JP7005209B2 - Image pickup device and its control method - Google Patents

Image pickup device and its control method Download PDF

Info

Publication number
JP7005209B2
JP7005209B2 JP2017144663A JP2017144663A JP7005209B2 JP 7005209 B2 JP7005209 B2 JP 7005209B2 JP 2017144663 A JP2017144663 A JP 2017144663A JP 2017144663 A JP2017144663 A JP 2017144663A JP 7005209 B2 JP7005209 B2 JP 7005209B2
Authority
JP
Japan
Prior art keywords
focus detection
image pickup
conversion coefficient
pupil
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017144663A
Other languages
Japanese (ja)
Other versions
JP2019028142A5 (en
JP2019028142A (en
Inventor
英秋 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017144663A priority Critical patent/JP7005209B2/en
Publication of JP2019028142A publication Critical patent/JP2019028142A/en
Publication of JP2019028142A5 publication Critical patent/JP2019028142A5/ja
Application granted granted Critical
Publication of JP7005209B2 publication Critical patent/JP7005209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、デジタルカメラやビデオカメラ等の撮像装置及びその制御方法に関し、特に焦点検出機能を有する撮像素子を搭載した撮像装置及びその制御方法に関する。 The present invention relates to an image pickup device such as a digital camera or a video camera and a control method thereof, and more particularly to an image pickup device equipped with an image pickup element having a focus detection function and a control method thereof.

デジタルカメラ等の撮像装置は、一般に自動焦点検出(AF)機能を有する撮像素子が搭載されている。焦点検出方法としては、コントラスト検出方式とコントラスト検出方式より高速な焦点検出が可能な位相差検出方式とが知られているが、位相差検出方式は、瞳分割機能を有する専用のセンサが必要であるため、比較的大きく、かつ高価な撮像装置に用いられていた。しかし、近年、撮像素子の画素に瞳分割機能を付与することにより、専用のセンサを用いずに位相差検出方式による焦点検出を実現可能な撮像素子が提案されている。 An image pickup device such as a digital camera is generally equipped with an image pickup element having an automatic focus detection (AF) function. As a focus detection method, a contrast detection method and a phase difference detection method capable of faster focus detection than the contrast detection method are known, but the phase difference detection method requires a dedicated sensor having a pupil division function. Therefore, it has been used for a relatively large and expensive image pickup device. However, in recent years, an image pickup device has been proposed that can realize focus detection by a phase difference detection method without using a dedicated sensor by adding a pupil division function to the pixels of the image pickup device.

このような撮像素子の出力信号を用いて位相差検出方式で連写を行う際に、特に高い像高において、撮像光学系の前枠や後枠などの影響で「ケラレがある」と判定された場合は、絞り値が所定値以上になるように制御する技術が提案されている(特許文献1)。この提案では、「ケラレがある」と判定された場合は、絞り値が所定値以上になるように制御することで、ケラレによって焦点検出性能が変化してしまうことを防ぎ、焦点検出精度を向上させることができるとしている。 When continuous shooting is performed by the phase difference detection method using the output signal of such an image sensor, it is determined that there is "vignetting" due to the influence of the front frame and the rear frame of the image pickup optical system, especially at a high image height. In this case, a technique for controlling the aperture value to be equal to or higher than a predetermined value has been proposed (Patent Document 1). In this proposal, when it is determined that there is "vignetting", the aperture value is controlled to be equal to or higher than the predetermined value to prevent the focus detection performance from changing due to vignetting and improve the focus detection accuracy. It is said that it can be made to do.

特開2013-239787号公報Japanese Unexamined Patent Publication No. 2013-239787

ここで、本出願人が鋭意検討した結果、上記特許文献1のケラレの影響以外にも、レンズの射出瞳距離、撮像素子の設定瞳距離、絞り値、像高などの条件から決まってくる基線長によって焦点検出性能は変化することを知見した。したがって、上記特許文献1では、焦点検出性能を一定以上に保ったまま焦点検出を行うことに限界があり、前述した条件を加味した上で焦点検出用の絞り値を決定する必要がある。 Here, as a result of diligent studies by the present applicant, a baseline determined by conditions such as the exit pupil distance of the lens, the set pupil distance of the image sensor, the aperture value, and the image height, in addition to the influence of vignetting in Patent Document 1 above. It was found that the focus detection performance changes depending on the length. Therefore, in Patent Document 1, there is a limit to performing focus detection while maintaining the focus detection performance above a certain level, and it is necessary to determine the aperture value for focus detection in consideration of the above-mentioned conditions.

本発明は、かかる知見に基づいてなされたものであり、焦点検出性能を一定以上に保ったまま焦点検出を行うことができるようにして、小絞り連写においても良好な焦点検出を可能にする撮像装置及びその制御方法を提供することを目的とする。 The present invention has been made based on such findings, and enables focus detection while maintaining the focus detection performance above a certain level, enabling good focus detection even in small aperture continuous shooting. It is an object of the present invention to provide an image pickup apparatus and a control method thereof.

上記目的を達成するために、本発明の撮像装置は、撮影光学系の第1瞳部分領域および前記第1瞳部分領域と異なる第2瞳部分領域を通過する光束をそれぞれ受光する第1焦点検出画素および第2焦点検出画素とが複数配列された撮像素子と、前記第1焦点検出画素の受光信号に基づいて第1焦点検出信号を生成し、前記第2焦点検出画素の受光信号に基づいて第2焦点検出信号を生成する生成手段と、前記第1焦点検出信号と前記第2焦点検出信号に基づいて像ずれ量を算出し、前記算出した前記像ずれ量に、前記第1瞳部分領域の重心と前記第2瞳部分領域の重心との間隔である基線長と前記撮像素子の設定瞳距離とに応じた変換係数をかけあわせてデフォーカス量を検出する焦点検出手段と、前記変換係数に基づき、焦点検出の際の絞り値を決定する決定手段と、を備え、前記変換係数が閾値より大きい場合には、前記焦点検出の際の絞り値を撮影用の絞り値よりも開放側に変更し、撮影の際に前記撮影用の絞り値に戻すことを特徴とする。 In order to achieve the above object, the image pickup apparatus of the present invention receives a light beam passing through a first pupil region and a second pupil region different from the first pupil region of the photographing optical system, respectively, for first focus detection. A first focus detection signal is generated based on an image pickup element in which a plurality of pixels and a second focus detection pixel are arranged and a light receiving signal of the first focus detection pixel, and based on the light receiving signal of the second focus detection pixel. The image shift amount is calculated based on the generation means for generating the second focus detection signal, the first focus detection signal, and the second focus detection signal, and the calculated image shift amount is added to the first pupil partial region. A focus detecting means for detecting the amount of defocus by multiplying the baseline length, which is the distance between the center of gravity of the second pupil and the center of gravity of the second pupil portion, and the conversion coefficient according to the set pupil distance of the image pickup element, and the conversion coefficient . Based on the above, a determination means for determining the aperture value at the time of focus detection is provided , and when the conversion coefficient is larger than the threshold value, the aperture value at the time of focus detection is set to the open side of the aperture value for photographing. It is characterized in that it is changed and returned to the aperture value for shooting at the time of shooting .

本発明によれば、焦点検出性能を一定以上に保ったまま焦点検出を行うことができるので、小絞り連写において良好な焦点検出を行うことが可能となる。 According to the present invention, it is possible to perform focus detection while maintaining the focus detection performance above a certain level, so that good focus detection can be performed in small aperture continuous shooting.

本発明の撮像装置の第1実施形態であるデジタルカメラのシステム構成例の概略を示すブロック図である。It is a block diagram which shows the outline of the system configuration example of the digital camera which is 1st Embodiment of the image pickup apparatus of this invention. 撮像素子の焦点検出画素を含む撮像画素の配列を示す概略図である。It is a schematic diagram which shows the arrangement of the image pickup pixel including the focus detection pixel of the image pickup element. (a)は撮像素子の1つの撮像画素を撮像素子の受光面側から見た平面図、(b)は(a)のa-a線断面図である。(A) is a plan view of one image pickup pixel of the image pickup element as viewed from the light receiving surface side of the image pickup element, and (b) is a sectional view taken along line aa of (a). 図3(a)に示す画素構造のa-a線断面図と撮影光学系の射出瞳面を示す概略図である。FIG. 3A is a cross-sectional view taken along the line aa of the pixel structure shown in FIG. 3A and is a schematic view showing an exit pupil surface of the photographing optical system. 撮像素子と瞳分割との対応関係を示す概略図である。It is a schematic diagram which shows the correspondence relationship between an image sensor and pupil division. 第1焦点検出信号と第2焦点検出信号のデフォーカス量と、第1焦点検出信号と第2焦点検出信号間の像ずれ量との関係を示す概略図である。It is a schematic diagram which shows the relationship between the defocus amount of the 1st focus detection signal and the 2nd focus detection signal, and the image shift amount between the 1st focus detection signal and the 2nd focus detection signal. 撮像面位相差検出方式の焦点検出処理を説明するフローチャートである。It is a flowchart explaining the focus detection process of the imaging surface phase difference detection method. 基線長、撮像素子の周辺像高における第1焦点検出画素の第1瞳部分領域、第2焦点検出画素の第2瞳部分領域、及び撮影光学系の射出瞳の関係を示す図である。It is a figure which shows the relationship of the 1st pupil partial region of the 1st focus detection pixel, the 2nd pupil partial region of a 2nd focus detection pixel, and the exit pupil of a photographing optical system in the baseline length, the peripheral image height of an image pickup element. 撮影光学系ごとの変換係数Kと像高の関係を示すグラフ図である。It is a graph which shows the relationship between the conversion coefficient K and the image height for each photographing optical system. 変換係数の像高ごとの変化が最も大きいレンズを用いる場合に、レンズの絞り値ごとの変換係数の像高変化を示すグラフ図である。It is a graph which shows the image height change of the conversion coefficient for each aperture value of a lens when the lens which the change for each image height of a conversion coefficient is the largest is used. 連写開始から終了までの一連の処理を説明するフローチャートである。It is a flowchart explaining a series of processing from the start to the end of continuous shooting. 本発明の撮像装置の第2実施形態であるデジタルカメラにおいて、連写開始から終了までの一連の処理を説明するフローチャートである。It is a flowchart explaining a series of processing from the start to the end of continuous shooting in the digital camera which is the 2nd Embodiment of the image pickup apparatus of this invention.

以下、図面を参照して、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、本発明の撮像装置の第1実施形態であるデジタルカメラのシステム構成例の概略を示すブロック図である。
(First Embodiment)
FIG. 1 is a block diagram showing an outline of a system configuration example of a digital camera according to a first embodiment of the image pickup apparatus of the present invention.

本実施形態のデジタルカメラ(以下、カメラという。)は、図1に示すように、撮影光学系を構成する第1レンズ群101を有する。第1レンズ群101は、撮影光学系の最も被写体側に配置され、光軸方向に進退移動可能に保持される。絞り兼用シャッタ102は、その開口径を調節することで撮影時の光量調節を行なうほか、静止画撮影時には露光秒時調節用シャッタとして機能する。第2レンズ群103は、絞り兼用シャッタ102と一体となって光軸方向に進退移動し、第1レンズ群101の進退移動との連動により、ズーム動作を行う。 As shown in FIG. 1, the digital camera of the present embodiment (hereinafter referred to as a camera) has a first lens group 101 constituting a photographing optical system. The first lens group 101 is arranged on the closest subject side of the photographing optical system, and is held so as to be movable back and forth in the optical axis direction. The aperture combined shutter 102 adjusts the amount of light at the time of shooting by adjusting the aperture diameter thereof, and also functions as a shutter for adjusting the exposure seconds at the time of shooting a still image. The second lens group 103 moves forward and backward in the optical axis direction integrally with the aperture and shutter 102, and performs a zoom operation in conjunction with the forward and backward movement of the first lens group 101.

第3レンズ群105は、光軸方向の進退移動により、焦点調節を行なうフォーカスレンズである。光学ローパスフィルタ106は、撮影画像の偽色やモアレを軽減するための光学素子である。撮像素子107は、2次元CMOSフォトセンサと周辺回路から構成され、撮影光学系を通過した被写体光束が結像する結像面を有する。 The third lens group 105 is a focus lens that adjusts the focus by moving forward and backward in the optical axis direction. The optical low-pass filter 106 is an optical element for reducing false color and moire in a captured image. The image sensor 107 is composed of a two-dimensional CMOS photo sensor and a peripheral circuit, and has an image plane on which a subject light flux that has passed through a photographing optical system is imaged.

ズームアクチュエータ111は、不図示のカム筒が回転することで、第1レンズ群101ないし第2レンズ群103を光軸方向に進退駆動し、ズーム動作を行なう。絞りシャッタアクチュエータ112は、絞り兼用シャッタ102の開口径を制御して撮影光量を調節すると共に、静止画撮影時の露光時間制御を行なう。フォーカスアクチュエータ114は、第3レンズ群105を光軸方向に進退駆動して焦点調節を行なう。 The zoom actuator 111 moves the first lens group 101 to the second lens group 103 forward and backward in the optical axis direction by rotating a cam cylinder (not shown), and performs a zoom operation. The aperture shutter actuator 112 controls the aperture diameter of the aperture combined shutter 102 to adjust the amount of shooting light, and also controls the exposure time during still image shooting. The focus actuator 114 moves the third lens group 105 forward and backward in the optical axis direction to adjust the focus.

ストロボユニット115は、キセノン管やLED等を用いた発光装置であり、撮影時に被写体を照明する。AF補助光源116は、所定の開口パターンを有するマスクの像を投光レンズを介して被写界に投影し、暗い被写体あるいは低コントラストの被写体に対する焦点検出能力を向上させる。 The strobe unit 115 is a light emitting device using a xenon tube, an LED, or the like, and illuminates the subject at the time of shooting. The AF auxiliary light source 116 projects an image of a mask having a predetermined aperture pattern onto the field of view via a projection lens, and improves the focus detection ability for a dark subject or a low-contrast subject.

システム制御回路121は、カメラ全体の制御を司るCPUの他、ROMやRAM等のメモリ、A/Dコンバータ、D/Aコンバータ、通信インターフェイス回路等を有する。そして、システム制御回路121のCPUは、ROMに記憶された所定のプログラムに基づいて、カメラの各種回路を駆動し、AF、撮像、画像処理、記録等の一連の動作を実行する。 The system control circuit 121 includes a memory such as ROM and RAM, an A / D converter, a D / A converter, a communication interface circuit, and the like, in addition to a CPU that controls the entire camera. Then, the CPU of the system control circuit 121 drives various circuits of the camera based on a predetermined program stored in the ROM, and executes a series of operations such as AF, imaging, image processing, and recording.

また、システム制御回路121のROM等には、後述する撮像素子107の出力信号を用いた焦点調節で必要となる補正値算出係数が記憶されている。この補正値算出係数は、第3レンズ群105の位置に対応したフォーカス状態、第1レンズ群101ないし第2レンズ群103の位置に対応したズーム状態、撮影光学系のF値、撮像素子107の設定瞳距離、画素サイズ毎に複数用意されている。 Further, the ROM or the like of the system control circuit 121 stores a correction value calculation coefficient required for focus adjustment using the output signal of the image pickup device 107, which will be described later. The correction value calculation coefficient is the focus state corresponding to the position of the third lens group 105, the zoom state corresponding to the position of the first lens group 101 to the second lens group 103, the F value of the photographing optical system, and the image pickup element 107. Multiple lenses are prepared for each set pupil distance and pixel size.

焦点調節を行う際は、撮影光学系の焦点調節状態(フォーカス状態、ズーム状態)と絞り値、撮像素子107の設定瞳距離、画素サイズの組み合わせに応じて最適な補正値算出係数が選択される。そして、選択された補正値算出係数と撮像素子107の像高から補正値が算出される。 When adjusting the focus, the optimum correction value calculation coefficient is selected according to the combination of the focus adjustment state (focus state, zoom state) and aperture value of the photographing optical system, the set pupil distance of the image pickup element 107, and the pixel size. .. Then, the correction value is calculated from the selected correction value calculation coefficient and the image height of the image sensor 107.

本実施形態では、補正値算出係数をシステム制御回路121のROM等に記憶するようにしているが、例えば、レンズ交換式の撮像装置では、交換レンズが有するROM等に補正値算出係数を記憶するようにしてもよい。この場合は、撮影光学系の焦点調節状態に応じて、補正値算出係数をカメラに送信すればよい。 In the present embodiment, the correction value calculation coefficient is stored in the ROM or the like of the system control circuit 121. For example, in the interchangeable lens type image pickup apparatus, the correction value calculation coefficient is stored in the ROM or the like of the interchangeable lens. You may do so. In this case, the correction value calculation coefficient may be transmitted to the camera according to the focus adjustment state of the photographing optical system.

ストロボ制御回路122は、撮影動作に同期してストロボユニット115の発光部を点灯制御する。補助光駆動回路123は、焦点検出動作に同期してAF補助光源116を点灯制御する。撮像素子駆動回路124は、撮像素子107の撮像動作を制御するとともに、取得した画像信号をA/D変換してシステム制御回路121に送信する。画像処理回路125は、撮像素子107が取得した画像のγ変換、カラー補間、JPEG圧縮等の処理を行なう。 The strobe control circuit 122 controls lighting of the light emitting unit of the strobe unit 115 in synchronization with the shooting operation. The auxiliary light drive circuit 123 controls the lighting of the AF auxiliary light source 116 in synchronization with the focus detection operation. The image pickup element drive circuit 124 controls the image pickup operation of the image pickup element 107, and A / D-converts the acquired image signal and transmits it to the system control circuit 121. The image processing circuit 125 performs processing such as γ conversion, color interpolation, and JPEG compression of the image acquired by the image sensor 107.

フォーカス駆動回路126は、焦点検出結果に基づいてフォーカスアクチュエータ114を駆動制御し、第3レンズ群105を光軸方向に進退駆動して焦点調節を行なう。絞りシャッタ駆動回路128は、絞りシャッタアクチュエータ112を駆動制御して絞り兼用シャッタ102の開口を制御する。ズーム駆動回路129は、撮影者のズーム操作に応じてズームアクチュエータ111を駆動する。 The focus drive circuit 126 drives and controls the focus actuator 114 based on the focus detection result, and drives the third lens group 105 forward and backward in the optical axis direction to adjust the focus. The aperture shutter drive circuit 128 drives and controls the aperture shutter actuator 112 to control the opening of the aperture combined shutter 102. The zoom drive circuit 129 drives the zoom actuator 111 according to the zoom operation of the photographer.

表示部131は、LCD等で構成され、カメラの撮影モードに関する情報、撮影前のプレビュー画像と撮影後の確認用画像、焦点検出時の焦点検出領域の枠や合焦状態の画像等を表示する。操作スイッチ群132は、電源スイッチ、レリーズ(撮影トリガ)スイッチ、ズーム操作スイッチ、撮影モード選択スイッチ等で構成される。記録媒体133は、例えば着脱可能なメモリカード等で構成され、取得された画像を記録する。 The display unit 131 is composed of an LCD or the like, and displays information on the shooting mode of the camera, a preview image before shooting and a confirmation image after shooting, a frame of a focus detection area at the time of focus detection, an image in a focused state, and the like. .. The operation switch group 132 includes a power switch, a release (shooting trigger) switch, a zoom operation switch, a shooting mode selection switch, and the like. The recording medium 133 is composed of, for example, a detachable memory card or the like, and records the acquired image.

次に、図2を参照して、撮像素子107の焦点検出画素を含む撮像画素の配列について説明する。図2は、2次元CMOSセンサで構成される撮像素子107の撮像画素の配列を4列×4行の範囲(焦点検出画素の配列を8列×4行の範囲)で示す概略図である。 Next, with reference to FIG. 2, an arrangement of image pickup pixels including focus detection pixels of the image pickup device 107 will be described. FIG. 2 is a schematic diagram showing an array of image pickup pixels of an image pickup device 107 composed of a two-dimensional CMOS sensor in a range of 4 columns × 4 rows (an array of focus detection pixels in a range of 8 columns × 4 rows).

図2において、2列×2行の撮像画素群200は、R(赤)の分光感度を有する撮像画素200Rが左上に、G(緑)の分光感度を有する撮像画素200Gが右上と左下に、B(青)の分光感度を有する撮像画素200Bが右下にそれぞれ配置されている。また、各撮像画素は、2列×1行に配列された第1焦点検出画素201と第2焦点検出画素202を有する。 In FIG. 2, in the image pickup pixel group 200 having 2 columns × 2 rows, the image pickup pixel 200R having the spectral sensitivity of R (red) is in the upper left, and the image pickup pixel 200G having the spectral sensitivity of G (green) is in the upper right and the lower left. Image pickup pixels 200B having a spectral sensitivity of B (blue) are arranged at the lower right. Further, each imaging pixel has a first focus detection pixel 201 and a second focus detection pixel 202 arranged in two columns × one row.

4列×4行の撮像画素(8列×4行の焦点検出画素)を面上に多数配置し、撮像信号(焦点検出信号)の取得を可能としている。本実施形態の撮像素子107では、撮像画素の周期Pが4μm、撮像画素数Nが横5575列×縦3725行=約2075万画素、焦点検出画素の列方向周期PAFが2μm、焦点検出画素数NAFが横11150列×縦3725行=約4150万画素とする。 A large number of image pickup pixels of 4 columns × 4 rows (focus detection pixels of 8 columns × 4 rows) are arranged on the surface, and it is possible to acquire an image pickup signal (focus detection signal). In the image pickup device 107 of the present embodiment, the period P of the image pickup pixels is 4 μm, the number of image pickup pixels N is 5575 columns × 3725 rows = about 20.75 million pixels, the column direction period PAF of the focus detection pixels is 2 μm, and the number of focus detection pixels. The NAF is 11150 horizontal columns x 3725 vertical rows = about 41.5 million pixels.

図3(a)は撮像素子107の1つの撮像画素200Gを撮像素子107の受光面側(+z側)から見た平面図、図3(b)は図3(a)のa-a線断面を-y側から見た断面図である。 3A is a plan view of one image pickup pixel 200G of the image pickup element 107 from the light receiving surface side (+ z side) of the image pickup element 107, and FIG. 3B is a cross section taken along the line aa of FIG. 3A. It is a cross-sectional view seen from the −y side.

図3に示すように、撮像画素200Gには、各撮像画素の受光側に入射光を集光するためのマイクロレンズ305が形成され、また、x方向にNH分割(2分割)、y方向にNV分割(1分割)された光電変換部301と光電変換部302が形成される。光電変換部301と光電変換部302は、それぞれ第1焦点検出画素201と第2焦点検出画素202に対応している。 As shown in FIG. 3, in the image pickup pixel 200G, a microlens 305 for condensing incident light is formed on the light receiving side of each image pickup pixel, and NH division (division) in the x direction and NH division (two division) in the y direction. An NV-divided (one-divided) photoelectric conversion unit 301 and a photoelectric conversion unit 302 are formed. The photoelectric conversion unit 301 and the photoelectric conversion unit 302 correspond to the first focus detection pixel 201 and the second focus detection pixel 202, respectively.

光電変換部301と光電変換部302は、p型層とn型層の間にイントリンシック層を挟んだpin構造フォトダイオードとしてもよいし、必要に応じて、イントリンシック層を省略し、pn接合フォトダイオードとしてもよい。 The photoelectric conversion unit 301 and the photoelectric conversion unit 302 may be a pin structure photodiode in which an intrinsic layer is sandwiched between a p-type layer and an n-type layer, or if necessary, the intrinsic layer is omitted and a pn junction is formed. It may be a photodiode.

各撮像画素には、マイクロレンズ305と、光電変換部301及び光電変換部302との間に、カラーフィルタ306が形成される。なお、必要に応じて、各副画素毎にカラーフィルタの分光透過率を変えてもよいし、カラーフィルタを省略してもよい。撮像画素200Gに入射した光は、マイクロレンズ305により集光され、カラーフィルタ306で分光されたのち、光電変換部301と光電変換部302で受光される。 A color filter 306 is formed between the microlens 305 and the photoelectric conversion unit 301 and the photoelectric conversion unit 302 in each image pickup pixel. If necessary, the spectral transmittance of the color filter may be changed for each sub-pixel, or the color filter may be omitted. The light incident on the image pickup pixel 200G is collected by the microlens 305, separated by the color filter 306, and then received by the photoelectric conversion unit 301 and the photoelectric conversion unit 302.

光電変換部301と光電変換部302では、受光量に応じて電子とホールが対生成され、空乏層で分離された後、負電荷の電子はn型層(不図示)に蓄積され、ホールは定電圧源(不図示)に接続されたp型層を通じて撮像素子107の外部へ排出される。光電変換部301と光電変換部302のn型層(不図示)に蓄積された電子は、転送ゲートを介して静電容量部(FD)に転送され、電圧信号に変換される。 In the photoelectric conversion unit 301 and the photoelectric conversion unit 302, electrons and holes are pair-produced according to the amount of light received, and after being separated by the depletion layer, negatively charged electrons are accumulated in the n-type layer (not shown), and the holes are formed. It is discharged to the outside of the image pickup device 107 through a p-type layer connected to a constant voltage source (not shown). The electrons stored in the photoelectric conversion unit 301 and the n-type layer (not shown) of the photoelectric conversion unit 302 are transferred to the capacitance unit (FD) via the transfer gate and converted into a voltage signal.

次に、図4を参照して、図3に示す画素構造と瞳分割との対応関係を説明する。図4は、図3(a)に示す画素構造のa-a線断面を+y側から見た断面図と撮影光学系の射出瞳面を示す概略図である。なお、図4では、射出瞳面の座標軸と対応を取るため、図3(b)に対してx軸とy軸を反転させている。 Next, with reference to FIG. 4, the correspondence between the pixel structure shown in FIG. 3 and the pupil division will be described. FIG. 4 is a cross-sectional view of the aa-line cross section of the pixel structure shown in FIG. 3A as viewed from the + y side, and a schematic view showing the exit pupil surface of the photographing optical system. In FIG. 4, the x-axis and the y-axis are inverted with respect to FIG. 3 (b) in order to correspond to the coordinate axes of the exit pupil surface.

図4においては、第1焦点検出画素201の第1瞳部分領域501は、重心が-x方向に偏心している光電変換部301の受光面とマイクロレンズ305によって、略共役関係になっており、第1焦点検出画素201で受光可能な瞳領域を表している。第1焦点検出画素201の第1瞳部分領域501は、瞳面上で+X側に重心が偏心している。 In FIG. 4, the first pupil portion region 501 of the first focus detection pixel 201 has a substantially conjugate relationship with the light receiving surface of the photoelectric conversion unit 301 whose center of gravity is eccentric in the −x direction due to the microlens 305. It represents a pupil region that can receive light from the first focus detection pixel 201. The center of gravity of the first pupil portion region 501 of the first focus detection pixel 201 is eccentric to the + X side on the pupil surface.

一方、第2焦点検出画素202の第2瞳部分領域502は、重心が+x方向に偏心している光電変換部302の受光面とマイクロレンズ305によって、略共役関係になっており、第2焦点検出画素202で受光可能な瞳領域を表している。第2焦点検出画素202の第2瞳部分領域502は、瞳面上で-X側に重心が偏心している。 On the other hand, the second pupil partial region 502 of the second focus detection pixel 202 has a substantially conjugate relationship with the light receiving surface of the photoelectric conversion unit 302 whose center of gravity is eccentric in the + x direction by the microlens 305, and the second focus detection is performed. The pixel 202 represents a pupil region that can receive light. The center of gravity of the second pupil partial region 502 of the second focus detection pixel 202 is eccentric to the −X side on the pupil surface.

また、瞳領域500は、光電変換部301(第1焦点検出画素201)と光電変換部302(第2焦点検出画素202)を全て合わせた際の画素200G全体で受光可能な瞳領域である。撮像面位相差AFでは、撮像素子107のマイクロレンズ305を利用して瞳分割するため回折の影響を受ける。 Further, the pupil region 500 is a pupil region in which light can be received by the entire pixel 200G when the photoelectric conversion unit 301 (first focus detection pixel 201) and the photoelectric conversion unit 302 (second focus detection pixel 202) are all combined. The image pickup surface phase-difference AF is affected by diffraction because the pupil is divided using the microlens 305 of the image pickup element 107.

図4では、射出瞳面までの瞳距離が数10mmであるのに対し、マイクロレンズ305の直径は数μmである。そのため、マイクロレンズ305の絞り値が数万となり、数10mmレベルの回折ボケが生じる。よって、光電変換部301,302の受光面の像は、明瞭な瞳領域や瞳部分領域とはならず、瞳強度分布(受光率の入射角分布)となる。 In FIG. 4, the pupil distance to the exit pupil surface is several tens of mm, whereas the diameter of the microlens 305 is several μm. Therefore, the aperture value of the microlens 305 becomes tens of thousands, and diffraction blur of several tens of mm level occurs. Therefore, the image of the light receiving surface of the photoelectric conversion units 301 and 302 does not become a clear pupil region or a pupil portion region, but becomes a pupil intensity distribution (incident angle distribution of the light receiving rate).

図5は、撮像素子107と瞳分割との対応関係を示す概略図である。第1瞳部分領域501と第2瞳部分領域502の異なる瞳部分領域を通過した光束は、撮像素子107の各撮像画素に対して、それぞれ異なる角度で入射し、2×1分割された第1焦点検出画素201と第2焦点検出画素202で受光される。なお、本実施形態では、瞳領域が水平方向に2つに瞳分割されているが、必要に応じて、垂直方向に瞳分割を行ってもよい。 FIG. 5 is a schematic view showing the correspondence between the image pickup device 107 and the pupil division. The luminous flux that has passed through the different pupil region regions of the first pupil region 501 and the second pupil region 502 is incident on each image pickup pixel of the image pickup element 107 at a different angle, and is divided into 2 × 1 first. The light is received by the focus detection pixel 201 and the second focus detection pixel 202. In the present embodiment, the pupil region is divided into two in the horizontal direction, but the pupil may be divided in the vertical direction if necessary.

本実施形態では、第1焦点検出画素201と第2焦点検出画素202とを有する撮像画素が複数配列された撮像素子107を用いている。第1焦点検出画素201は、撮影光学系の第1瞳部分領域501を通過する光束を受光し、第2焦点検出画素202は、第1瞳部分領域501と異なる撮影光学系の第2瞳部分領域502を通過する光束を受光する。また、撮像画素は、撮影光学系の第1瞳部分領域501と第2瞳部分領域502を合わせた瞳領域を通過する光束を受光する。 In the present embodiment, an image pickup device 107 in which a plurality of image pickup pixels having a first focus detection pixel 201 and a second focus detection pixel 202 are arranged is used. The first focus detection pixel 201 receives the light flux passing through the first pupil portion region 501 of the photographing optical system, and the second focus detection pixel 202 is the second pupil portion of the photographing optical system different from the first pupil portion region 501. It receives the light flux passing through the region 502. Further, the image pickup pixel receives a light flux passing through the pupil region including the first pupil portion region 501 and the second pupil portion region 502 of the photographing optical system.

そして、撮像素子107の各撮像画素の第1焦点検出画素201の受光信号を集めて第1焦点検出信号を生成し、各撮像画素の第2焦点検出画素202の受光信号を集めて第2焦点検出信号を生成して焦点検出を行う。また、撮像素子107の各撮像画素毎に、第1焦点検出画素201と第2焦点検出画素202の受光信号を加算することで、有効画素数Nの解像度の撮像信号(撮像画像)を生成する。 Then, the light-receiving signal of the first focus detection pixel 201 of each image pickup pixel of the image pickup element 107 is collected to generate the first focus detection signal, and the light-receiving signal of the second focus detection pixel 202 of each image pickup pixel is collected to generate the second focus. Generates a detection signal to detect the focus. Further, by adding the light receiving signals of the first focus detection pixel 201 and the second focus detection pixel 202 for each image pickup pixel of the image pickup element 107, an image pickup signal (image pickup image) having a resolution of the number of effective pixels N is generated. ..

なお、本実施形態では、撮像素子107のそれぞれの撮像画素が第1焦点検出画素201と第2焦点検出画素202から構成されているが、必要に応じて、撮像画素と第1焦点検出画素、第2焦点検出画素を個別の画素構成としてもよい。例えば、撮像画素の配列の一部に第1焦点検出画素と第2焦点検出画素を部分的に配置する構成としてもよい。 In the present embodiment, each image pickup pixel of the image pickup element 107 is composed of the first focus detection pixel 201 and the second focus detection pixel 202, but if necessary, the image pickup pixel and the first focus detection pixel, The second focus detection pixel may be an individual pixel configuration. For example, the first focus detection pixel and the second focus detection pixel may be partially arranged in a part of the array of image pickup pixels.

次に、図6を参照して、撮像素子107により取得される第1焦点検出信号及び第2焦点検出信号のデフォーカス量と像ずれ量との関係について説明する。図6は、第1焦点検出信号と第2焦点検出信号のデフォーカス量と、第1焦点検出信号と第2焦点検出信号間の像ずれ量との関係を示す概略図である。 Next, with reference to FIG. 6, the relationship between the defocus amount and the image shift amount of the first focus detection signal and the second focus detection signal acquired by the image pickup device 107 will be described. FIG. 6 is a schematic diagram showing the relationship between the defocus amount of the first focus detection signal and the second focus detection signal and the image shift amount between the first focus detection signal and the second focus detection signal.

図6において、撮影光学系の射出瞳は、図4及び図5と同様に、第1瞳部分領域501と第2瞳部分領域502に2分割される。デフォーカス量dは、被写体の結像位置から撮像素子107の撮像面800までの距離を大きさ|d|とし、被写体の結像位置が撮像面800より被写体側にある前ピン状態を負符号(d<0)として定義する。また、被写体の結像位置が撮像面800より被写体の反対側にある後ピン状態を正符号(d>0)として定義する。 In FIG. 6, the exit pupil of the photographing optical system is divided into a first pupil portion region 501 and a second pupil portion region 502 as in FIGS. 4 and 5. The defocus amount d is the distance from the image pickup position of the subject to the image pickup surface 800 of the image pickup element 107 as a magnitude | d |, and the front pin state in which the image formation position of the subject is closer to the subject side than the image pickup surface 800 is a minus sign. It is defined as (d <0). Further, the rear pin state in which the imaging position of the subject is on the opposite side of the subject from the imaging surface 800 is defined as a plus sign (d> 0).

被写体の結像位置が撮像面800(合焦位置)にある合焦状態は、d=0である。図5では、被写体801が合焦状態(d=0)の例を示しており、被写体802が前ピン状態(d<0)の例を示している。前ピン状態(d<0)と後ピン状態(d>0)を合わせて、デフォーカス状態(|d|>0)とする。 The in-focus state in which the image formation position of the subject is on the image pickup surface 800 (focus position) is d = 0. FIG. 5 shows an example in which the subject 801 is in the focused state (d = 0) and the subject 802 is in the front pin state (d <0). The front pin state (d <0) and the rear pin state (d> 0) are combined to obtain a defocus state (| d |> 0).

前ピン状態(d<0)では、被写体802からの光束のうち、第1瞳部分領域501(第2瞳部分領域502)を通過した光束は、一度、集光した後、光束の重心位置G1(G2)を中心として幅Γ1(Γ2)に広がり、撮像面800でボケた像となる。ボケた像は、撮像素子107に配列された各撮像画素を構成する第1焦点検出画素201(第2焦点検出画素202)により受光され、これにより、第1焦点検出信号(第2焦点検出信号)が生成される。 In the front pin state (d <0), among the luminous fluxes from the subject 802, the luminous flux that has passed through the first pupil portion region 501 (second pupil portion region 502) is once focused and then the center of gravity position G1 of the light flux. It spreads over the width Γ1 (Γ2) around (G2) and becomes a blurred image on the imaging surface 800. The blurred image is received by the first focus detection pixel 201 (second focus detection pixel 202) constituting each image pickup pixel arranged in the image sensor 107, whereby the first focus detection signal (second focus detection signal) is received. ) Is generated.

よって、第1焦点検出信号(第2焦点検出信号)は、撮像面800上の重心位置G1(G2)に、被写体802が幅Γ1(Γ2)にボケた被写体像として記録される。被写体像のボケ幅Γ1(Γ2)は、デフォーカス量dの大きさ|d|が増加するに伴い、略比例して増加していく。 Therefore, the first focus detection signal (second focus detection signal) is recorded at the center of gravity position G1 (G2) on the image pickup surface 800 as a subject image in which the subject 802 is blurred to the width Γ1 (Γ2). The blur width Γ1 (Γ2) of the subject image increases substantially in proportion as the magnitude | d | of the defocus amount d increases.

同様に、第1焦点検出信号と第2焦点検出信号間の被写体像の像ずれ量p(=光束の重心位置の差G1-G2)の大きさ|p|も、デフォーカス量dの大きさ|d|が増加するに伴い、略比例して増加していく。後ピン状態(d>0)でも、第1焦点検出信号と第2焦点検出信号間の被写体像の像ずれ方向が前ピン状態と反対となるが、同様である。 Similarly, the magnitude of the image shift amount p (= difference in the position of the center of gravity of the light beam G1-G2) of the subject image between the first focus detection signal and the second focus detection signal | p | is also the magnitude of the defocus amount d. As | d | increases, it increases substantially in proportion. Even in the rear focus state (d> 0), the image shift direction of the subject image between the first focus detection signal and the second focus detection signal is opposite to that in the front focus state, but the same is true.

したがって、本実施形態では、第1焦点検出信号と第2焦点検出信号、又は第1焦点検出信号と第2焦点検出信号を加算した撮像信号のデフォーカス量の大きさが増加するに伴い、第1焦点検出信号と第2焦点検出信号間の像ずれ量pの大きさが増加する。 Therefore, in the present embodiment, as the magnitude of the defocus amount of the first focus detection signal and the second focus detection signal, or the image pickup signal obtained by adding the first focus detection signal and the second focus detection signal increases, the first The magnitude of the image shift amount p between the 1-focus detection signal and the 2nd focus detection signal increases.

本実施形態の位相差検出方式の焦点検出では、第1焦点検出信号と第2焦点検出信号を相対的にシフトさせて信号の一致度を表す相関量を計算し、相関量が良くなるシフト量から像ずれ量pを検出する。撮像信号のデフォーカス量dの大きさが増加するに伴い、第1焦点検出信号と第2焦点検出信号間の像ずれ量pの大きさが増加する関係性から、像ずれ量pを変換係数により検出デフォーカス量に変換して焦点検出を行う。 In the focus detection of the phase difference detection method of the present embodiment, the correlation amount representing the degree of coincidence of the signals is calculated by relatively shifting the first focus detection signal and the second focus detection signal, and the shift amount that improves the correlation amount. The image shift amount p is detected from. As the magnitude of the defocus amount d of the image pickup signal increases, the magnitude of the image shift amount p between the first focus detection signal and the second focus detection signal increases. Therefore, the image shift amount p is converted into a conversion coefficient. Converts to the detection defocus amount and performs focus detection.

図7は、撮像面位相差検出方式の焦点検出処理を説明するフローチャートである。図7の各処理は、システム制御回路121のROM等に記憶されたプログラムがRAMに展開されてCPU等が画像処理回路125を制御することによって実行される。 FIG. 7 is a flowchart illustrating the focus detection process of the imaging surface phase difference detection method. Each process of FIG. 7 is executed by expanding the program stored in the ROM or the like of the system control circuit 121 into the RAM and controlling the image processing circuit 125 by the CPU or the like.

図7において、ステップS701では、システム制御回路121は、撮像素子107の有効画素領域の中から、焦点調節を行う像高(X,Y)を中心とする焦点検出領域を設定し、ステップS702に進む。ステップS702では、システム制御回路121は、焦点検出領域の第1焦点検出画素201の受光信号から第1焦点検出信号を生成し、焦点検出領域の第2焦点検出画素202の受光信号から第2焦点検出信号を生成し、ステップS703に進む。 In FIG. 7, in step S701, the system control circuit 121 sets a focus detection region centered on the image height (X, Y) for adjusting the focus from the effective pixel region of the image sensor 107, and in step S702. move on. In step S702, the system control circuit 121 generates a first focus detection signal from the light receiving signal of the first focus detection pixel 201 in the focus detection region, and second focus from the light receiving signal of the second focus detection pixel 202 in the focus detection region. A detection signal is generated, and the process proceeds to step S703.

ステップS703では、システム制御回路121は、第1焦点検出信号と第2焦点検出信号に対して、それぞれ画素加算処理を行い、ステップS704に進む。具体的には、第1焦点検出信号と第2焦点検出信号に対して、それぞれ信号データ量を抑制するために列方向に3画素加算処理を行い、さらに、RGB信号を輝度信号にするためにベイヤー(RGB)加算処理を行う。これら2つの加算処理を合わせて画素加算処理とする。 In step S703, the system control circuit 121 performs pixel addition processing on the first focus detection signal and the second focus detection signal, respectively, and proceeds to step S704. Specifically, the first focus detection signal and the second focus detection signal are subjected to three pixel addition processing in the column direction in order to suppress the amount of signal data, respectively, and further, in order to convert the RGB signal into a luminance signal. Performs Bayer (RGB) addition processing. These two addition processes are combined to form a pixel addition process.

ステップS704では、システム制御回路121は、第1焦点検出信号と第2焦点検出信号に対して、それぞれシェーディング補正処理(光学補正処理)を行い、ステップS705に進む。 In step S704, the system control circuit 121 performs shading correction processing (optical correction processing) on the first focus detection signal and the second focus detection signal, respectively, and proceeds to step S705.

ここで、図8を参照して、第1焦点検出信号と第2焦点検出信号の瞳ずれによる像ずれ量pから検出デフォーカス量への換算に必要な変換係数の変化とシェーディング補正処理について説明する。図8は、基線長BL0,BL1,BL2、撮像素子107の周辺像高における第1焦点検出画素201の第1瞳部分領域501、第2焦点検出画素202の第2瞳部分領域502、及び撮影光学系の射出瞳400の関係を示す図である。 Here, with reference to FIG. 8, the change of the conversion coefficient required for conversion from the image shift amount p due to the pupil shift of the first focus detection signal and the second focus detection signal to the detection defocus amount and the shading correction process will be described. do. FIG. 8 shows the baseline lengths BL0, BL1, BL2, the first pupil region 501 of the first focus detection pixel 201 at the peripheral image height of the image sensor 107, the second pupil region 502 of the second focus detection pixel 202, and the photographing. It is a figure which shows the relationship of the exit pupil 400 of an optical system.

図8(a)は、撮影光学系の射出瞳距離Dlと撮像素子の設定瞳距離Dsが同じ場合を示している。撮像素子107の設定瞳距離Dsとは、射出瞳距離Dlが撮像素子107の設定瞳距離Dsと同じであった場合、撮像素子107のどの撮像画素においても、第1焦点検出信号と第2焦点検出信号の強度が略同じになるパラメータである。このパラメータは、前記光電変換部301,302とマイクロレンズ305の位置関係などによって決まる値である。 FIG. 8A shows a case where the exit pupil distance Dl of the photographing optical system and the set pupil distance Ds of the image sensor are the same. The set pupil distance Ds of the image pickup element 107 means that when the exit pupil distance Dl is the same as the set pupil distance Ds of the image pickup element 107, the first focus detection signal and the second focus are obtained in any image pickup pixel of the image pickup element 107. This is a parameter in which the strength of the detected signal is substantially the same. This parameter is a value determined by the positional relationship between the photoelectric conversion units 301 and 302 and the microlens 305.

撮影光学系の射出瞳距離Dlと撮像素子の設定瞳距離Dsが同じ場合は、第1瞳部分領域501と第2瞳部分領域502により、撮影光学系の射出瞳400が、略均等に瞳分割される。射出瞳400の内部における、それぞれ第1瞳部分領域501の重心と第2瞳部分領域502の重心との間隔である基線長をBL0で示す。このとき、像ずれ量pから検出デフォーカス量への換算に必要な変換係数K0は、K0=Ds/BL0で求められる。 When the exit pupil distance Dl of the photographing optical system and the set pupil distance Ds of the image sensor are the same, the exit pupil 400 of the photographing optical system is substantially evenly divided into pupils by the first pupil portion region 501 and the second pupil portion region 502. Will be done. The baseline length, which is the distance between the center of gravity of the first pupil region 501 and the center of gravity of the second pupil region 502, inside the exit pupil 400 is indicated by BL0. At this time, the conversion coefficient K0 required for conversion from the image shift amount p to the detected defocus amount is obtained by K0 = Ds / BL0.

これに対して、図8(b)は、撮影光学系の射出瞳距離Dlが撮像素子107の設定瞳距離Dsより短い場合を示している。この場合、撮像素子107の周辺像高では、撮影光学系の射出瞳400と撮像素子107の入射瞳の瞳ずれを生じ、撮影光学系の射出瞳400が、不均一に瞳分割されてしまう。したがって、基線長は片側に偏ったBL1となり、それに伴い、変換係数K1=Ds/BL1と変化する。 On the other hand, FIG. 8B shows a case where the exit pupil distance Dl of the photographing optical system is shorter than the set pupil distance Ds of the image pickup device 107. In this case, the peripheral image height of the image pickup element 107 causes a pupil shift between the exit pupil 400 of the image pickup optical system and the entrance pupil of the image pickup element 107, and the exit pupil 400 of the image pickup optical system is unevenly divided into pupils. Therefore, the baseline length becomes BL1 biased to one side, and the conversion coefficient K1 = Ds / BL1 changes accordingly.

図8(c)は、撮影光学系の射出瞳距離Dlが撮像素子107の設定瞳距離Dsより長い場合を示している。この場合も図8(b)と同様に、撮像素子107の周辺像高では、撮影光学系の射出瞳400と撮像素子107の入射瞳の瞳ずれを生じ、撮影光学系の射出瞳400が、不均一に瞳分割されてしまう。したがって、基線長は、図8(b)と反対側に偏ったBL2となり、それに伴い、変換係数K2=Ds/BL2と変化する。 FIG. 8C shows a case where the exit pupil distance Dl of the photographing optical system is longer than the set pupil distance Ds of the image pickup device 107. In this case as well, as in FIG. 8B, at the peripheral image height of the image pickup element 107, the exit pupil 400 of the image pickup optical system and the entrance pupil of the image pickup element 107 are displaced from each other, and the exit pupil 400 of the image pickup optical system is affected. The pupil is divided unevenly. Therefore, the baseline length becomes BL2 biased to the opposite side of FIG. 8B, and the conversion coefficient K2 = Ds / BL2 changes accordingly.

また、撮像素子107の周辺像高で瞳分割が不均一になるのに伴い、第1焦点検出信号と第2焦点検出信号の強度も不均一になり、第1焦点検出信号と第2焦点検出信号のいずれか一方の強度が大きくなり、他方の強度が小さくなるシェーディングが生じる。さらに、撮影光学系の絞り値が変わると、図8の射出瞳400の大きさが変化するため、絞り値に応じても変換係数Kとシェーディングが変化することがわかる。 Further, as the pupil division becomes non-uniform due to the peripheral image height of the image sensor 107, the intensities of the first focus detection signal and the second focus detection signal also become non-uniform, and the first focus detection signal and the second focus detection become non-uniform. Shading occurs in which the intensity of one of the signals increases and the intensity of the other decreases. Further, it can be seen that the conversion coefficient K and shading change according to the aperture value because the size of the exit pupil 400 in FIG. 8 changes when the aperture value of the photographing optical system changes.

したがって、像ずれ量pから検出デフォーカス量への変換係数K及びシェーディングは、撮影光学系の絞り値と射出瞳距離Dl、撮像素子107の瞳強度分布(光学特性)、及び像高に応じて変化することがわかる。 Therefore, the conversion coefficient K from the image shift amount p to the detected defocus amount and the shading depend on the aperture value of the photographing optical system, the exit pupil distance Dl, the pupil intensity distribution (optical characteristics) of the image sensor 107, and the image height. You can see that it changes.

よって、システム制御回路121は、撮像素子107の焦点検出領域の像高、撮影光学系のF値、射出瞳距離Dlに応じて、第1焦点検出信号の第1シェーディング補正係数と第2焦点検出信号の第2シェーディング補正係数をそれぞれ生成する。そして、第1シェーディング補正係数を第1焦点検出信号に乗算し、第2シェーディング補正係数を第2焦点検出信号に乗算して、第1焦点検出信号と第2焦点検出信号のシェーディング補正処理(光学補正処理)を行う。 Therefore, the system control circuit 121 has a first shading correction coefficient and a second focus detection of the first focus detection signal according to the image height of the focus detection region of the image sensor 107, the F value of the photographing optical system, and the exit pupil distance Dl. The second shading correction coefficient of the signal is generated respectively. Then, the first shading correction coefficient is multiplied by the first focus detection signal, the second shading correction coefficient is multiplied by the second focus detection signal, and the shading correction processing (optical) of the first focus detection signal and the second focus detection signal is performed. Correction processing) is performed.

撮像面位相差検出方式の焦点検出では、第1焦点検出信号と第2焦点検出信号の相関量(信号の一致度)を基に、検出デフォーカス量の検出を行う。瞳ずれによるシェーディングが生じると第1焦点検出信号と第2焦点検出信号の相関量(信号の一致度)が低下する場合がある。よって、撮像面位相差方式の焦点検出では、第1焦点検出信号と第2焦点検出信号の相関量(信号の一致度)を改善し、焦点検出性能を良好とするために、シェーディング補正処理(光学補正処理)を行うことが望ましい。 In the focus detection of the imaging surface phase difference detection method, the detection defocus amount is detected based on the correlation amount (signal matching degree) between the first focus detection signal and the second focus detection signal. When shading occurs due to pupil shift, the correlation amount (signal matching degree) between the first focus detection signal and the second focus detection signal may decrease. Therefore, in the focus detection of the imaging surface phase difference method, shading correction processing (shading correction processing) is performed in order to improve the correlation amount (signal matching degree) between the first focus detection signal and the second focus detection signal and improve the focus detection performance. It is desirable to perform optical correction processing).

なお、ここでは、撮像素子107の設定瞳距離Dsが同じで、撮影光学系の射出瞳距離Dlが変化する場合の例で瞳ずれの説明を行ったが、逆に、撮影光学系の射出瞳距離Dlが同じで、撮像素子107の設定瞳距離Dsが変化する場合も同様である。撮像面位相差検出方式の焦点検出では、撮像素子107の設定瞳距離Dsの変化に伴い、焦点検出画素(第1焦点検出画素、第2焦点検出画素)が受光する光束と、撮像画素が受光する光束も変化する。 Here, the exit pupil of the photographing optical system is described as an example in which the set pupil distance Ds of the image sensor 107 is the same and the exit pupil distance Dl of the photographing optical system changes. The same applies when the distance Dl is the same and the set pupil distance Ds of the image pickup element 107 changes. In the focus detection of the image pickup surface phase difference detection method, the luminous flux received by the focus detection pixels (first focus detection pixel, second focus detection pixel) and the image pickup pixel receive light as the set pupil distance Ds of the image pickup element 107 changes. The luminous flux is also changed.

図7のステップS705では、相関量(信号の一致度)を良くして焦点検出精度を向上するため、システム制御回路121は、第1焦点検出信号と第2焦点検出信号に対して特定の通過周波数帯域を有するバンドパスフィルタ処理を行い、ステップS706に進む。バンドパスフィルタの例としては、DC成分をカットしてエッジ抽出を行う(1,0、-1)などの差分型フィルタや、高周波ノイズ成分を抑制する(1,2,1)などの加算型フィルタがある。 In step S705 of FIG. 7, in order to improve the correlation amount (signal matching degree) and improve the focus detection accuracy, the system control circuit 121 specificly passes through the first focus detection signal and the second focus detection signal. A bandpass filter process having a frequency band is performed, and the process proceeds to step S706. Examples of bandpass filters include differential filters such as (1,0, -1) that cut DC components and perform edge extraction, and additive filters that suppress high-frequency noise components (1,2,1). There is a filter.

ステップS706では、システム制御回路121は、フィルタ処理後の第1焦点検出信号と第2焦点検出信号を相対的に瞳分割方向にシフトさせるシフト処理を行い、信号の一致度を表す相関量を算出し、ステップS707に進む。 In step S706, the system control circuit 121 performs a shift process of relatively shifting the first focus detection signal and the second focus detection signal after the filter processing in the pupil division direction, and calculates the correlation amount indicating the degree of coincidence of the signals. Then, the process proceeds to step S707.

ここでは、フィルタ処理後のk番目の第1焦点検出信号をA(k)、第2焦点検出信号をB(k)、焦点検出領域に対応する番号kの範囲をWとする。シフト処理によるシフト量をs、シフト量sのシフト範囲をΓとして、相関量CORは、次式(1)により算出される。 Here, the k-th first focus detection signal after filtering is A (k), the second focus detection signal is B (k), and the range of the number k corresponding to the focus detection region is W. The correlation amount COR is calculated by the following equation (1), where s is the shift amount due to the shift process and Γ is the shift range of the shift amount s.

Figure 0007005209000001
Figure 0007005209000001

シフト量sのシフト処理により、k番目の第1焦点検出信号A(k)とk-s番目の第2焦点検出信号B(k-s)を対応させ減算し、シフト減算信号を生成する。生成されたシフト減算信号の絶対値を計算し、焦点検出領域に対応する範囲W内で番号kの和を取り、相関量COR(s)を算出する。必要に応じて、各行毎に算出された相関量を、各シフト量毎に、複数行に渡って加算しても良い。 By the shift processing of the shift amount s, the k-th first focus detection signal A (k) and the k-s-th second focus detection signal B (ks) are associated and subtracted to generate a shift subtraction signal. The absolute value of the generated shift subtraction signal is calculated, the sum of the numbers k is taken within the range W corresponding to the focus detection region, and the correlation amount COR (s) is calculated. If necessary, the correlation amount calculated for each row may be added over a plurality of rows for each shift amount.

ステップS707では、システム制御回路121は、相関量COR(s)からサブピクセル演算により、相関量相関量COR(s)が最小値となる実数値のシフト量を算出して像ずれ量pとする。そして、システム制御回路121は、像ずれ量pに対して、焦点検出領域の像高と、撮影光学系のF値、撮影光学系の射出瞳距離Dlに応じた変換係数Kをかけて、検出デフォーカス量(Def)を検出し、焦点検出処理を終了する。その後、システム制御回路121は、検出デフォーカス量(Def)が所定値以下となるまでレンズを駆動し、所定値以下となると、露光量を算出して撮像動作を行う。 In step S707, the system control circuit 121 calculates the shift amount of the real value at which the correlation amount correlation amount COR (s) becomes the minimum value by the sub-pixel calculation from the correlation amount COR (s), and sets it as the image shift amount p. .. Then, the system control circuit 121 detects by multiplying the image shift amount p by the image height in the focal detection region, the F value of the photographing optical system, and the conversion coefficient K corresponding to the exit pupil distance Dl of the photographing optical system. The defocus amount (Def) is detected, and the focus detection process is terminated. After that, the system control circuit 121 drives the lens until the detected defocus amount (Def) becomes a predetermined value or less, and when the detected defocus amount (Def) becomes a predetermined value or less, the exposure amount is calculated and the image pickup operation is performed.

次に、図9を参照して、変換係数Kと焦点検出性能の関係性について説明する。図9は、撮影光学系(撮影レンズ)ごとの変換係数Kと像高の関係を示すグラフ図である。前述したように、変換係数Kは、撮影光学系の射出瞳距離D1と撮像素子107の設定瞳距離Dsと像高との関係によって決まり、撮影光学系によっては同じ像高でも変換係数Kが大きく異なる場合がある。変換係数Kは、その値が大きくなるほど焦点検出性能が低下する傾向にある。 Next, with reference to FIG. 9, the relationship between the conversion coefficient K and the focus detection performance will be described. FIG. 9 is a graph showing the relationship between the conversion coefficient K and the image height for each photographing optical system (photographing lens). As described above, the conversion coefficient K is determined by the relationship between the exit pupil distance D1 of the photographing optical system, the set pupil distance Ds of the image sensor 107, and the image height, and depending on the photographing optical system, the conversion coefficient K is large even at the same image height. May be different. The larger the value of the conversion coefficient K, the lower the focus detection performance tends to be.

前述したように、検出デフォーカス量(Def)は、像ずれ量pに変換係数Kをかけあわせることにより算出するが、ノイズ等の影響により像ずれ量pに誤差が生じるような場合、変換係数Kをかけることにより、誤差分をK倍に拡大することになる。このため、その拡大率、つまり変換係数Kが大きくなるほど焦点検出性能が低下することになる。このように、変換係数Kは、焦点検出をする際の性能に指標として使うことが可能である。 As described above, the detected defocus amount (Def) is calculated by multiplying the image shift amount p by the conversion coefficient K, but when an error occurs in the image shift amount p due to the influence of noise or the like, the conversion coefficient By multiplying by K, the error amount is expanded by K times. Therefore, the larger the enlargement ratio, that is, the conversion coefficient K, the lower the focus detection performance. As described above, the conversion coefficient K can be used as an index for the performance at the time of focusing detection.

次に、図9乃至図11を参照して、連写を行う際の焦点検出について説明する。いわゆる小絞り状態で連写を行いたい場合、より精度よく焦点検出を行うためには、できるだけ基線長を長く取る開放絞り値で焦点検出を行うが望ましい。この場合、前述したように、変換係数Kを焦点検出性能の指標として用いることができる。 Next, with reference to FIGS. 9 to 11, focus detection during continuous shooting will be described. When continuous shooting is to be performed in a so-called small aperture state, it is desirable to perform focus detection with an open aperture value that takes as long a baseline length as possible in order to perform focus detection with higher accuracy. In this case, as described above, the conversion coefficient K can be used as an index of the focus detection performance.

図9を参照して、撮影用光学系であるレンズA,B,Cは、異なる射出瞳距離D1を有し、像高、および射出瞳距離Dl、撮像素子107の設定瞳距離Dsの関係性から、像高ごとに変換係数Kが異なる。この変換係数Kによって焦点検出精度が異なってくるため、本実施形態では、焦点検出性能を一定以上に保つため、変換係数Kに閾値Kthを設けて制御する。 With reference to FIG. 9, the lenses A, B, and C, which are optical systems for photographing, have different exit pupil distances D1, and the relationship between the image height, the exit pupil distance Dl, and the set pupil distance Ds of the image sensor 107. Therefore, the conversion coefficient K differs depending on the image height. Since the focus detection accuracy differs depending on the conversion coefficient K, in the present embodiment, in order to keep the focus detection performance above a certain level, the conversion coefficient K is controlled by providing a threshold value Kth.

図10は、例えば、変換係数Kの像高ごとの変化が最も大きい図9のレンズAを用いる場合に、レンズAの絞り値ごとの変換係数Kの像高変化を示すグラフ図である。変換係数Kは、撮影光学系の射出瞳面上での基線長に由来するため、F値によって、変換係数Kが決まる。このとき、絞り値が小さいほうが基線長を長く取ることができ、変換係数Kの値は小さくなる。 FIG. 10 is a graph showing, for example, a change in the image height of the conversion coefficient K for each aperture value of the lens A when the lens A in FIG. 9 having the largest change in the conversion coefficient K for each image height is used. Since the conversion coefficient K is derived from the baseline length on the exit pupil surface of the photographing optical system, the conversion coefficient K is determined by the F value. At this time, the smaller the aperture value, the longer the baseline length, and the smaller the value of the conversion coefficient K.

ここで、前述したように、焦点検出性能を一定以上に保つための変換係数Kの閾値Kthを1としたとする。図10から、像高0mm付近、つまり中央像高付近ではF11の小絞り状態においても変換係数Kが閾値Kth以下であるため、良好な焦点検出性能で焦点検出を行うことができる。一方、像高が5mmを超えるあたりから、変換係数Kが閾値Kthを超え、焦点検出性能が下がってしまう。このため、絞り開放であるF2.8で焦点検出を行う必要があることが分かる。 Here, as described above, it is assumed that the threshold value Kth of the conversion coefficient K for keeping the focus detection performance above a certain level is 1. From FIG. 10, in the vicinity of the image height of 0 mm, that is, in the vicinity of the central image height, the conversion coefficient K is equal to or less than the threshold value Kth even in the small aperture state of F11, so that the focus can be detected with good focus detection performance. On the other hand, when the image height exceeds 5 mm, the conversion coefficient K exceeds the threshold value Kth, and the focus detection performance deteriorates. Therefore, it can be seen that it is necessary to perform focus detection at F2.8, which is the maximum aperture.

このように、変換係数Kに閾値Kthを設け、閾値Kthを基に小絞りの状態で焦点検出を行うか、絞り開放まで開いてから焦点検出を行うかを選択することによって、一定以上の焦点検出性能を保ちながら小絞り連写を行うことが可能となる。 In this way, by setting a threshold value Kth for the conversion coefficient K and selecting whether to perform focus detection in a small aperture state based on the threshold value Kth or to perform focus detection after opening the aperture to the maximum aperture, the focus is above a certain level. It is possible to perform small aperture continuous shooting while maintaining the detection performance.

図11は、連写開始から終了までの一連の処理を説明するフローチャートである。図11の各処理は、システム制御回路121のROM等に記憶されたプログラムがRAMに展開されてCPU等によって実行される。 FIG. 11 is a flowchart illustrating a series of processes from the start to the end of continuous shooting. Each process of FIG. 11 is executed by the CPU or the like by expanding the program stored in the ROM or the like of the system control circuit 121 into the RAM.

図11において、ステップS1101では、システム制御回路121は、焦点検出用の露出条件を決定し、ステップS1102に進む。ステップS1102では、システム制御回路121は、焦点検出を行うとき変換係数Kを取得し、ステップS1103に進む。 In FIG. 11, in step S1101, the system control circuit 121 determines the exposure condition for focus detection, and proceeds to step S1102. In step S1102, the system control circuit 121 acquires the conversion coefficient K when performing focus detection, and proceeds to step S1103.

ここで取得する変換係数Kは、あらかじめ像高やF値や撮影光学系の射出瞳距離D1、撮像素子107の設定瞳距離Dsなどの光学条件に応じた値を算出した変換係数テーブルをシステム制御回路121のROM等に保存しておく。又はシステム制御回路121において、その都度、像高やF値や射出瞳距離D1、撮像素子107の設定瞳距離Dsなどの光学条件から変換係数を算出して用いてもよい。 The conversion coefficient K acquired here is a conversion coefficient table in which the image height, the F value, the exit pupil distance D1 of the photographing optical system, the set pupil distance Ds of the image sensor 107, and the like are calculated in advance according to the optical conditions. It is saved in the ROM or the like of the circuit 121. Alternatively, in the system control circuit 121, the conversion coefficient may be calculated and used from the optical conditions such as the image height, the F value, the exit pupil distance D1, and the set pupil distance Ds of the image pickup device 107 each time.

また、撮影光学系であるレンズの前枠や後枠による、いわゆる枠ケラレの情報を用いてもよい。例えば、射出瞳距離D1や撮像素子107の設定瞳距離Ds、及び像高などの光学条件から変換係数Kを算出するが、そこにレンズごとの枠ケラレ情報を用いて、周辺像高における変換係数に補正を掛ければ、より高精度な変換係数Kを算出することができる。また、変換係数Kによる絞り駆動の切り替えも、より正確なものにすることができる。 Further, information on so-called frame vignetting by the front frame and the rear frame of the lens, which is the photographing optical system, may be used. For example, the conversion coefficient K is calculated from the optical conditions such as the exit pupil distance D1, the set pupil distance Ds of the image sensor 107, and the image height, and the conversion coefficient at the peripheral image height is calculated by using the frame vignetting information for each lens. Can be corrected to calculate a more accurate conversion coefficient K. Further, the switching of the aperture drive by the conversion coefficient K can be made more accurate.

ステップS1103では、システム制御回路121は、変換係数Kが閾値Kth以下(閾値以下)か否かを判定し、変換係数Kが閾値Kth以下の場合は、ステップS1104に進み、変換係数Kが閾値Kthを超えている場合は、ステップS1108に進む。ステップS1104では、十分な焦点検出性能があると言えるので、システム制御回路121は、その絞り値のまま焦点検出を行い、ステップS1105に進む。 In step S1103, the system control circuit 121 determines whether or not the conversion coefficient K is equal to or less than the threshold value Kth (below the threshold value), and if the conversion coefficient K is equal to or less than the threshold value Kth, the process proceeds to step S1104 and the conversion coefficient K is the threshold value Kth. If it exceeds, the process proceeds to step S1108. Since it can be said that the focus detection performance is sufficient in step S1104, the system control circuit 121 performs focus detection with the aperture value as it is, and proceeds to step S1105.

この状態では既に合焦状態は良好であるため、システム制御回路121は、ステップS1106で撮像動作を行い、ステップS1107で連写が終了したか否かを判定し、終了した場合は、処理を終了し、終了していない場合は、ステップS1101に戻る。 Since the in-focus state is already good in this state, the system control circuit 121 performs an imaging operation in step S1106, determines whether or not continuous shooting is completed in step S1107, and if so, ends the process. If it is not completed, the process returns to step S1101.

一方、ステップS1108では、システム制御回路121は、変換係数Kが閾値Kth以下の絞り値、又は開放絞り値に設定し、ステップS1109に進む。絞り値を開放絞り値に設定することによって、変換係数Kをできるだけ下げることができ、良好な焦点検出性能を得ることができる。 On the other hand, in step S1108, the system control circuit 121 sets the aperture value of the conversion coefficient K to or less than the threshold value Kth or the open aperture value, and proceeds to step S1109. By setting the aperture value to the open aperture value, the conversion coefficient K can be lowered as much as possible, and good focus detection performance can be obtained.

ステップS109では、システム制御回路121は、ステップS108で設定された絞り値における露出条件を決定し、ステップS110に進む。そして、システム制御回路121は、ステップS110で焦点検出を行い、ステップS111にてレンズ駆動を行った後に、ステップS112にて、ステップS108で設定された絞り値を撮影用の絞り値に戻し、ステップS1106にて撮像を行う。 In step S1 1 09, the system control circuit 121 determines the exposure condition at the aperture value set in step S1 108 , and proceeds to step S1 1 10. Then, the system control circuit 121 detects the focus in step S1 10 and drives the lens in step S1 11 and then takes a picture of the aperture value set in step S1 1 08 in step S1 1 12. The aperture value is returned to the aperture value for, and imaging is performed in step S1106.

以上説明したように、本実施形態では、焦点検出性能を一定以上に保ったまま焦点検出を行うことができるので、小絞り連写においても良好な焦点検出を行うことができ、連写中に良好な合焦状態の画像を得ることが可能となる。 As described above, in the present embodiment, since focus detection can be performed while maintaining the focus detection performance above a certain level, good focus detection can be performed even in small aperture continuous shooting, and during continuous shooting. It is possible to obtain an image in a good in-focus state.

(第2の実施形態)
次に、図12を参照して、本発明の撮像装置の第2実施形態であるデジタルカメラについて説明する。なお、上記第1の実施形態に対して重複する部分については、図及び符号を流用しつつ、主に相違点について説明する。
(Second embodiment)
Next, with reference to FIG. 12, a digital camera according to a second embodiment of the image pickup apparatus of the present invention will be described. Regarding the parts that overlap with the first embodiment, the differences will be mainly described while diverting the figures and the reference numerals.

上記第1の実施形態では、図11のステップS1103で変換係数Kと閾値Kthの比較結果に応じて焦点検出時の絞り値を決定していたが、これに限定されない。例えば、焦点検出を行っている際に、その都度検出されるデフォーカス量も加味して、その次の焦点検出の絞り値を決定してもよい。撮像面位相差検出方式による焦点検出は、絞り値が大きいほど、得られる像はボケにくく鮮明になるため、デフォーカス量が大きい場合における焦点検出性能は向上する。 In the first embodiment, the aperture value at the time of focus detection is determined according to the comparison result of the conversion coefficient K and the threshold value Kth in step S1103 of FIG. 11, but the present invention is not limited to this. For example, the aperture value for the next focus detection may be determined in consideration of the defocus amount detected each time the focus is detected. In the focus detection by the imaging surface phase difference detection method, the larger the aperture value, the less blurred the image is and the clearer the image is, so that the focus detection performance is improved when the defocus amount is large.

図12は、連写開始から終了までの一連の処理を説明するフローチャートである。図12の各処理は、システム制御回路121のROM等に記憶されたプログラムがRAMに展開されてCPU等によって実行される。なお、図12のステップS1201~ステップS1212の処理は、上記第1の実施形態の図11のステップS1101~ステップS1102の処理と同一であるため、ステップS1203aについて説明する。 FIG. 12 is a flowchart illustrating a series of processes from the start to the end of continuous shooting. Each process of FIG. 12 is executed by the CPU or the like by expanding the program stored in the ROM or the like of the system control circuit 121 into the RAM. Since the processing of steps S1201 to S1212 in FIG. 12 is the same as the processing of steps S1101 to S1102 of FIG. 11 of the first embodiment, step S1203a will be described.

ステップS1203において、変換係数Kが閾値Kthを超えていたとしても、その時、もしくはその直前で検出された検出デフォーカス量Defが閾値Dthを超えている場合であれば、小絞りのまま焦点検出を行ったほうが正確である。 In step S1203, even if the conversion coefficient K exceeds the threshold value Kth, if the detection defocus amount Def detected at that time or immediately before it exceeds the threshold value Dth, focus detection is performed with a small aperture. It is more accurate to go.

変換係数Kは、合焦近傍付近において高い検出性能を示すには小さいほど良いが、検出される検出デフォーカス量Defが大きい場合はそうとは限らない。 The smaller the conversion coefficient K is, the better it is to show high detection performance in the vicinity of focusing, but this is not always the case when the detected defocus amount Def is large.

よって、ステップS1203aでは、システム制御回路121は、検出デフォーカス量Defが閾値Dthを超えている場合は、ステップS1204に進んで小絞りのまま焦点検出を行い、閾値Dth以下の場合にステップS1208に進む。このように焦点検出用の絞り値を決定すれば、あらゆるデフォーカス状態においても良好に焦点検出を行うことが可能となる。その他の構成、及び作用効果は、上記第1の実施形態と同様である。 Therefore, in step S1203a, if the detected defocus amount Def exceeds the threshold value Dth, the system control circuit 121 proceeds to step S1204 to perform focus detection with a small aperture, and if it is equal to or less than the threshold value Dth, the system control circuit 121 goes to step S1208. move on. By determining the aperture value for focus detection in this way, it is possible to perform good focus detection in any defocus state. Other configurations and effects are the same as those in the first embodiment.

なお、本発明は、上記各実施形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。 The present invention is not limited to those exemplified in each of the above embodiments, and can be appropriately modified without departing from the gist of the present invention.

ところで、近年では、連写を行う際に、撮影者が合焦精度を重視するか、もしくは連写速度を重視するかを選択できるカメラが増えてきている。このため、撮影者が合焦精度を重視する場合は、変換係数Kが閾値Kthを超えるとき、閾値Kth以下の絞り値に変更し、連写速度を重視したい場合は、絞り駆動自体を省略したいので、絞りは撮影用の絞り値のまま焦点検出を行って撮影を行うようにしてもよい。これにより、撮影者が合焦精度を重視する場合、もしくは連写速度を重視する場合などにおいて、それぞれ適した絞り駆動を行い、合焦精度と連写速度のバランスを持った連写を行うことが可能となる。 By the way, in recent years, an increasing number of cameras allow the photographer to select whether to emphasize focusing accuracy or continuous shooting speed when performing continuous shooting. Therefore, when the photographer emphasizes focusing accuracy, when the conversion coefficient K exceeds the threshold value Kth, the aperture value is changed to the aperture value equal to or less than the threshold value Kth, and when the continuous shooting speed is emphasized, the aperture drive itself is desired to be omitted. Therefore, the aperture may be used for shooting by performing focus detection with the aperture value for shooting. As a result, when the photographer places importance on focusing accuracy or continuous shooting speed, the aperture drive suitable for each is performed, and continuous shooting with a balance between focusing accuracy and continuous shooting speed is performed. Is possible.

また、上記各実施形態では、連写を行う際の焦点検出の絞り値決定方法について説明したが、連写に限ることなく、1枚のみの単体撮影を行う場合でもよい。 Further, in each of the above embodiments, the method of determining the aperture value of the focus detection when performing continuous shooting has been described, but the method is not limited to continuous shooting, and a single shooting of only one image may be performed.

また、本発明の適用範囲は、静止画を撮影するための撮像装置、動画を撮影するための撮像装置、またその両方を撮影するための撮像装置の全てに適用することができる。例えば、一般的な一眼レフカメラ、コンパクトカメラ、ビデオカメラ、または監視カメラ等の像ぶれ補正を行う撮像装置において適用することができる。 Further, the scope of application of the present invention can be applied to all of an image pickup device for shooting a still image, an image pickup device for shooting a moving image, and an image pickup device for shooting both of them. For example, it can be applied to an image pickup device for image blur correction such as a general single-lens reflex camera, a compact camera, a video camera, or a surveillance camera.

また、本発明は、以下の処理を実行することによっても実現される。即ち、本発明は、上述の実施形態の1以上の機能を実現するプログラムをネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。 The present invention is also realized by executing the following processing. That is, the present invention supplies a program that realizes one or more functions of the above-described embodiment to a system or device via a network or storage medium, and one or more processors in the computer of the system or device reads the program. It can also be realized by the processing to be executed. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

101 第1レンズ群
102 絞り兼用シャッタ
103 第2レンズ
105 第3レンズ
107 撮像素子
112 絞りシャッタアクチュエータ
121 システム制御回路
124 撮像素子駆動回路
125 画像処理回路
128 絞りシャッタ駆動回路
101 1st lens group 102 Aperture combined shutter 103 2nd lens 105 3rd lens 107 Image sensor 112 Aperture shutter actuator 121 System control circuit 124 Image sensor drive circuit 125 Image processing circuit 128 Aperture shutter drive circuit

Claims (11)

撮影光学系の第1瞳部分領域および前記第1瞳部分領域と異なる第2瞳部分領域を通過する光束をそれぞれ受光する第1焦点検出画素および第2焦点検出画素とが複数配列された撮像素子と、
前記第1焦点検出画素の受光信号に基づいて第1焦点検出信号を生成し、前記第2焦点検出画素の受光信号に基づいて第2焦点検出信号を生成する生成手段と、
前記第1焦点検出信号と前記第2焦点検出信号に基づいて像ずれ量を算出し、前記算出した前記像ずれ量に、前記第1瞳部分領域の重心と前記第2瞳部分領域の重心との間隔である基線長と前記撮像素子の設定瞳距離とに応じた変換係数をかけあわせてデフォーカス量を検出する焦点検出手段と、
前記変換係数に基づき、焦点検出の際の絞り値を決定する決定手段と、を備え
前記変換係数が閾値より大きい場合には、前記焦点検出の際の絞り値を撮影用の絞り値よりも開放側に変更し、撮影の際に前記撮影用の絞り値に戻すことを特徴とする撮像装置。
An image sensor in which a plurality of first focus detection pixels and second focus detection pixels that receive light flux passing through a first pupil region and a second pupil region different from the first pupil region of the photographing optical system are arranged. When,
A generation means for generating a first focus detection signal based on the light receiving signal of the first focus detection pixel and generating a second focus detection signal based on the light receiving signal of the second focus detection pixel.
The image shift amount is calculated based on the first focus detection signal and the second focus detection signal, and the calculated image shift amount includes the center of gravity of the first pupil portion region and the center of gravity of the second pupil portion region. A focus detection means for detecting the amount of defocus by multiplying the baseline length, which is the interval between the above, and the conversion coefficient according to the set pupil distance of the image pickup element .
A determination means for determining the aperture value at the time of focus detection based on the conversion coefficient is provided .
When the conversion coefficient is larger than the threshold value, the aperture value at the time of focusing detection is changed to the open side of the aperture value for photography, and the aperture value for photography is returned to the aperture value at the time of photography. Imaging device.
前記変換係数は、撮影の際の撮影光学系の光学条件に応じた値であることを特徴とする請求項に記載の撮像装置。 The imaging device according to claim 1 , wherein the conversion coefficient is a value corresponding to the optical conditions of the photographing optical system at the time of photographing. 前記変換係数は、撮影の際の撮影光学系の光学条件に応じて予めメモリに記録されている変換係数テーブルから選択されることを特徴とする請求項に記載の撮像装置。 The image pickup apparatus according to claim 1 , wherein the conversion coefficient is selected from a conversion coefficient table previously recorded in a memory according to the optical conditions of the photographing optical system at the time of photographing. 前記撮影光学系の光学条件には、少なくとも前記撮影光学系の射出瞳距離が含まれることを特徴とする請求項2または3に記載の撮像装置。 The imaging device according to claim 2 or 3 , wherein the optical conditions of the photographing optical system include at least the exit pupil distance of the photographing optical system. 前記撮影光学系の光学条件には、少なくとも前記撮影光学系の枠ケラレ情報が含まれることを特徴とする請求項2乃至4のいずれか一項に記載の撮像装置。 The image pickup apparatus according to any one of claims 2 to 4 , wherein the optical conditions of the photographing optical system include at least frame vignetting information of the photographing optical system. 前記撮像素子の光学条件には、少なくとも前記撮像素子の設定瞳距離が含まれることを特徴とする請求項2乃至5のいずれか一項に記載の撮像装置。 The image pickup apparatus according to any one of claims 2 to 5 , wherein the optical conditions of the image pickup element include at least a set pupil distance of the image pickup element. 前記焦点検出の際の絞り値を撮影者が選択するための選択手段を備えることを特徴とする請求項1乃至のいずれか一項に記載の撮像装置。 The image pickup apparatus according to any one of claims 1 to 6 , further comprising a selection means for the photographer to select an aperture value at the time of focus detection. 前記決定手段は、前記変換係数が前記閾値を超える場合、前記焦点検出の際の絞り値を前記変換係数が前記閾値以下となるような絞り値に設定することを特徴とする請求項1乃至6のいずれか一項に記載の撮像装置。 Claims 1 to 6 are characterized in that, when the conversion coefficient exceeds the threshold value, the determination means sets the aperture value at the time of focus detection to a diaphragm value such that the conversion coefficient is equal to or less than the threshold value. The image pickup apparatus according to any one of the above. 前記決定手段は、前記変換係数が前記閾値を超え、かつ前記検出されたデフォーカス量が閾値以下の場合、前記焦点検出の際の絞り値を前記変換係数が前記閾値以下となるような絞り値に設定することを特徴とする請求項1乃至6のいずれか一項に記載の撮像装置。 When the conversion coefficient exceeds the threshold value and the detected defocus amount is equal to or less than the threshold value, the determination means sets the aperture value at the time of the focus detection to be the aperture value such that the conversion coefficient is equal to or less than the threshold value. The image pickup apparatus according to any one of claims 1 to 6 , wherein the image pickup apparatus is set to. 絞りの開口径を制御して撮影光量を調節する制御手段をさらに有し、
前記制御手段は、前記決定手段により決定された絞り値に基づいて、絞りの開口径を制御することを特徴とする請求項1乃至9のいずれか一項に記載の撮像装置。
It also has a control means for controlling the aperture diameter of the aperture to adjust the amount of shooting light.
The image pickup apparatus according to any one of claims 1 to 9 , wherein the control means controls the aperture diameter of the diaphragm based on the diaphragm value determined by the determination means.
撮影光学系の第1瞳部分領域および前記第1瞳部分領域と異なる第2瞳部分領域を通過する光束をそれぞれ受光する第1焦点検出画素および第2焦点検出画素とが複数配列された撮像素子を備える撮像装置の制御方法であって、
前記第1焦点検出画素の受光信号に基づいて第1焦点検出信号を生成し、前記第2焦点検出画素の受光信号に基づいて第2焦点検出信号を生成する生成ステップと、
前記第1焦点検出信号と前記第2焦点検出信号に基づいて像ずれ量を算出し、前記算出した前記像ずれ量に、前記第1瞳部分領域の重心と前記第2瞳部分領域の重心との間隔である基線長と前記撮像素子の設定瞳距離とに応じた変換係数をかけあわせてデフォーカス量を検出する焦点検出ステップと、
前記変換係数に基づき、焦点検出の際の絞り値を決定する決定ステップと、を備え
前記変換係数が閾値より大きい場合には、前記焦点検出の際の絞り値を撮影用の絞り値よりも開放側に変更し、撮影の際に前記撮影用の絞り値に戻すことを特徴とする撮像装置の制御方法。
An image sensor in which a plurality of first focus detection pixels and second focus detection pixels that receive light flux passing through a first pupil region and a second pupil region different from the first pupil region of the photographing optical system are arranged. It is a control method of an image pickup device provided with
A generation step of generating a first focus detection signal based on the light receiving signal of the first focus detection pixel and generating a second focus detection signal based on the light receiving signal of the second focus detection pixel.
The image shift amount is calculated based on the first focus detection signal and the second focus detection signal, and the calculated image shift amount includes the center of gravity of the first pupil portion region and the center of gravity of the second pupil portion region. A focus detection step for detecting the amount of defocus by multiplying the baseline length, which is the interval between the above, and the conversion coefficient according to the set pupil distance of the image pickup element .
A determination step for determining the aperture value at the time of focus detection based on the conversion coefficient is provided .
When the conversion coefficient is larger than the threshold value, the aperture value at the time of focusing detection is changed to the open side of the aperture value for photography, and the aperture value for photography is returned to the aperture value at the time of photography. Control method of the image pickup device.
JP2017144663A 2017-07-26 2017-07-26 Image pickup device and its control method Active JP7005209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017144663A JP7005209B2 (en) 2017-07-26 2017-07-26 Image pickup device and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017144663A JP7005209B2 (en) 2017-07-26 2017-07-26 Image pickup device and its control method

Publications (3)

Publication Number Publication Date
JP2019028142A JP2019028142A (en) 2019-02-21
JP2019028142A5 JP2019028142A5 (en) 2020-08-27
JP7005209B2 true JP7005209B2 (en) 2022-01-21

Family

ID=65476160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144663A Active JP7005209B2 (en) 2017-07-26 2017-07-26 Image pickup device and its control method

Country Status (1)

Country Link
JP (1) JP7005209B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142464A (en) 2010-01-06 2011-07-21 Nikon Corp Focus detecting device and imaging device
JP2011227388A (en) 2010-04-22 2011-11-10 Canon Inc Imaging device
JP2012058747A (en) 2011-11-01 2012-03-22 Nikon Corp Digital camera
JP2012208159A (en) 2011-03-29 2012-10-25 Sony Corp Imaging device, image pickup element, image processing method, and program
JP2012220925A (en) 2011-04-14 2012-11-12 Canon Inc Imaging apparatus and camera system
JP2013054120A (en) 2011-09-01 2013-03-21 Nikon Corp Focus detection device and focus adjustment device
JP2013239787A (en) 2012-05-11 2013-11-28 Olympus Corp Imaging element and imaging apparatus using the same
JP2014215476A (en) 2013-04-25 2014-11-17 キヤノン株式会社 Imaging apparatus and method for controlling the same
US20170041588A1 (en) 2011-03-29 2017-02-09 Sony Corporation Image pickup unit, image pickup device, picture processing method, diaphragm control method, and program

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142464A (en) 2010-01-06 2011-07-21 Nikon Corp Focus detecting device and imaging device
JP2011227388A (en) 2010-04-22 2011-11-10 Canon Inc Imaging device
JP2012208159A (en) 2011-03-29 2012-10-25 Sony Corp Imaging device, image pickup element, image processing method, and program
US20170041588A1 (en) 2011-03-29 2017-02-09 Sony Corporation Image pickup unit, image pickup device, picture processing method, diaphragm control method, and program
JP2012220925A (en) 2011-04-14 2012-11-12 Canon Inc Imaging apparatus and camera system
JP2013054120A (en) 2011-09-01 2013-03-21 Nikon Corp Focus detection device and focus adjustment device
JP2012058747A (en) 2011-11-01 2012-03-22 Nikon Corp Digital camera
JP2013239787A (en) 2012-05-11 2013-11-28 Olympus Corp Imaging element and imaging apparatus using the same
JP2014215476A (en) 2013-04-25 2014-11-17 キヤノン株式会社 Imaging apparatus and method for controlling the same

Also Published As

Publication number Publication date
JP2019028142A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US10545312B2 (en) Focus detection apparatus, control method thereof, and storage medium storing program
US8654227B2 (en) Focus detection apparatus, focus detection method, and image sensing apparatus
JP6239857B2 (en) Imaging apparatus and control method thereof
JP6249825B2 (en) Imaging device, control method thereof, and control program
JP6239855B2 (en) Focus adjustment apparatus, focus adjustment method and program, and imaging apparatus
WO2012093551A1 (en) Image capture apparatus
JP2016038414A (en) Focus detection device, control method thereof, and imaging apparatus
JP7007871B2 (en) Imaging device and its control method, program, storage medium
JP6971685B2 (en) Imaging device and its control method
JP6271911B2 (en) Imaging apparatus, control method therefor, and defocus amount calculation method
JP2017032646A (en) Image-capturing device and method for controlling the same
JP2012220790A (en) Imaging apparatus
US10326926B2 (en) Focus detection apparatus and method, and image capturing apparatus
JP2017188633A (en) Imaging device and imaging apparatus
JP6862102B2 (en) Control device, image pickup device, control method, program, and storage medium
JP6639326B2 (en) Control device, imaging device, control method, program, and storage medium
JP7309383B2 (en) Imaging device
JP7005209B2 (en) Image pickup device and its control method
JP7019337B2 (en) Image stabilization device, lens device and their control method
JP7022575B2 (en) Focus detectors and methods, and imaging devices
JP6701023B2 (en) Imaging device, image processing method, image processing system, and image processing program
JP6576155B2 (en) Image processing apparatus, imaging apparatus, and image display system
JP2020057017A (en) Image-capturing device and method for controlling the same
JP2016057402A (en) Imaging device and method for controlling the same
JP6671868B2 (en) Control device, imaging device, control method, program, and storage medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105