのため、図3に示すように、半導体発光素子LED1~3を流れた電流は、電流路21の半導体発光素子LED4~6、半導体整流素子D1、電流路22の半導体発光素子LED7~9、抵抗素子R3を流れる。つまり、半導体発光素子LED4~6と半導体発光素子LED7~9は、直列に接続されたことになる。 Next, the operation of the control circuit A for the lighting device will be described with reference to FIGS. 2 to 5. When a sufficient voltage is applied from the DC power supply 1 (for example, 29.3V or more), a sufficient base current flows through the semiconductor control element TR, the semiconductor control element TR is turned on, and the collector voltage of the semiconductor control element TR is turned on. Since the gate voltages of the semiconductor control element FET1 and the semiconductor control element FET2 are equal at 0V, the semiconductor control element FET1 and the semiconductor control element FET2 are not turned on. Therefore, as shown in FIG. 3, the current flowing through the semiconductor light emitting elements LEDs 1 to 3 is the semiconductor light emitting element LEDs 4 to 6 in the current path 21, the semiconductor rectifying element D1, the semiconductor light emitting elements LEDs 7 to 9 in the current path 22, and the resistance element. It flows through R3. That is, the semiconductor light emitting elements LEDs 4 to 6 and the semiconductor light emitting elements LEDs 7 to 9 are connected in series.

29.3Vより直流電源1から印加される電圧が大きくなると、減算値CによってVR3が決まり、直流電源1から印加される電圧の上昇とともに、VR3の値も上昇するので、LED電流値も増加する。 When the voltage applied from the DC power supply 1 becomes larger than 29.3V, the subtraction value C determines VR3, and as the voltage applied from the DC power supply 1 increases, the value of VR3 also increases, so that the LED current value also increases. ..

直流電源1から印加される電圧が29.3Vの時は、VR3は、合算値B及び減算値Cのいずれかで決まり、いずれの値もVR3は3.56Vになる。 When the voltage applied from the DC power supply 1 is 29.3V, VR3 is determined by either the total value B or the subtraction value C, and VR3 becomes 3.56V in any of the values.

直流電源1からの電圧が減少してくると(例えば、27.4V)、半導体制御素子TRのベース電流が少なくなり、半導体制御素子TRのコレクタ電流も少なくなる。そして、半導体制御素子TRがONしているものの、半導体制御素子TRのコレクタ電圧と、半導体制御素子FET1及び半導体制御素子FET2のゲート電圧が等しくなる電圧値が上昇して、半導体制御素子FET2のソース電圧よりも高くなり、半導体制御素子FET2のゲート・ソース間閾値電圧を超えると、半導体制御素子FET2がONする。そのため、図4に示すように、半導体発光素子LED1~3を流れた電流は、電流路21の半導体発光素子LED4~6、半導体制御素子FET2、抵抗素子R3に流れる。一方、電流路22の半導体発光素子LED7~9は消灯する。 When the voltage from the DC power supply 1 decreases (for example, 27.4V), the base current of the semiconductor control element TR decreases, and the collector current of the semiconductor control element TR also decreases. Then, although the semiconductor control element TR is turned on, the voltage value at which the collector voltage of the semiconductor control element TR and the gate voltage of the semiconductor control element FET1 and the semiconductor control element FET2 become equal increases, and the source of the semiconductor control element FET2 When the voltage becomes higher than the voltage and exceeds the gate-source threshold voltage of the semiconductor control element FET2, the semiconductor control element FET2 is turned on. Therefore, as shown in FIG. 4, the current flowing through the semiconductor light emitting elements LEDs 1 to 3 flows through the semiconductor light emitting elements LEDs 4 to 6, the semiconductor control element FET2, and the resistance element R3 in the current path 21. On the other hand, the semiconductor light emitting devices LEDs 7 to 9 in the current path 22 are turned off.

29.3Vより直流電源1から印加される電圧が小さくなり、図4に示すように、半導体発光素子LED1~3を流れた電流は、電流路21の半導体発光素子LED4~6、半導体制御素子FET2、抵抗素子R3に流れる一方、電流路22の半導体発光素子LED7~9は消灯するようになると、合算値BによってVR3が決まり、VR3は3.56Vになる。 The voltage applied from the DC power supply 1 becomes smaller than 29.3V, and as shown in FIG. 4, the current flowing through the semiconductor light emitting elements LEDs 1 to 3 is the semiconductor light emitting elements LEDs 4 to 6 in the current path 21 and the semiconductor control element FET 2. When the semiconductor light emitting devices LEDs 7 to 9 in the current path 22 are turned off while flowing through the resistance element R3, the total value B determines VR3, and VR3 becomes 3.56V.

そして、直流電源1からの電圧が不足した状態では(例えば、19.9V以下)、半導体制御素子TRのベース電流がさらに少なくなり、半導体制御素子TRのコレクタ電流も少なくなる。そして、半導体制御素子TRがONするものの、半導体制御素子TRのコレクタ電圧と、半導体制御素子FET1及び半導体制御素子FET2のゲート電圧が等しくなる電圧値がさらに上昇して、半導体制御素子FET1のソース電圧よりも高くなり、半導体制御素子FET1のゲート・ソース間閾値電圧を超えると、半導体制御素子FET1がONする。又は、半導体制御素子TRがOFFして、半導体制御素子FET1がONする。そのため、図5に示すように、半導体発光素子LED1~3を流れた電流は、電流路21の半導体発光素子LED4~6と半導体制御素子FET2を流れるルートと、半導体制御素子FET1と半導体発光素子LED7~9を流れるルートに分かれる。つまり、半導体発光素子LED4~6と半導体発光素子LED7~9は、並列に接続されたことになる。なお、並列に接続された電流路21の半導体発光素子LED4~6及び半導体制御素子FET2の合計インピーダンスと、電流路22の半導体制御素子FET1及び半導体発光素子LED7~9の合計インピーダンスが等しいため、半導体発光素子LED4~6と半導体発光素子LED7~9を流れる電流の量は等しくなる。 When the voltage from the DC power supply 1 is insufficient (for example, 19.9 V or less), the base current of the semiconductor control element TR is further reduced, and the collector current of the semiconductor control element TR is also reduced. Then, although the semiconductor control element TR is turned on, the voltage value at which the collector voltage of the semiconductor control element TR and the gate voltage of the semiconductor control element FET1 and the semiconductor control element FET2 are equal increases further, and the source voltage of the semiconductor control element FET1 is increased. When the threshold voltage between the gate and the source of the semiconductor control element FET1 is exceeded, the semiconductor control element FET1 is turned on. Alternatively, the semiconductor control element TR is turned off and the semiconductor control element FET1 is turned on. Therefore, as shown in FIG. 5, the current flowing through the semiconductor light emitting elements LEDs 1 to 3 is the route flowing through the semiconductor light emitting elements LEDs 4 to 6 and the semiconductor control element FET 2 in the current path 21, the semiconductor control element FET 1 and the semiconductor light emitting element LED 7. Divided into routes that flow through 9 to 9. That is, the semiconductor light emitting elements LEDs 4 to 6 and the semiconductor light emitting elements LEDs 7 to 9 are connected in parallel. Since the total impedance of the semiconductor light emitting elements LEDs 4 to 6 and the semiconductor control element FET 2 of the current path 21 connected in parallel is equal to the total impedance of the semiconductor control element FET 1 and the semiconductor light emitting element LEDs 7 to 9 of the current path 22, the semiconductor The amounts of current flowing through the light emitting elements LEDs 4 to 6 and the semiconductor light emitting elements LEDs 7 to 9 are equal.

直流電源1から印加される電圧が19.9Vの時は、TRがOFFしているため、VR3は、減算値Cによって決まり、VR3は3.30Vとなる。半導体制御素子FET1と半導体制御素子FET2は完全にONしているので、半導体制御素子FET1及び半導体制御素子FET2のドレイン・ソース間電圧は約0Vとなり、減算値Cが適用できるからである。 When the voltage applied from the DC power supply 1 is 19.9V, TR is OFF, so VR3 is determined by the subtraction value C, and VR3 is 3.30V. This is because the semiconductor control element FET 1 and the semiconductor control element FET 2 are completely turned on, so that the voltage between the drain and the source of the semiconductor control element FET 1 and the semiconductor control element FET 2 is about 0 V, and the subtraction value C can be applied.

直流電源1から印加される電圧が19.9Vより小さくなると、VR3は、減算値Cによって決まり、LED常時点灯部51及びLED直並列変換部52に印加される電圧はあまり変わらないので、直流電源1から印加される電圧の減少分が、そのままVR3の減少分となり、LED電流値も減少する。 When the voltage applied from the DC power supply 1 becomes smaller than 19.9V, VR3 is determined by the subtraction value C, and the voltage applied to the LED constantly lit unit 51 and the LED series-parallel conversion unit 52 does not change so much, so that the DC power supply The decrease in the voltage applied from 1 becomes the decrease in VR3 as it is, and the LED current value also decreases.

なお、図2の照明装置用の制御回路Aのように、LED常時点灯部51に係る半導体発光素子LEDの数(半導体発光素子LED1~3の3個)と、LED直並列変換部52に係る、並列回路に接続が変換され、電流路が分かれた際の各ブロックの半導体発光素子LEDの数(半導体発光素子LED4~6、あるいは半導体発光素子LED7~9の3個)が1:1の割合の場合、直流電源1からの電圧が約2/3になると(直流電源1からの電圧が約1/3減少すると)、直列回路から並列回路に接続が変換される。 As in the control circuit A for the lighting device of FIG. 2, the number of semiconductor light emitting element LEDs (three of the semiconductor light emitting elements LEDs 1 to 3) related to the LED constantly lit unit 51 and the LED series-parallel conversion unit 52. , The ratio of the number of semiconductor light emitting element LEDs (three of semiconductor light emitting element LEDs 4 to 6 or semiconductor light emitting element LEDs 7 to 9) of each block when the connection is converted to a parallel circuit and the current path is divided is 1: 1. In the case of, when the voltage from the DC power supply 1 becomes about 2/3 (when the voltage from the DC power supply 1 decreases by about 1/3), the connection is converted from the series circuit to the parallel circuit.

また、上述した本実施形態では、照明装置用の制御回路Aの動作について、直流電源1からの電圧が減少・不足していく場合を例として説明した。しかし、照明装置用の制御回路Aは、直流電源1からの電圧が減少・不足していく場合のみに対応可能な構成ではなく、LED直並列変換部52に係る半導体発光素子LEDの直並列の接続を変換することにより、直流電源1によって印加される、幅広い電圧の範囲に対応可能な構成である。そのため、例えば、直流電源1からの電圧が不足し、LED直並列変換部52に係る半導体発光素子LEDが並列に接続されている状態から、電圧が増加し、十分な電圧が印加されている状態に移行した場合には、LED直並列変換部52に係る半導体発光素子LEDの接続は並列から直列に変換される。 Further, in the above-described embodiment, the operation of the control circuit A for the lighting device has been described as an example in which the voltage from the DC power supply 1 decreases or becomes insufficient. However, the control circuit A for the lighting device is not a configuration that can be dealt with only when the voltage from the DC power supply 1 decreases or becomes insufficient, and the semiconductor light emitting element LED related to the LED series-parallel conversion unit 52 is series-parallel. By converting the connection, it is a configuration that can correspond to a wide range of voltage applied by the DC power supply 1. Therefore, for example, the voltage from the DC power supply 1 is insufficient, and the voltage is increased from the state in which the semiconductor light emitting element LEDs related to the LED series-parallel conversion unit 52 are connected in parallel, and a sufficient voltage is applied. In the case of shifting to, the connection of the semiconductor light emitting element LED related to the LED series-parallel conversion unit 52 is converted from parallel to series.

このような構成であることによって、直流電源50の電圧の変動に応じて、LED直並列変換部52に係る半導体発光素子LEDの直並列の接続を自動的に変換することにより、電源変換ユニットを用いることなく、幅広い電源電圧の範囲に対応可能である。また、直流電源50の電圧の変動に応じて、LED直並列変換部52に係る半導体発光素子LEDの直並列の接続を自動的に変換することにより、直流電源50から供給される電流の量がほぼ一定となる。 With such a configuration, the power conversion unit can be made by automatically converting the series-parallel connection of the semiconductor light emitting element LED related to the LED series-parallel conversion unit 52 according to the fluctuation of the voltage of the DC power supply 50. It is possible to handle a wide range of power supply voltages without using it. Further, the amount of current supplied from the DC power supply 50 is increased by automatically converting the series-parallel connection of the semiconductor light emitting element LEDs related to the LED series-parallel conversion unit 52 according to the fluctuation of the voltage of the DC power supply 50. It becomes almost constant.

また、電源変換ユニットを使用しない構成であるため、照明装置の小型化、高効率化、低価格化が実現できる。また、電磁ノイズが発生せず、病院や精密機械室等の電磁ノイズを嫌う環境でも使用可能である。さらに照明装置の故障リスクも低減できる。 In addition, since the configuration does not use a power conversion unit, it is possible to reduce the size, efficiency, and price of the lighting device. In addition, it does not generate electromagnetic noise and can be used in environments such as hospitals and precision machine rooms where electromagnetic noise is disliked. Furthermore, the risk of failure of the lighting device can be reduced.

さらに、直流電源50の電圧の変動に応じて、LED直並列変換部52に係る半導体発光素子LEDの直並列の接続を自動的に変換する構成であるため、制御回路内のほとんどのLEDが消灯することはなく、周囲の者が電源電圧の変動に気づきにくい。 Further, since the configuration is such that the series-parallel connection of the semiconductor light emitting element LEDs related to the LED series-parallel conversion unit 52 is automatically converted according to the fluctuation of the voltage of the DC power supply 50, most of the LEDs in the control circuit are turned off. It is difficult for people around you to notice fluctuations in the power supply voltage.

(変形例)
本実施の形態例1では、LED直並列変換部52として、半導体発光素子LED4~6に係るブロックと、半導体発光素子LED7~9に係るブロックを2段に重ねる構成を示したが、この構成に限定されるものではない。LED常時点灯部51を設け、制御回路内の半導体制御素子FETの中で、最も電位が高い半導体制御素子FET1がONできれば、LED直並列変換部52内の半導体発光素子LEDに係るブロックは何段も直列に重ねることが可能である。例えば図6のように、LED直並列変換部52として、半導体発光素子LED4に係るブロック、半導体発光素子LED5に係るブロック、半導体発光素子LED6に係るブロック、半導体発光素子LED7に係るブロックを4段に重ねる構成としても良い。LED直並列変換部52内の半導体発光素子LEDに係るブロックを何段も直列に重ねることによって、直流電源電圧変動に対応可能な範囲が広がり、電源電圧の大きな変動に対して、対応できるようになり、便宜である。
(Modification example)
In the first embodiment, as the LED series-parallel conversion unit 52, a configuration in which a block related to the semiconductor light emitting element LEDs 4 to 6 and a block related to the semiconductor light emitting element LEDs 7 to 9 are stacked in two stages is shown. Not limited. If the semiconductor control element FET 1 having the highest potential among the semiconductor control element FETs in the control circuit can be turned on by providing the LED constantly lighting unit 51, the number of stages of the block related to the semiconductor light emitting element LED in the LED series-parallel conversion unit 52 is set. Can also be stacked in series. For example, as shown in FIG. 6, as the LED series-parallel conversion unit 52, the block related to the semiconductor light emitting element LED 4, the block related to the semiconductor light emitting element LED 5, the block related to the semiconductor light emitting element LED 6, and the block related to the semiconductor light emitting element LED 7 are arranged in four stages. It may be configured to be stacked. By stacking the blocks related to the semiconductor light emitting element LED in the LED series-parallel conversion unit 52 in series, the range that can respond to DC power supply voltage fluctuations is expanded, and it is possible to respond to large fluctuations in the power supply voltage. It is convenient.

また、本実施の形態例1では、LED直並列変換部52内の半導体発光素子LEDに係る各ブロックにおいて、半導体発光素子LED4~6と半導体発光素子LED7~9というように3個のLEDを設ける構成を示したが、この構成に限定されるものではなく、LED直並列変換部52内の各ブロックの半導体発光素子LEDの数を何個にしても良い。例えば図6のように、LED直並列変換部52内の各ブロックの半導体発光素子LEDの数を少数(例えば、1個)にしても良い。LED直並列変換部52内の各ブロックの半導体発光素子LEDの点灯に必要な順(方向)電圧値の合計が、直並列の接続が変換される電圧値となる。そのため、LED直並列変換部52内の各ブロックの半導体発光素子LEDの数が少数の場合には、半導体発光素子LED少数個分の順(方向)電圧に相当する電源電圧の変動に応じて、直並列の接続が変換され、分解能・感度が高い。一方、例えば、LED直並列変換部52内の各ブロックの半導体発光素子LEDの数が多数の場合には、半導体発光素子LED多数個分の順(方向)電圧に相当する電源電圧の変動に応じて、直並列の接続が変換され、電源電圧の大きな変化に合わせて、直並列の接続が変換されることとなる。 Further, in the first embodiment, in each block related to the semiconductor light emitting element LED in the LED series-parallel conversion unit 52, three LEDs such as the semiconductor light emitting element LEDs 4 to 6 and the semiconductor light emitting element LEDs 7 to 9 are provided. Although the configuration is shown, the configuration is not limited to this, and the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 may be any number. For example, as shown in FIG. 6, the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 may be small (for example, one). The total of the order (direction) voltage values required for lighting the semiconductor light emitting element LEDs of each block in the LED series-parallel conversion unit 52 is the voltage value at which the series-parallel connection is converted. Therefore, when the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 is small, the power supply voltage corresponding to the forward (direction) voltage of a small number of semiconductor light emitting element LEDs is changed. The series-parallel connection is converted, and the resolution and sensitivity are high. On the other hand, for example, when the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 is large, it corresponds to the fluctuation of the power supply voltage corresponding to the order (direction) voltage of many semiconductor light emitting element LEDs. Therefore, the series-parallel connection is converted, and the series-parallel connection is converted according to a large change in the power supply voltage.

更に、LED直並列変換部52内の各ブロックの半導体発光素子LEDの数が異なる構成としても良い。例えば図7のように、LED直並列変換部52内の各ブロックにおける半導体発光素子LEDの数を、1個(半導体発光素子LED4、5)、3個(半導体発光素子LED6~8、9~11)、2個(半導体発光素子LED12~13、14~15)としても良い。但し、電源電圧の不足に伴い、接続が直列から並列に変換され、電流路が分かれた際に、対応関係となる半導体発光素子LED(例えば、半導体発光素子LED4と5)については、インピーダンスを同一にするため、同じ数にする必要がある。 Further, the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 may be different. For example, as shown in FIG. 7, the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 is one (semiconductor light emitting element LEDs 4, 5) and three (semiconductor light emitting element LEDs 6 to 8, 9 to 11). ), Two (semiconductor light emitting elements LEDs 12 to 13, 14 to 15) may be used. However, when the connection is converted from series to parallel due to the shortage of the power supply voltage and the current path is separated, the impedances of the semiconductor light emitting element LEDs (for example, the semiconductor light emitting elements LEDs 4 and 5) that are in a corresponding relationship are the same. Must be the same number.

本実施の形態例1では、LED常時点灯部51として半導体発光素子LED1~3を、半導体制御素子FET1がONできるように、半導体制御素子FET1よりも高い電位に設ける構成を示したが、この構成に限定されるものはなく、この位置のLED常時点灯部51以外に、別途1又は複数のLED常時点灯部51を設ける構成としても良い。例えば図8に示すように、半導体発光素子LED4~9からなるLED直並列変換部52と半導体発光素子LED12~15からなるLED直並列変換部52との間に、LED常時点灯部51として半導体発光素子LED10及び11を設ける構成としても良い。電源電圧が不足した際に、直列から並列に変換される箇所(=流れる電流が半減する箇所)を分散でき、照明装置の明るさの隔たりを少なくできるため、便宜である。 In the first embodiment, the semiconductor light emitting element LEDs 1 to 3 are provided as the LED constantly lit unit 51 at a higher potential than the semiconductor control element FET 1 so that the semiconductor control element FET 1 can be turned on. In addition to the LED constantly lit unit 51 at this position, one or a plurality of LED constantly lit units 51 may be separately provided. For example, as shown in FIG. 8, between the LED series-parallel conversion unit 52 composed of the semiconductor light-emitting element LEDs 4 to 9 and the LED series-parallel conversion unit 52 composed of the semiconductor light-emitting element LEDs 12 to 15, the semiconductor light emitting unit 51 is used as the LED constant lighting unit. The elements LEDs 10 and 11 may be provided. This is convenient because when the power supply voltage is insufficient, the points that are converted from series to parallel (= the points where the flowing current is halved) can be dispersed, and the difference in brightness of the lighting device can be reduced.

本実施の形態例1では、電源電圧の不足に伴い、接続が直列から並列に変換された際に、電流路が2つに分かれる2並列の構成を示したが、この構成に限定されるものではない。例えば図9に示すように、電流路が4つに分かれる4並列の構成としても良いし、8並列、16並列、32並列の構成としても良い。より小さな電源電圧でも、LED直並列変換部52に係る半導体発光素子LEDを点灯できるようになるため、便宜である。 In the first embodiment of the present embodiment, a two-parallel configuration in which the current path is divided into two when the connection is converted from series to parallel due to a shortage of the power supply voltage is shown, but the configuration is limited to this configuration. is not it. For example, as shown in FIG. 9, a configuration of 4 parallels in which the current path is divided into 4 may be used, or a configuration of 8 parallels, 16 parallels, or 32 parallels may be used. It is convenient because the semiconductor light emitting element LED related to the LED series-parallel conversion unit 52 can be turned on even with a smaller power supply voltage.

1:直流電源、2~6:電流路、
LED1~15:半導体発光素子、FET1~6:半導体制御素子、
D1~3:半導体整流素子、R1~10:抵抗素子、
TR:半導体制御素子、
ZD1~7:半導体定電圧素子、
50:直流電源、51:LED常時点灯部、
52:LED直並列変換部、53:LED直並列制御部、
54:LED電流値決定部、55:電流路
1: DC power supply, 2 to 6: Current path,
LEDs 1 to 15: semiconductor light emitting elements, FETs 1 to 6: semiconductor control elements,
D1-3: semiconductor rectifying element, R1-10: resistance element,
TR: Semiconductor control element,
ZD1-7: Semiconductor constant voltage element,
50: DC power supply, 51: LED constantly lit part,
52: LED series-parallel conversion unit, 53: LED series-parallel control unit,
54: LED current value determination unit, 55: current path

Claims (4)

直流電源の正極に、第1電流路と、第2電流路とがそれぞれ接続されており、
前記第1電流路では、常時点灯するLEDが直列に設けられており、当該LEDから電圧下位方向に向かって、第3電流路と第4電流路の2つに分岐し、
前記第3電流路では、直並列の接続が変換する第1のLEDが直列に設けられており、電圧下位方向に向かって、当該第1のLEDと、当該第1のLEDの直並列の接続を変換させるFETが直列に接続されて設けられ、
前記第4電流路では、直並列の接続が変換する第2のLEDの直並列の接続を変換させるFETが直列に設けられており、電圧下位方向に向かって、当該FETと、前記第2のLEDが直列に接続されて設けられ、
前記第3電流路に係る前記FETと、前記第4電流路に係る前記第2のLEDは接続され、2つに分岐していた前記第1電流路は1つに戻り、
1つに戻った前記第1電流路では、前記第1のLED及び前記第2のLEDに流す電流の量を決定する抵抗素子が直列に設けられると共に、1つに戻った前記第1電流路は、前記第2電流路に直列に設けられ、前記第1のLED及び前記第2のLEDに流す電流の量を決定するトランジスタと第5電流路によって接続され、
前記抵抗素子と、前記トランジスタは前記直流電源の負極に接続され、
前記第3電流路に係る前記FET及び前記第4電流路に係る前記FETは、前記トランジスタと接続され、
前記第3電流路に係る前記第1のLEDの合計インピーダンスと、前記第4電流路に係る前記第2のLEDの合計インピーダンスは等しく、
前記第3電流路に係る前記FETの合計インピーダンスと、前記第4電流路に係る前記FETの合計インピーダンスは等しいことを特徴とする、照明装置用の制御回路。
The first current path and the second current path are connected to the positive electrode of the DC power supply, respectively.
In the first current path, LEDs that are always lit are provided in series, and the LEDs are branched into two, a third current path and a fourth current path, in the lower voltage direction.
In the third current path, a first LED converted by the series-parallel connection is provided in series, and the first LED and the first LED are connected in series-parallel toward the voltage lower direction. FETs that convert the current are connected in series and provided.
In the fourth current path, a FET for converting the series-parallel connection of the second LED converted by the series-parallel connection is provided in series, and the FET and the second LED are provided in the lower voltage direction. LEDs are connected in series and provided,
The FET related to the third current path and the second LED related to the fourth current path are connected, and the first current path branched into two returns to one.
In the first current path returned to one, a resistance element for determining the amount of current flowing through the first LED and the second LED is provided in series, and the first current path returned to one. Is provided in series with the second current path and is connected by a fifth current path to a transistor that determines the amount of current flowing through the first LED and the second LED .
The resistance element and the transistor are connected to the negative electrode of the DC power supply, and the resistance element and the transistor are connected to the negative electrode of the DC power supply.
The FET related to the third current path and the FET related to the fourth current path are connected to the transistor.
The total impedance of the first LED related to the third current path and the total impedance of the second LED related to the fourth current path are equal.
A control circuit for a lighting device, characterized in that the total impedance of the FET related to the third current path and the total impedance of the FET related to the fourth current path are equal to each other.
前記第3電流路に係る前記LEDと前記FETの間と、前記第4電流路に係る前記FETと前記LEDの間を接続する第6電流路が更に設けられ、A sixth current path connecting the LED and the FET related to the third current path and the FET and the LED related to the fourth current path is further provided.
前記第6電流路では、半導体整流素子が設けられていることを特徴とする、請求項1に記載の照明装置用の制御回路。The control circuit for a lighting device according to claim 1, wherein the sixth current path is provided with a semiconductor rectifying element.
前記第3電流路に係る前記第1のLED及び前記第4電流路に係る前記第2のLEDの数が、各1個であることを特徴とする、請求項1又は2に記載の照明装置用の制御回路。 The lighting device according to claim 1 or 2, wherein the number of the first LED according to the third current path and the number of the second LED according to the fourth current path is one each. Control circuit for. 1つに戻った前記第1電流路に更に、常時点灯するLEDが直列に設けられていることを特徴とする、請求項1~3のいずれかに記載の照明装置用の制御回路。 The control circuit for a lighting device according to any one of claims 1 to 3, further comprising an LED that is always lit in series in the first current path that has returned to one.
JP2016252367A 2016-12-27 2016-12-27 Control circuit for lighting equipment Active JP7009737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016252367A JP7009737B2 (en) 2016-12-27 2016-12-27 Control circuit for lighting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016252367A JP7009737B2 (en) 2016-12-27 2016-12-27 Control circuit for lighting equipment

Publications (2)

Publication Number Publication Date
JP2018106929A JP2018106929A (en) 2018-07-05
JP7009737B2 true JP7009737B2 (en) 2022-01-26

Family

ID=62787947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016252367A Active JP7009737B2 (en) 2016-12-27 2016-12-27 Control circuit for lighting equipment

Country Status (1)

Country Link
JP (1) JP7009737B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389427B2 (en) * 2019-03-26 2023-11-30 株式会社新陽社 Control circuit for lighting equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179279A (en) 2012-02-08 2013-09-09 Ntt Data Intellilink Corp Potential barrier element control circuit and potential barrier element circuit
JP2015167213A (en) 2014-03-04 2015-09-24 新日本無線株式会社 Led driving circuit
JP2016046228A (en) 2014-08-27 2016-04-04 株式会社新陽社 Control circuit for lighting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179279A (en) 2012-02-08 2013-09-09 Ntt Data Intellilink Corp Potential barrier element control circuit and potential barrier element circuit
JP2015167213A (en) 2014-03-04 2015-09-24 新日本無線株式会社 Led driving circuit
JP2016046228A (en) 2014-08-27 2016-04-04 株式会社新陽社 Control circuit for lighting system

Also Published As

Publication number Publication date
JP2018106929A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
TWI477190B (en) Light emitting diode driving apparatus
US20100295458A1 (en) Ac led module with an improved power factor
US9173265B2 (en) Light emitting diode driving apparatus and light emitting diode lighting apparatus
KR101301087B1 (en) Apparatus for driving light emitting diode
US10111290B2 (en) Apparatus for synchronous driving of multi-channel light emitting diodes
US8410710B2 (en) Light emitting device driving circuit
US8427071B2 (en) Light emitting diode driving device with a simple structure and an enhanced efficiency
JP2013179279A (en) Potential barrier element control circuit and potential barrier element circuit
JP7009737B2 (en) Control circuit for lighting equipment
US8907583B1 (en) LED driving device
CN105517274B (en) driving circuit of light emitting diode and light emitting device thereof
US8072162B2 (en) Bi-direction constant current device
TW201410064A (en) Piecewise linear driving light source apparatus
JP7389427B2 (en) Control circuit for lighting equipment
CN210518932U (en) Lamp string driving module, lamp string driving chip and lamp string
KR20160001498A (en) Led driving device capable of parallel driving of led group by voltage drop
KR101490107B1 (en) LED driving circuit for automatic transfer of commercial electricity and emergency power and method of the same
JP6810844B2 (en) Constant illuminance control circuit for lighting equipment
JP2020155376A (en) Control circuit for lighting device
JP6441613B2 (en) Control circuit for lighting device
TW201442555A (en) Light emitting diode driving system
US9101016B2 (en) LED illuminating apparatus having enhanced quantity of light
KR101147781B1 (en) Circuit for radiating safely light emitting diode lighting
CN108712807B (en) Driving circuit of light emitting diode
US11438984B2 (en) Linear drive energy recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7009737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150