JP2020155376A - Control circuit for lighting device - Google Patents

Control circuit for lighting device Download PDF

Info

Publication number
JP2020155376A
JP2020155376A JP2019055285A JP2019055285A JP2020155376A JP 2020155376 A JP2020155376 A JP 2020155376A JP 2019055285 A JP2019055285 A JP 2019055285A JP 2019055285 A JP2019055285 A JP 2019055285A JP 2020155376 A JP2020155376 A JP 2020155376A
Authority
JP
Japan
Prior art keywords
voltage
light emitting
led
semiconductor
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019055285A
Other languages
Japanese (ja)
Other versions
JP7287609B2 (en
Inventor
潤一 大久保
Junichi Okubo
潤一 大久保
直史 諸橋
Tadashi Morohashi
直史 諸橋
羽田 正二
Shoji Haneda
正二 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANP CO Ltd
Shin Yosha Corp
Original Assignee
ANP CO Ltd
Shin Yosha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANP CO Ltd, Shin Yosha Corp filed Critical ANP CO Ltd
Priority to JP2019055285A priority Critical patent/JP7287609B2/en
Publication of JP2020155376A publication Critical patent/JP2020155376A/en
Application granted granted Critical
Publication of JP7287609B2 publication Critical patent/JP7287609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

To provide a control circuit for a lighting device capable of handling a wide range of power supply voltages and intentionally dimming.SOLUTION: The control circuit for a lighting device includes: a comparator for comparing a reference voltage with a voltage applied through a negative voltage input unit and absorbing an electric current of an amount according to a comparison result; and a dimming signal input unit S +, connected to the negative voltage input unit of the comparator and for accepting a dimming signal input from outside. There is included a dimming signal control unit for performing dimming control by the dimming signal.SELECTED DRAWING: Figure 2

Description

この発明は、電源に直流電圧を用いる、直流を給電するシステムに特化した照明装置において、幅広い電源電圧に対応可能な制御回路に関するものである。 The present invention relates to a control circuit capable of supporting a wide range of power supply voltages in a lighting device specialized in a system for supplying direct current, which uses a direct current voltage as a power source.

近年のLED(発光ダイオード)技術の進化に伴い、LED照明装置は、様々なものが使用されている。そのため、LED照明装置には、小型化、高効率化、低価格化等が要求されている。 With the recent evolution of LED (light emitting diode) technology, various LED lighting devices are used. Therefore, the LED lighting device is required to be miniaturized, highly efficient, and inexpensive.

その中で、直流電圧を電源とするLED照明装置の電源供給元は、一つとは限らず、近年の省エネ意識の高まりにより、再生可能エネルギーである太陽光発電電力や、各種バッテリー電力等、多岐にわたる。 Among them, the power supply source of LED lighting devices that use DC voltage as the power source is not limited to one, and due to the growing awareness of energy saving in recent years, there are various power sources such as photovoltaic power generation, which is renewable energy, and various battery power. Over.

これらの電源から出力される直流電圧の違いに対しては、電源変換ユニットを用いることで対応していた。しかし、電源変換ユニットを用いる構成は、変換によるロスが発生し、効率が低下する問題があった。 The difference in DC voltage output from these power supplies was dealt with by using a power conversion unit. However, the configuration using the power conversion unit has a problem that a loss due to conversion occurs and the efficiency is lowered.

また、電源変換ユニットの多くは、特定の周波数でスイッチングして、出力を一定に保つ構成である。この様な電源変換ユニットは、スイッチング動作により、電磁ノイズが発生するという大きなデメリットがあった。 In addition, most of the power conversion units are configured to keep the output constant by switching at a specific frequency. Such a power conversion unit has a big demerit that electromagnetic noise is generated by the switching operation.

一方、電源変換ユニットを使用しない構成では、一定の範囲の直流電圧に対しては、LEDに流れる電流を一定に保つことは可能であるが、その範囲外の直流電圧の僅かな変動に対して、LEDに流れる電流が大きく変化してしまう。そのため、LED照明から出力される光の質が低下したり、LEDの寿命が短縮、或は焼損してしまう。 On the other hand, in a configuration that does not use a power conversion unit, it is possible to keep the current flowing through the LED constant for a DC voltage in a certain range, but for slight fluctuations in the DC voltage outside that range. , The current flowing through the LED changes significantly. Therefore, the quality of the light output from the LED lighting is deteriorated, the life of the LED is shortened, or the LED is burnt out.

また、所定の値以下に、直流電圧が低下すると、LEDを点灯させるために必要な順(方向)電圧が足りなくなり、LEDが消灯してしまう。そのため、広範囲の電源電圧に対応させることができないという問題があった。 Further, when the DC voltage drops below a predetermined value, the order (direction) voltage required to turn on the LED becomes insufficient, and the LED turns off. Therefore, there is a problem that it cannot correspond to a wide range of power supply voltages.

従って、電源変換ユニットを用いることなく、幅広い電源電圧に対応可能なLED照明装置用の制御回路が望まれている。特許文献1では、電源電圧の増減に合わせてLEDの点灯と消灯を制御することによって幅広い電源電圧に対応しながら、LEDに流れる電流を一定に保つ構成が開示されている。また、特許文献2では、電源電圧の増減に合わせてLEDの点灯と消灯を制御することによって幅広い電源電圧に対応しながら、照明装置全体としては明るさに隔たりを生じさせない構成が開示されている。更に、特許文献3では、電源電圧の増減に合わせてLEDの直並列の接続を変換することによって幅広い電源電圧に対応しながら、LEDに流れる電流を一定に保つ構成が開示されている。 Therefore, there is a demand for a control circuit for an LED lighting device that can handle a wide range of power supply voltages without using a power supply conversion unit. Patent Document 1 discloses a configuration in which the current flowing through the LED is kept constant while supporting a wide range of power supply voltages by controlling the lighting and extinguishing of the LED according to the increase and decrease of the power supply voltage. Further, Patent Document 2 discloses a configuration in which the lighting device as a whole does not cause a difference in brightness while supporting a wide range of power supply voltages by controlling the lighting and extinguishing of LEDs according to the increase and decrease of the power supply voltage. .. Further, Patent Document 3 discloses a configuration in which the current flowing through the LED is kept constant while supporting a wide range of power supply voltages by converting the series-parallel connection of the LEDs according to the increase or decrease of the power supply voltage.

特開2013−179279号公報Japanese Unexamined Patent Publication No. 2013-179279 特許第6441613号公報Japanese Patent No. 6441613 特開2018−106929号公報JP-A-2018-106929

しかしながら、これらの特許文献1〜3の構成では、電源電圧の増減に合わせて、LEDの照度が自動的に変動してしまう。 However, in the configurations of Patent Documents 1 to 3, the illuminance of the LED automatically fluctuates according to the increase or decrease of the power supply voltage.

そこで、この発明は、上述の課題を解決するものとして、幅広い電源電圧の範囲に対応可能であると共に、意図的に調光可能な照明装置用の制御回路を提供することを目的としたものである。 Therefore, an object of the present invention is to provide a control circuit for a lighting device capable of dealing with a wide range of power supply voltages and intentionally dimmable as a solution to the above-mentioned problems. is there.

請求項1の発明は、
リファレンス電圧と、マイナスの電圧入力部を通じて印加された電圧を比較し、比較結果に応じた量の電流を吸い込む比較器と、
前記比較器のマイナスの電圧入力部と接続され、外部から調光信号の入力を受け付ける調光信号入力部とを備え、
前記調光信号によって、調光制御を行う、調光信号制御部を有する、照明装置用の制御回路とした。
The invention of claim 1 is
A comparator that compares the reference voltage with the voltage applied through the negative voltage input section and sucks in an amount of current according to the comparison result.
It is provided with a dimming signal input section that is connected to the negative voltage input section of the comparator and receives dimming signal input from the outside.
It is a control circuit for a lighting device having a dimming signal control unit that controls dimming by the dimming signal.

また、請求項2の発明は、
前記比較器が、コンパレータである、請求項1に記載の照明装置用の制御回路とした。
Further, the invention of claim 2 is
The control circuit for the lighting device according to claim 1, wherein the comparator is a comparator.

また、請求項3の発明は、
直流電圧を印加する直流電源と、
前記直流電源から電圧を印加されると、常時点灯するLEDを備えたLED常時点灯部と、
直並列の接続が変換するLEDを有するLED直並列変換部と、
前記比較器に吸い込まれた電流の量に応じて、前記LED直並列変換部に係るLEDの直並列の接続を変換させるLED直並列制御部とを有する、請求項1又は2に記載の照明装置用の制御回路とした。
Further, the invention of claim 3 is
A DC power supply that applies a DC voltage and
An LED constantly lit unit equipped with an LED that constantly lights when a voltage is applied from the DC power supply,
An LED series-parallel converter with LEDs that the series-parallel connection converts,
The lighting device according to claim 1 or 2, further comprising an LED series-parallel control unit that converts the series-parallel connection of LEDs according to the LED series-parallel conversion unit according to the amount of current sucked into the comparator. It was used as a control circuit for.

また、請求項4の発明は、
直流電圧を印加する直流電源と、
前記直流電源から電圧を印加されると、常時点灯するLEDを備えたLED常時点灯部と、
点灯又は消灯するLEDを備えたLED点灯・消灯部と、
前記比較器に吸い込まれた電流の量に応じて、前記LED点灯・消灯部に係るLEDを制御するLED点灯・消灯制御部とを有する、請求項1又は2に記載の照明装置用の制御回路とした。
Further, the invention of claim 4 is
A DC power supply that applies a DC voltage and
An LED constantly lit unit equipped with an LED that constantly lights when a voltage is applied from the DC power supply,
An LED lighting / extinguishing unit equipped with an LED that turns on or off,
The control circuit for a lighting device according to claim 1 or 2, further comprising an LED lighting / extinguishing control unit that controls an LED related to the LED lighting / extinguishing unit according to the amount of current sucked into the comparator. And said.

請求項1〜4の発明によれば、電源変換ユニットを用いることなく、幅広い電源電圧の範囲に対応可能であると共に、外部から調光信号の入力を受け付けることにより、意図的に調光できる。 According to the inventions of claims 1 to 4, it is possible to deal with a wide range of power supply voltages without using a power supply conversion unit, and dimming can be intentionally performed by receiving an input of a dimming signal from the outside.

また、電源変換ユニットを使用しない構成であるため、照明装置の小型化、高効率化、低価格化が実現できる。また、電磁ノイズが発生せず、病院や精密機械室等の電磁ノイズを嫌う環境でも使用可能である。さらに照明装置の故障リスクも低減できる。 In addition, since the configuration does not use a power conversion unit, it is possible to reduce the size, efficiency, and price of the lighting device. In addition, it does not generate electromagnetic noise and can be used in environments such as hospitals and precision machine rooms where electromagnetic noise is disliked. Furthermore, the risk of failure of the lighting device can be reduced.

この発明の実施の形態例1の概念構成図である。It is a conceptual block diagram of Embodiment 1 of this invention. この発明の実施の形態例1の構成回路図である。It is a block diagram of Embodiment 1 of this invention. この発明の実施の形態例1に係る調光特性の実験結果を示したグラフ図である。It is a graph which showed the experimental result of the dimming characteristic which concerns on Embodiment 1 of this invention. この発明の実施の形態例1の構成回路図である。It is a block diagram of Embodiment 1 of this invention. この発明の実施の形態例1の構成回路図である。It is a block diagram of Embodiment 1 of this invention. この発明の実施の形態例1の構成回路図である。It is a block diagram of Embodiment 1 of this invention. この発明の他の実施の形態例の構成回路図である。It is a block diagram of the other Embodiment example of this invention. この発明の他の実施の形態例の構成回路図である。It is a block diagram of the other Embodiment example of this invention. この発明の他の実施の形態例の構成回路図である。It is a block diagram of the other Embodiment example of this invention. この発明の他の実施の形態例の構成回路図である。It is a block diagram of the other Embodiment example of this invention. この発明の実施の形態例2の概念構成図である。It is a conceptual block diagram of Embodiment 2 of this invention. この発明の実施の形態例2の構成回路図である。It is a block diagram of Embodiment 2 of this invention. この発明の実施の形態例3の概念構成図である。It is a conceptual block diagram of Embodiment 3 of this invention. この発明の実施の形態例3の構成回路図である。It is a block diagram of Embodiment 3 of this invention. この発明の他の実施の形態例の構成回路図である。It is a block diagram of the other Embodiment example of this invention.

(実施の形態例1)
まず、この発明の実施の形態例1の概念構成図である図1に基づいて説明する。この発明の照明装置用の制御回路は、直流電源50の電圧の印加によりLEDが常時点灯するLED常時点灯部51を設け、また、直流電源50の電圧値の変動によってLEDの直並列の接続が変換されるLED直並列変換部52を設け、また、電圧値の変動によって、LED直並列変換部52に係るLEDの直並列の接続を自動的に変換させるLED直並列制御部53を設け、また、外部から調光信号の入力を受け付け、当該調光信号によって、調光制御を行う、調光信号制御部54を設け、さらに、所定の電圧値を超えた過大な電圧分について、電圧降下させる過電圧吸収部55を設けた構成となっている。また、各部は電流路56を通じて接続されている。
(Example 1 of the embodiment)
First, it will be described with reference to FIG. 1, which is a conceptual configuration diagram of the first embodiment of the present invention. The control circuit for the lighting device of the present invention is provided with the LED constantly lighting unit 51 in which the LED is constantly lit by applying the voltage of the DC power supply 50, and the LEDs are connected in series and parallel by the fluctuation of the voltage value of the DC power supply 50. An LED series-parallel conversion unit 52 to be converted is provided, and an LED series-parallel control unit 53 that automatically converts the LED series-parallel connection related to the LED series-parallel conversion unit 52 according to a fluctuation in the voltage value is provided. A dimming signal control unit 54 that receives an input of a dimming signal from the outside and performs dimming control by the dimming signal is provided, and further, a voltage drop is performed for an excessive voltage component exceeding a predetermined voltage value. The overvoltage absorbing unit 55 is provided. Further, each part is connected through a current path 56.

この照明装置用の制御回路では、直流電源50から印加される直流電圧によりLED常時点灯部51及びLED直並列変換部52に係るLEDは点灯しているが、直流電源50の変動等により直流電圧が変動すると、LED直並列制御部53が動作し、LED直並列変換部52の直並列の接続が変換される。従って、この制御回路を設けた照明装置では、LED常時点灯部51及びLED直並列変換部52に係る全てのLEDが点灯状態となり、周囲の者が電源電圧の変動に気付きにくい。 In the control circuit for this lighting device, the LEDs related to the LED constant lighting unit 51 and the LED series-parallel conversion unit 52 are lit by the DC voltage applied from the DC power supply 50, but the DC voltage is caused by fluctuations in the DC power supply 50 or the like. When the voltage fluctuates, the LED series-parallel control unit 53 operates, and the series-parallel connection of the LED series-parallel conversion unit 52 is converted. Therefore, in the lighting device provided with this control circuit, all the LEDs related to the LED constant lighting unit 51 and the LED series-parallel conversion unit 52 are in the lighting state, and it is difficult for the surrounding people to notice the fluctuation of the power supply voltage.

次に、この発明の実施の形態例1の照明装置用の制御回路Aの構成を図2に基づいて説明する。 Next, the configuration of the control circuit A for the lighting device according to the first embodiment of the present invention will be described with reference to FIG.

図2に示すように、直流電源1の正極に、電流路2と、電流路3とがそれぞれ接続されている。 As shown in FIG. 2, the current path 2 and the current path 3 are connected to the positive electrode of the DC power supply 1, respectively.

電流路2では、LEDから成る半導体発光素子LED1〜3が同一極性方向に直列に接続されて設けられており、半導体発光素子LED3のカソード側から電圧下位方向に向かって、電流路21と電流路22の2つに分岐している。 In the current path 2, semiconductor light emitting elements LEDs 1 to 3 made of LEDs are connected in series in the same polar direction, and the current path 21 and the current path are provided from the cathode side of the semiconductor light emitting element LED 3 in the lower voltage direction. It branches into two of 22.

電流路21では、LEDから成る半導体発光素子LED4〜6が同一極性方向に直列に接続されて設けられており、半導体発光素子LED6のカソードと、半導体制御素子FET(電界効果トランジスタ)2のドレインが直列に接続されている。また、電流路22では、半導体制御素子FET1のソースが、同一極性方向に直列に接続されて設けられている、LEDから成る半導体発光素子LED7〜9のうち、半導体発光素子LED7のアノードと直列に接続されている。 In the current path 21, semiconductor light emitting elements LEDs 4 to 6 composed of LEDs are connected in series in the same polar direction, and the cathode of the semiconductor light emitting element LED 6 and the drain of the semiconductor control element FET (field effect transistor) 2 are provided. They are connected in series. Further, in the current path 22, the source of the semiconductor control element FET1 is connected in series in the same polar direction, and among the semiconductor light emitting elements LEDs 7 to 9 made of LEDs, the source is connected in series with the anode of the semiconductor light emitting element LED7. It is connected.

さらに、半導体発光素子LED6のカソードと半導体制御素子FET2のドレイン間の電流路21と、半導体制御素子FET1のソースと半導体発光素子LED7のアノード間の電流路22とを結ぶ電流路4に、ダイオードから成る半導体整流素子D1が設けられている。詳しくは、半導体整流素子D1のアノードが、半導体発光素子LED6のカソードと半導体制御素子FET2のドレイン間の電流路21に接続され、半導体整流素子D1のカソードが、半導体制御素子FET1のソースと半導体発光素子LED7のアノード間の電流路22に接続されている。この半導体整流素子D1は、順方向にしか電流を流さない特性を活かして、半導体制御素子FET1がONした際に、半導体制御素子FET1のソースから半導体制御素子FET2のドレインに電流が流れないように、電流を遮断する役割を果たす。このように半導体整流素子D1が設けられていることによって、半導体制御素子FET1及び半導体制御素子FET2がONした際に、電流路21と電流路22にほぼ等しく電流が流れることになる。 Further, a diode connects the current path 21 between the cathode of the semiconductor light emitting element LED6 and the drain of the semiconductor control element FET2 and the current path 22 between the source of the semiconductor control element FET1 and the anode of the semiconductor control element LED7. The semiconductor rectifying element D1 is provided. Specifically, the anode of the semiconductor rectifying element D1 is connected to the current path 21 between the cathode of the semiconductor light emitting element LED6 and the drain of the semiconductor control element FET2, and the cathode of the semiconductor rectifying element D1 is the source of the semiconductor control element FET1 and semiconductor light emitting. It is connected to the current path 22 between the anodes of the element LED 7. Taking advantage of the characteristic that the current flows only in the forward direction, the semiconductor rectifying element D1 prevents a current from flowing from the source of the semiconductor control element FET1 to the drain of the semiconductor control element FET2 when the semiconductor control element FET1 is turned on. , Plays a role in cutting off the current. By providing the semiconductor rectifying element D1 in this way, when the semiconductor control element FET1 and the semiconductor control element FET2 are turned on, a current flows in the current path 21 and the current path 22 substantially equally.

半導体制御素子FET2のソースと半導体発光素子LED9のカソードは接続され、電流路21と電流路22との2つに分岐していた電流路2は、ここで1つの電流路2に戻り、これより下の電圧下位方向に向かって順に、半導体制御素子FET3、半導体発光素子LED10、抵抗素子R3が直列に設けられている。抵抗素子R3は、シャント抵抗であって、検出回路(図示省略)が抵抗素子R3の端子間の電圧(降下)と抵抗素子R3の抵抗値に基づいて、照明装置用の制御回路Aに流れる電流値を検出する。 The source of the semiconductor control element FET 2 and the cathode of the semiconductor light emitting element LED 9 are connected, and the current path 2 that has branched into two, the current path 21 and the current path 22, returns to one current path 2 here, and from this The semiconductor control element FET3, the semiconductor light emitting element LED10, and the resistance element R3 are provided in series in order from the lower voltage downward direction. The resistance element R3 is a shunt resistance, and the current flowing through the control circuit A for the lighting device based on the voltage (drop) between the terminals of the resistance element R3 and the resistance value of the resistance element R3 in the detection circuit (not shown). Detect the value.

また、半導体制御素子FET3は、直流電源1から所定の電圧値を超えた過大な電圧が印加されると、当該過大な電圧分について電圧降下させる役割を果たす。例えば、半導体制御素子FET3の耐圧が500Vで、照明装置用の制御回路Aの所定の電圧が29.3Vの場合、32Vの過大な電圧が印加されると、半導体制御素子FET3は、過大な電圧分である2.7Vを、ドレイン−ソース間で吸収して(=受け持って)、電圧降下させ、照明装置用の制御回路A内を流れる電流の量を既定の状態に保つ。 Further, when an excessive voltage exceeding a predetermined voltage value is applied from the DC power supply 1, the semiconductor control element FET 3 plays a role of lowering the voltage for the excessive voltage. For example, when the withstand voltage of the semiconductor control element FET3 is 500V and the predetermined voltage of the control circuit A for the lighting device is 29.3V, when an excessive voltage of 32V is applied, the semiconductor control element FET3 has an excessive voltage. It absorbs (= takes charge of) 2.7V, which is a minute, between the drain and the source, lowers the voltage, and keeps the amount of current flowing in the control circuit A for the lighting device in a predetermined state.

一方、電流路3では、電圧下位方向に向かって順に、抵抗素子R4、半導体制御素子TR(トランジスタ)、抵抗素子R5が直列に接続されて設けられている。そして、抵抗素子5の電圧下位側の一端は、コンパレータの出力と接続されている。 On the other hand, in the current path 3, the resistance element R4, the semiconductor control element TR (transistor), and the resistance element R5 are connected in series in order from the lower voltage direction. Then, one end of the resistance element 5 on the lower voltage side is connected to the output of the comparator.

また、電流路2の抵抗素子R3と、コンパレータの負側電源端子V−が直流電源1の負極(≒GND)に夫々接続されている。 Further, the resistance element R3 of the current path 2 and the negative power supply terminal V- of the comparator are connected to the negative electrode (≈GND) of the DC power supply 1, respectively.

半導体制御素子FET1のゲートは、半導体制御素子TRのコレクタと、抵抗素子R1を介して接続され、半導体制御素子FET2のゲートは、半導体制御素子TRのコレクタと、抵抗素子R2を介して接続されている。また、半導体制御素子FET1のソースとゲート間には、半導体定電圧素子ZD1が設けられ、半導体制御素子FET2のソースとゲート間には、半導体定電圧素子ZD2が設けられている。これら半導体定電圧素子ZD1、ZD2は、ツェナーダイオードから成り、電流の変化に対し電圧が一定になるというツェナーダイオードの特性を活かして、ソースとゲート間に加わる電圧を制限する。そのため、サージ電流や静電気が発生した場合等に、半導体制御素子FET1、FET2を保護する役割を果たす。 The gate of the semiconductor control element FET1 is connected to the collector of the semiconductor control element TR via the resistance element R1, and the gate of the semiconductor control element FET2 is connected to the collector of the semiconductor control element TR via the resistance element R2. There is. Further, a semiconductor constant voltage element ZD1 is provided between the source and the gate of the semiconductor control element FET1, and a semiconductor constant voltage element ZD2 is provided between the source and the gate of the semiconductor control element FET2. These semiconductor constant voltage elements ZD1 and ZD2 are composed of Zener diodes, and take advantage of the characteristics of Zener diodes that the voltage becomes constant with respect to changes in current to limit the voltage applied between the source and the gate. Therefore, it plays a role of protecting the semiconductor control elements FET1 and FET2 when a surge current or static electricity is generated.

また、電流路3上の抵抗素子R2の接続点と半導体制御素子TRのコレクタの間と、電流路2の半導体制御素子FET3のゲートとが、抵抗素子R9を介して、電流路12によって接続されている。また、半導体制御素子FET3のソースとゲート間には、半導体定電圧素子ZD3が設けられている。半導体定電圧素子ZD3は、ツェナーダイオードから成り、電流の変化に対し電圧が一定になるというツェナーダイオードの特性を活かして、ソースとゲート間に加わる電圧を制限する。そのため、サージ電流や静電気が発生した場合等に、半導体制御素子FET3を保護する役割を果たす。 Further, the connection point of the resistance element R2 on the current path 3 and the collector of the semiconductor control element TR and the gate of the semiconductor control element FET3 of the current path 2 are connected by the current path 12 via the resistance element R9. ing. Further, a semiconductor constant voltage element ZD3 is provided between the source and the gate of the semiconductor control element FET3. The semiconductor constant voltage element ZD3 is composed of a Zener diode, and utilizes the characteristic of the Zener diode that the voltage becomes constant with respect to a change in current to limit the voltage applied between the source and the gate. Therefore, it plays a role of protecting the semiconductor control element FET3 when a surge current or static electricity is generated.

また、半導体制御素子FET3のソースと半導体定電圧素子ZD3のアノードとの接続点と半導体発光素子LED10との間と、半導体制御素子TRのベースとが電流路5によって接続されている。電流路5と、抵抗素子R3とコンパレータの負側電源端子V−の間を結ぶ電流路6に、電圧下位方向に向かって順に、定電流ダイオードCRD、抵抗素子R6が直列に接続されて設けられている。抵抗素子R6の一端は直流電源1の負極(≒GND)に接続されている。また、定電流ダイオードCRDのカソードと抵抗素子R6の間と、コンパレータのプラスの入力端子が電流路7によって接続されている。このように、定電流ダイオードCRDとコンパレータのプラスの入力端子が電流路7によって接続されているため、コンパレータのプラス側から、リファレンス電圧(=基準電圧)として所定の電圧が入力される。また、電流路5には、コンパレータの正側電源端子V+が電流路8によって接続されている。 Further, the connection point between the source of the semiconductor control element FET3 and the anode of the semiconductor constant voltage element ZD3, the semiconductor light emitting element LED10, and the base of the semiconductor control element TR are connected by a current path 5. A constant current diode CRD and a resistance element R6 are provided in series in the current path 6 connecting the current path 5 and the resistance element R3 and the negative power supply terminal V- of the comparator in order from the lower voltage direction. ing. One end of the resistance element R6 is connected to the negative electrode (≈GND) of the DC power supply 1. Further, the cathode of the constant current diode CRD and the resistance element R6 and the positive input terminal of the comparator are connected by a current path 7. In this way, since the constant current diode CRD and the positive input terminal of the comparator are connected by the current path 7, a predetermined voltage is input as the reference voltage (= reference voltage) from the positive side of the comparator. Further, the positive power supply terminal V + of the comparator is connected to the current path 5 by the current path 8.

また、電流路2に係る半導体発光素子LED10と抵抗素子R3との間と、コンパレータのマイナスの入力端子とが、抵抗素子R7を介して、電流路9によって接続されている。また、電流路9に係るコンパレータのマイナスの入力端子と抵抗素子R7の間と、プラスの調光信号入力部S+とが、電流路10によって接続されている。この電流路10には、プラスの調光信号入力部S+から近い順に、抵抗素子R8、半導体整流素子D2が直列に接続されて設けられている。また、電流路2の抵抗素子R3と、直流電源1の負極(≒GND)との間と、マイナスの調光信号入力部S−とが、電流路11によって接続されている。 Further, the semiconductor light emitting element LED10 and the resistance element R3 related to the current path 2 and the negative input terminal of the comparator are connected by the current path 9 via the resistance element R7. Further, between the negative input terminal of the comparator related to the current path 9 and the resistance element R7, and the positive dimming signal input unit S + are connected by the current path 10. A resistance element R8 and a semiconductor rectifying element D2 are connected in series in the current path 10 in order from the positive dimming signal input unit S +. Further, the resistance element R3 of the current path 2, the negative electrode (≈GND) of the DC power supply 1, and the negative dimming signal input unit S- are connected by the current path 11.

なお、半導体発光素子LED10は、主として、コンパレータに動作電圧を与えるために、電流路2に設けられている。詳しくは、コンパレータを動作させるためには電源が必要であり、一般的には、外部からDC/DC電源等を使って、5(V)、10(V)の電圧を印加する。しかし、DC/DC電源等の代りに、電流路2上に1個の半導体発光素子LED10(3V程度分)を設けることによって、半導体制御素子FET3のソースと半導体定電圧素子ZD3のアノードとの接続点から、電圧下位方向に印加された電圧は、電流路5を通って、電流路6や電流路8にも印加される。このように電流路8に電圧が印加されることで、コンパレータに電源電圧が印加される。また、半導体発光素子10は、半導体発光素子1〜9と同様に、発光させ、照明源の1つとして役割を果たすことももちろん可能であるため、一石二鳥である。 The semiconductor light emitting element LED 10 is mainly provided in the current path 2 in order to apply an operating voltage to the comparator. Specifically, a power supply is required to operate the comparator, and generally, a voltage of 5 (V) or 10 (V) is applied from the outside using a DC / DC power supply or the like. However, by providing one semiconductor light emitting element LED10 (about 3V) on the current path 2 instead of the DC / DC power supply or the like, the source of the semiconductor control element FET3 and the anode of the semiconductor constant voltage element ZD3 are connected. From the point, the voltage applied in the lower voltage direction passes through the current path 5 and is also applied to the current path 6 and the current path 8. By applying the voltage to the current path 8 in this way, the power supply voltage is applied to the comparator. Further, the semiconductor light emitting element 10 is, of course, two birds with one stone because it can emit light and play a role as one of the illumination sources in the same manner as the semiconductor light emitting elements 1 to 9.

また、半導体整流素子D2は、順方向にしか電流を流さない特性を活かして、電流路2から抵抗素子R7を通った電流が、プラスの調光信号入力部S+の方向に流れないように、電流を遮断する役割を果たす。 Further, the semiconductor rectifying element D2 makes use of the characteristic that the current flows only in the forward direction so that the current passing through the resistance element R7 from the current path 2 does not flow in the direction of the positive dimming signal input unit S +. It serves to cut off the current.

また、半導体制御素子TRは、コンパレータに一定以上の大きな電圧が印加されないように、耐圧用に設けられている。詳しくは、コンパレータは、一般的に耐圧が低く、100(V)や200(V)の電圧が印加されると、壊れてしまう。そのため、半導体制御素子TRを設けることで、コンパレータに一定以上の大きな電圧が印加されないようにしている。耐圧用の半導体制御素子TRを設けることによって、例えば、3(V)ぐらいしか、コンパレータに電圧が印加されないようにすることができる。 Further, the semiconductor control element TR is provided for withstand voltage so that a large voltage exceeding a certain level is not applied to the comparator. Specifically, the comparator generally has a low withstand voltage, and is broken when a voltage of 100 (V) or 200 (V) is applied. Therefore, by providing the semiconductor control element TR, a voltage larger than a certain level is prevented from being applied to the comparator. By providing the semiconductor control element TR for withstand voltage, it is possible to prevent the voltage from being applied to the comparator by, for example, only about 3 (V).

また、プラスの調光信号入力部S+を通じて印加されたプラスの電圧は、抵抗素子R7と抵抗素子R8が設けられていることによって、分圧され、電流路9を通じて、コンパレータのマイナスの入力端子に印加される。 Further, the positive voltage applied through the positive dimming signal input unit S + is divided by the resistance element R7 and the resistance element R8, and is divided through the current path 9 to the negative input terminal of the comparator. It is applied.

次に、図1で説明したこの発明の概念構成と、図2で説明した照明装置用の制御回路Aの回路構成との対応関係について説明する。図1の直流電源50は、図2の直流電源1と対応する。また、図1のLED常時点灯部51は、図2の半導体発光素子LED1〜3が対応する。また、図1のLED直並列変換部52は、図2の半導体発光素子LED4〜6及び半導体発光素子LED7〜9が対応する。また、図1のLED直並列制御部53は、図2の半導体制御素子FET1及び半導体制御素子FET2が対応する。さらに、図1の調光信号制御部54は、図2のコンパレータ、プラスの調光信号入力部S+、マイナスの調光信号入力部S−が対応する。また、図1の過電圧吸収部55は、図2の半導体制御素子FET3が対応する。また、図1の電流路56は、図2の電流路2〜12、電流路21及び電流路22が対応する。 Next, the correspondence between the conceptual configuration of the present invention described with reference to FIG. 1 and the circuit configuration of the control circuit A for the lighting device described with reference to FIG. 2 will be described. The DC power supply 50 of FIG. 1 corresponds to the DC power supply 1 of FIG. Further, the LED constantly lit unit 51 of FIG. 1 corresponds to the semiconductor light emitting elements LEDs 1 to 3 of FIG. Further, the LED series-parallel conversion unit 52 of FIG. 1 corresponds to the semiconductor light emitting elements LEDs 4 to 6 and the semiconductor light emitting elements LEDs 7 to 9 of FIG. Further, the LED series-parallel control unit 53 of FIG. 1 corresponds to the semiconductor control element FET1 and the semiconductor control element FET2 of FIG. Further, the dimming signal control unit 54 of FIG. 1 corresponds to the comparator of FIG. 2, the positive dimming signal input unit S +, and the negative dimming signal input unit S−. Further, the overvoltage absorption unit 55 of FIG. 1 corresponds to the semiconductor control element FET 3 of FIG. Further, the current path 56 in FIG. 1 corresponds to the current paths 2 to 12, the current path 21, and the current path 22 in FIG.

なお、LED常時点灯部51に相当する図2の半導体発光素子LED1〜3は、半導体制御素子FET1及びFET2等の全てのFETを動作させるためのものである。詳しく説明する。半導体制御素子FET1のゲートの電位が、ソースの電位より高くないと、ゲートに電圧を印加しても、半導体制御素子FET1がONしないため、ドレイン・ソース間で電流が流れない。そのため、LED常時点灯部51を設けることによって、半導体制御素子FET1のソースの電位をゲートの電位に比して、ゲートとソース間閾値電圧分以上低下させ、半導体制御素子FET1が動作するようにする。 The semiconductor light emitting elements LEDs 1 to 3 in FIG. 2, which correspond to the LED constantly lit unit 51, are for operating all FETs such as the semiconductor control elements FET1 and FET2. explain in detail. If the potential of the gate of the semiconductor control element FET1 is not higher than the potential of the source, the semiconductor control element FET1 does not turn on even if a voltage is applied to the gate, so that no current flows between the drain and the source. Therefore, by providing the LED constantly lit unit 51, the potential of the source of the semiconductor control element FET1 is lowered by the threshold voltage between the gate and the source as compared with the potential of the gate, so that the semiconductor control element FET1 operates. ..

また、LED直並列変換部52に相当する図2の半導体発光素子LED4〜6及び半導体発光素子LED7〜9は、2つのブロックに分けられるが、直流電圧の低下に伴い並列回路に接続が変換され、電流路が分かれた際に、各電流路に流れる電流の量を等しくするため、ブロック間相互の合計のインピーダンスが等しくなるように構成する。ブロック間相互の合計のインピーダンスが異なると、並列回路に接続が変換された際に、電流が均等に分かれなくなり、一方のブロックの半導体発光素子LEDが消灯することも考えられる。 Further, the semiconductor light emitting elements LEDs 4 to 6 and the semiconductor light emitting elements LEDs 7 to 9 of FIG. 2, which correspond to the LED series-parallel conversion unit 52, are divided into two blocks, but the connection is converted to the parallel circuit as the DC voltage drops. , In order to equalize the amount of current flowing in each current path when the current path is divided, the total impedance between the blocks is configured to be equal. If the total impedance between the blocks is different, the current may not be evenly divided when the connection is converted to the parallel circuit, and the semiconductor light emitting element LED of one block may be turned off.

さらに、LED直並列制御部53に相当する図2の半導体制御素子FET1及び半導体制御素子FET2についても、直流電圧の低下に伴い並列回路に接続が変換された際に流れる電流を等しくするため、相互のインピーダンスが等しくなるように構成する。 Further, the semiconductor control element FET1 and the semiconductor control element FET2 in FIG. 2, which correspond to the LED series-parallel control unit 53, also have the same current flowing when the connection is converted to the parallel circuit as the DC voltage drops. The impedances of the are equal to each other.

次に、調光信号制御部54について、以下詳しく説明する。定電流ダイオードCRDは、定電圧器としての役割を果たし、所定の電圧(=リファレンス電圧)を、コンパレータのプラスの入力端子から印加している。なお、定電圧器としての役割を果たすものであれば、定電流ダイオードCRDに限定されない。例えば、定電圧器として、ツェナーダイオードを用いる構成としても良い。また、リファレンス電圧を自ら出力可能なコンパレータを用いる構成としても良く、その場合には、別途の定電圧器は、不要となる。 Next, the dimming signal control unit 54 will be described in detail below. The constant current diode CRD serves as a constant voltage device, and a predetermined voltage (= reference voltage) is applied from the positive input terminal of the comparator. The constant current diode CRD is not limited as long as it plays a role as a constant voltage device. For example, a Zener diode may be used as the constant voltage device. Further, a comparator capable of outputting the reference voltage by itself may be used, and in that case, a separate constant voltage device is not required.

また、プラスの調光信号入力部S+及びマイナスの調光信号入力部S−に直流電源等を接続して、調光信号を入力させる(=直流電源等の外部から、照明装置用の制御回路Aに対し電圧を印加する)。プラスの調信号入力部S+から印加された調光信号に係るプラスの電圧は、抵抗素子R7及び抵抗素子R8が設けられていることにより、コンパレータのマイナスの入力端子に印加される。なお、コンパレータのマイナスの入力端子に印加される電圧は、直流電源等の外部から印加される電圧と、直流電源1から印加される電圧が合算されたものとなる。 Further, a DC power supply or the like is connected to the positive dimming signal input unit S + and the negative dimming signal input unit S- to input a dimming signal (= control circuit for the lighting device from the outside such as the DC power supply). Apply a voltage to A). The positive voltage related to the dimming signal applied from the positive signal input unit S + is applied to the negative input terminal of the comparator because the resistance element R7 and the resistance element R8 are provided. The voltage applied to the negative input terminal of the comparator is the sum of the voltage applied from the outside such as the DC power supply and the voltage applied from the DC power supply 1.

次に、調光信号制御部54の動作を、半導体制御素子FET1がOFFで、半導体制御素子FET2がONの場合で説明する。 Next, the operation of the dimming signal control unit 54 will be described in the case where the semiconductor control element FET1 is OFF and the semiconductor control element FET2 is ON.

コンパレータのマイナスの入力端子から印加された電圧が、コンパレータのプラスの入力端子から印加されているリファレンス電圧に比べて、低い場合には、コンパレータは電流を少ししか吸い込まない。そのため、半導体制御素子TRのコレクタ電圧は変わらず、半導体制御素子FET2のゲート電圧も変わらない。 If the voltage applied from the negative input terminal of the comparator is lower than the reference voltage applied from the positive input terminal of the comparator, the comparator draws little current. Therefore, the collector voltage of the semiconductor control element TR does not change, and the gate voltage of the semiconductor control element FET2 does not change either.

一方、コンパレータのマイナスの入力端子から印加された電圧が、コンパレータのプラスの入力端子から印加されているリファレンス電圧に比べて、高い場合には、コンパレータは電流を吸い込む。詳しくは、コンパレータの出力電位がマイナスになって、電流路3からの電流を吸い込み、吸い込んだ電流を負側電源端子V−から直流電源1の負極(≒GND)に流す。そのため、半導体制御素子TRのコレクタ電圧が下降し、半導体制御素子FET2のゲート電圧も下降する。そして、半導体制御素子FET2のゲート電圧が、ソース電圧よりも低くなり、ゲート・ソース間の閾値電圧以下になると、半導体制御素子FET2がOFFになり、半導体発光素子LED7〜9が点灯する。その結果、半導体発光素子LED7〜9に電流が流れ込み、その分の順方向電圧が加算されるため、照明装置用の制御回路A全体に流れる電流の量は減少する。 On the other hand, when the voltage applied from the negative input terminal of the comparator is higher than the reference voltage applied from the positive input terminal of the comparator, the comparator sucks the current. Specifically, the output potential of the comparator becomes negative, the current from the current path 3 is sucked in, and the sucked current is passed from the negative power supply terminal V− to the negative electrode (≈GND) of the DC power supply 1. Therefore, the collector voltage of the semiconductor control element TR drops, and the gate voltage of the semiconductor control element FET2 also drops. Then, when the gate voltage of the semiconductor control element FET 2 becomes lower than the source voltage and becomes equal to or lower than the threshold voltage between the gate and the source, the semiconductor control element FET 2 is turned off and the semiconductor light emitting elements LEDs 7 to 9 are turned on. As a result, a current flows into the semiconductor light emitting elements LEDs 7 to 9, and a forward voltage corresponding to the current flows, so that the amount of the current flowing through the entire control circuit A for the lighting device decreases.

図3は、調光特性の実験結果を折れ線グラフで示した図である。詳しくは、「実線」の折れ線は、調光信号の入力電圧に対する、消費電力の変化を示したものであり、「点線」の折れ線は、調光信号の入力電圧に対する、入力電流の変化を示したものである。図3の実験結果を見ると、調光信号の入力電圧が増加するに従い、入力電流(=照明装置用の制御回路A全体に流れる電流の量)及び消費電力(=照明装置用の制御回路A全体で消費される電力量)は、減少していく。 FIG. 3 is a line graph showing the experimental results of dimming characteristics. Specifically, the "solid line" broken line shows the change in power consumption with respect to the input voltage of the dimming signal, and the "dotted line" broken line shows the change in the input current with respect to the input voltage of the dimming signal. It is a thing. Looking at the experimental results of FIG. 3, as the input voltage of the dimming signal increases, the input current (= the amount of current flowing through the entire control circuit A for the lighting device) and the power consumption (= the control circuit A for the lighting device) The total amount of electricity consumed) will decrease.

なお、照明装置用の制御回路Aには、過電圧吸収部55として、半導体制御素子FET3が設けられている。このFET3は、上述したように、過大な電圧分を、ドレイン−ソース間で吸収して(=受け持って)、電圧降下させ、照明装置用の制御回路A内を流れる電流の量を既定の状態に保つ役割を果たす。 The control circuit A for the lighting device is provided with the semiconductor control element FET3 as the overvoltage absorbing unit 55. As described above, this FET 3 absorbs (= takes charge of) an excessive voltage component between the drain and the source, lowers the voltage, and sets the amount of current flowing in the control circuit A for the lighting device to a default state. Play a role in keeping.

従って、照明装置用の制御回路Aでは、調光信号の入力によって、LED1〜9が点灯した後、更に、調光信号の入力電圧を増加させ、制御回路A全体を流れる電流を減少させることで、調光可能である。一方、過電圧吸収部55として、FET3が設けられていない場合には、照明装置用の制御回路A内のLEDが全て点灯した状態から、更に、制御回路A全体を流れる電流を減少させ、調光することはできない。 Therefore, in the control circuit A for the lighting device, after the LEDs 1 to 9 are turned on by the input of the dimming signal, the input voltage of the dimming signal is further increased to reduce the current flowing through the entire control circuit A. , Dimmable. On the other hand, when the FET 3 is not provided as the overvoltage absorbing unit 55, the current flowing through the entire control circuit A is further reduced from the state in which all the LEDs in the control circuit A for the lighting device are lit to dimming. You can't.

次に、照明装置用の制御回路Aの動作について図2、4、5を用いて説明する。直流電源1から十分な電圧が印加されている時は(例えば、29.3V)、半導体制御素子TRに十分なベース電流が流れ、半導体制御素子TRがONし、半導体制御素子TRのコレクタ電圧と、半導体制御素子FET1及び半導体制御素子FET2のゲート電圧が0Vで等しくなるため、半導体制御素子FET1及び半導体制御素子FET2はONしない。そのため、図4に示すように、半導体発光素子LED1〜3を流れた電流は、電流路21の半導体発光素子LED4〜6、半導体整流素子D1、電流路22の半導体発光素子LED7〜9、半導体制御素子FET3、半導体発光素子LED10、抵抗素子R3を流れる。つまり、半導体発光素子LED4〜6と半導体発光素子LED7〜9は、直列に接続されたことになる。 Next, the operation of the control circuit A for the lighting device will be described with reference to FIGS. 2, 4, and 5. When a sufficient voltage is applied from the DC power supply 1 (for example, 29.3V), a sufficient base current flows through the semiconductor control element TR, the semiconductor control element TR is turned on, and the collector voltage of the semiconductor control element TR is increased. Since the gate voltages of the semiconductor control element FET1 and the semiconductor control element FET2 are equal at 0V, the semiconductor control element FET1 and the semiconductor control element FET2 are not turned on. Therefore, as shown in FIG. 4, the current flowing through the semiconductor light emitting elements LEDs 1 to 3 is the semiconductor light emitting elements LEDs 4 to 6 in the current path 21, the semiconductor rectifying element D1, the semiconductor light emitting elements LEDs 7 to 9 in the current path 22, and semiconductor control. It flows through the element FET3, the semiconductor light emitting element LED10, and the resistance element R3. That is, the semiconductor light emitting elements LEDs 4 to 6 and the semiconductor light emitting elements LEDs 7 to 9 are connected in series.

そして、直流電源1からの電圧が減少してくると(例えば、27.4V)、半導体制御素子TRのベース電流が少なくなり、半導体制御素子TRのコレクタ電流も少なくなる。そして、半導体制御素子TRがONしているものの、半導体制御素子TRのコレクタ電圧と、半導体制御素子FET1及び半導体制御素子FET2のゲート電圧が等しくなる電圧値が上昇して、半導体制御素子FET2のソース電圧よりも高くなり、半導体制御素子FET2のゲート・ソース間閾値電圧を超えると、半導体制御素子FET2がONする。そのため、図5に示すように、半導体発光素子LED1〜3を流れた電流は、電流路21の半導体発光素子LED4〜6、半導体制御素子FET2、半導体制御素子FET3、半導体発光素子LED10、抵抗素子R3に流れる。一方、電流路22の半導体発光素子LED7〜9は消灯する。 Then, as the voltage from the DC power supply 1 decreases (for example, 27.4V), the base current of the semiconductor control element TR decreases, and the collector current of the semiconductor control element TR also decreases. Then, although the semiconductor control element TR is turned on, the voltage value at which the collector voltage of the semiconductor control element TR and the gate voltage of the semiconductor control element FET1 and the semiconductor control element FET2 become equal increases, and the source of the semiconductor control element FET2 When the voltage becomes higher than the voltage and exceeds the gate-source threshold voltage of the semiconductor control element FET2, the semiconductor control element FET2 is turned on. Therefore, as shown in FIG. 5, the current flowing through the semiconductor light emitting elements LEDs 1 to 3 is the semiconductor light emitting elements LEDs 4 to 6 in the current path 21, the semiconductor control element FET 2, the semiconductor control element FET 3, the semiconductor light emitting element LED 10, and the resistance element R3. Flow to. On the other hand, the semiconductor light emitting elements LEDs 7 to 9 in the current path 22 are turned off.

このような状態で、プラスの調光信号入力部S+及びマイナスの調光信号入力部S−を通じて、外部から電圧を印加し、コンパレータのマイナスの入力端子から印加された電圧が、コンパレータのプラスの入力端子から印加されているリファレンス電圧に比べて高い状態になるようにする。その結果、コンパレータは電流を吸い込み、半導体制御素子TRのコレクタ電圧が下降し、半導体制御素子FET2のゲート電圧も下降する。そして、半導体制御素子FET2のゲート電圧が、ソース電圧よりも低くなり、ゲート・ソース間の閾値電圧を以下になると、半導体制御素子FET2がOFFになり、半導体発光素子LED7〜9が点灯する。その結果、半導体発光素子LED7〜9に電流が流れ込み、その分の順方向電圧が加算されるため、照明装置用の制御回路A全体に流れる電流の量は減少する。 In such a state, a voltage is applied from the outside through the positive dimming signal input unit S + and the negative dimming signal input unit S-, and the voltage applied from the negative input terminal of the comparator is the positive voltage of the comparator. Make sure that the voltage is higher than the reference voltage applied from the input terminal. As a result, the comparator sucks the current, the collector voltage of the semiconductor control element TR drops, and the gate voltage of the semiconductor control element FET2 also drops. Then, when the gate voltage of the semiconductor control element FET 2 becomes lower than the source voltage and the threshold voltage between the gate and the source becomes less than or equal to that, the semiconductor control element FET 2 is turned off and the semiconductor light emitting elements LEDs 7 to 9 are turned on. As a result, a current flows into the semiconductor light emitting elements LEDs 7 to 9, and a forward voltage corresponding to the current flows, so that the amount of the current flowing through the entire control circuit A for the lighting device decreases.

次に、直流電源1からの電圧が不足した状態では(例えば、19.9V以下)、半導体制御素子TRのベース電流がさらに少なくなり、半導体制御素子TRのコレクタ電流も少なくなる。そして、半導体制御素子TRがONするものの、半導体制御素子TRのコレクタ電圧と、半導体制御素子FET1及び半導体制御素子FET2のゲート電圧が等しくなる電圧値がさらに上昇して、半導体制御素子FET1のソース電圧よりも高くなり、半導体制御素子FET1のゲート・ソース間閾値電圧を超えると、半導体制御素子FET1がONする。又は、半導体制御素子TRがOFFして、半導体制御素子FET1がONする。そのため、図6に示すように、半導体発光素子LED1〜3を流れた電流は、電流路21の半導体発光素子LED4〜6と半導体制御素子FET2を流れるルートと、電流路22の半導体制御素子FET1と半導体発光素子LED7〜9を流れるルートに分かれる。つまり、半導体発光素子LED4〜6と半導体発光素子LED7〜9は、並列に接続されたことになる。なお、並列に接続された電流路21の半導体発光素子LED4〜6及び半導体制御素子FET2の合計インピーダンスと、電流路22の半導体制御素子FET1及び半導体発光素子LED7〜9の合計インピーダンスが等しいため、半導体発光素子LED4〜6と半導体発光素子LED7〜9を流れる電流の量は等しくなる。 Next, when the voltage from the DC power supply 1 is insufficient (for example, 19.9 V or less), the base current of the semiconductor control element TR is further reduced, and the collector current of the semiconductor control element TR is also reduced. Then, although the semiconductor control element TR is turned on, the voltage value at which the collector voltage of the semiconductor control element TR and the gate voltage of the semiconductor control element FET1 and the semiconductor control element FET2 are equal to each other further increases, and the source voltage of the semiconductor control element FET1 is further increased. When the voltage exceeds the gate-source threshold voltage of the semiconductor control element FET1, the semiconductor control element FET1 is turned on. Alternatively, the semiconductor control element TR is turned off and the semiconductor control element FET1 is turned on. Therefore, as shown in FIG. 6, the current flowing through the semiconductor light emitting elements LEDs 1 to 3 is the route flowing through the semiconductor light emitting elements LEDs 4 to 6 of the current path 21 and the semiconductor control element FET 2 and the semiconductor control element FET 1 of the current path 22. It is divided into routes that flow through the semiconductor light emitting elements LEDs 7 to 9. That is, the semiconductor light emitting elements LEDs 4 to 6 and the semiconductor light emitting elements LEDs 7 to 9 are connected in parallel. Since the total impedance of the semiconductor light emitting elements LEDs 4 to 6 and the semiconductor control element FET 2 of the current path 21 connected in parallel is equal to the total impedance of the semiconductor control element FET 1 and the semiconductor light emitting element LEDs 7 to 9 of the current path 22, the semiconductor The amounts of current flowing through the light emitting elements LEDs 4 to 6 and the semiconductor light emitting elements LEDs 7 to 9 are equal.

このような状態で、プラスの調光信号入力部S+及びマイナスの調光信号入力部S−を通じて、外部から電圧を印加し、コンパレータのマイナスの入力端子から印加された電圧が、コンパレータのプラスの入力端子から印加されているリファレンス電圧に比べて高い状態になるようにする。その結果、コンパレータは電流を吸い込み、半導体制御素子TRのコレクタ電圧が下降し、半導体制御素子FET1及び半導体制御素子FET2のゲート電圧も下降する。そして、半導体制御素子FET1のゲート電圧が、ソース電圧よりも低くなり、ゲート・ソース間の閾値電圧以下になると、半導体制御素子FET1がOFFになり、半導体発光素子LED4〜6がLED1〜3と直列に接続され、LED7〜9は消灯する。 In such a state, a voltage is applied from the outside through the positive dimming signal input unit S + and the negative dimming signal input unit S-, and the voltage applied from the negative input terminal of the comparator is the positive voltage of the comparator. Make sure that the voltage is higher than the reference voltage applied from the input terminal. As a result, the comparator sucks the current, the collector voltage of the semiconductor control element TR drops, and the gate voltage of the semiconductor control element FET1 and the semiconductor control element FET2 also drops. When the gate voltage of the semiconductor control element FET1 becomes lower than the source voltage and becomes equal to or lower than the threshold voltage between the gate and the source, the semiconductor control element FET1 is turned off and the semiconductor light emitting elements LEDs 4 to 6 are connected in series with the LEDs 1 to 3. LEDs 7 to 9 are turned off.

そして更に、プラスの調光信号入力部S+及びマイナスの調光信号入力部S−を通じて、外部から印加する電圧を増加させる。その結果、コンパレータは電流を更に吸い込み、半導体制御素子TRのコレクタ電圧が更に下降し、半導体制御素子FET1及び半導体制御素子FET2のゲート電圧も下降する。そして、半導体制御素子FET2のゲート電圧が、ソース電圧よりも低くなり、ゲート・ソース間の閾値電圧を以下になると、半導体制御素子FET2がOFFになり、半導体発光素子LED7〜9が点灯する。 Further, the voltage applied from the outside is increased through the positive dimming signal input unit S + and the negative dimming signal input unit S−. As a result, the comparator further sucks the current, the collector voltage of the semiconductor control element TR further decreases, and the gate voltage of the semiconductor control element FET1 and the semiconductor control element FET2 also decreases. Then, when the gate voltage of the semiconductor control element FET 2 becomes lower than the source voltage and the threshold voltage between the gate and the source becomes less than or equal to that, the semiconductor control element FET 2 is turned off and the semiconductor light emitting elements LEDs 7 to 9 are turned on.

これらの結果、半導体発光素子LED4〜9は直列に接続され、半導体発光素子LED7〜9にも電流が流れ込み、その分の順方向電圧が加算されるため、照明装置用の制御回路A全体に流れる電流の量は更に減少する。 As a result, the semiconductor light emitting elements LEDs 4 to 9 are connected in series, a current flows into the semiconductor light emitting elements LEDs 7 to 9, and a forward voltage corresponding to the current flows, so that the current flows through the entire control circuit A for the lighting device. The amount of current is further reduced.

なお、図2の照明装置用の制御回路Aのように、LED常時点灯部51に係る半導体発光素子LEDの数(半導体発光素子LED1〜3の3個)と、LED直並列変換部52に係る、並列回路に接続が変換され、電流路が分かれた際の各ブロックの半導体発光素子LEDの数(半導体発光素子LED4〜6、あるいは半導体発光素子LED7〜9の3個)が1:1の割合の場合、直流電源1からの電圧が約2/3になると(直流電源1からの電圧が約1/3減少すると)、直列回路から並列回路に接続が変換される。 As in the control circuit A for the lighting device of FIG. 2, the number of semiconductor light emitting element LEDs related to the LED constantly lit unit 51 (three of the semiconductor light emitting elements LEDs 1 to 3) and the LED series-parallel conversion unit 52 are related. , The ratio of the number of semiconductor light emitting element LEDs (three semiconductor light emitting element LEDs 4 to 6 or semiconductor light emitting element LEDs 7 to 9) of each block when the connection is converted to the parallel circuit and the current path is divided is 1: 1. In the case of, when the voltage from the DC power supply 1 becomes about 2/3 (when the voltage from the DC power supply 1 decreases by about 1/3), the connection is converted from the series circuit to the parallel circuit.

また、上述した本実施形態では、照明装置用の制御回路Aの動作について、直流電源1からの電圧が減少・不足していく場合を例として説明した。しかし、照明装置用の制御回路Aは、直流電源1からの電圧が減少・不足していく場合のみに対応可能な構成ではなく、LED直並列変換部52に係る半導体発光素子LEDの直並列の接続を変換することにより、直流電源1によって印加される、幅広い電圧の範囲に対応可能な構成である。そのため、例えば、直流電源1からの電圧が不足し、LED直並列変換部52に係る半導体発光素子LEDが並列に接続されている状態から、電圧が増加し、十分な電圧が印加されている状態に移行した場合には、LED直並列変換部52に係る半導体発光素子LEDの接続は並列から直列に変換される。 Further, in the above-described embodiment, the operation of the control circuit A for the lighting device has been described as an example in which the voltage from the DC power supply 1 decreases or becomes insufficient. However, the control circuit A for the lighting device does not have a configuration that can be used only when the voltage from the DC power supply 1 decreases or becomes insufficient, and the semiconductor light emitting element LED related to the LED series-parallel conversion unit 52 is serially-parallel. By converting the connection, it is a configuration that can correspond to a wide range of voltage applied by the DC power supply 1. Therefore, for example, the voltage from the DC power supply 1 is insufficient, and the semiconductor light emitting element LED related to the LED series-parallel conversion unit 52 is connected in parallel, the voltage is increased, and a sufficient voltage is applied. In the case of shifting to, the connection of the semiconductor light emitting element LED related to the LED series-parallel conversion unit 52 is converted from parallel to series.

このような構成であることによって、プラスの調光信号入力部S+及びマイナスの調光信号入力部S−を通じて、外部から電圧を印加することで、照明装置用の制御回路Aに係る半導体発光素子LEDを調光することができ、便宜である。また、照明装置用の制御回路Aに係る半導体発光素子LEDを調光することによって、当該半導体発光素子LEDに印加する電圧の総量を調整することができ、また、照明装置用の制御回路Aに流れる電流の量を調整することができ、便宜である。 With such a configuration, the semiconductor light emitting element according to the control circuit A for the lighting device is applied by applying a voltage from the outside through the positive dimming signal input unit S + and the negative dimming signal input unit S-. The LED can be dimmed, which is convenient. Further, by dimming the semiconductor light emitting element LED related to the control circuit A for the lighting device, the total amount of the voltage applied to the semiconductor light emitting element LED can be adjusted, and the control circuit A for the lighting device can be adjusted. It is convenient because the amount of flowing current can be adjusted.

また、直流電源50の電圧の変動に応じて、LED直並列変換部52に係る半導体発光素子LEDの直並列の接続を自動的に変換することにより、電源変換ユニットを用いることなく、幅広い電源電圧の範囲に対応可能である。また、過電圧吸収部55に係る半導体制御素子FET3が設けられていることにより、過電圧に対して保護機能を有する。また、直流電源50の電圧の変動に応じて、LED直並列変換部52に係る半導体発光素子LEDの直並列の接続を自動的に変換することにより、直流電源50から供給される電流の量がほぼ一定となる。 Further, by automatically converting the series-parallel connection of the semiconductor light emitting element LED related to the LED series-parallel conversion unit 52 according to the fluctuation of the voltage of the DC power supply 50, a wide range of power supply voltages can be obtained without using a power supply conversion unit. It is possible to correspond to the range of. Further, since the semiconductor control element FET3 related to the overvoltage absorbing unit 55 is provided, it has a protection function against overvoltage. Further, the amount of current supplied from the DC power supply 50 is increased by automatically converting the series-parallel connection of the semiconductor light emitting element LEDs related to the LED series-parallel conversion unit 52 according to the fluctuation of the voltage of the DC power supply 50. It becomes almost constant.

また、電源変換ユニットを使用しない構成であるため、照明装置の小型化、高効率化、低価格化が実現できる。また、電磁ノイズが発生せず、病院や精密機械室等の電磁ノイズを嫌う環境でも使用可能である。さらに照明装置の故障リスクも低減できる。 In addition, since the configuration does not use a power conversion unit, it is possible to reduce the size, efficiency, and price of the lighting device. In addition, it does not generate electromagnetic noise and can be used in environments such as hospitals and precision machine rooms where electromagnetic noise is disliked. Furthermore, the risk of failure of the lighting device can be reduced.

さらに、直流電源50の電圧の変動に応じて、LED直並列変換部52に係る半導体発光素子LEDの直並列の接続を自動的に変換する構成であるため、制御回路内のほとんどのLEDが消灯することはなく、周囲の者が電源電圧の変動に気づきにくい。 Further, since the configuration is such that the series-parallel connection of the semiconductor light emitting element LEDs related to the LED series-parallel conversion unit 52 is automatically converted according to the fluctuation of the voltage of the DC power supply 50, most of the LEDs in the control circuit are turned off. It is difficult for people around you to notice fluctuations in the power supply voltage.

(変形例)
本実施の形態例1では、LED直並列変換部52として、半導体発光素子LED4〜6に係るブロックと、半導体発光素子LED7〜9に係るブロックを2段に重ねる構成を示したが、この構成に限定されるものではない。LED常時点灯部51を設け、制御回路内の半導体制御素子FETの中で、最も電位が高い半導体制御素子FET1がONできれば、LED直並列変換部52内の半導体発光素子LEDに係るブロックは何段も直列に重ねることが可能である。例えば図7のように、LED直並列変換部52として、半導体発光素子LED4に係るブロック、半導体発光素子LED5に係るブロック、半導体発光素子LED6に係るブロック、半導体発光素子LED7に係るブロックを4段に重ねる構成としても良い。LED直並列変換部52内の半導体発光素子LEDに係るブロックを何段も直列に重ねることによって、直流電源の電圧変動に対応可能な範囲が広がり、電源電圧の大きな変動に対して、対応できるようになり、便宜である。
(Modification example)
In the first embodiment, the LED series-parallel conversion unit 52 shows a configuration in which a block related to the semiconductor light emitting elements LEDs 4 to 6 and a block related to the semiconductor light emitting elements LEDs 7 to 9 are stacked in two stages. It is not limited. If the LED constantly lit unit 51 is provided and the semiconductor control element FET 1 having the highest potential among the semiconductor control element FETs in the control circuit can be turned on, the number of blocks related to the semiconductor light emitting element LED in the LED series-parallel conversion unit 52 is increased. Can also be stacked in series. For example, as shown in FIG. 7, as the LED series-parallel conversion unit 52, a block related to the semiconductor light emitting element LED4, a block related to the semiconductor light emitting element LED5, a block related to the semiconductor light emitting element LED6, and a block related to the semiconductor light emitting element LED7 are arranged in four stages. It may be configured to be stacked. By stacking the blocks related to the semiconductor light emitting element LED in the LED series-parallel conversion unit 52 in series, the range that can respond to the voltage fluctuation of the DC power supply is expanded, and it is possible to cope with the large fluctuation of the power supply voltage. It is convenient.

また、本実施の形態例1では、LED直並列変換部52内の半導体発光素子LEDに係る各ブロックにおいて、半導体発光素子LED4〜6と半導体発光素子LED7〜9というように3個のLEDを設ける構成を示したが、この構成に限定されるものではなく、LED直並列変換部52内の各ブロックの半導体発光素子LEDの数を何個にしても良い。例えば図7のように、LED直並列変換部52内の各ブロックの半導体発光素子LEDの数を少数(例えば、1個)にしても良い。LED直並列変換部52内の各ブロックの半導体発光素子LEDの点灯に必要な順(方向)電圧値の合計が、直並列の接続が変換される電圧値となる。そのため、LED直並列変換部52内の各ブロックの半導体発光素子LEDの数が少数の場合には、半導体発光素子LED少数個分の順(方向)電圧に相当する電源電圧の変動に応じて、直並列の接続が変換され、分解能・感度が高い。一方、例えば、LED直並列変換部52内の各ブロックの半導体発光素子LEDの数が多数の場合には、半導体発光素子LED多数個分の順(方向)電圧に相当する電源電圧の変動に応じて、直並列の接続が変換され、電源電圧の大きな変化に合わせて、直並列の接続が変換されることとなる。 Further, in the first embodiment, in each block related to the semiconductor light emitting element LED in the LED series-parallel conversion unit 52, three LEDs such as the semiconductor light emitting element LEDs 4 to 6 and the semiconductor light emitting elements LEDs 7 to 9 are provided. Although the configuration is shown, the configuration is not limited to this configuration, and the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 may be any number. For example, as shown in FIG. 7, the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 may be small (for example, one). The total of the forward (direction) voltage values required for lighting the semiconductor light emitting element LEDs of each block in the LED series-parallel conversion unit 52 is the voltage value at which the series-parallel connection is converted. Therefore, when the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 is small, the power supply voltage corresponding to the forward (direction) voltage of a small number of semiconductor light emitting element LEDs is changed. The series-parallel connection is converted, and the resolution and sensitivity are high. On the other hand, for example, when the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 is large, it responds to fluctuations in the power supply voltage corresponding to the forward (direction) voltage of many semiconductor light emitting element LEDs. Therefore, the series-parallel connection is converted, and the series-parallel connection is converted according to a large change in the power supply voltage.

更に、LED直並列変換部52内の各ブロックの半導体発光素子LEDの数が異なる構成としても良い。例えば図8のように、LED直並列変換部52内の各ブロックにおける半導体発光素子LEDの数を、1個(半導体発光素子LED4、5)、3個(半導体発光素子LED6〜8、9〜12)、2個(半導体発光素子LED13〜14、15〜16)としても良い。但し、電源電圧の不足に伴い、接続が直列から並列に変換され、電流路が分かれた際に、対応関係となる半導体発光素子LED(例えば、半導体発光素子LED4と5)については、インピーダンスを同一にするため、同じ数にする必要がある。 Further, the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 may be different. For example, as shown in FIG. 8, the number of semiconductor light emitting element LEDs in each block in the LED series-parallel conversion unit 52 is one (semiconductor light emitting element LEDs 4, 5) and three (semiconductor light emitting element LEDs 6 to 8, 9 to 12). ), Two (semiconductor light emitting elements LEDs 13 to 14, 15 to 16) may be used. However, when the connection is converted from series to parallel due to the shortage of the power supply voltage and the current path is divided, the impedances of the semiconductor light emitting element LEDs (for example, semiconductor light emitting elements LEDs 4 and 5) that are in a corresponding relationship are the same. Must be the same number.

本実施の形態例1では、LED常時点灯部51として半導体発光素子LED1〜3を、半導体制御素子FET1がONできるように、半導体制御素子FET1よりも高い電位に設ける構成を示したが、この構成に限定されるものはなく、この位置のLED常時点灯部51以外に、別途1又は複数のLED常時点灯部51を設ける構成としても良い。例えば図9に示すように、半導体発光素子LED4〜9からなるLED直並列変換部52と半導体発光素子LED13〜16からなるLED直並列変換部52との間に、LED常時点灯部51として半導体発光素子LED11及び12を設ける構成としても良い。電源電圧が不足した際に、直列から並列に変換される箇所(=流れる電流が半減する箇所)を分散でき、照明装置の明るさの隔たりを少なくできるため、便宜である。 In the first embodiment, the semiconductor light emitting elements LEDs 1 to 3 are provided as the LED constantly lit unit 51 at a potential higher than that of the semiconductor control element FET 1 so that the semiconductor control element FET 1 can be turned on. In addition to the LED constantly lit unit 51 at this position, one or a plurality of LED constantly lit units 51 may be separately provided. For example, as shown in FIG. 9, between the LED series-parallel conversion unit 52 composed of the semiconductor light-emitting elements LEDs 4 to 9 and the LED series-parallel conversion unit 52 composed of the semiconductor light-emitting elements LEDs 13 to 16, semiconductor light emission is performed as an LED constantly lit unit 51. The elements LEDs 11 and 12 may be provided. This is convenient because when the power supply voltage is insufficient, the points that are converted from series to parallel (= the points where the flowing current is halved) can be dispersed, and the difference in brightness of the lighting device can be reduced.

本実施の形態例1では、電源電圧の不足に伴い、接続が直列から並列に変換された際に、電流路が2つに分かれる2並列の構成を示したが、この構成に限定されるものではない。例えば図10に示すように、電流路が4つに分かれる4並列の構成としても良いし、8並列、16並列、32並列の構成としても良い。より小さな電源電圧でも、LED直並列変換部52に係る半導体発光素子LEDを点灯できるようになるため、便宜である。 In the first embodiment of the present embodiment, a two-parallel configuration in which the current path is divided into two when the connection is converted from series to parallel due to insufficient power supply voltage is shown, but the configuration is limited to this configuration. is not. For example, as shown in FIG. 10, a 4-parallel configuration in which the current path is divided into four may be used, or an 8-parallel, 16-parallel, or 32-parallel configuration may be used. This is convenient because the semiconductor light emitting element LED related to the LED series-parallel conversion unit 52 can be turned on even with a smaller power supply voltage.

本実施の形態例1では、入力電圧を比較する比較器として、コンパレータを用いる構成を示したが、この構成に限定されるものではない。例えば、コンパレータの代りにオペアンプを用いる構成としても良い。なお、オペアンプを用いる場合には、オペアンプは一般的に耐圧が高いため、耐圧用の半導体制御素子TRは不要となる。 In the first embodiment of the present embodiment, a configuration using a comparator as a comparator for comparing input voltages is shown, but the configuration is not limited to this configuration. For example, an operational amplifier may be used instead of the comparator. When an operational amplifier is used, the operational amplifier generally has a high withstand voltage, so that the semiconductor control element TR for withstand voltage is not required.

そして、オペアンプのマイナスの入力端子から印加された電圧が、オペアンプのプラスの入力端子から印加されているリファレンス電圧に比べて、低い場合には、オペアンプはプラスの電圧を出力し、電流を少ししか吸い込まない。そのため、半導体制御素子FET2等のゲート電圧も変わらない。 Then, when the voltage applied from the negative input terminal of the operational amplifier is lower than the reference voltage applied from the positive input terminal of the operational amplifier, the operational amplifier outputs a positive voltage and outputs a small amount of current. Do not inhale. Therefore, the gate voltage of the semiconductor control element FET2 and the like does not change.

一方、オペアンプのマイナスの入力端子から印加された電圧が、オペアンプのプラスの入力端子から印加されているリファレンス電圧に比べて、高い場合には、オペアンプはマイナスの電圧を出力し、電流を吸い込む。そのため、半導体制御素子FET2等のゲート電圧が下降する。 On the other hand, when the voltage applied from the negative input terminal of the operational amplifier is higher than the reference voltage applied from the positive input terminal of the operational amplifier, the operational amplifier outputs a negative voltage and sucks the current. Therefore, the gate voltage of the semiconductor control element FET2 or the like drops.

また、本実施の形態例1に係る照明装置用の制御回路Aでは、半導体制御素子FET3、抵抗素子R9、半導体定電圧素子ZD3を設け、所定の電圧値を超えた過大な電圧分を半導体制御素子FET3で受け持って、電圧降下させ、照明装置用の制御回路Aを保護する構成を示したが、この構成に限定されるものではなく、半導体制御素子FET3、抵抗素子R9、半導体定電圧素子ZD3を設けない構成としても良い。 Further, in the control circuit A for the lighting device according to the first embodiment, the semiconductor control element FET3, the resistance element R9, and the semiconductor constant voltage element ZD3 are provided, and an excessive voltage component exceeding a predetermined voltage value is controlled by the semiconductor. The configuration is shown in which the element FET3 takes charge of the voltage drop to protect the control circuit A for the lighting device, but the present invention is not limited to this configuration, and the semiconductor control element FET3, the resistance element R9, and the semiconductor constant voltage element ZD3 are not limited to this configuration. It may be configured not to provide.

また、本実施の形態例1に係る照明装置用の制御回路Aでは、過電圧吸収部55として、電界効果トランジスタ(=Field Effect Transistor)である、半導体制御素子FET3を用いる構成を示したが、この構成に限定されるものではない。例えば、過電圧吸収部55として、PNP型、あるいはNPN型のバイポーラトランジスタを用いる構成としても良いし、絶縁ゲートバイポーラトランジスタ(=IGBT)を用いる構成としても良い。また、半導体制御素子FET3には、接合型FET(=JFET)やMOS−FET等、種々のFETを含む。つまり、過電圧吸収部55は、直流電源1から所定の電圧値を超えた過大な電圧が印加された際に、当該過大な電圧分について電圧降下させる役割を果たす素子等であれば良い。 Further, in the control circuit A for the lighting device according to the first embodiment, a configuration in which the semiconductor control element FET3, which is a field effect transistor (= Field Effect Transistor), is used as the overvoltage absorbing unit 55 has been shown. It is not limited to the configuration. For example, the overvoltage absorbing unit 55 may be configured to use a PNP type or NPN type bipolar transistor, or may be configured to use an insulated gate bipolar transistor (= IGBT). Further, the semiconductor control element FET 3 includes various FETs such as a junction FET (= JFET) and a MOS-FET. That is, the overvoltage absorbing unit 55 may be an element or the like that plays a role of lowering the voltage of the excessive voltage when an excessive voltage exceeding a predetermined voltage value is applied from the DC power supply 1.

(実施の形態例2)
上述した本実施の形態例1では、直流電源の電圧の増減に合わせて、半導体発光素子LEDの直並列の接続を変換する構成に対し、プラスの調光信号入力部S+及びマイナスの調光信号入力部S−を通じて、外部から電圧を印加することで、当該半導体発光素子LEDを調光する調光信号制御部54の構成を適用した例を示した。一方、本実施の形態例2では、直流電源の電圧の増減に合わせて、半導体発光素子LEDの点灯・消灯を制御する構成に対し、調光信号制御部54の構成を適用した例を示す。
(Example 2 of the embodiment)
In the above-described first embodiment, the positive dimming signal input unit S + and the negative dimming signal are used for the configuration in which the series-parallel connection of the semiconductor light emitting element LEDs is converted according to the increase or decrease of the voltage of the DC power supply. An example is shown in which the configuration of the dimming signal control unit 54 that dims the semiconductor light emitting element LED by applying a voltage from the outside through the input unit S- is applied. On the other hand, in the second embodiment, an example is shown in which the configuration of the dimming signal control unit 54 is applied to the configuration of controlling the lighting / extinguishing of the semiconductor light emitting element LED according to the increase / decrease of the voltage of the DC power supply.

まず、この発明の実施の形態例2の概念構成図である図11に基づいて説明する。この発明の照明装置用の制御回路は、直流電源50の電圧の印加によりLEDが常時点灯するLED常時点灯部51を設け、また、直流電源50の電圧値の変動によってLEDが点灯・消灯するLED点灯・消灯部62を設け、また、直流電源50の電圧値の変動によって、LED点灯・消灯部62に係るLEDを点灯・消灯するLED点灯・消灯制御部63を設け、さらに、外部から調光信号の入力を受け付け、当該調光信号によって、調光制御を行う、調光信号制御部54を設けた構成となっている。また、各部は電流路55を通じて接続されている。 First, it will be described with reference to FIG. 11, which is a conceptual configuration diagram of the second embodiment of the present invention. The control circuit for the lighting device of the present invention is provided with an LED constantly lit unit 51 in which the LED is constantly lit by applying the voltage of the DC power supply 50, and the LED is turned on and off by the fluctuation of the voltage value of the DC power supply 50. An on / off unit 62 is provided, and an LED on / off control unit 63 for turning on / off the LED related to the LED on / off unit 62 according to the fluctuation of the voltage value of the DC power supply 50 is provided, and further, dimming from the outside. A dimming signal control unit 54 that receives a signal input and performs dimming control according to the dimming signal is provided. Further, each part is connected through a current path 55.

この構成により、直流電源50から供給される直流電圧によりLED常時点灯部51及びLED点灯・消灯部62に係るLEDは点灯しているが、直流電源50の電圧が低下すると、LED点灯・消灯制御部63が動作し、LED点灯・消灯部62に係るLEDが消灯する。その結果、LEDに流れる電流を一定に保つことができる。 With this configuration, the LEDs related to the LED constant lighting unit 51 and the LED lighting / extinguishing unit 62 are lit by the DC voltage supplied from the DC power supply 50, but when the voltage of the DC power supply 50 drops, the LED lighting / extinguishing control is performed. The unit 63 operates, and the LED related to the LED on / off unit 62 is turned off. As a result, the current flowing through the LED can be kept constant.

次に、この発明の実施の形態例2の照明装置用の制御回路Bの構成を図12に基づいて説明する。 Next, the configuration of the control circuit B for the lighting device according to the second embodiment of the present invention will be described with reference to FIG.

図12に示すように、直流電源1の両側に、LEDからなる半導体発光素子LED1〜LED5が同一極性方向に直列接続された電流路12と、抵抗素子R1が設けられた電流路13とがそれぞれ接続されている。また、電流路12の端部と電流路13の端部との間に、調光信号制御部54が設けられている。 As shown in FIG. 12, a current path 12 in which semiconductor light emitting elements LEDs 1 to LED 5 made of LEDs are connected in series in the same polar direction and a current path 13 provided with a resistance element R1 are respectively on both sides of the DC power supply 1. It is connected. Further, a dimming signal control unit 54 is provided between the end of the current path 12 and the end of the current path 13.

半導体発光素子LED3〜5の各アノード及びカソード間には半導体制御素子FET4〜6が夫々並列に接続されている。各半導体制御素子FET4〜6の各ゲートは、調光信号制御部54に係る半導体制御素子TRのコレクタと、半導体整流素子D3〜5を介して夫々接続されている。これらの半導体整流素子D3〜5のアノードが半導体制御素子TRのコレクタと接続され、半導体整流素子D3〜5のカソードが各半導体素子FET4〜6のゲートと夫々接続されている。また、各半導体制御素子FET4〜6の各ソース端とゲート端との間には、抵抗素子R2、R4、R9が夫々設けられている。 Semiconductor control elements FETs 4 to 6 are connected in parallel between the anodes and cathodes of the semiconductor light emitting elements LEDs 3 to 5, respectively. Each gate of each of the semiconductor control elements FETs 4 to 6 is connected to a collector of the semiconductor control element TR related to the dimming signal control unit 54 via semiconductor rectifying elements D3 to 5, respectively. The anodes of these semiconductor rectifying elements D3 to 5 are connected to the collector of the semiconductor control element TR, and the cathodes of the semiconductor rectifying elements D3 to 5 are connected to the gates of the semiconductor element FETs 4 to 6, respectively. Further, resistance elements R2, R4, and R9 are provided between the source end and the gate end of the semiconductor control elements FETs 4 to 6, respectively.

これら抵抗素子R2、R4、R9は、ソースとゲート間に加わる電圧を制限する。そのため、サージ電流や静電気が発生した場合等に、半導体制御素子FET4〜6を保護する役割を果たす。 These resistance elements R2, R4, and R9 limit the voltage applied between the source and the gate. Therefore, it plays a role of protecting the semiconductor control elements FETs 4 to 6 when a surge current or static electricity is generated.

なお、調光信号制御部54の構成や動作については、上述した実施の形態例1で述べているため、ここでは説明を省略する。 Since the configuration and operation of the dimming signal control unit 54 are described in the above-described first embodiment, the description thereof will be omitted here.

次に、図11で説明した、この発明の実施の形態例2の概念構成と、図12で説明した照明装置用の制御回路Bの回路構成との対応関係について説明する。図11の直流電源50は、図12の直流電源1と対応する。また、図11のLED常時点灯部51は、図12の半導体発光素子LED1及び2が対応する。また、図11のLED点灯・消灯部62は、図12の半導体発光素子LED3〜5が対応する。また、図11のLED点灯・消灯制御部63は、図12の半導体制御素子FET4〜6が対応する。さらに、図11の調光信号制御部54は、図12のコンパレータ、プラスの調光信号入力部S+、マイナスの調光信号入力部S−が対応する。また、図11の電流路55は、図12の電流路5〜13が対応する。 Next, the correspondence between the conceptual configuration of the second embodiment of the present invention described with reference to FIG. 11 and the circuit configuration of the control circuit B for the lighting device described with reference to FIG. 12 will be described. The DC power supply 50 of FIG. 11 corresponds to the DC power supply 1 of FIG. Further, the LED constantly lit unit 51 of FIG. 11 corresponds to the semiconductor light emitting elements LEDs 1 and 2 of FIG. Further, the LED lighting / extinguishing unit 62 of FIG. 11 corresponds to the semiconductor light emitting elements LEDs 3 to 5 of FIG. Further, the LED lighting / extinguishing control unit 63 of FIG. 11 corresponds to the semiconductor control elements FETs 4 to 6 of FIG. Further, the dimming signal control unit 54 of FIG. 11 corresponds to the comparator of FIG. 12, the positive dimming signal input unit S +, and the negative dimming signal input unit S−. Further, the current paths 55 in FIG. 11 correspond to the current paths 5 to 13 in FIG.

次に、照明装置用の制御回路Bの動作について説明する。直流電源1から印加される電圧が所定の電圧値の場合は、半導体発光素子LED1〜LED5は全て点灯している。その際、半導体制御素子TRのベースは順バイアスの状態であり、半導体制御素子TRは導通状態となる。そして、半導体制御素子TRのコレクタと、各半導体制御素子FET4〜6のゲートは、低い状態で同電位となり、半導体制御素子FET4〜6は導通しない。 Next, the operation of the control circuit B for the lighting device will be described. When the voltage applied from the DC power supply 1 has a predetermined voltage value, all the semiconductor light emitting elements LEDs 1 to LED 5 are lit. At that time, the base of the semiconductor control element TR is in a forward bias state, and the semiconductor control element TR is in a conductive state. Then, the collector of the semiconductor control element TR and the gates of the semiconductor control elements FETs 4 to 6 have the same potential in a low state, and the semiconductor control elements FETs 4 to 6 do not conduct.

一方、直流電源1の電圧値が低下すると、半導体制御素子TRのベースが順バイアスの状態にならず、コレクタの電位が上昇する。これに伴って半導体制御素子FET4〜6の各ゲートの電位も上昇する。その結果、ゲートの電位がソース電位よりも高くなり、半導体制御素子FET4〜6について、半導体制御素子FET6、5、4の順に(電位の上昇度合いに応じて)オンとなり、各半導体制御素子FET4〜6のドレイン・ソース間に電流が流れ、これらの半導体制御素子FET4〜6に対応する半導体発光素子LED3〜5について、半導体発光素子5、4、3の順に消灯していく。 On the other hand, when the voltage value of the DC power supply 1 decreases, the base of the semiconductor control element TR does not become a forward bias state, and the potential of the collector increases. Along with this, the potential of each gate of the semiconductor control elements FETs 4 to 6 also rises. As a result, the potential of the gate becomes higher than the source potential, and the semiconductor control elements FETs 4 to 6 are turned on in the order of the semiconductor control elements FETs 6, 5 and 4 (according to the degree of increase in the potential), and each semiconductor control element FET4 to 4 to A current flows between the drain and the source of 6, and the semiconductor light emitting elements LEDs 3 to 5 corresponding to these semiconductor control elements FETs 4 to 6 are turned off in the order of the semiconductor light emitting elements 5, 4, and 3.

このような状態で、プラスの調光信号入力部S+及びマイナスの調光信号入力部S−を通じて、外部から電圧を印加し、コンパレータのマイナスの入力端子から印加された電圧が、コンパレータのプラスの入力端子から印加されているリファレンス電圧に比べて高い状態になるようにする。その結果、コンパレータは電流を吸い込み、半導体制御素子TRのコレクタの電位が下降し、半導体制御素子FET4〜6のゲートの電位も下降する。そして、半導体制御素子FET4〜6のゲートの電位が、ソースの電位よりも低くなり、ゲート・ソース間の閾値電圧以下になると、半導体制御素子FET4〜6について、4、5、6の順にOFFになり、半導体発光素子LED3〜5が、3、4、5の順に点灯する。その結果、半導体発光素子LED3〜5に電流が流れ込み、その分の順方向電圧が加算されるため、照明装置用の制御回路B全体に流れる電流の量は減少する。 In such a state, a voltage is applied from the outside through the positive dimming signal input unit S + and the negative dimming signal input unit S-, and the voltage applied from the negative input terminal of the comparator is the positive voltage of the comparator. Make sure that the voltage is higher than the reference voltage applied from the input terminal. As a result, the comparator sucks the current, the potential of the collector of the semiconductor control element TR drops, and the potential of the gates of the semiconductor control elements FETs 4 to 6 also drops. Then, when the potential of the gate of the semiconductor control elements FETs 4 to 6 becomes lower than the potential of the source and becomes equal to or less than the threshold voltage between the gate and the source, the semiconductor control elements FETs 4 to 6 are turned off in the order of 4, 5 and 6. Therefore, the semiconductor light emitting elements LEDs 3 to 5 light up in the order of 3, 4, and 5. As a result, a current flows into the semiconductor light emitting elements LEDs 3 to 5, and a forward voltage corresponding to the current flows, so that the amount of the current flowing through the entire control circuit B for the lighting device is reduced.

このような構成であることによって、プラスの調光信号入力部S+及びマイナスの調光信号入力部S−を通じて、外部から電圧を印加することで、照明装置用の制御回路Bに係る半導体発光素子LEDを調光することができ、便宜である。また、照明装置用の制御回路Bに係る半導体発光素子LEDを調光することによって、当該半導体発光素子LEDに印加する電圧の総量を調整することができ、また、照明装置用の制御回路Bに流れる電流の量を調整することができ、便宜である。 With such a configuration, the semiconductor light emitting element according to the control circuit B for the lighting device is applied by applying a voltage from the outside through the positive dimming signal input unit S + and the negative dimming signal input unit S-. The LED can be dimmed, which is convenient. Further, by dimming the semiconductor light emitting element LED related to the control circuit B for the lighting device, the total amount of the voltage applied to the semiconductor light emitting element LED can be adjusted, and the control circuit B for the lighting device can be adjusted. It is convenient because the amount of flowing current can be adjusted.

(本実施の形態例3)
上述した本実施の形態例2では、直流電源の電圧の増減に合わせて、半導体発光素子LEDの点灯・消灯を制御する構成に対し、調光信号制御部54の構成を適用した例を示した。一方、本実施の形態例3では、直流電源の電圧の増減に合わせて、半導体発光素子LEDの点灯・消灯を制御し、かつ、直流電源の電圧が減少しても、照明装置全体としては明るさに偏りを生じさせない構成に対し、調光信号制御部54の構成を適用した例を示す。
(Example 3 of the present embodiment)
In Example 2 of the present embodiment described above, an example is shown in which the configuration of the dimming signal control unit 54 is applied to the configuration of controlling the lighting / extinguishing of the semiconductor light emitting element LED according to the increase / decrease of the voltage of the DC power supply. .. On the other hand, in the third embodiment of the present embodiment, the lighting / extinguishing of the semiconductor light emitting element LED is controlled according to the increase / decrease of the voltage of the DC power supply, and even if the voltage of the DC power supply decreases, the lighting device as a whole is bright. An example in which the configuration of the dimming signal control unit 54 is applied to the configuration that does not cause a bias is shown.

まず、この発明の実施の形態例3の概念構成図である図13に基づいて説明する。この発明の照明装置用の制御回路は、直流電源50の電圧の印加によりLEDが常時点灯するLED常時点灯部51を設け、また、直流電源50の電圧値の変動によってLEDが点灯・消灯するLED点灯・消灯部62を設け、更に、直流電源50の電圧値の変動によって、LED点灯・消灯部62に係るLEDを点灯・消灯するLED点灯・消灯制御部63を設け、また、照明装置用の制御回路に係るLEDに流れる電流値をLED点灯・消灯制御部63に伝達する光導電部64を設け、さらに、外部から調光信号の入力を受け付け、当該調光信号によって、調光制御を行う、調光信号制御部54を設けた構成となっている。また、各部は電流路55を通じて接続されている。 First, it will be described with reference to FIG. 13, which is a conceptual configuration diagram of the third embodiment of the present invention. The control circuit for the lighting device of the present invention is provided with an LED constantly lit unit 51 in which the LED is constantly lit by applying the voltage of the DC power supply 50, and the LED is turned on and off by the fluctuation of the voltage value of the DC power supply 50. A lighting / extinguishing unit 62 is provided, and an LED lighting / extinguishing control unit 63 for turning on / off the LED related to the LED lighting / extinguishing unit 62 according to the fluctuation of the voltage value of the DC power supply 50 is provided. A photoconductive unit 64 for transmitting the current value flowing through the LED related to the control circuit to the LED lighting / extinguishing control unit 63 is provided, and further, a dimming signal input is received from the outside, and dimming control is performed by the dimming signal. , The dimming signal control unit 54 is provided. Further, each part is connected through a current path 55.

次に、この発明の実施の形態例3の照明装置用の制御回路Cの構成を図14に基づいて説明する。 Next, the configuration of the control circuit C for the lighting device according to the third embodiment of the present invention will be described with reference to FIG.

図14に示すように照明装置用の制御回路Cは、直流電圧を印加する直流電源1と、設けられているLEDが発光するLED発光ブロック80と、LED発光ブロック80を制御する調光信号制御部54とから主として構成されている。各LED発光ブロック80と調光信号制御部54はそれぞれ、1枚の基板上に回路素子が配置されたものであり、隣接するブロックは電気的に接続されている。そして、図14に示すように、直流電源1に近く電位が高い位置にLED発光ブロック80を配置し、直流電源1から遠くいずれのLED発光ブロック80よりも電位が低い位置に調光信号制御部54を配置する。また、直流電源1と、LED発光ブロック80及び調光信号制御部54に配置された回路素子から閉回路を構成している。なお、本実施の形態例では、4つのLED発光ブロック80を用いる構成を示したが、この構成に限定されるものではなく、LED発光ブロック80は、単一であっても、複数であっても良い。 As shown in FIG. 14, the control circuit C for the lighting device includes a DC power supply 1 to which a DC voltage is applied, an LED light emitting block 80 in which an provided LED emits light, and a dimming signal control for controlling the LED light emitting block 80. It is mainly composed of a part 54. Each LED light emitting block 80 and the dimming signal control unit 54 have circuit elements arranged on one substrate, and adjacent blocks are electrically connected to each other. Then, as shown in FIG. 14, the LED light emitting block 80 is arranged at a position close to the DC power supply 1 and having a high potential, and the dimming signal control unit is located far from the DC power supply 1 and has a lower potential than any of the LED light emitting blocks 80. Place 54. Further, the DC power supply 1, the LED light emitting block 80, and the circuit elements arranged in the dimming signal control unit 54 form a closed circuit. In the example of the present embodiment, a configuration using four LED light emitting blocks 80 is shown, but the present invention is not limited to this configuration, and the LED light emitting blocks 80 may be single or plural. Is also good.

LED発光ブロック80は、光導電素子81の発光素子82が直列接続された電流路Hと、抵抗素子88及び光導電素子81の受光素子83が直列接続された電流路Iを有している。なお、光導電素子81は、本実施例ではフォトカプラである。従って、光導電素子81は、内部にLED等の発光素子82とフォトトランジスタ等の受光素子83が収められ、外部からの光を遮断するパッケージ84に封じ込められた構造になっている。光導電素子81は、入力された電流を発光素子82によって光に変換し、その光を受光素子83が受け取ることにより電流を伝達する。また、抵抗素子88は、直流電源1からの電流が電流路Iにはわずかしか流れず、直流電源1からの電流のほとんどが電流路K(後述)に流れるようにするためのものである。 The LED light emitting block 80 has a current path H in which the light emitting element 82 of the photoconductive element 81 is connected in series, and a current path I in which the resistance element 88 and the light receiving element 83 of the photoconductive element 81 are connected in series. The photoconductive element 81 is a photocoupler in this embodiment. Therefore, the photoconductive element 81 has a structure in which a light emitting element 82 such as an LED and a light receiving element 83 such as a phototransistor are housed inside, and is enclosed in a package 84 that blocks light from the outside. The photoconductive element 81 converts the input current into light by the light emitting element 82, and the light receiving element 83 receives the light to transmit the current. Further, the resistance element 88 is for allowing a small amount of current from the DC power supply 1 to flow in the current path I and most of the current from the DC power supply 1 to flow in the current path K (described later).

また、LED発光ブロック80は、半導体発光素子86が同一極性方向に直列接続された電流路Kを有している。半導体発光素子86は、本実施例ではLEDである。そして、本実施例ではNチャネルエンハンスメント型FET(=電界効果トランジスタ)である半導体制御素子85が、半導体発光素子86に対し並列に接続されている。詳しくは、半導体制御素子85の一端のドレイン(図14では、「D」と示されている)と半導体発光素子86の一端のアノードとが接続されると共に、半導体制御素子85の一端のソース(図14では「S」と示されている)と半導体発光素子86の一端のカソードとが接続されることにより、半導体制御素子85が半導体発光素子86に対し並列に接続されている。但し、半導体制御素子85が半導体発光素子86に対し並列に接続されているのは、図14に示すように、各LED発光ブロック80の電流路K中の半導体発光素子86のうち、直流電源1に最も近く最高電位の半導体発光素子86(図14では、「LED1」)ではなく、当該半導体発光素子86に隣接している2番目の半導体発光素子86(図14では、「LED2」)からである。また、電流路Kに配置されている半導体発光素子86に対し、所定の間隔毎に(例えば、図14では、半導体発光素子86に対し1個おきに)半導体制御素子85のドレイン及びソースが並列に接続されている。従って、直流電源1に近く電位が高い方から順に、半導体発光素子86、半導体制御素子85及び半導体発光素子86、半導体発光素子86、半導体制御素子85及び半導体発光素子86と配置されている。なお、本実施の形態例3では、半導体発光素子86に対し1個おきに、半導体制御素子85のドレイン及びソースが並列に接続される構成を示したが、この構成に限定されるものではなく、例えば、半導体発光素子86に対し2個おきに、あるいは3個おきに半導体制御素子85のドレイン及びソースが並列に接続される構成としても良い。また、本実施の形態例3では、半導体制御素子85が、各LED発光ブロック80の電流路K中の半導体発光素子86のうち、直流電源1に近く電位が高い順の2番目の半導体発光素子86から並列に接続されている構成を示したが、この構成に限定されるものではなく、2番目以降の半導体発光素子86から並列に接続されている構成であれば良い。 Further, the LED light emitting block 80 has a current path K in which semiconductor light emitting elements 86 are connected in series in the same polar direction. The semiconductor light emitting device 86 is an LED in this embodiment. In this embodiment, the semiconductor control element 85, which is an N-channel enhancement type FET (= field effect transistor), is connected in parallel to the semiconductor light emitting element 86. Specifically, the drain at one end of the semiconductor control element 85 (indicated as “D” in FIG. 14) is connected to the anode at one end of the semiconductor light emitting element 86, and the source at one end of the semiconductor control element 85 (shown as “D”). The semiconductor control element 85 is connected in parallel to the semiconductor light emitting device 86 by connecting the cathode (indicated as “S” in FIG. 14) and the cathode at one end of the semiconductor light emitting element 86. However, as shown in FIG. 14, the semiconductor control element 85 is connected in parallel to the semiconductor light emitting element 86 among the semiconductor light emitting elements 86 in the current path K of each LED light emitting block 80, the DC power supply 1 Not from the semiconductor light emitting device 86 (“LED1” in FIG. 14) closest to the highest potential, but from the second semiconductor light emitting device 86 (“LED2” in FIG. 14) adjacent to the semiconductor light emitting device 86. is there. Further, the drain and the source of the semiconductor control element 85 are parallel to the semiconductor light emitting element 86 arranged in the current path K at predetermined intervals (for example, every other one with respect to the semiconductor light emitting element 86 in FIG. 14). It is connected to the. Therefore, the semiconductor light emitting element 86, the semiconductor control element 85, the semiconductor light emitting element 86, the semiconductor light emitting element 86, the semiconductor control element 85, and the semiconductor light emitting element 86 are arranged in order from the one closest to the DC power source 1 and having the highest potential. In the third embodiment, the drain and the source of the semiconductor control element 85 are connected in parallel to the semiconductor light emitting element 86, but the present invention is not limited to this configuration. For example, the drain and source of the semiconductor control element 85 may be connected in parallel to the semiconductor light emitting element 86 every two or every three elements. Further, in the third embodiment, the semiconductor control element 85 is the second semiconductor light emitting element in the current path K of each LED light emitting block 80, which is closer to the DC power supply 1 and has the highest potential. Although the configuration in which the semiconductor light emitting elements 86 are connected in parallel is shown, the configuration is not limited to this configuration, and any configuration may be used as long as it is connected in parallel from the second and subsequent semiconductor light emitting elements 86.

また、光導電素子81の受光素子83と、各半導体制御素子85のゲート(図14では「G」と示されている)とは、整流素子87を介して電気的に接続されている。整流素子87は、本実施の形態例ではダイオードであって、アノードが受光素子83に接続され、カソードが半導体制御素子85のゲートに接続されている。そのため、受光素子83から半導体制御素子85のゲートに対しては電流が流れるが、逆方向の半導体制御素子85のゲートから受光素子83に対しては電流がほとんど流れない。整流素子87を介在させることによって、受光素子83に許容値以上の電流が流れてしまうという危険を防止できる。なお、整流素子87はダイオードに限定されるものではなく、受光素子83から半導体制御素子85のゲートに対しては電流を流すが、逆方向の半導体制御素子85のゲートから受光素子83に対しては電流をほとんど流さない整流機能を有する素子であれば良い。 Further, the light receiving element 83 of the photoconductive element 81 and the gate of each semiconductor control element 85 (indicated as “G” in FIG. 14) are electrically connected via the rectifying element 87. The rectifying element 87 is a diode in the present embodiment, and the anode is connected to the light receiving element 83 and the cathode is connected to the gate of the semiconductor control element 85. Therefore, a current flows from the light receiving element 83 to the gate of the semiconductor control element 85, but almost no current flows from the gate of the semiconductor control element 85 in the opposite direction to the light receiving element 83. By interposing the rectifying element 87, it is possible to prevent the risk of a current exceeding an allowable value flowing through the light receiving element 83. The rectifying element 87 is not limited to the diode, and a current flows from the light receiving element 83 to the gate of the semiconductor control element 85, but from the gate of the semiconductor control element 85 in the opposite direction to the light receiving element 83. Is an element having a rectifying function that hardly causes a current to flow.

また、本実施の形態例においては、各LED発光ブロック80に半導体制御素子85の数が2個、半導体発光素子86の数が4個配置された構成を示した。このように、電流路K中の直流電源1に最も近い最高電位の半導体発光素子86(図14では、「LED1」)と最も遠い最低電位の半導体発光素子86(図14では、「LED4」)の電位差が、半導体制御素子85のゲート・ソース間電圧の定格の範囲内(例えば、20(V)以内)となるように、半導体制御素子85及び半導体発光素子86の数を選択する必要がある。従って、半導体制御素子85のゲート・ソース間電圧の定格の範囲内であれば、半導体制御素子85及び半導体発光素子86の数に限定はなく、任意の数で良い。 Further, in the example of the present embodiment, a configuration in which two semiconductor control elements 85 and four semiconductor light emitting elements 86 are arranged in each LED light emitting block 80 is shown. As described above, the semiconductor light emitting element 86 having the highest potential closest to the DC power supply 1 in the current path K (“LED1” in FIG. 14) and the semiconductor light emitting element 86 having the lowest potential farthest (“LED4” in FIG. 14)). It is necessary to select the number of the semiconductor control element 85 and the semiconductor light emitting element 86 so that the potential difference between the two is within the rated range of the gate-source voltage of the semiconductor control element 85 (for example, within 20 (V)). .. Therefore, the number of the semiconductor control element 85 and the semiconductor light emitting element 86 is not limited as long as it is within the rated range of the gate-source voltage of the semiconductor control element 85, and any number may be used.

なお、調光信号制御部54の構成や動作については、上述した実施の形態例1で述べているため、ここでは説明を省略する。 Since the configuration and operation of the dimming signal control unit 54 are described in the above-described first embodiment, the description thereof will be omitted here.

次に、図13で説明した、この発明の実施の形態例3の概念構成と、図14で説明した照明装置用の制御回路Cの回路構成との対応関係について説明する。図13の直流電源50は、図14の直流電源1と対応する。また、図13のLED常時点灯部51は、図14の半導体発光素子86に係るLED1及びLED3が対応する。また、図13のLED点灯・消灯部62は、図14の半導体発光素子86に係るLED2及びLED4が対応する。また、図13のLED点灯・消灯制御部63は、図14の半導体制御素子85に係るFET1及びFET2が対応する。また、図13の光導電部64は、図14の光導電素子81が対応する。さらに、図13の調光信号制御部54は、図14のコンパレータ、プラスの調光信号入力部S+、マイナスの調光信号入力部S−が対応する。また、図13の電流路55は、図14の電流路H、I及びKが対応する。 Next, the correspondence between the conceptual configuration of the third embodiment of the present invention described with reference to FIG. 13 and the circuit configuration of the control circuit C for the lighting device described with reference to FIG. 14 will be described. The DC power supply 50 of FIG. 13 corresponds to the DC power supply 1 of FIG. Further, the LED constantly lit unit 51 of FIG. 13 corresponds to the LED1 and the LED3 related to the semiconductor light emitting element 86 of FIG. Further, the LED on / off unit 62 in FIG. 13 corresponds to the LED 2 and the LED 4 related to the semiconductor light emitting element 86 in FIG. Further, the LED lighting / extinguishing control unit 63 of FIG. 13 corresponds to the FET 1 and the FET 2 related to the semiconductor control element 85 of FIG. Further, the photoconductive portion 64 of FIG. 13 corresponds to the photoconductive element 81 of FIG. Further, the dimming signal control unit 54 of FIG. 13 corresponds to the comparator of FIG. 14, the positive dimming signal input unit S +, and the negative dimming signal input unit S−. Further, the current path 55 in FIG. 13 corresponds to the current paths H, I and K in FIG.

次に、照明装置用の制御回路Cの動作を説明する。直流電源1から正極電位を印加し、グランド(=GND)に基準電位(0電位)である負極電位を印加する。基準電位に対し、直流電源1から印加する正極電位が、照明装置用の制御回路C内で同一極性方向に直列接続された半導体発光素子86の電位障壁値の合計以上であれば、全ての半導体発光素子86は発光する。なお、半導体発光素子86の電位障壁値とは、半導体発光素子86の固有の順方向電圧降下値である。 Next, the operation of the control circuit C for the lighting device will be described. A positive electrode potential is applied from the DC power supply 1, and a negative electrode potential which is a reference potential (0 potential) is applied to the ground (= GND). If the positive electrode potential applied from the DC power supply 1 with respect to the reference potential is equal to or greater than the sum of the potential barrier values of the semiconductor light emitting elements 86 connected in series in the same polar direction in the control circuit C for the lighting device, all semiconductors The light emitting element 86 emits light. The potential barrier value of the semiconductor light emitting device 86 is a unique forward voltage drop value of the semiconductor light emitting device 86.

直流電源1から印加する電圧が低下し、照明装置用の制御回路Cを流れる電流が既定の値より減少した場合、各LED発光ブロック80の光導電素子81の発光素子82に流れる電流が減少し、受光素子83がOFFする方向に働き、コレクタ−エミッタ間の電圧が増加する。その結果、半導体制御素子85がONとなり(=ドレインからソースに電流が流れる)、当該半導体制御素子85に並列して設置されている半導体発光素子86が消灯する。消灯した半導体発光素子86の順方向降下電位は、ほぼ0(V)になる。直流電源1から印加する電圧に対して、消灯する半導体発光素子86の数が増えていくと、照明装置用の制御回路C内で同一極性方向に直列接続された半導体発光素子86の電位障壁値の合計が減少するため、照明装置用の制御回路Cを流れる電流が増加し、規定の値に達すると、その値が維持される。 When the voltage applied from the DC power supply 1 decreases and the current flowing through the control circuit C for the lighting device decreases from a predetermined value, the current flowing through the light emitting element 82 of the photoconductive element 81 of each LED light emitting block 80 decreases. , The light receiving element 83 works in the direction of turning off, and the voltage between the collector and the emitter increases. As a result, the semiconductor control element 85 is turned on (= current flows from the drain to the source), and the semiconductor light emitting element 86 installed in parallel with the semiconductor control element 85 is turned off. The forward falling potential of the semiconductor light emitting device 86 that has been turned off becomes approximately 0 (V). As the number of semiconductor light emitting elements 86 that are turned off increases with respect to the voltage applied from the DC power supply 1, the potential barrier value of the semiconductor light emitting elements 86 connected in series in the same polar direction in the control circuit C for the lighting device As the total of the above decreases, the current flowing through the control circuit C for the lighting device increases, and when the specified value is reached, that value is maintained.

このような状態で、プラスの調光信号入力部S+及びマイナスの調光信号入力部S−を通じて、外部から電圧を印加し、コンパレータのマイナスの入力端子から印加された電圧が、コンパレータのプラスの入力端子から印加されているリファレンス電圧に比べて高い状態になるようにする。その結果、コンパレータは電流を吸い込み、各LED発光ブロック80の光導電素子81の発光素子82に流れる電流が減少し、受光素子83がOFFする方向に働き、コレクタ−エミッタ間の電圧が増加する。そして、受光素子83のコレクタ電圧が下降し、各半導体制御素子85のゲート電圧も下降する。そして、半導体制御素子85のゲート電圧が、ソース電圧よりも低くなり、ゲート・ソース間の閾値電圧以下になると、半導体制御素子85について、FET1、FET2の順にOFFになり、半導体発光素子86について、LED2、LED4の順に点灯する。その結果、半導体発光素子86(LED2、4)に電流が流れ込み、その分の順方向電圧が加算されるため、照明装置用の制御回路C全体に流れる電流の量は減少する。 In such a state, a voltage is applied from the outside through the positive dimming signal input unit S + and the negative dimming signal input unit S-, and the voltage applied from the negative input terminal of the comparator is the positive voltage of the comparator. Make sure that the voltage is higher than the reference voltage applied from the input terminal. As a result, the comparator sucks the current, the current flowing through the light emitting element 82 of the photoconductive element 81 of each LED light emitting block 80 decreases, the light receiving element 83 works in the direction of turning off, and the voltage between the collector and the emitter increases. Then, the collector voltage of the light receiving element 83 drops, and the gate voltage of each semiconductor control element 85 also drops. Then, when the gate voltage of the semiconductor control element 85 becomes lower than the source voltage and becomes equal to or lower than the threshold voltage between the gate and the source, the semiconductor control element 85 is turned off in the order of FET1 and FET2, and the semiconductor light emitting element 86 is turned off. It lights up in the order of LED2 and LED4. As a result, a current flows into the semiconductor light emitting elements 86 (LEDs 2 and 4), and a forward voltage corresponding to the current flows, so that the amount of the current flowing through the entire control circuit C for the lighting device is reduced.

一方、直流電源1から印加する電圧が上昇し、照明装置用の制御回路Cを流れる電流が既定の値より増加した場合、各LED発光ブロック80の光導電素子81の発光素子82に流れる電流が増加し、受光素子83がONする方向に働き、コレクタ−エミッタ間の電圧が低下する。その結果、半導体制御素子85がOFFとなり(=ドレインからソースに電流が流れない)、当該半導体制御素子85に並列して設置されている半導体発光素子86が点灯する。点灯した半導体発光素子86の順方向降下電位は、数(V)になる。直流電源1から印加する電圧に対して、点灯する半導体発光素子86の数が増えていくと、照明装置用の制御回路C内で同一極性方向に直列接続された半導体発光素子86の電位障壁値の合計が増加するため、照明装置用の制御回路Cを流れる電流が減少し、既定の値に達すると、その値が維持される。 On the other hand, when the voltage applied from the DC power supply 1 rises and the current flowing through the control circuit C for the lighting device increases from a predetermined value, the current flowing through the light emitting element 82 of the photoconductive element 81 of each LED light emitting block 80 increases. The voltage increases, the light receiving element 83 works in the direction of turning on, and the voltage between the collector and the emitter decreases. As a result, the semiconductor control element 85 is turned off (= no current flows from the drain to the source), and the semiconductor light emitting element 86 installed in parallel with the semiconductor control element 85 lights up. The forward falling potential of the lit semiconductor light emitting device 86 is a number (V). As the number of lighting semiconductor light emitting elements 86 increases with respect to the voltage applied from the DC power supply 1, the potential barrier value of the semiconductor light emitting elements 86 connected in series in the same polar direction in the control circuit C for the lighting device As the sum of the above increases, the current flowing through the control circuit C for the lighting device decreases, and when a predetermined value is reached, that value is maintained.

このような構成であることによって、プラスの調光信号入力部S+及びマイナスの調光信号入力部S−を通じて、外部から電圧を印加することで、照明装置用の制御回路Cに係る半導体発光素子LEDを調光することができ、便宜である。また、照明装置用の制御回路Cに係る半導体発光素子LEDを調光することによって、当該半導体発光素子LEDに印加する電圧の総量を調整することができ、また、照明装置用の制御回路Cに流れる電流の量を調整することができ、便宜である。 With such a configuration, a semiconductor light emitting element related to a control circuit C for a lighting device is applied by applying a voltage from the outside through a positive dimming signal input unit S + and a negative dimming signal input unit S-. The LED can be dimmed, which is convenient. Further, by dimming the semiconductor light emitting element LED related to the control circuit C for the lighting device, the total amount of the voltage applied to the semiconductor light emitting element LED can be adjusted, and the control circuit C for the lighting device can be adjusted. It is convenient because the amount of flowing current can be adjusted.

また、照明装置用の制御回路Cでは、電源電圧が変動しても、半導体制御素子85及び半導体発光素子86のON/OFFによって、半導体発光素子86に流れる電流を一定に保つことができるため、照明装置から出力される光の質が低下したり、電流の変動によって半導体発光素子が劣化し、寿命が短縮化されることがない。また、直列に配置されている半導体発光素子86に対し、所定の間隔毎に、半導体制御素子85が並列に接続される構成であるため、電源電圧が低下すると半導体発光素子86の一部が消灯するが、半導体発光素子86がまとまったエリアで消灯することが無く、消灯する半導体発光素子86が分散するため、照明装置として明るさに偏りが生じることがない。 Further, in the control circuit C for the lighting device, even if the power supply voltage fluctuates, the current flowing through the semiconductor light emitting element 86 can be kept constant by turning the semiconductor control element 85 and the semiconductor light emitting element 86 ON / OFF. The quality of the light output from the lighting device is not deteriorated, or the semiconductor light emitting element is deteriorated due to the fluctuation of the current, and the life is not shortened. Further, since the semiconductor control elements 85 are connected in parallel to the semiconductor light emitting elements 86 arranged in series at predetermined intervals, a part of the semiconductor light emitting elements 86 is turned off when the power supply voltage drops. However, since the semiconductor light emitting elements 86 are not turned off in a cohesive area and the semiconductor light emitting elements 86 that are turned off are dispersed, the brightness of the lighting device is not biased.

(変形例)
なお、本実施の形態例3に係る制御回路Cでは、電流路Kに配置されている半導体発光素子86に対し、所定の間隔毎に半導体制御素子85が並列に接続されることによって、電位の高い順に半導体発光素子86、半導体制御素子85及び半導体発光素子86、半導体発光素子86、半導体制御素子85及び半導体発光素子86と配置される構成を実現した。しかし、この構成に限定されるものではなく、例えば図15に示す照明装置用の制御回路Dのように、電流路上は、電位の高い順に半導体発光素子86、半導体発光素子86、半導体制御素子85及び半導体発光素子86、半導体制御素子85及び半導体発光素子86と接続されているが、配線によって、半導体発光素子86、半導体制御素子85及び半導体発光素子86、半導体発光素子86、半導体制御素子85及び半導体発光素子86と配置される構成を実現する構成としても良い。このような構成にすれば、電源電圧が低下すると照明装置の半導体発光素子86の一部が消灯するが、半導体発光素子86がまとまったエリアで消灯することが無く、消灯する半導体発光素子86が分散する。即ち、照明装置の外観上は、1個おきに半導体発光素子86が消灯しているように見える。従って、照明装置として明るさに偏りが生じることがない。
(Modification example)
In the control circuit C according to the third embodiment, the semiconductor control element 85 is connected in parallel to the semiconductor light emitting element 86 arranged in the current path K at predetermined intervals, so that the potential is increased. A configuration is realized in which the semiconductor light emitting element 86, the semiconductor control element 85, the semiconductor light emitting element 86, the semiconductor light emitting element 86, the semiconductor control element 85, and the semiconductor light emitting element 86 are arranged in descending order. However, the configuration is not limited to this, and the semiconductor light emitting element 86, the semiconductor light emitting element 86, and the semiconductor control element 85 are placed on the current path in descending order of potential, as in the control circuit D for the lighting device shown in FIG. And the semiconductor light emitting element 86, the semiconductor control element 85, and the semiconductor light emitting element 86, but by wiring, the semiconductor light emitting element 86, the semiconductor control element 85 and the semiconductor light emitting element 86, the semiconductor light emitting element 86, the semiconductor control element 85 and It may be configured to realize a configuration arranged with the semiconductor light emitting element 86. With such a configuration, when the power supply voltage drops, a part of the semiconductor light emitting element 86 of the lighting device is turned off, but the semiconductor light emitting element 86 that is not turned off in the area where the semiconductor light emitting element 86 is gathered is turned off. scatter. That is, from the appearance of the lighting device, it seems that every other semiconductor light emitting element 86 is turned off. Therefore, the brightness of the lighting device is not biased.

また、本実施の形態例3に係る照明装置用の制御回路Cが複数のLED発光ブロック80を有する構成において、発光ブロック80の端部の半導体発光素子86と、隣接する発光ブロック80の端部の半導体発光素子86の間隔が、LED発光ブロック80内に配置された半導体発光素子86同士の間隔と同様である方が望ましい。ここで、「同様」とは、同一から数センチ程度の誤差を含む概念である。このような構成とすれば、LED発光ブロック80が複数の基板から構成され、電源電圧が低下し照明装置の半導体発光素子86の一部が消灯した場合、照明装置の外観上は、1個おきに半導体発光素子86が消灯しているように見える。従って、照明装置として明るさに偏りが生じることがない。 Further, in the configuration in which the control circuit C for the lighting device according to the third embodiment has a plurality of LED light emitting blocks 80, the semiconductor light emitting element 86 at the end of the light emitting block 80 and the end of the adjacent light emitting block 80 It is desirable that the distance between the semiconductor light emitting elements 86 of the above is the same as the distance between the semiconductor light emitting elements 86 arranged in the LED light emitting block 80. Here, "similar" is a concept including an error of about the same to several centimeters. With such a configuration, when the LED light emitting block 80 is composed of a plurality of substrates and the power supply voltage drops and a part of the semiconductor light emitting elements 86 of the lighting device is turned off, every other LED light emitting block 80 appears in the appearance of the lighting device. It seems that the semiconductor light emitting element 86 is turned off. Therefore, the brightness of the lighting device is not biased.

また、本実施例に係る照明装置用の制御回路Cにおいては、各LED発光ブロック80、調光信号制御部54といった一枚の基板毎に、半導体制御素子85、半導体発光素子86、半導体制御素子TR等の回路素子を設ける構成を示した。しかし、この構成に限定されるものではなく、例えば、複数のLED発光ブロック80と調光信号制御部54に設けられた回路素子を一枚の基板に設ける構成としても良いし、複数のLED発光ブロック80に設けられた回路素子を一枚の基板に設ける構成としても良い。 Further, in the control circuit C for the lighting device according to the present embodiment, the semiconductor control element 85, the semiconductor light emitting element 86, and the semiconductor control element are used for each substrate such as the LED light emitting block 80 and the dimming signal control unit 54. A configuration in which a circuit element such as a TR is provided is shown. However, the present invention is not limited to this configuration, and for example, a plurality of LED light emitting blocks 80 and circuit elements provided in the dimming signal control unit 54 may be provided on one substrate, or a plurality of LEDs may emit light. The circuit element provided in the block 80 may be provided on one substrate.

以上、この発明の好ましい実施の形態例について述べたが、この発明に係る照明装置用の制御回路は上述した実施の形態例にのみ限定されるものではなく、この発明の範囲で種々の変更実施が可能であるのは言うまでもない。 Although the preferred embodiment of the present invention has been described above, the control circuit for the lighting device according to the present invention is not limited to the above-described embodiment, and various modifications are made within the scope of the present invention. Needless to say, is possible.

A〜D:照明装置用の制御回路、H、I、K:電流路、
1:直流電源、2〜12:電流路、21:電流路、22:電流路、
LED1〜16:半導体発光素子、FET1〜6:半導体制御素子、
D1〜5:半導体整流素子、R1〜12:抵抗素子、
TR:半導体制御素子、
ZD1〜7:半導体定電圧素子、
50:直流電源、51:LED常時点灯部、
52:LED直並列変換部、53:LED直並列制御部、
54:調光信号制御部、55:過電圧吸収部、56:電流路、
62:LED点灯・消灯部、63:LED点灯・消灯制御部、
64:光導電部、
80:LED発光ブロック、
81:光導電素子、82:発光素子、83:受光素子、84:パッケージ、85:半導体制御素子、86:半導体発光素子、87:整流素子、88:抵抗素子
A to D: control circuit for lighting device, H, I, K: current path,
1: DC power supply, 2-12: current path, 21: current path, 22: current path,
LEDs 1-16: semiconductor light emitting element, FET 1-6: semiconductor control element,
D1-5: semiconductor rectifying element, R1-12: resistance element,
TR: Semiconductor control element,
ZD1-7: Semiconductor constant voltage element,
50: DC power supply, 51: LED constantly lit part,
52: LED series-parallel conversion unit, 53: LED series-parallel control unit,
54: Dimming signal control unit, 55: Overvoltage absorption unit, 56: Current path,
62: LED on / off control unit, 63: LED on / off control unit,
64: Photoconductive part,
80: LED light emitting block,
81: Photoconductive element, 82: Light emitting element, 83: Light receiving element, 84: Package, 85: Semiconductor control element, 86: Semiconductor light emitting element, 87: Rectifying element, 88: Resistance element

Claims (4)

リファレンス電圧と、マイナスの電圧入力部を通じて印加された電圧を比較し、比較結果に応じた量の電流を吸い込む比較器と、
前記比較器のマイナスの電圧入力部と接続され、外部から調光信号の入力を受け付ける調光信号入力部とを備え、
前記調光信号によって、調光制御を行う、調光信号制御部を有することを特徴とする、照明装置用の制御回路。
A comparator that compares the reference voltage with the voltage applied through the negative voltage input section and sucks in an amount of current according to the comparison result.
It is provided with a dimming signal input section that is connected to the negative voltage input section of the comparator and receives dimming signal input from the outside.
A control circuit for a lighting device, characterized by having a dimming signal control unit that performs dimming control by the dimming signal.
前記比較器が、コンパレータであることを特徴とする、請求項1に記載の照明装置用の制御回路。 The control circuit for a lighting device according to claim 1, wherein the comparator is a comparator. 直流電圧を印加する直流電源と、
前記直流電源から電圧を印加されると、常時点灯するLEDを備えたLED常時点灯部と、
直並列の接続が変換するLEDを有するLED直並列変換部と、
前記比較器に吸い込まれた電流の量に応じて、前記LED直並列変換部に係るLEDの直並列の接続を変換させるLED直並列制御部とを有することを特徴とする、請求項1又は2に記載の照明装置用の制御回路。
A DC power supply that applies a DC voltage and
An LED constantly lit unit equipped with an LED that constantly lights when a voltage is applied from the DC power supply,
An LED series-parallel converter with LEDs that the series-parallel connection converts,
Claim 1 or 2 is characterized by having an LED series-parallel control unit that converts the series-parallel connection of LEDs according to the LED series-parallel conversion unit according to the amount of current sucked into the comparator. The control circuit for the lighting device described in.
直流電圧を印加する直流電源と、
前記直流電源から電圧を印加されると、常時点灯するLEDを備えたLED常時点灯部と、
点灯又は消灯するLEDを備えたLED点灯・消灯部と、
前記比較器に吸い込まれた電流の量に応じて、前記LED点灯・消灯部に係るLEDを制御するLED点灯・消灯制御部とを有することを特徴とする、請求項1又は2に記載の照明装置用の制御回路。
A DC power supply that applies a DC voltage and
An LED constantly lit unit equipped with an LED that constantly lights when a voltage is applied from the DC power supply,
An LED lighting / extinguishing unit equipped with an LED that turns on or off,
The illumination according to claim 1 or 2, further comprising an LED lighting / extinguishing control unit that controls an LED related to the LED lighting / extinguishing unit according to the amount of current sucked into the comparator. Control circuit for the device.
JP2019055285A 2019-03-22 2019-03-22 Control circuit for lighting equipment Active JP7287609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019055285A JP7287609B2 (en) 2019-03-22 2019-03-22 Control circuit for lighting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019055285A JP7287609B2 (en) 2019-03-22 2019-03-22 Control circuit for lighting equipment

Publications (2)

Publication Number Publication Date
JP2020155376A true JP2020155376A (en) 2020-09-24
JP7287609B2 JP7287609B2 (en) 2023-06-06

Family

ID=72559544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055285A Active JP7287609B2 (en) 2019-03-22 2019-03-22 Control circuit for lighting equipment

Country Status (1)

Country Link
JP (1) JP7287609B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167213A (en) * 2014-03-04 2015-09-24 新日本無線株式会社 Led driving circuit
US20150334802A1 (en) * 2014-05-15 2015-11-19 Samsung Electro-Mechanics Co., Ltd. Device for driving light emitting diode module and method for driving light emitting diode module
JP2016062730A (en) * 2014-09-17 2016-04-25 東芝ライテック株式会社 Control circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167213A (en) * 2014-03-04 2015-09-24 新日本無線株式会社 Led driving circuit
US20150334802A1 (en) * 2014-05-15 2015-11-19 Samsung Electro-Mechanics Co., Ltd. Device for driving light emitting diode module and method for driving light emitting diode module
JP2016062730A (en) * 2014-09-17 2016-04-25 東芝ライテック株式会社 Control circuit

Also Published As

Publication number Publication date
JP7287609B2 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
JP2008509523A (en) LED lighting device
KR20130119919A (en) Directly driven high efficiency led circuit
KR101128680B1 (en) Ac direct coupled led lighting device
TW201408127A (en) Light emitting diode driving apparatus
US10021755B1 (en) Lighting device and luminaire
US8410710B2 (en) Light emitting device driving circuit
US20150173149A1 (en) Light emitting diode driving apparatus and light emitting diode lighting apparatus
KR20140018835A (en) Solid state lighting driver with thdi bypass circuit
US8907583B1 (en) LED driving device
US10616985B2 (en) Solid state lighting assembly
US20170231040A1 (en) Lighting device and luminaire
CN105517274B (en) driving circuit of light emitting diode and light emitting device thereof
JP5322849B2 (en) Light emitting diode driving circuit, light emitting device and lighting device using the same
JP7009737B2 (en) Control circuit for lighting equipment
JP2020155376A (en) Control circuit for lighting device
US20100283406A1 (en) Bi-direction constant current device
US11770885B2 (en) Apparatus having at least one LED string controlled by a current controller biased by voltage-tap nodes in the LED string
JP7389427B2 (en) Control circuit for lighting equipment
JP2011090970A (en) Led emergency lighting device
CN210518932U (en) Lamp string driving module, lamp string driving chip and lamp string
KR20110005559A (en) Power supply unit with flicker prevention circuit for light emitting diode
KR20120065199A (en) Led lighting device by constant current
JP6810844B2 (en) Constant illuminance control circuit for lighting equipment
JP2020107432A (en) Electric power unit, load drive system, and illumination system
CN112601338B (en) Lamp and regulating and controlling circuit thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230516

R150 Certificate of patent or registration of utility model

Ref document number: 7287609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150