JP2013054120A - Focus detection device and focus adjustment device - Google Patents

Focus detection device and focus adjustment device Download PDF

Info

Publication number
JP2013054120A
JP2013054120A JP2011190920A JP2011190920A JP2013054120A JP 2013054120 A JP2013054120 A JP 2013054120A JP 2011190920 A JP2011190920 A JP 2011190920A JP 2011190920 A JP2011190920 A JP 2011190920A JP 2013054120 A JP2013054120 A JP 2013054120A
Authority
JP
Japan
Prior art keywords
focus detection
value
pair
focus
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011190920A
Other languages
Japanese (ja)
Other versions
JP5857547B2 (en
Inventor
Yosuke Kusaka
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011190920A priority Critical patent/JP5857547B2/en
Publication of JP2013054120A publication Critical patent/JP2013054120A/en
Application granted granted Critical
Publication of JP5857547B2 publication Critical patent/JP5857547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a focus detection device in which an error in conversion from an image blur amount to a defocus amount is very small, even when the defocus amount is large and to provide a focus adjustment device.SOLUTION: The focus detection device includes a plurality of focus detection pixels receiving a pair of luminous fluxes passing through an exit pupil surface and outputting a pair of signals, image blur amount detection means detecting the image blur amounts of a pair of images by a pair of luminous fluxes, and a defocus amount calculation means calculating the defocus amount of an optical system by multiplying the image blur amount by a predetermined conversion coefficient. The defocus amount calculation means uses a first value as the value of the predetermined conversion coefficient, in a focusing close state and a second value smaller than the first value as the value of the predetermined conversion coefficient, in a large defocus state.

Description

本発明は焦点検出装置および焦点調節装置に関する。   The present invention relates to a focus detection device and a focus adjustment device.

マイクロレンズとその背後に配置された一対の光電変換部とを有する焦点検出画素を撮影レンズの予定焦点面上に配列し、これにより撮影レンズを含む光学系(撮影光学系)を通る一対の焦点検出光束が形成する一対の像に応じた一対の像信号を生成し、この一対の像信号間の像ズレ量を検出することによって撮影レンズの焦点調節状態を検出する、いわゆる瞳分割型位相差検出方式の焦点検出装置が知られている。   A focus detection pixel having a microlens and a pair of photoelectric conversion units arranged behind the microlens is arranged on a predetermined focal plane of the photographing lens, and thereby a pair of focal points passing through an optical system (photographing optical system) including the photographing lens. A so-called pupil division type phase difference that generates a pair of image signals corresponding to a pair of images formed by the detection light beam and detects the focus adjustment state of the photographing lens by detecting an image shift amount between the pair of image signals. Detection type focus detection devices are known.

この種の焦点検出装置では、光学系の射出瞳距離を、該光学系の射出瞳上で一対の焦点検出光束が通過する一対の領域の重心間の距離で除した値を変換係数とし、検出された一対の像信号間の像ズレ量(位相差)に上記変換係数を乗じることにより光学系のデフォーカス量を算出して、焦点調節状態を検出している(例えば、特許文献1参照)。   In this type of focus detection device, a value obtained by dividing the exit pupil distance of the optical system by the distance between the centroids of a pair of regions through which the pair of focus detection light beams pass on the exit pupil of the optical system is used as a conversion coefficient. The defocus amount of the optical system is calculated by multiplying the image shift amount (phase difference) between the pair of image signals thus obtained by the conversion coefficient to detect the focus adjustment state (see, for example, Patent Document 1). .

特開2008−268403号公報JP 2008-268403 A

しかしながら、上述したこの種の焦点検出装置において、デフォーカス量が大きい場合には、上述した従来技術のように像ズレ量をデフォーカス量に変換したのでは変換誤差が増大する。   However, in the above-described focus detection apparatus of this type, when the defocus amount is large, if the image shift amount is converted into the defocus amount as in the above-described prior art, a conversion error increases.

(1)請求項1に記載の焦点検出装置は、光学系の射出瞳面を通過する一対の光束を受光し、一対の信号を出力する複数の焦点検出画素と、一対の信号に対する相関演算処理により、一対の光束による一対の像の像ズレ量を検出する像ズレ量検出手段と、像ズレ量に所定の変換係数を乗じて光学系のデフォーカス量を算出するデフォーカス量算出手段とを備え、射出瞳面における一対の光束の光量分布の各々は、一対の光量分布の各々の分布重心に関して不対称性を有し、デフォーカス量算出手段は、算出したデフォーカス量の絶対値が所定の閾値未満である合焦近傍状態においては所定の変換係数の値として第1の値を用いるとともに、絶対値が所定の閾値以上である大デフォーカス状態においては所定の変換係数の値として第1の値よりも小さい第2の値を用いることを特徴とする。
(2)請求項13に記載の焦点調節装置は、請求項1乃至12のいずれか一項に記載の焦点検出装置と、 焦点検出装置により算出されたデフォーカス量に応じて光学系の焦点調節を行う焦点調節手段とを備えることを特徴とする。
(3)請求項14に記載の焦点検出装置は、光学系の射出瞳面を通過する一対の光束を受光し、一対の信号を出力する複数の焦点検出画素と、一対の信号に対する相関演算処理により、一対の光束による一対の像の像ズレ量を検出する像ズレ量検出手段と、像ズレ量に所定の変換係数を乗じて光学系のデフォーカス量を算出するデフォーカス量算出手段とを備え、デフォーカス量算出手段は、算出したデフォーカス量の絶対値が所定の閾値未満である合焦近傍状態においては所定の変換係数の値として第1の値を用いるとともに、絶対値が所定の閾値以上である大デフォーカス状態においては所定の変換係数の値として第1の値よりも小さい第2の値を用いることを特徴とする。
(1) A focus detection apparatus according to a first aspect receives a pair of light beams passing through an exit pupil plane of an optical system and outputs a pair of signals, and a correlation calculation process for the pair of signals. Thus, an image shift amount detection unit that detects an image shift amount of a pair of images due to a pair of light beams, and a defocus amount calculation unit that calculates a defocus amount of the optical system by multiplying the image shift amount by a predetermined conversion coefficient. Each of the light quantity distributions of the pair of light fluxes on the exit pupil plane is asymmetric with respect to the distribution center of gravity of each of the pair of light quantity distributions, and the defocus amount calculation means has a predetermined absolute value of the calculated defocus amount. The first value is used as the value of the predetermined conversion coefficient in the in-focus vicinity state that is less than the threshold value, and the first value as the predetermined conversion coefficient value in the large defocus state in which the absolute value is greater than or equal to the predetermined threshold value. From the value of Characterized by using a smaller second value.
(2) A focus adjustment apparatus according to a thirteenth aspect is the focus detection apparatus according to any one of the first to twelfth aspects, and the focus adjustment of the optical system according to the defocus amount calculated by the focus detection apparatus. And a focus adjusting means for performing the above.
(3) The focus detection apparatus according to claim 14 receives a pair of light beams passing through the exit pupil plane of the optical system, outputs a pair of signals, and correlation calculation processing for the pair of signals. Thus, an image shift amount detection unit that detects an image shift amount of a pair of images due to a pair of light beams, and a defocus amount calculation unit that calculates a defocus amount of the optical system by multiplying the image shift amount by a predetermined conversion coefficient. The defocus amount calculating means uses the first value as the value of the predetermined conversion coefficient in the near-focus state where the absolute value of the calculated defocus amount is less than the predetermined threshold, and the absolute value is a predetermined value. In the large defocus state that is equal to or greater than the threshold value, the second value smaller than the first value is used as the value of the predetermined conversion coefficient.

本発明によれば、デフォーカス量が大きい場合においても、像ズレ量からデフォーカス量への変換誤差が微小となる焦点検出装置および焦点調節装置を提供することができる。   According to the present invention, it is possible to provide a focus detection device and a focus adjustment device in which a conversion error from an image shift amount to a defocus amount is small even when the defocus amount is large.

一実施の形態の焦点検出装置および焦点調節装置を有するデジタルスチルカメラの構成を示す横断面図である。It is a cross-sectional view showing a configuration of a digital still camera having a focus detection device and a focus adjustment device of an embodiment. 交換レンズの予定結像面に設定した撮影画面上における焦点検出エリアを示す図である。It is a figure which shows the focus detection area on the imaging | photography screen set to the scheduled image formation surface of an interchangeable lens. 撮像素子の詳細な構成を示す正面図である。It is a front view which shows the detailed structure of an image pick-up element. 焦点検出画素が受光する焦点検出光束の状態を説明するための断面図である。It is sectional drawing for demonstrating the state of the focus detection light beam which a focus detection pixel receives. 焦点検出画素が受光する焦点検出光束の状態を説明するための断面図である。It is sectional drawing for demonstrating the state of the focus detection light beam which a focus detection pixel receives. 一対の測距瞳から各焦点検出エリアに到来する一対の焦点検出光束の関係を示す図である。It is a figure which shows the relationship of a pair of focus detection light beam which arrives at each focus detection area from a pair of ranging pupil. 一対の焦点検出光束が交換レンズの射出瞳によりどのように制限されるかを示した図である。It is the figure which showed how a pair of focus detection light flux was restrict | limited by the exit pupil of an interchangeable lens. デジタルスチルカメラの動作を示すフローチャートである。It is a flowchart which shows operation | movement of a digital still camera. 像ズレ検出演算処理を説明するための図である。It is a figure for demonstrating an image shift detection calculation process. 像ズレ量検出演算処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of an image shift amount detection calculation process. 実デフォーカス量と算出デフォーカス量との関係を示した図である。It is the figure which showed the relationship between the actual defocus amount and the calculated defocus amount. 像ズレ量の絶対値に応じて連続的に変化するように変換係数を定めた一例を示す図である。It is a figure which shows an example which defined the conversion coefficient so that it might change continuously according to the absolute value of image shift amount. 一対の測距瞳から結像面の中央に配置された焦点検出画素に到来する一対の焦点検出光束の関係を示す図である。It is a figure which shows the relationship between a pair of focus detection light flux which arrives at the focus detection pixel arrange | positioned in the center of an imaging surface from a pair of ranging pupil. 大デフォーカス時の一対のボケ像の光量分布形状を示した図である。It is the figure which showed the light quantity distribution shape of a pair of blur image at the time of large defocusing. 一対のボケ像を相対的にシフトさせてそれぞれの重心位置を通る重心線を一致させた場合の概念図である。FIG. 6 is a conceptual diagram when a pair of blurred images are relatively shifted and the barycentric lines passing through the barycentric positions are matched. 相関量が極小になるように一対のボケ像を相対的にシフトさせた場合の概念図である。It is a conceptual diagram at the time of a relative shift of a pair of blurred images so that the correlation amount is minimized. デフォーカス量が比較的小さい場合の一対のボケ像の光量分布形状を示した図である。It is the figure which showed the light quantity distribution shape of a pair of blur image in case a defocus amount is comparatively small. 一対のボケ像を相対的にシフトさせてそれぞれの重心位置を通る重心線を一致させた場合の概念図である。FIG. 6 is a conceptual diagram when a pair of blurred images are relatively shifted and the barycentric lines passing through the barycentric positions are matched. 光学系のF値が比較的大きな場合の一対の測距瞳分布の形状を示す図である。It is a figure which shows the shape of a pair of ranging pupil distribution when the F value of an optical system is comparatively large. 一対の焦点検出光束がケラレにより不均一に制限される場合の一対の測距瞳分布の形状を示す図である。It is a figure which shows the shape of a pair of ranging pupil distribution in case a pair of focus detection light flux is restrict | limited nonuniformly by vignetting. 撮像素子の詳細な構成を示す正面図である。It is a front view which shows the detailed structure of an image pick-up element.

本発明の一実施の形態の焦点検出装置および焦点調節装置を有する撮像装置として、レンズ交換式のデジタルスチルカメラを例に挙げて説明する。図1は一実施の形態の焦点検出装置および焦点調節装置を有するデジタルスチルカメラの構成を示す横断面図である。本実施の形態のデジタルスチルカメラ201は、交換レンズ202とカメラボディ203とから構成され、交換レンズ202がマウント部204を介してカメラボディ203に装着される。カメラボディ203にはマウント部204を介して種々の撮影光学系を有する交換レンズ202が装着可能である。   As an imaging apparatus having a focus detection apparatus and a focus adjustment apparatus according to an embodiment of the present invention, a lens interchangeable digital still camera will be described as an example. FIG. 1 is a cross-sectional view showing a configuration of a digital still camera having a focus detection device and a focus adjustment device according to an embodiment. A digital still camera 201 according to the present embodiment includes an interchangeable lens 202 and a camera body 203, and the interchangeable lens 202 is attached to the camera body 203 via a mount unit 204. An interchangeable lens 202 having various photographing optical systems can be attached to the camera body 203 via a mount unit 204.

交換レンズ202は、レンズ209、ズーミング用レンズ208、フォーカシング用レンズ210、絞り211、レンズ駆動制御装置206などを備えている。レンズ駆動制御装置206は不図示のマイクロコンピューター、メモリ、駆動制御回路などから構成され、フォーカシング用レンズ210の焦点調節、絞り211の開口径調節のための駆動制御、ズーミング用レンズ208、フォーカシング用レンズ210および絞り211の状態検出などを行う。また、後述するボディ駆動制御装置214との通信によりレンズ情報の送信とカメラ情報(デフォーカス量や絞り値など)の受信とを行う。絞り211は、光量およびボケ量調整のために光軸中心に開口径が可変な開口を形成する。   The interchangeable lens 202 includes a lens 209, a zooming lens 208, a focusing lens 210, a diaphragm 211, a lens drive control device 206, and the like. The lens drive control device 206 includes a microcomputer (not shown), a memory, a drive control circuit, and the like, and adjusts the focus of the focusing lens 210, drive control for adjusting the aperture diameter of the stop 211, zooming lens 208, and focusing lens. 210 and the state of the diaphragm 211 are detected. In addition, transmission of lens information and reception of camera information (defocus amount, aperture value, etc.) are performed by communication with a body drive control device 214 described later. The aperture 211 forms an aperture having a variable aperture diameter at the center of the optical axis in order to adjust the amount of light and the amount of blur.

カメラボディ203は、撮像素子212、ボディ駆動制御装置214、液晶表示素子駆動回路215、液晶表示素子216、接眼レンズ217、メモリカード219などを備えている。撮像素子212には、撮像画素が二次元状に配置されるとともに、焦点検出位置(焦点検出エリア)に対応した部分に焦点検出画素が組み込まれている。この撮像素子212については詳細を後述する。   The camera body 203 includes an image sensor 212, a body drive control device 214, a liquid crystal display element drive circuit 215, a liquid crystal display element 216, an eyepiece lens 217, a memory card 219, and the like. In the imaging element 212, imaging pixels are two-dimensionally arranged, and focus detection pixels are incorporated in portions corresponding to focus detection positions (focus detection areas). Details of the image sensor 212 will be described later.

ボディ駆動制御装置214は、マイクロコンピューター、メモリ、駆動制御回路などから構成される。ボディ駆動制御装置214は、撮像素子212の露光制御および撮像素子212からの画素信号の読み出しと、焦点検出画素の画素信号に基づく焦点検出演算と、交換レンズ202の焦点調節とを繰り返し行うとともに、画像信号の処理および記録、カメラの動作制御などを行う。また、ボディ駆動制御装置214は電気接点213を介してレンズ駆動制御装置206との通信を行い、レンズ情報の受信およびカメラ情報の送信を行う。   The body drive control device 214 includes a microcomputer, a memory, a drive control circuit, and the like. The body drive control device 214 repeatedly performs exposure control of the image sensor 212 and readout of the pixel signal from the image sensor 212, focus detection calculation based on the pixel signal of the focus detection pixel, and focus adjustment of the interchangeable lens 202, Processing and recording of image signals, camera operation control, etc. The body drive control device 214 communicates with the lens drive control device 206 via the electrical contact 213 to receive lens information and send camera information.

液晶表示素子216は電気的なビューファインダー(EVF:Electronic View Finder)として機能する。液晶表示素子駆動回路215は撮像素子212から読み出された画像データに基づき、スルー画像を液晶表示素子216に表示し、撮影者は接眼レンズ217を介してスルー画像を観察することができる。メモリカード219は、撮像素子212により撮像された画像データを記憶する画像ストレージである。   The liquid crystal display element 216 functions as an electric view finder (EVF). The liquid crystal display element driving circuit 215 displays a through image on the liquid crystal display element 216 based on the image data read from the image sensor 212, and the photographer can observe the through image through the eyepiece 217. The memory card 219 is an image storage that stores image data captured by the image sensor 212.

交換レンズ202を通過した光束により、撮像素子212の受光面上に被写体像が形成される。この被写体像は撮像素子212により光電変換され、撮像画素の画素信号(撮像信号)および焦点検出画素の画素信号(焦点検出信号)がボディ駆動制御装置214へ送られる。   A subject image is formed on the light receiving surface of the image sensor 212 by the light beam that has passed through the interchangeable lens 202. This subject image is photoelectrically converted by the image sensor 212, and the pixel signal (imaging signal) of the imaging pixel and the pixel signal (focus detection signal) of the focus detection pixel are sent to the body drive control device 214.

ボディ駆動制御装置214は、図8を用いて後述するように、撮像素子212の焦点検出画素からの画素信号(焦点検出信号)に基づいて一対の像データの像ズレ量を検出し、検出した像ズレ量に基づいてデフォーカス量を算出する。すなわち、本実施の形態における焦点検出装置は、少なくとも、焦点検出信号を出力する撮像素子212と、像ズレ量検出およびデフォーカス量算出を行うボディ駆動制御装置214とを含む。ボディ駆動制御装置214は、デフォーカス量に基づいて交換レンズ202の焦点調節状態を検出し、合焦近傍でないと判定したとき、このデフォーカス量をレンズ駆動制御装置206へ送り、レンズ駆動制御装置206にフォーカシング用レンズ210および絞り211を駆動させることにより、焦点調節を行う。すなわち、本実施の形態における焦点調節装置は上述した焦点検出装置を含むとともに、その焦点調節装置に含まれる焦点検出装置のボディ駆動制御装置214はさらに焦点調節を行う。また、ボディ駆動制御装置214は、撮像素子212からの画素信号を処理して画像データを生成し、メモリカード219に格納するとともに、撮像素子212から読み出されたスルー画像信号を液晶表示素子駆動回路215へ送り、スルー画像を液晶表示素子216に表示させる。さらに、ボディ駆動制御装置214は、レンズ駆動制御装置206へ絞り制御情報を送って絞り211の開口制御を行う。   As will be described later with reference to FIG. 8, the body drive control device 214 detects and detects the image shift amount of the pair of image data based on the pixel signal (focus detection signal) from the focus detection pixel of the image sensor 212. A defocus amount is calculated based on the image shift amount. That is, the focus detection device in the present embodiment includes at least an image sensor 212 that outputs a focus detection signal, and a body drive control device 214 that performs image shift amount detection and defocus amount calculation. When the body drive control device 214 detects the focus adjustment state of the interchangeable lens 202 based on the defocus amount, and determines that the focus adjustment state is not close to the in-focus state, the body drive control device 214 sends this defocus amount to the lens drive control device 206. The focus is adjusted by driving the focusing lens 210 and the aperture 211 to 206. That is, the focus adjustment apparatus in the present embodiment includes the above-described focus detection apparatus, and the body drive control device 214 of the focus detection apparatus included in the focus adjustment apparatus further performs focus adjustment. The body drive control device 214 processes the pixel signal from the image sensor 212 to generate image data, stores it in the memory card 219, and drives the through image signal read from the image sensor 212 to drive the liquid crystal display element. The image is sent to the circuit 215 and the through image is displayed on the liquid crystal display element 216. Further, the body drive control device 214 sends aperture control information to the lens drive control device 206 to control the aperture of the aperture 211.

レンズ駆動制御装置206は、フォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じてレンズ情報を更新する。具体的には、ズーミング用レンズ208およびフォーカシング用レンズ210の位置と絞り211の絞り値とを検出し、これらのレンズ位置と絞り値とに応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからレンズ位置と絞り値とに応じたレンズ情報を選択する。   The lens drive controller 206 updates the lens information according to the focusing state, zooming state, aperture setting state, aperture opening F value, and the like. Specifically, the positions of the zooming lens 208 and the focusing lens 210 and the aperture value of the aperture 211 are detected, and lens information is calculated according to these lens positions and aperture values, or prepared in advance. Lens information corresponding to the lens position and aperture value is selected from the look-up table.

レンズ駆動制御装置206は、受信したデフォーカス量に基づいてレンズ駆動量を算出し、レンズ駆動量に応じてフォーカシング用レンズ210を合焦位置へ駆動する。また、レンズ駆動制御装置206は受信した絞り値に応じて絞り211を駆動する。   The lens drive control device 206 calculates a lens drive amount based on the received defocus amount, and drives the focusing lens 210 to the in-focus position according to the lens drive amount. Further, the lens drive control device 206 drives the diaphragm 211 in accordance with the received diaphragm value.

図2は、交換レンズ202の予定結像面に規定した撮影画面上における焦点検出エリア(焦点検出位置)の一例を示す図である。図2に示す焦点検出エリアは、後述する撮像素子212上の焦点検出画素列が焦点検出の際に撮影画面上で像をサンプリングする領域の一例を示す。この例では、矩形の撮影画面100上の中央および上下の3箇所に焦点検出エリア101、102、103が配置される。焦点検出エリア101、102、103においては、長方形で示す焦点検出エリアの長手方向、すなわち図2の撮影画面100の垂直方向(縦方向)に対応するように、焦点検出画素が直線的に配列される。   FIG. 2 is a diagram illustrating an example of a focus detection area (focus detection position) on a shooting screen defined on the planned imaging plane of the interchangeable lens 202. The focus detection area shown in FIG. 2 shows an example of a region where an image is sampled on the shooting screen when a focus detection pixel array on the image sensor 212 described later performs focus detection. In this example, focus detection areas 101, 102, and 103 are arranged at the center and three locations on the top and bottom of the rectangular shooting screen 100. In the focus detection areas 101, 102, and 103, the focus detection pixels are linearly arranged so as to correspond to the longitudinal direction of the focus detection area indicated by a rectangle, that is, the vertical direction (vertical direction) of the photographing screen 100 in FIG. The

図3は撮像素子212の詳細な構成を示す正面図であり、図2の焦点検出エリア101、102、103に対応する撮像素子212上の領域の近傍を拡大して示す。撮像素子212には撮像画素310が二次元正方格子状に稠密に配列されるとともに、焦点検出エリア101、102、103に対応する位置には焦点検出用の焦点検出画素312、313が垂直方向(縦方向)の直線上に隣接して交互に配列され、焦点検出画素列が形成されている。   FIG. 3 is a front view showing a detailed configuration of the image sensor 212, and shows an enlarged vicinity of a region on the image sensor 212 corresponding to the focus detection areas 101, 102, and 103 in FIG. The imaging pixels 310 are densely arranged in a two-dimensional square lattice pattern on the imaging device 212, and focus detection pixels 312 and 313 for focus detection are arranged in a vertical direction (positions corresponding to the focus detection areas 101, 102, and 103). The focus detection pixel columns are formed alternately and adjacently on a straight line in the vertical direction.

撮像画素310は、マイクロレンズ10、遮光マスク(不図示)で受光領域を正方形に制限された光電変換部11、および色フィルタ(不図示)から構成される。色フィルタは赤(R)、緑(G)、青(B)の3種類からなり、それぞれの色に対応する分光感度特性を有している。撮像素子212には、各色フィルタを備えた撮像画素310がベイヤー配列されている。   The imaging pixel 310 includes the microlens 10, the photoelectric conversion unit 11 whose light receiving area is limited to a square by a light shielding mask (not shown), and a color filter (not shown). The color filters include three types of red (R), green (G), and blue (B), and have spectral sensitivity characteristics corresponding to the respective colors. In the image pickup device 212, image pickup pixels 310 having respective color filters are arranged in a Bayer array.

焦点検出画素312、313には全ての色に対して焦点検出を行うために全ての可視光を透過する白色フィルタ(不図示)が設けられている。その白色フィルタは、緑画素、赤画素および青画素の分光感度特性を加算したような分光感度特性を有し、高い感度を示す光波長領域は、緑画素、赤画素および青画素の各々において各色フィルタが高い感度を示す光波長領域を包括している。   The focus detection pixels 312 and 313 are provided with a white filter (not shown) that transmits all visible light in order to perform focus detection for all colors. The white filter has a spectral sensitivity characteristic that is the sum of the spectral sensitivity characteristics of the green pixel, red pixel, and blue pixel, and the light wavelength region exhibiting high sensitivity is in each color for each of the green pixel, red pixel, and blue pixel. It covers the optical wavelength region where the filter shows high sensitivity.

焦点検出画素312は、マイクロレンズ10、遮光マスク(不図示)で受光領域を矩形(正方形を水平線で2等分した場合の略上半分)に制限された光電変換部12、および白色フィルタ(不図示)から構成される。焦点検出画素313は、マイクロレンズ10、遮光マスク(不図示)で受光領域を矩形(正方形を水平線で2等分した場合の略下半分)に制限された光電変換部13、および白色フィルタ(不図示)から構成される。焦点検出画素312と焦点検出画素313とをマイクロレンズ10を基準として重ね合わせて表示すると、遮光マスクで受光領域を制限された一対の光電変換部12および13が垂直方向に並ぶ。   The focus detection pixel 312 includes a microlens 10, a photoelectric conversion unit 12 in which a light receiving region is limited to a rectangle (substantially upper half when a square is divided into two equal parts by a horizontal line) by a light shielding mask (not shown), and a white filter (not shown). (Illustrated). The focus detection pixel 313 includes a microlens 10, a photoelectric conversion unit 13 whose light receiving area is limited to a rectangle (substantially lower half when a square is divided into two equal parts by a horizontal line), and a white filter (not shown). (Illustrated). When the focus detection pixel 312 and the focus detection pixel 313 are displayed so as to overlap each other with the microlens 10 as a reference, the pair of photoelectric conversion units 12 and 13 whose light receiving areas are limited by the light shielding mask are arranged in the vertical direction.

図4は、撮影画面100の中央近傍にて垂直方向(縦方向)に延在する焦点検出エリア101に対応して撮像素子212に配置された焦点検出画素列を形成する焦点検出画素312,313が受光する焦点検出光束の状態を説明するための断面図である。   FIG. 4 shows focus detection pixels 312 and 313 that form focus detection pixel rows arranged in the image sensor 212 corresponding to the focus detection area 101 extending in the vertical direction (longitudinal direction) in the vicinity of the center of the photographing screen 100. It is sectional drawing for demonstrating the state of the focus detection light beam which light-receives.

図4には、交換レンズの光軸91、マイクロレンズ10a〜10d、遮光マスク開口により受光領域を制限された光電変換部12a、12b、13a、13b、焦点検出画素312a、312b、313a、313b、焦点検出光束72、73、82、83が示されている。   In FIG. 4, the optical axis 91 of the interchangeable lens, the microlenses 10a to 10d, the photoelectric conversion units 12a, 12b, 13a, and 13b, the focus detection pixels 312a, 312b, 313a, and 313b, whose light receiving areas are limited by the light shielding mask opening, Focus detection light beams 72, 73, 82 and 83 are shown.

撮像素子212上に配列された全ての焦点検出画素312、313の光電変換部12,13は、光電変換部12,13に近接して配置された遮光マスク開口を通過した光束を受光する。各焦点検出画素312の光電変換部12に近接して配置された遮光マスク開口の形状は、マイクロレンズ10によりマイクロレンズ10から測距瞳距離dだけ離間した測距瞳面90上の、焦点検出画素312の全てに共通した領域92に投影される。同じく各焦点検出画素313の光電変換部13に近接して配置された遮光マスク開口の形状は、マイクロレンズ10によりマイクロレンズ10から測距瞳距離dだけ離間した測距瞳面90上の、焦点検出画素313の全てに共通した領域93に投影される。測距瞳面90は、交換レンズ202に含まれる光学系の射出瞳面と実質的に同一の位置に規定される。すなわち、マイクロレンズ10から測距瞳面90までの測距瞳距離dは、マイクロレンズ10から光学系の射出瞳までの射出瞳距離と実質的に等しい。測距瞳面90上の一対の領域92,93を測距瞳と呼ぶ。   The photoelectric conversion units 12 and 13 of all the focus detection pixels 312 and 313 arranged on the image sensor 212 receive the light flux that has passed through the light shielding mask opening disposed in the vicinity of the photoelectric conversion units 12 and 13. The shape of the light-shielding mask opening arranged close to the photoelectric conversion unit 12 of each focus detection pixel 312 is the focus detection on the distance measurement pupil plane 90 separated from the microlens 10 by the distance measurement pupil distance d by the microlens 10. Projection is performed on a region 92 common to all of the pixels 312. Similarly, the shape of the light-shielding mask opening disposed in the vicinity of the photoelectric conversion unit 13 of each focus detection pixel 313 is a focus on the distance measurement pupil plane 90 that is separated from the microlens 10 by the distance measurement pupil distance d by the microlens 10. Projection is performed on a region 93 common to all the detection pixels 313. The distance measuring pupil plane 90 is defined at substantially the same position as the exit pupil plane of the optical system included in the interchangeable lens 202. That is, the distance measurement pupil distance d from the microlens 10 to the distance measurement pupil plane 90 is substantially equal to the exit pupil distance from the microlens 10 to the exit pupil of the optical system. A pair of regions 92 and 93 on the distance measuring pupil plane 90 is called a distance measuring pupil.

焦点検出画素312a、312bは、光電変換部12a、12bにより、測距瞳92と各撮像画素のマイクロレンズ10a,10cとを通過する焦点検出光束72,82を受光し、焦点検出光束72,82によって各マイクロレンズ10a,10c上に形成される像の強度に対応した信号を出力する。また焦点検出画素313a、313bは、光電変換部13a、13bにより、測距瞳93と各撮像画素のマイクロレンズ10b,10dとを通過する焦点検出光束73,83を受光し、焦点検出光束73,83によって各マイクロレンズ10b,10d上に形成される像の強度に対応した信号を出力する。   The focus detection pixels 312a and 312b receive focus detection light beams 72 and 82 that pass through the distance measuring pupil 92 and the microlenses 10a and 10c of the respective imaging pixels by the photoelectric conversion units 12a and 12b, and focus detection light beams 72 and 82 are received. To output a signal corresponding to the intensity of the image formed on each of the microlenses 10a and 10c. The focus detection pixels 313a and 313b receive the focus detection light beams 73 and 83 passing through the distance measuring pupil 93 and the microlenses 10b and 10d of the respective image pickup pixels by the photoelectric conversion units 13a and 13b. 83 outputs a signal corresponding to the intensity of the image formed on each of the microlenses 10b and 10d.

図4においては、撮影光軸91に隣接する4つの焦点検出画素(画素312a、313a、312b、313b)を模式的に例示しているが、焦点検出エリア101に対応して撮像素子212に配置される焦点検出画素列に含まれるその他の焦点検出画素においても、光電変換部はそれぞれ対応した測距瞳92、93から各マイクロレンズに到来する光束を受光する。焦点検出画素の配列方向は一対の測距瞳の並び方向、すなわち一対の光電変換部の並び方向と一致している。   In FIG. 4, four focus detection pixels (pixels 312 a, 313 a, 312 b, and 313 b) adjacent to the photographing optical axis 91 are schematically illustrated, but are arranged in the image sensor 212 corresponding to the focus detection area 101. Also in the other focus detection pixels included in the focus detection pixel row, the photoelectric conversion units receive the light fluxes that arrive at the microlenses from the corresponding distance measurement pupils 92 and 93, respectively. The arrangement direction of the focus detection pixels coincides with the arrangement direction of the pair of distance measuring pupils, that is, the arrangement direction of the pair of photoelectric conversion units.

図5は、撮影画面100の周辺領域にて垂直方向(縦方向)に延在する焦点検出エリア102に対応して撮像素子212に配置された焦点検出画素列を形成する焦点検出画素312,313が受光する焦点検出光束の状態を説明するための図である。   FIG. 5 shows focus detection pixels 312 and 313 that form focus detection pixel rows arranged in the image sensor 212 corresponding to the focus detection area 102 extending in the vertical direction (longitudinal direction) in the peripheral region of the shooting screen 100. It is a figure for demonstrating the state of the focus detection light beam which light-receives.

図5には、マイクロレンズ10e、10f、10g、10h、遮光マスク開口により受光領域を制限された光電変換部12c、12d、13c、13d、焦点検出画素312c、312d、313c、313d、焦点検出光束172、173、182、183が示されている。   FIG. 5 shows microlenses 10e, 10f, 10g, and 10h, photoelectric conversion units 12c, 12d, 13c, and 13d in which a light receiving region is limited by a light shielding mask opening, focus detection pixels 312c, 312d, 313c, and 313d, focus detection light fluxes. 172, 173, 182, and 183 are shown.

焦点検出画素312c、312dは、光電変換部12c、12dにより、測距瞳92と各撮像画素のマイクロレンズ10e,10gとを通過する焦点検出光束172,182を受光し、焦点検出光束172,182によって各マイクロレンズ10e,10g上に形成される像の強度に対応した信号を出力する。また焦点検出画素313c、313dは、光電変換部13c、13dにより、測距瞳93と各撮像画素のマイクロレンズ10f,10hとを通過する焦点検出光束173,183を受光し、焦点検出光束173,183によって各マイクロレンズ10f,10h上に形成される像の強度に対応した信号を出力する。   The focus detection pixels 312c and 312d receive the focus detection light beams 172 and 182 that pass through the distance measuring pupil 92 and the microlenses 10e and 10g of the imaging pixels by the photoelectric conversion units 12c and 12d, and focus detection light beams 172 and 182, respectively. To output a signal corresponding to the intensity of the image formed on each of the microlenses 10e and 10g. The focus detection pixels 313c and 313d receive the focus detection light beams 173 and 183 that pass through the distance measuring pupil 93 and the microlenses 10f and 10h of the imaging pixels by the photoelectric conversion units 13c and 13d, respectively. A signal corresponding to the intensity of the image formed on each of the microlenses 10f and 10h is output by 183.

図5においては、焦点検出エリア102内の隣接する4焦点検出画素(画素312a、313a、312b、313b)を模式的に例示しているが、焦点検出エリア102に含まれるその他の焦点検出画素においても、光電変換部はそれぞれ対応した測距瞳92、93から各マイクロレンズに到来する光束を受光する。   In FIG. 5, adjacent four focus detection pixels (pixels 312 a, 313 a, 312 b, and 313 b) in the focus detection area 102 are schematically illustrated, but other focus detection pixels included in the focus detection area 102 are illustrated. In addition, the photoelectric conversion units receive the light fluxes that arrive at the microlenses from the corresponding distance measurement pupils 92 and 93, respectively.

図4,図5において一対の測距瞳92、93は光軸91に対して対称に配置されている。図5のように焦点検出エリアが撮影画面周辺に配置されている場合、一対の測距瞳92および93の間の丁度中間点Cを通る光線は、マイクロレンズ10から測距瞳距離dの位置にある中間点Cのみにおいて光軸91と交わる。 4 and 5, the pair of distance measurement pupils 92 and 93 are arranged symmetrically with respect to the optical axis 91. When the focus detection area is arranged around the photographing screen as shown in FIG. 5, the light beam just passing through the intermediate point C 0 between the pair of distance measurement pupils 92 and 93 is the distance from the microlens 10 to the distance measurement pupil distance d. It intersects the optical axis 91 only at the intermediate point C 0 at the position.

焦点検出エリア103に対応する焦点検出画素の配列も、焦点検出エリア102に対応する焦点検出画素の配列と同様な配置となっており、焦点検出エリア103に対応する焦点検出画素も測距瞳92、93を通る光束を受光する。   The arrangement of the focus detection pixels corresponding to the focus detection area 103 is the same as the arrangement of the focus detection pixels corresponding to the focus detection area 102, and the focus detection pixels corresponding to the focus detection area 103 are also the ranging pupil 92. , 93 is received.

上述したように焦点検出エリア101〜103に対応する領域においては一対の焦点検出画素312、313が交互にかつ直線状に多数配置される。各焦点検出画素の光電変換部の出力を測距瞳92および測距瞳93に対応した一対の出力グループにまとめることによって、測距瞳92と測距瞳93とをそれぞれ通過する一対の焦点検出光束が垂直方向の焦点検出画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に、一対の測距瞳の重心間隔と測距瞳距離との比例関係に応じた変換係数を用いた変換演算を行うことによって、各焦点検出エリアにおける焦点調節状態(デフォーカス量)が算出される。   As described above, in the region corresponding to the focus detection areas 101 to 103, a large number of the pair of focus detection pixels 312 and 313 are arranged alternately and linearly. A pair of focus detections that respectively pass through the distance measuring pupil 92 and the distance measuring pupil 93 by collecting the outputs of the photoelectric conversion units of the focus detection pixels into a pair of output groups corresponding to the distance measuring pupil 92 and the distance measuring pupil 93. Information on the intensity distribution of a pair of images formed by the light beam on the vertical focus detection pixel array is obtained. By applying an image shift detection calculation process (correlation calculation process, phase difference detection process), which will be described later, to this information, an image shift amount of a pair of images is detected by a so-called pupil division type phase difference detection method. Further, by performing a conversion calculation using a conversion coefficient corresponding to the proportional relationship between the distance between the center of gravity of the pair of distance measurement pupils and the distance measurement pupil distance to the image shift amount, the focus adjustment state (defocusing) in each focus detection area is performed. Amount) is calculated.

図6は、一対の測距瞳から各焦点検出エリアに到来する一対の焦点検出光束の関係を示す図である。図4および図5に示す構成によって、焦点検出エリア101,102,103に対応する焦点検出領域101A,102A,103Aには一対の測距瞳92、93を通過する一対の焦点検出光束により一対の像が形成される。該一対の像に対応する画素信号を各焦点検出領域101A,102A,103Aに対応して配置された焦点検出画素が出力することになる。測距瞳92を通る焦点検出光束272と測距瞳93を通る焦点検出光束273とが、焦点検出領域101Aに一対の像を形成する。測距瞳92を通る焦点検出光束282と測距瞳93を通る焦点検出光束283とが、焦点検出領域102Aに一対の像を形成する。測距瞳92を通る焦点検出光束292と測距瞳93を通る焦点検出光束293とが、焦点検出領域103Aに一対の像を形成する。   FIG. 6 is a diagram illustrating a relationship between a pair of focus detection light beams that arrive at each focus detection area from a pair of distance measurement pupils. 4 and 5, the focus detection areas 101A, 102A, and 103A corresponding to the focus detection areas 101, 102, and 103A have a pair of focus detection light beams that pass through the pair of distance measurement pupils 92 and 93. An image is formed. The focus detection pixels arranged corresponding to the focus detection areas 101A, 102A, and 103A output pixel signals corresponding to the pair of images. The focus detection light beam 272 passing through the distance measurement pupil 92 and the focus detection light beam 273 passing through the distance measurement pupil 93 form a pair of images in the focus detection region 101A. The focus detection light beam 282 passing through the distance measurement pupil 92 and the focus detection light beam 283 passing through the distance measurement pupil 93 form a pair of images in the focus detection region 102A. The focus detection light beam 292 passing through the distance measurement pupil 92 and the focus detection light beam 293 passing through the distance measurement pupil 93 form a pair of images in the focus detection region 103A.

上述したように、通常、測距瞳面90は、交換レンズ202に含まれる光学系の射出瞳面と実質的に同一の位置に規定されるが、測距瞳面90の位置と射出瞳面の位置とが相異なることにより、一対の焦点検出光束にケラレが生じる場合がある。図7は図6に対応した図であって、撮像素子212から交換レンズの射出瞳95までの射出瞳距離dnが測距瞳距離dより短い場合、および射出瞳距離dfが測距瞳距離dより長い場合において、各焦点検出領域101A,102A,103Aに到来する各一対の焦点検出光束(272,273)、(282,283)、(292,293)が、交換レンズの射出瞳95による口径蝕、ケラレによりどのように制限されるかを示した図である。図7に示す交換レンズの射出瞳95は、絞り開口を撮像素子側から見た時の射出瞳である。   As described above, the distance measuring pupil plane 90 is normally defined at substantially the same position as the exit pupil plane of the optical system included in the interchangeable lens 202. However, the position of the distance measuring pupil plane 90 and the exit pupil plane are not limited. Due to the difference in position, vignetting may occur in the pair of focus detection light beams. FIG. 7 is a diagram corresponding to FIG. 6, where the exit pupil distance dn from the image sensor 212 to the exit pupil 95 of the interchangeable lens is shorter than the distance measurement pupil distance d, and the exit pupil distance df is the distance measurement pupil distance d. In a longer case, each pair of focus detection light fluxes (272, 273), (282, 283), (292, 293) arriving at the focus detection regions 101A, 102A, 103A is the aperture due to the exit pupil 95 of the interchangeable lens. It is a figure showing how it was restricted by erosion and vignetting. The exit pupil 95 of the interchangeable lens shown in FIG. 7 is an exit pupil when the diaphragm aperture is viewed from the image sensor side.

交換レンズの射出瞳95が撮像素子212から測距瞳距離dの位置にある射出瞳95Aの場合は、一対の測距瞳92,93は光軸上に中心を持つ円形の射出瞳に制限されるため、各焦点検出領域101A,102A,103Aに到来する各一対の焦点検出光束(272,273)、(282,283)、(292,293)は、光軸に対して対称に制限される。   When the exit pupil 95 of the interchangeable lens is an exit pupil 95A at a distance d from the image sensor 212, the pair of distance measurement pupils 92 and 93 is limited to a circular exit pupil centered on the optical axis. Therefore, each pair of focus detection light beams (272, 273), (282, 283), (292, 293) arriving at the focus detection regions 101A, 102A, 103A is limited symmetrically with respect to the optical axis. .

図7において交換レンズの射出瞳95が撮像素子212から射出瞳距離dnの位置にある射出瞳95Bの場合は、焦点検出領域101Aに到来する一対の焦点検出光束(272,273)は光軸に対して対称に制限されるが、焦点検出領域102A,103Aに到来する各一対の焦点検出光束(282,283)、(292,293)は光軸に対して非対称となっているため、光軸対称な射出瞳95Bにより非対称に制限される。   In FIG. 7, when the exit pupil 95 of the interchangeable lens is the exit pupil 95B located at the exit pupil distance dn from the image sensor 212, the pair of focus detection light beams (272, 273) arriving at the focus detection region 101A are on the optical axis. The pair of focus detection light fluxes (282, 283) and (292, 293) arriving at the focus detection regions 102A and 103A are asymmetric with respect to the optical axis. It is limited to be asymmetric by the symmetric exit pupil 95B.

図8は、図1に示すデジタルスチルカメラ201の動作を示すフローチャートである。図8に示す各処理ステップは、ボディ駆動制御装置214によって実行される。ボディ駆動制御装置214は、ステップS100でデジタルスチルカメラ201の電源がオンされると、ステップS110以降の動作を開始する。ステップS110で撮像画素のデータを間引き読み出しし、液晶表示素子216に表示する。続くステップS120では、焦点検出画素列から、一対の測距瞳を通過する一対の焦点検出を受光した一対の光電変換部が出力する、一対の像に対応した一対の像データ(一対の信号、一対のデータ列)を読み出す。なお、焦点検出エリアは、エリア選択スイッチ(不図示)を用いて撮影者により選択されているものとする。   FIG. 8 is a flowchart showing the operation of the digital still camera 201 shown in FIG. Each processing step shown in FIG. 8 is executed by the body drive control device 214. When the power of the digital still camera 201 is turned on in step S100, the body drive control device 214 starts the operation after step S110. In step S <b> 110, the image pickup pixel data is read out and displayed on the liquid crystal display element 216. In the following step S120, a pair of image data (a pair of signals, a pair of signals) output from the pair of photoelectric conversion units that receive the pair of focus detections that pass through the pair of distance measurement pupils from the focus detection pixel array. Read a pair of data strings). Note that the focus detection area is selected by the photographer using an area selection switch (not shown).

ステップS130において、ボディ駆動制御装置214は、読み出された一対の像データに対して後述する像ズレ検出演算処理(差分型相関演算処理)を行い、像ズレ量を算出する。ステップS135で、ボディ駆動制御装置214は、像ズレ量に変換係数を乗じてデフォーカス量に変換する。変換処理の詳細については後述する。   In step S130, the body drive control device 214 performs an image shift detection calculation process (difference type correlation calculation process) to be described later on the read pair of image data, and calculates an image shift amount. In step S135, the body drive control device 214 multiplies the image shift amount by a conversion coefficient to convert it to a defocus amount. Details of the conversion process will be described later.

ステップS140で、ボディ駆動制御装置214は、合焦近傍か否か、つまり算出されたデフォーカス量の絶対値が所定値以内であるか否かを調べる。合焦近傍でないと判定された場合は、ステップS150へ進み、ボディ駆動制御装置214は、デフォーカス量をレンズ駆動制御装置206へ送信し、交換レンズ202のフォーカシングレンズ用210を合焦位置に駆動させ、ステップS110へ戻って上述した動作を繰り返す。焦点検出不能な場合もこのステップに分岐し、ボディ駆動制御装置214は、レンズ駆動制御装置206へスキャン駆動命令を送信し、交換レンズ202のフォーカシング用レンズ210を無限から至近までの間でスキャン駆動させる。その後、ステップS110へ戻って上述した動作を繰り返す。   In step S140, the body drive control device 214 checks whether or not it is close to focusing, that is, whether or not the calculated absolute value of the defocus amount is within a predetermined value. If it is determined that the focus is not close, the process proceeds to step S150, where the body drive control device 214 transmits the defocus amount to the lens drive control device 206, and drives the focusing lens 210 of the interchangeable lens 202 to the focus position. Return to step S110 to repeat the above-described operation. Even when focus detection is impossible, the process branches to this step, and the body drive control device 214 transmits a scan drive command to the lens drive control device 206, and scans the focusing lens 210 of the interchangeable lens 202 from infinity to the nearest. Let Then, it returns to step S110 and repeats the operation | movement mentioned above.

一方、ステップS140で合焦近傍であると判定された場合はステップS160へ進み、ボディ駆動制御装置214は、シャッターボタン(不図示)の操作によりシャッターレリーズがなされたか否かを判定する。シャッターレリーズがなされていないと判定された場合はステップS110へ戻り、上述した動作を繰り返す。シャッターレリーズがなされた場合はステップS170へ進み、ボディ駆動制御装置214は、レンズ駆動制御装置206へ絞り調整命令を送信し、交換レンズ202の絞り値を制御F値(撮影者により設定されたF値または自動設定されたF値)に設定する。   On the other hand, if it is determined in step S140 that the focus is close to the in-focus state, the process proceeds to step S160, and the body drive control device 214 determines whether or not a shutter release has been performed by operating a shutter button (not shown). If it is determined that the shutter release has not been performed, the process returns to step S110 and the above-described operation is repeated. When the shutter release is performed, the process proceeds to step S170, and the body drive control device 214 transmits an aperture adjustment command to the lens drive control device 206, and controls the aperture value of the interchangeable lens 202 to the control F value (F set by the photographer). Value or automatically set F value).

絞り制御が終了した時点で、ボディ駆動制御装置214は、撮像素子212に撮像動作を行わせ、撮像素子212の撮像画素およびすべての焦点検出画素から画像データを読み出す。ステップS180では、ボディ駆動制御装置214は、焦点検出画素列の各画素位置の画素データを、焦点検出画素の周囲の撮像画素の画素データに基づく画素補間により生成する。続くステップS190で、ボディ駆動制御装置214は、撮像画素の画素データおよび画素補間により生成された画素データからなる画像データを、メモリカード219に保存し、ステップS110へ戻って上述した動作を繰り返す。   When the aperture control is completed, the body drive control device 214 causes the imaging device 212 to perform an imaging operation, and reads image data from the imaging pixels of the imaging device 212 and all focus detection pixels. In step S180, the body drive control device 214 generates pixel data at each pixel position in the focus detection pixel row by pixel interpolation based on pixel data of imaging pixels around the focus detection pixel. In subsequent step S190, the body drive control device 214 stores the image data including the pixel data of the imaging pixel and the pixel data generated by the pixel interpolation in the memory card 219, and returns to step S110 to repeat the above-described operation.

次に、図8のステップS130で用いられる一般的な像ズレ検出演算処理(差分型相関演算処理)の詳細について説明する。   Next, details of a general image shift detection calculation process (difference type correlation calculation process) used in step S130 of FIG. 8 will be described.

一対の焦点検出画素列から読み出された一対の信号、すなわち一対のデータ列(焦点検出画素313のデータ:A1〜A1、焦点検出画素314のデータ:A2〜A2、Mはデータ数)に対し、下記の相関演算式(1)を用いて相関量C(k)を演算する。式(1)におけるΣ演算では、変数nの値を変化させて一対のデータ列を相対的に変位させることにより、一対の焦点検出画素313および314のデータの差が累積される。変数nのとる値の範囲は、一対の焦点検出画素313および314のデータの差が累積される際の一対のデータ列の相対的な変位量、すなわち位相差kに応じてデータA1、A1n+1、A2n+k、A2n+1+kが存在する範囲に限定される。位相差kは整数であり、データ列のデータ間隔を単位とした相対的な位相差である。式(1)に示すように、相関量C(k)は位相差kに応じて変化する。
C(k)=Σ|A1−A2n+k| ・・・(1)
A pair of signals read from the pair of focus detection pixel columns, that is, a pair of data columns (data of the focus detection pixel 313: A1 1 to A1 M , data of the focus detection pixel 314: A2 1 to A2 M , M is data The correlation amount C (k) is calculated using the following correlation calculation formula (1). In the Σ operation in Expression (1), the difference between the data of the pair of focus detection pixels 313 and 314 is accumulated by changing the value of the variable n to relatively displace the pair of data strings. The range of the value of the variable n is data A1 n , A1 according to the relative displacement amount of the pair of data strings when the difference between the data of the pair of focus detection pixels 313 and 314 is accumulated, that is, the phase difference k. It is limited to a range where n + 1 , A2 n + k and A2 n + 1 + k exist. The phase difference k is an integer and is a relative phase difference with the data interval of the data string as a unit. As shown in Expression (1), the correlation amount C (k) changes according to the phase difference k.
C (k) = Σ | A1 n −A2 n + k | (1)

式(1)に表される演算が差分の絶対値を積算する演算であることから、式(1)に表される減算を含む相関演算は差分型相関演算と呼ばれる。一般に差分型相関演算においては、相関量C(k)は、一対の像の一致度に対応する一対のデータ列の相関度が極大値を示すときの位相差kにおいて極小値をとる特性を示す。相関量C(k)が小さいほど相関度が高い。   Since the operation represented by the equation (1) is an operation for accumulating the absolute values of the differences, the correlation operation including the subtraction represented by the equation (1) is called a differential correlation operation. In general, in the differential correlation calculation, the correlation amount C (k) has a characteristic that takes a minimum value in the phase difference k when the correlation degree of the pair of data strings corresponding to the degree of coincidence of the pair of images shows the maximum value. . The smaller the correlation amount C (k), the higher the degree of correlation.

式(1)の演算結果は、図9(a)に示すように、一対のデータ列の相関が高いときの位相差(図9(a)ではk=kj=2)において離散的な相関量C(k)が極小になる。   As shown in FIG. 9A, the calculation result of Expression (1) is a discrete correlation amount in the phase difference (k = kj = 2 in FIG. 9A) when the correlation between the pair of data strings is high. C (k) is minimized.

式(2)〜(5)による3点内挿の手法を用いて連続的な相関量の極小値C(ks)を与える位相差ksを求める。
ks=kj+D/SLOP・・・(2)
C(ks)= C(kj)−|D|・・・(3)
D={C(kj−1)−C(kj+1)}/2・・・(4)
SLOP=MAX{C(kj+1)−C(kj),C(kj−1)−C(kj)}・・(5)
A phase difference ks that gives a minimum value C (ks) of a continuous correlation amount is obtained using a three-point interpolation method according to equations (2) to (5).
ks = kj + D / SLOP (2)
C (ks) = C (kj) − | D | (3)
D = {C (kj−1) −C (kj + 1)} / 2 (4)
SLOP = MAX {C (kj + 1) -C (kj), C (kj-1) -C (kj)} (5)

式(2)で算出された位相差ksの信頼性があるかどうかは、以下のようにして判定される。   Whether or not the phase difference ks calculated by the equation (2) is reliable is determined as follows.

図9(b)に示すように、一対のデータ列の相関度が低い場合は、内挿された相関量の極小値C(ks)の値が大きくなる。したがって、相関量の極小値C(ks)が所定の閾値以上の場合は算出された位相差ksの信頼性が低いと判定し、算出された位相差ksをキャンセルする。   As shown in FIG. 9B, when the degree of correlation between the pair of data strings is low, the value of the interpolated correlation minimum value C (ks) increases. Therefore, when the minimum value C (ks) of the correlation amount is equal to or greater than a predetermined threshold, it is determined that the reliability of the calculated phase difference ks is low, and the calculated phase difference ks is canceled.

あるいは、相関量の極小値C(ks)を一対のデータ列のコントラストで規格化するために、コントラストに比例した値となるSLOPで相関量の極小値C(ks)を除した除算値を求め、その除算値が所定値以上の場合は、算出された位相差ksの信頼性が低いと判定し、算出された位相差ksをキャンセルする。   Alternatively, in order to normalize the minimum value C (ks) of the correlation amount with the contrast of the pair of data strings, a division value obtained by dividing the minimum value C (ks) of the correlation amount by SLOP which is a value proportional to the contrast is obtained. If the division value is equal to or greater than a predetermined value, it is determined that the reliability of the calculated phase difference ks is low, and the calculated phase difference ks is canceled.

あるいはまた、コントラストに比例した値となるSLOPが所定値以下の場合は、被写体が低コントラストであり、算出された位相差ksの信頼性が低いと判定し、算出された位相差ksをキャンセルする。   Alternatively, when the SLOP that is proportional to the contrast is equal to or less than the predetermined value, it is determined that the subject has low contrast and the reliability of the calculated phase difference ks is low, and the calculated phase difference ks is canceled. .

図9(c)に示すように、一対のデータ列の相関度が低く、位相差kのシフト範囲kmin〜kmaxの間で相関量C(k)の落ち込みがない場合は、相関量の極小値C(ks)を求めることができず、このような場合は焦点検出不能と判定する。   As shown in FIG. 9C, when the correlation degree of the pair of data strings is low and there is no drop in the correlation amount C (k) between the shift ranges kmin to kmax of the phase difference k, the minimum value of the correlation amount C (ks) cannot be obtained. In such a case, it is determined that focus detection is impossible.

なお、差分型相関演算式としては式(1)に限定されず、例えば特開2007−333720号公報に開示された以下の演算式を用いてもよい。
C(k)=Σ|A1n・A2n+1+k−A2n+k・A1n+1| ・・・(6)
Note that the differential correlation calculation formula is not limited to the formula (1), and for example, the following calculation formula disclosed in JP 2007-333720 A may be used.
C (k) = Σ | A1 n · A2 n + 1 + k -A2 n + k · A1 n + 1 | ··· (6)

算出された位相差ksの信頼性があると判定された場合は、式(7)により位相差ksが上述した一対の像の位相差を表す像ズレ量shftに換算される。このようにして、ボディ駆動制御装置214は像ズレ量shftを検出する。式(7)において、係数PYは画素ピッチの2倍である。
shft=PY・ks・・・(7)
When it is determined that the calculated phase difference ks is reliable, the phase difference ks is converted into the above-described image shift amount shft representing the phase difference between the pair of images according to the equation (7). In this way, the body drive control device 214 detects the image shift amount shft. In equation (7), the coefficient PY is twice the pixel pitch.
shft = PY · ks (7)

以上が図8のステップS130の像ズレ量検出演算処理の詳細を示すフローチャートである。次に図8のステップS135における像ズレ量からデフォーカス量へのボディ駆動制御装置214による変換処理(デフォーカス量算出処理)の詳細を示す図10について説明する。   The above is a flowchart showing details of the image shift amount detection calculation processing in step S130 of FIG. Next, FIG. 10 showing details of the conversion process (defocus amount calculation process) by the body drive control device 214 from the image shift amount to the defocus amount in step S135 in FIG. 8 will be described.

図10のステップS200において、ボディ駆動制御装置214は、式(8)により像ズレ量shftに変換係数Kd1を乗じて、光学系の予定焦点面と光学系の結像面との間の距離に対応するデフォーカス量defへ変換する(算出する)。
def=Kd1・shft・・・(8)
In step S200 of FIG. 10, the body drive control device 214 multiplies the image shift amount shft by the conversion coefficient Kd1 according to equation (8) to obtain the distance between the planned focal plane of the optical system and the imaging plane of the optical system. Conversion (calculation) into a corresponding defocus amount def.
def = Kd1 · shft (8)

なお変換係数Kd1は合焦近傍用の変換係数であって、焦点検出画素が受光する一対の光束の平均的な開き角(一対の光束の重心を通る光線の開き角)に対応している。焦点検出画素が受光する一対の光束の平均的な開き角は光学系(撮影光学系)のF値に応じて変化するため、変換係数Kd1もボディ駆動制御装置214がレンズ駆動制御装置206との通信により取得したレンズ情報(焦点検出画素データを読み出した時のF値)に応じて変化する。   The conversion coefficient Kd1 is a conversion coefficient for in-focus vicinity, and corresponds to the average opening angle of a pair of light beams received by the focus detection pixel (the opening angle of light beams passing through the center of gravity of the pair of light beams). Since the average opening angle of the pair of light beams received by the focus detection pixel changes according to the F value of the optical system (imaging optical system), the conversion coefficient Kd1 is also different from that of the lens drive control device 206 by the body drive control device 214. It changes in accordance with lens information (F value when focus detection pixel data is read) acquired by communication.

ステップS210では、ボディ駆動制御装置214は、式(8)で算出したデフォーカス量の絶対値が所定の閾値Dt1以上であるか否かをチェックし、所定の閾値Dt1以上でない場合は図10に示すデフォーカス量算出処理を抜ける。式(8)で算出したデフォーカス量の絶対値が所定の閾値Dt1以上である場合には、式(9)により像ズレ量shftに変換係数Kd2を乗じてデフォーカス量defへ変換し、その後、図10に示すデフォーカス量算出処理を抜ける。
def=Kd2・shft・・・(9)
In step S210, the body drive control device 214 checks whether or not the absolute value of the defocus amount calculated by the equation (8) is greater than or equal to a predetermined threshold value Dt1, and if not, the body drive control device 214 returns to FIG. The defocus amount calculation process shown is exited. When the absolute value of the defocus amount calculated by the equation (8) is equal to or greater than the predetermined threshold value Dt1, the image shift amount shft is multiplied by the conversion coefficient Kd2 and converted to the defocus amount def according to the equation (9). Then, the process exits the defocus amount calculation process shown in FIG.
def = Kd2 · shft (9)

なお変換係数Kd2は大デフォーカス用の変換係数であって、変換係数Kd1以下の値となっている。変換係数Kd2もボディ駆動制御装置214がレンズ駆動制御装置206との通信により取得したレンズ情報(焦点検出画素データを読み出した時のF値)に応じて変化する。   Note that the conversion coefficient Kd2 is a conversion coefficient for large defocus and has a value equal to or less than the conversion coefficient Kd1. The conversion coefficient Kd2 also changes according to the lens information (F value when the focus detection pixel data is read) acquired by the body drive control device 214 through communication with the lens drive control device 206.

すなわち図10の動作フローにおいては撮影光学系の焦点調節状態が合焦近傍の範囲に含まれる場合は比較的大きな値を持つ変換係数Kd1を像ズレ量shftに乗じてデフォーカス量defへ変換し、それ以外の場合(撮影光学系の焦点調節状態が合焦近傍の範囲外に含まれる場合)は比較的小さな値を持つ変換係数Kd2を像ズレ量shftに乗じてデフォーカス量defへ変換することにより、デフォーカス量の検出誤差を少なくしている。デフォーカス量の絶対値が所定の閾値Dt1未満であるとき、撮影光学系の焦点調節状態が合焦近傍の範囲に含まれると判定される。   That is, in the operation flow of FIG. 10, when the focus adjustment state of the photographic optical system is included in the range near the in-focus state, the image shift amount shft is multiplied by the conversion coefficient Kd1 having a relatively large value to convert it to the defocus amount def. In other cases (when the focus adjustment state of the photographic optical system is outside the range near the in-focus state), the image shift amount shft is multiplied by the conversion coefficient Kd2 having a relatively small value to convert it to the defocus amount def. As a result, the detection error of the defocus amount is reduced. When the absolute value of the defocus amount is less than the predetermined threshold value Dt1, it is determined that the focus adjustment state of the photographing optical system is included in the range near the in-focus state.

図10の動作フローにおいては所定の閾値Dt1を光学系のF値に応じて変更する(F値が大きいほど閾値を大きくし、Dt1/Fが略一定になるようにする)ようにしてもよい。   In the operation flow of FIG. 10, the predetermined threshold value Dt1 may be changed according to the F value of the optical system (the larger the F value, the larger the threshold value, so that Dt1 / F becomes substantially constant). .

図10の動作フローにおいてはデフォーカス量の絶対値が所定の閾値Dt1未満の場合に合焦近傍であり、デフォーカス量の絶対値が所定の閾値Dt1以上の場合に合焦近傍外(大デフォーカス)であると判定している。しかし、像ズレ量の絶対値が所定閾値未満の場合に合焦近傍であり、像ズレ量の絶対値が所定閾値以上の場合に合焦近傍外(大デフォーカス)であると判定するようにしてもよい。   In the operation flow of FIG. 10, when the absolute value of the defocus amount is less than the predetermined threshold value Dt1, it is in the vicinity of in-focus, and when the absolute value of the defocus amount is equal to or greater than the predetermined threshold value Dt1, it is out of focus. (Focus). However, when the absolute value of the image shift amount is less than the predetermined threshold, it is determined that the focus is near, and when the absolute value of the image shift amount is equal to or greater than the predetermined threshold, it is determined that it is out of focus (large defocus). May be.

図10の動作フローにおいてはデフォーカス量の絶対値が所定閾値未満の場合に合焦近傍であり、デフォーカス量の絶対値が所定閾値以上の場合に合焦近傍外(大デフォーカス)であると判定している。このようにするとデフォーカス量の絶対値が所定閾値以上となるか否かで、最終的な算出デフォーカス量の値が不連続に変化してしまう。   In the operation flow of FIG. 10, when the absolute value of the defocus amount is less than the predetermined threshold, the focus is near, and when the absolute value of the defocus amount is equal to or greater than the predetermined threshold, it is out of focus (large defocus). It is determined. In this way, the final calculated defocus amount value changes discontinuously depending on whether or not the absolute value of the defocus amount is equal to or greater than a predetermined threshold value.

図11は横軸に実デフォーカス量、縦軸に算出デフォーカス量をとって、実デフォーカス量と算出デフォーカス量との関係を示した図である。算出デフォーカス量に誤差が含まれない場合は、実デフォーカス量と算出デフォーカス量との関係は、一点鎖線301に示すように、原点を通り45度の傾きを持つ直線関係となる。しかし実際には後述するように実デフォーカス量の絶対値が大きくなるにつれて、算出デフォーカス量の絶対値が誤差のために実デフォーカス量の絶対値より大きくなる傾向にある。破線302はこのような実デフォーカス量と誤差を含む算出デフォーカス量との関係を示したグラフである。図10の動作フローに応じて合焦近傍と合焦近傍外(大デフォーカス)とで変換係数を変更する場合(合焦近傍外の変換係数を合焦近傍の変換係数より小さくする場合)には、実デフォーカス量と算出デフォーカス量との関係は実線303aおよび303bに示すグラフとなる。実線503aおよび503bに示すグラフによると、大デフォーカス時の誤差は減少するが、合焦近傍と合焦近傍外(大デフォーカス)との変わり目で値が不連続に変化してしまう。図11において実デフォーカス量の値が±defの内側の範囲が合焦近傍に相当し、それ以外の範囲が合焦近傍外(大デフォーカス)に相当する。   FIG. 11 is a diagram showing the relationship between the actual defocus amount and the calculated defocus amount, with the actual defocus amount on the horizontal axis and the calculated defocus amount on the vertical axis. When no error is included in the calculated defocus amount, the relationship between the actual defocus amount and the calculated defocus amount is a linear relationship that passes through the origin and has an inclination of 45 degrees, as indicated by a one-dot chain line 301. However, as will be described later, however, as the absolute value of the actual defocus amount increases, the absolute value of the calculated defocus amount tends to be larger than the absolute value of the actual defocus amount due to an error. A broken line 302 is a graph showing the relationship between the actual defocus amount and the calculated defocus amount including an error. When changing the conversion coefficient between near focus and out of focus (large defocus) according to the operation flow of FIG. 10 (when converting the conversion coefficient outside the focus vicinity to smaller than the conversion coefficient near the focus) The relationship between the actual defocus amount and the calculated defocus amount is a graph indicated by solid lines 303a and 303b. According to the graphs indicated by the solid lines 503a and 503b, the error at the time of large defocus is reduced, but the value changes discontinuously at the transition between the vicinity of the focus and the vicinity of the focus out (large defocus). In FIG. 11, the range within ± def of the actual defocus value corresponds to the vicinity of in-focus, and the other range corresponds to the out-of-focus vicinity (large defocus).

そこで、例えば図12に示すように像ズレ量の絶対値に応じて変換係数Kdが連続的に変化するように、計算により変換係数Kdを定める。あるいは、交換レンズ202のレンズ情報および被写体に関する情報に応じて、実験評価に基づき統計的に定めることとしてもよい。図12によると、像ズレ量の絶対値0のときの変換係数Kdの値がk0であり、像ズレ量の絶対値が大きくなるに従って変換係数Kdの値がなめらかにk0より小さくなる。像ズレ量の絶対値s1(>0)のときの変換係数Kdの値k1はk0よりも小さい。検出した像ズレ量の絶対値に応じて図12に基づいて変換係数Kdの値を決定し、決定した変換係数Kdの値を用いて像ズレ量をデフォーカス量に変換する。このようにすれば、最終的に算出されるデフォーカス量の不連続な変化をなくすとともに誤差を減少することができ、実デフォーカス量と算出デフォーカス量との関係を図11の一点鎖線301に概ね近づけることが可能になる。   Therefore, for example, as shown in FIG. 12, the conversion coefficient Kd is determined by calculation so that the conversion coefficient Kd changes continuously according to the absolute value of the image shift amount. Or it is good also as determining statistically based on experiment evaluation according to the lens information of the interchangeable lens 202, and the information regarding a to-be-photographed object. According to FIG. 12, the value of the conversion coefficient Kd when the absolute value of the image shift amount is 0 is k0, and the value of the conversion coefficient Kd is smoothly smaller than k0 as the absolute value of the image shift amount increases. The value k1 of the conversion coefficient Kd when the absolute value s1 (> 0) of the image shift amount is smaller than k0. The value of the conversion coefficient Kd is determined based on the detected absolute value of the image shift amount based on FIG. 12, and the image shift amount is converted into a defocus amount using the determined value of the conversion coefficient Kd. In this way, the discontinuous change in the finally calculated defocus amount can be eliminated and the error can be reduced, and the relationship between the actual defocus amount and the calculated defocus amount is shown by the one-dot chain line 301 in FIG. It becomes possible to approximate to.

合焦近傍か否かに応じて変換係数を調整しない場合に、図11の破線302のように実デフォーカス量の絶対値が大きくなるにつれ、算出デフォーカス量の絶対値が実デフォーカス量の絶対値より大きくなることの定性的な理由について説明する。   When the conversion coefficient is not adjusted according to whether the focus is close or not, as the absolute value of the actual defocus amount increases as indicated by a broken line 302 in FIG. 11, the absolute value of the calculated defocus amount becomes the actual defocus amount. The qualitative reason why it becomes larger than the absolute value will be described.

このような現象は、一対の測距瞳分布(すなわち測距瞳面上における一対の焦点検出光束の光量分布)の各々において、その一対の測距瞳の並び方向に沿った光量分布が、その光量分布の重心に関して不対称となっていることに起因している。なお、以下においては、ボケ像の不対称という表現も同様に、一対のボケ像の並び方向に沿った光量分布が、その光量分布の重心に関して不対称となっていることを表している。   Such a phenomenon is caused by the distribution of the light quantity along the direction in which the pair of distance measurement pupils are aligned in each of the pair of distance measurement pupil distributions (that is, the light quantity distribution of the pair of focus detection light beams on the distance measurement pupil plane). This is due to the fact that the center of gravity of the light quantity distribution is not symmetric. In the following description, the expression “asymmetry of the blurred image” also indicates that the light amount distribution along the alignment direction of the pair of blurred images is asymmetric with respect to the center of gravity of the light amount distribution.

図13は、測距瞳面90上の一対の測距瞳から結像面96の中央に配置された焦点検出画素(図2の焦点検出エリア101に対応して撮像素子212に配置される焦点検出画素)に到来する一対の焦点検出光束の関係を示す図である。図13は、結像面96に対して合焦近傍時の光学系の予定焦点面97および合焦近傍外時の光学系の予定焦点面98の位置を相対的に表した図である。測距瞳面90上の一対の焦点検出光束の光量分布である一対の測距瞳分布402および403は、図4に示すような、光電変換部12a、13a、12bおよび13bの受光領域の形状をマイクロレンズ10a、10b、10cおよび10dにより測距瞳面90に投影した時の、測距瞳92および93に対応する一対の投影像と等価になる。その一対の投影像の外周は絞り開口などにより略円形に制限されるとともに、マイクロレンズによる回折や収差のため、その一対の投影像の形状にぼけが発生する。したがって、測距瞳面90上の一対の焦点検出光束は、釣り鐘状でかつ一方の側に裾野が延びた一対の測距瞳分布を形成する。該一対の測距瞳分布を一対の測距瞳92および93の並び方向に垂直なスリットで走査した場合には、図13に示すような一対の測距瞳分布402および403が得られる。   FIG. 13 shows focus detection pixels (focus points arranged on the image sensor 212 corresponding to the focus detection area 101 in FIG. 2) arranged in the center of the imaging plane 96 from a pair of distance measurement pupils on the distance measurement pupil plane 90. It is a figure which shows the relationship of a pair of focus detection light beam which arrives at a detection pixel. FIG. 13 is a diagram showing the relative positions of the planned focal plane 97 of the optical system near the in-focus state and the planned focal plane 98 of the optical system outside the near-focus position with respect to the imaging plane 96. A pair of distance measurement pupil distributions 402 and 403 which are light quantity distributions of the pair of focus detection light beams on the distance measurement pupil plane 90 are the shapes of the light receiving regions of the photoelectric conversion units 12a, 13a, 12b and 13b as shown in FIG. Is equivalent to a pair of projection images corresponding to the distance measuring pupils 92 and 93 when projected onto the distance measuring pupil plane 90 by the microlenses 10a, 10b, 10c and 10d. The outer peripheries of the pair of projection images are limited to a substantially circular shape by an aperture opening or the like, and blurring occurs in the shape of the pair of projection images due to diffraction and aberration by the microlens. Accordingly, the pair of focus detection light beams on the distance measurement pupil plane 90 forms a pair of distance measurement pupil distributions that are bell-shaped and have a skirt extending on one side. When the pair of distance measuring pupil distributions are scanned with a slit perpendicular to the direction in which the pair of distance measuring pupils 92 and 93 are arranged, a pair of distance measuring pupil distributions 402 and 403 as shown in FIG. 13 are obtained.

測距瞳分布402、403の外周は光学系の絞りによって制限されているので、その外周に向かうと比較的急激に減少するが、測距瞳分布402、403の重なり部分の裾野は絞りによって制限されないので比較的緩慢に減少し、裾野が延びた分布形状となる。図13において、測距瞳分布402,403のそれぞれの重心位置を通る重心線412,413に関して、測距瞳分布402、403の重なり部分が属する方の側の測距瞳分布と、その重なり部分が属していない方の側の測距瞳分布とが不対称であり、すなわち測距瞳分布402,403はそれぞれ不対称となっている。   Since the outer periphery of the distance measurement pupil distributions 402 and 403 is limited by the aperture of the optical system, it decreases relatively rapidly toward the outer periphery, but the base of the overlapping portion of the distance measurement pupil distributions 402 and 403 is limited by the aperture. Since it is not performed, the distribution decreases relatively slowly, and the distribution shape is extended. In FIG. 13, with respect to barycentric lines 412 and 413 passing through the barycentric positions of the distance measuring pupil distributions 402 and 403, the distance measuring pupil distribution on the side to which the overlapping part of the distance measuring pupil distributions 402 and 403 belongs, and the overlapping part The distance measurement pupil distribution on the side that does not belong is asymmetric, that is, the distance measurement pupil distributions 402 and 403 are asymmetric.

光学系により結像面96上の中央P0に点像(または紙面に垂直方向の線像)が結像するとする。予定焦点面98と結像面96とのデフォーカス量が比較的大きい場合(合焦近傍外の場合)には、予定焦点面98上において一対の焦点検出光束は一対のボケ像502、503を形成する。図14は大デフォーカス時のボケ像502、503の光量分布形状を示したものであり、ボケ像502、503の光量分布形状は測距瞳分布402、403の光量分布形状に略相似した形状となっている。したがって、一対のボケ像の各々の光量分布形状も不対称である。すなわち、一対のボケ像の各々において、一対のボケ像の並び方向に沿った光量分布が、その光量分布の重心に関して不対称となっている。図14におけるボケ像502、503のそれぞれの重心位置を通る重心線512,513は、図13における、測距瞳分布402,403のそれぞれの重心位置と結像面96上の中央P0における点像とを結んだ直線322,323と、予定焦点面98とが交差する位置と略一致している。   It is assumed that a point image (or a line image perpendicular to the paper surface) is formed at the center P0 on the imaging surface 96 by the optical system. When the defocus amount between the planned focal plane 98 and the imaging plane 96 is relatively large (out of focus), the pair of focus detection light beams on the planned focal plane 98 forms a pair of blurred images 502 and 503. Form. FIG. 14 shows the light amount distribution shapes of the blurred images 502 and 503 at the time of large defocusing. The light amount distribution shapes of the blurred images 502 and 503 are substantially similar to the light amount distribution shapes of the distance measurement pupil distributions 402 and 403. It has become. Accordingly, the light amount distribution shape of each of the pair of blurred images is also asymmetric. That is, in each of the pair of blurred images, the light amount distribution along the arrangement direction of the pair of blurred images is asymmetric with respect to the center of gravity of the light amount distribution. The centroid lines 512 and 513 passing through the centroid positions of the blurred images 502 and 503 in FIG. 14 indicate the centroid positions of the distance measurement pupil distributions 402 and 403 and the point image at the center P0 on the imaging plane 96 in FIG. Are substantially coincident with the positions where the straight lines 322 and 323 connecting the two and the planned focal plane 98 intersect.

従来、像ズレ量をデフォーカス量に変換するための変換係数には、一対の測距瞳分布のそれぞれの重心間の距離で測距瞳距離を除した値が用いられている。すなわち、図13においては、直線322、323の間の距離が像ズレ量であり、該像ズレ量とデフォーカス量との比例関係における比例係数(像ズレ量をデフォーカス量に変換するための変換係数)は、一対の測距瞳分布のそれぞれの重心間の距離と測距瞳距離との間の比例関係における比例係数と等しいという前提に基づき、該比例係数を変換係数として像ズレ量からデフォーカス量への変換が行われている。図15はこのような前提に基づき、図14に示したボケ像502、503を相対的にシフトさせてそれぞれの重心位置を通る重心線512,513を一致させた場合の概念図である。一方、図16は、差分型位相差検出演算(式(1)、式(6))を用いて最も相関度が高くなるように、すなわち相関量C(k)が極小になるようにボケ像502、503を相対的にシフトさせた場合の概念図である。   Conventionally, as a conversion coefficient for converting the image shift amount into the defocus amount, a value obtained by dividing the distance measurement pupil distance by the distance between the centroids of the pair of distance measurement pupil distributions is used. That is, in FIG. 13, the distance between the straight lines 322 and 323 is the image shift amount, and a proportionality coefficient in the proportional relationship between the image shift amount and the defocus amount (for converting the image shift amount into the defocus amount). Conversion coefficient) is based on the premise that it is equal to the proportional coefficient in the proportional relationship between the distance between the center of gravity of each pair of distance measurement pupil distributions and the distance measurement pupil distance, and the proportional coefficient is used as a conversion coefficient from the image shift amount. Conversion to defocus amount is performed. FIG. 15 is a conceptual diagram in the case where the blur images 502 and 503 shown in FIG. 14 are relatively shifted and the centroid lines 512 and 513 passing through the respective centroid positions are matched based on such a premise. On the other hand, FIG. 16 shows a blurred image in which the correlation degree is maximized using the differential phase difference detection calculation (equations (1) and (6)), that is, the correlation amount C (k) is minimized. It is a conceptual diagram at the time of shifting 502 and 503 relatively.

図16におけるボケ像502および503の相対的なシフト量(像ズレ量)は、図15におけるボケ像502および503の相対的なシフト量(像ズレ量)と比較して大きい。これはボケ像502、503の光量分布形状が、測距瞳分布402、403の光量分布形状に略相似して互いに非対称な形状になっているためである。図14に示すようにボケ像502の光量分布形状はボケ像503側に裾野が延びるとともに、ボケ像503の光量分布形状はボケ像502側に裾野が延びるので、互いの重心位置が裾野側、すなわちもう一方のボケ像側に寄る。差分型位相差検出演算においては、概念的に図16に示すボケ像502および503の不一致部分の面積が最小になるような像ズレ量を算出するので、その像ズレ量の算出に対してボケ像分布の光量が多い部分(すなわちボケ像の外周方向に寄った部分)の寄与度が大きい。そのため、差分型位相差検出演算により算出される像ズレ量は、一対のボケ像の重心位置を一致させるように相対的にシフトさせた場合の像ズレ量よりも大きな像ズレ量が算出される。   The relative shift amount (image shift amount) of the blurred images 502 and 503 in FIG. 16 is larger than the relative shift amount (image shift amount) of the blur images 502 and 503 in FIG. This is because the light amount distribution shapes of the blurred images 502 and 503 are substantially similar to the light amount distribution shapes of the distance measurement pupil distributions 402 and 403 and are asymmetric to each other. As shown in FIG. 14, the light amount distribution shape of the blurred image 502 has a skirt extending toward the blurred image 503 side, and the light amount distribution shape of the blurred image 503 has a skirt extending toward the blurred image 502 side. That is, it approaches the other blurred image side. In the differential phase difference detection calculation, an image shift amount that conceptually minimizes the area of the mismatched portion between the blurred images 502 and 503 shown in FIG. 16 is calculated. The contribution of the portion with a large amount of light in the image distribution (that is, the portion near the outer peripheral direction of the blurred image) is large. Therefore, the image displacement amount calculated by the differential phase difference detection calculation is larger than the image displacement amount when the relative shift is performed so that the center of gravity positions of the pair of blurred images coincide with each other. .

従って、大デフォーカスにおいて、差分型位相差検出演算により算出された像ズレ量に、一対の測距瞳分布のそれぞれの重心位置間の距離(瞳分布重心位置間の距離)に基づいて定められた変換係数を乗じて算出されたデフォーカス量は、本来のデフォーカス量と比較して大きな値になるのである。   Accordingly, in large defocus, the image shift amount calculated by the differential phase difference detection calculation is determined based on the distance between the center positions of the pair of distance measurement pupil distributions (distance between the pupil distribution center positions). The defocus amount calculated by multiplying the conversion coefficient is larger than the original defocus amount.

予定焦点面97と結像面96とのデフォーカス量が比較的小さい場合(合焦近傍の場合)には、予定焦点面97上において一対の焦点検出光束は一対のボケ像602、603を形成する。図17は、ボケ像602、603の光量分布形状を示したものであり、合焦近傍時のボケ像602、603の光量分布形状は、それぞれ、結像面96上の中央P0における点像に略相似した対称な形状となる。図17におけるボケ像602、603のそれぞれの重心線612,613が通る重心位置は、図13における、測距瞳分布402,403の重心位置と結像面96上の中央P0における点像とを結んだ直線322,323と、予定焦点面97とが交差する位置と略一致している。   When the defocus amount between the planned focal plane 97 and the imaging plane 96 is relatively small (in the vicinity of in-focus), the pair of focus detection light beams form a pair of blurred images 602 and 603 on the planned focal plane 97. To do. FIG. 17 shows the light amount distribution shapes of the blurred images 602 and 603. The light amount distribution shapes of the blurred images 602 and 603 near the in-focus state are respectively point images at the center P0 on the imaging plane 96. It becomes a substantially similar and symmetrical shape. The centroid position through which the centroid lines 612 and 613 of the blurred images 602 and 603 in FIG. 17 pass is the centroid position of the distance measurement pupil distributions 402 and 403 and the point image at the center P0 on the imaging plane 96 in FIG. The positions of the connected straight lines 322 and 323 and the planned focal plane 97 substantially coincide with each other.

図18は、図17に示したボケ像602、603を相対的にシフトさせてそれぞれの重心位置を通る重心線612,613を一致させた場合の概念図である。また、差分型位相差検出演算(式(1)、式(6))を用いて最も相関度が高くなるように、すなわち相関量C(k)が極小になるようにボケ像602、603を相対的にシフトさせた場合の概念図も図18と略同様の図となる。すなわち、合焦近傍におけるボケ像602、603の光量分布形状は、それぞれの重心位置を通る重心線612,613に関してそれぞれ略対称形となる。そのため、ボケ像602、603の重心位置を通る重心線612,613を一致させるようにボケ像602、603を相対的にシフトさせた場合の相対的なシフト量(像ズレ量)と、ボケ像602、603の一致度(相関度)が高くなるようにボケ像602、603を相対的にシフトさせた場合の相対的なシフト量(像ズレ量)とが略一致する。従って、差分型位相差検出演算により算出された像ズレ量に、一対の測距瞳分布のそれぞれの重心位置間の距離(瞳分布重心位置間の距離)に基づいて定められた変換係数を乗じて算出されたデフォーカス量と、本来のデフォーカス量との誤差は小さくなる。   FIG. 18 is a conceptual diagram in the case where the blurred images 602 and 603 shown in FIG. 17 are relatively shifted so that the centroid lines 612 and 613 passing through the respective centroid positions are matched. Further, the blurred images 602 and 603 are obtained by using the differential phase difference detection calculation (formulas (1) and (6)) so that the degree of correlation becomes the highest, that is, the correlation amount C (k) is minimized. A conceptual diagram in the case of relative shifting is also substantially the same as FIG. That is, the light intensity distribution shapes of the blurred images 602 and 603 in the vicinity of the in-focus are substantially symmetrical with respect to the centroid lines 612 and 613 passing through the respective centroid positions. Therefore, the relative shift amount (image shift amount) when the blur images 602 and 603 are relatively shifted so that the barycentric lines 612 and 613 passing through the barycentric positions of the blur images 602 and 603 coincide with each other, and the blur image. The relative shift amount (image shift amount) when the blurred images 602 and 603 are relatively shifted so that the degree of coincidence (correlation degree) between 602 and 603 is high substantially coincides. Therefore, the image shift amount calculated by the differential phase difference detection calculation is multiplied by a conversion coefficient determined based on the distance between the center positions of the pair of distance measurement pupil distributions (the distance between the pupil distribution center positions). The error between the calculated defocus amount and the original defocus amount is reduced.

図13においては、予定焦点面に対して結像面が光学系と同じ側にある場合を示している。予定焦点面に対して結像面が光学系と反対側にある場合についても、上述と同様の理由で、合焦近傍においては、差分型位相差検出演算により算出された像ズレ量に、瞳分布重心位置間の距離に基づいて定められた変換係数を乗じて算出されたデフォーカス量と、本来のデフォーカス量との誤差は小さくなる。また、大デフォーカスにおいて、差分型位相差検出演算により算出された像ズレ量に、瞳分布重心位置間の距離に基づいて定められた変換係数を乗じて算出されたデフォーカス量は、本来のデフォーカス量と比較して大きな値になる。   FIG. 13 shows a case where the imaging plane is on the same side as the optical system with respect to the planned focal plane. Even in the case where the imaging plane is on the opposite side of the optical system with respect to the planned focal plane, for the same reason as described above, near the in-focus position, the pupil shifts to the image shift amount calculated by the differential phase difference detection calculation. The error between the defocus amount calculated by multiplying the conversion coefficient determined based on the distance between the distribution centroid positions and the original defocus amount becomes small. In large defocusing, the defocus amount calculated by multiplying the image shift amount calculated by the differential phase difference detection calculation by the conversion coefficient determined based on the distance between the pupil distribution centroid positions is the original defocus amount. The value is larger than the defocus amount.

上述した説明においては、光学系により結像面96上に形成される像を点像として説明を行ったが、点像ではない一般的な像を点像の集合と見なせば、光学系により結像面96上に一般的な像が形成される場合であっても、上述した説明と同様にして説明出来る。   In the above description, the image formed on the imaging surface 96 by the optical system is described as a point image. However, if a general image that is not a point image is regarded as a set of point images, the optical system Even when a general image is formed on the imaging surface 96, it can be explained in the same manner as described above.

図13に示す測距瞳分布402、403の形状は光学系のF値が比較的小さな場合に対応しているが、光学系のF値が比較的大きな場合の測距瞳分布は図19に示す測距瞳分布404、405のような形状をしている。図19において、測距瞳分布404,405の重心位置を通る重心線414,415に関して、測距瞳分布404、405のそれぞれの形状は不対称であるが、測距瞳分布404、405のそれぞれの形状の不対称性の程度が、図13に示す測距瞳分布402、403に比較して改善される。そのため、大デフォーカス時において、差分型位相差検出演算により算出された像ズレ量に、瞳分布重心位置間の距離に基づいて定められた変換係数を乗じて算出されたデフォーカス量と、本来のデフォーカス量との差(算出されたデフォーカス量に含まれる誤差)は、光学系のF値が比較的大きい場合、小さくなる。すなわち、合焦近傍における変換係数と合焦近傍外における変換係数との比の値は、光学系のF値が比較的小さな場合に比較して光学系のF値が比較大きな場合の方が、より1に近づく。このように光学系のF値に応じて変換係数を定めることにより、より高精度な焦点検出を行うことができる。   The shape of the distance measurement pupil distributions 402 and 403 shown in FIG. 13 corresponds to the case where the F value of the optical system is relatively small, but the distance measurement pupil distribution when the F value of the optical system is relatively large is shown in FIG. The distance measurement pupil distributions 404 and 405 shown in FIG. In FIG. 19, the shape of each of the distance measurement pupil distributions 404 and 405 is asymmetric with respect to the center of gravity lines 414 and 415 passing through the position of the center of gravity of the distance measurement pupil distributions 404 and 405. The degree of asymmetry of the shape is improved compared to the distance measurement pupil distributions 402 and 403 shown in FIG. Therefore, at the time of large defocus, the defocus amount calculated by multiplying the image shift amount calculated by the differential phase difference detection calculation by the conversion coefficient determined based on the distance between the pupil distribution centroid positions, The difference from the defocus amount (the error included in the calculated defocus amount) is small when the F value of the optical system is relatively large. That is, the value of the ratio between the conversion coefficient in the vicinity of focusing and the conversion coefficient in the vicinity of in-focus is larger when the F value of the optical system is relatively larger than when the F value of the optical system is relatively small. Closer to 1. Thus, by determining the conversion coefficient according to the F value of the optical system, more accurate focus detection can be performed.

図19に示す重心線414と415との間の距離(瞳分布重心位置間の距離)は、図13における重心線412と413との間の距離(瞳分布重心位置間の距離)よりも小さい。上述したように、像ズレ量をデフォーカス量に変換するための変換係数には、一対の測距瞳分布のそれぞれの重心間の距離(瞳分布重心位置間の距離)で測距瞳距離を除した値が用いられる。したがって、瞳分布重心位置間の距離が小さくなるほど、変換係数は大きくなる。上述したように、図13に示す測距瞳分布402、403の形状は光学系のF値が比較的小さな場合に対応し、図19に示す測距瞳分布404、405の形状は光学系のF値が比較的大きな場合に対応している。したがって、光学系のF値が大きいほど、変換係数は大きい。   The distance between centroid lines 414 and 415 shown in FIG. 19 (distance between pupil distribution centroid positions) is smaller than the distance between centroid lines 412 and 413 (distance between pupil distribution centroid positions) in FIG. . As described above, the conversion coefficient for converting the image shift amount into the defocus amount is the distance between the centroids of the pair of distance measurement pupil distributions (the distance between the pupil distribution centroid positions). The divided value is used. Therefore, the conversion coefficient increases as the distance between the pupil distribution centroid positions decreases. As described above, the shape of the distance measurement pupil distributions 402 and 403 shown in FIG. 13 corresponds to the case where the F value of the optical system is relatively small, and the shape of the distance measurement pupil distributions 404 and 405 shown in FIG. This corresponds to the case where the F value is relatively large. Therefore, the larger the F value of the optical system, the larger the conversion coefficient.

図2の焦点検出エリア102、103に対応して撮像素子212に配置される焦点検出画素については、図7に示すように光学系の射出瞳距離dn、dfが測距瞳距離dと一致しない場合には、一対の焦点検出光束がケラレにより不均一に制限されることになる。このような場合には、測距瞳面90上の一対の測距瞳分布の形状は、図13に示す測距瞳分布402、403とは異なり、図20に示す測距瞳分布406、407のように表される。図20において、測距瞳分布406,407の重心位置を通る重心線416,417に関して、測距瞳分布406、407のそれぞれの形状が不対称であるだけでなく、測距瞳分布406、407の互いの形状の相違度が、ケラレの影響が無い測距瞳分布402、403の互いの形状の相違度に比較して大きい。そのため、合焦近傍における変換係数と合焦近傍外における変換係数との比の値に関して、撮影画面100の中央に配置された焦点検出エリア101に対応する結像面上の中央の焦点検出画素の光電変換信号に基づいて焦点検出処理を行う場合の該比の値と、撮影画面100の周辺に配置された焦点検出エリア102、103に対応する結像面上の周辺の焦点検出画素の光電変換信号に基づいて焦点検出処理を行う場合の該比の値とが相異なる必要がある。該比の値は、具体的には、上述したケラレの状態に依存するため、交換レンズ202の種類に応じて予め実験によって得られる値を用いてもよいし、様々な種類の交換レンズ202に共通して統計的に像高に基づき定められる値を用いてもよい。焦点検出エリア102、103に対応して撮像素子212に配置した焦点検出画素のように、像高の高い位置の焦点検出画素に対応する該比の値は、図20に基づいて算出される。このように、焦点検出画素が配置された位置、すなわち像高に応じて合焦近傍における変換係数および合焦近傍外における変換係数を調整することにより、より高精度な焦点検出を行うことができる。   For the focus detection pixels arranged in the image sensor 212 corresponding to the focus detection areas 102 and 103 in FIG. 2, the exit pupil distances dn and df of the optical system do not match the distance measurement pupil distance d as shown in FIG. In this case, the pair of focus detection light fluxes are nonuniformly limited by vignetting. In such a case, the shape of the pair of ranging pupil distributions on the ranging pupil plane 90 is different from the ranging pupil distributions 402 and 403 shown in FIG. 13, and the ranging pupil distributions 406 and 407 shown in FIG. It is expressed as In FIG. 20, regarding the barycentric lines 416 and 417 passing through the barycentric positions of the distance measuring pupil distributions 406 and 407, not only the shapes of the distance measuring pupil distributions 406 and 407 are asymmetric but also the distance measuring pupil distributions 406 and 407. The difference in shape between the distance measurement pupil distributions 402 and 403 that are not affected by vignetting is larger than the difference in shape between the distance measurement pupil distributions 402 and 403. Therefore, regarding the value of the ratio between the conversion coefficient in the vicinity of the focus and the conversion coefficient in the vicinity of the focus, the focus detection pixel at the center on the imaging surface corresponding to the focus detection area 101 arranged at the center of the shooting screen 100. The ratio value when focus detection processing is performed based on the photoelectric conversion signal and the photoelectric conversion of the peripheral focus detection pixels on the imaging surface corresponding to the focus detection areas 102 and 103 arranged around the photographing screen 100 The ratio value when the focus detection process is performed based on the signal needs to be different. Specifically, since the value of the ratio depends on the above-described vignetting state, a value obtained in advance by experiment according to the type of the interchangeable lens 202 may be used. A value that is statistically determined based on the image height may be used. The ratio value corresponding to the focus detection pixel at a high image height, such as the focus detection pixels arranged in the image sensor 212 corresponding to the focus detection areas 102 and 103, is calculated based on FIG. As described above, by adjusting the conversion coefficient in the vicinity of the focus and the conversion coefficient in the vicinity of the focus according to the position where the focus detection pixel is arranged, that is, the image height, more accurate focus detection can be performed. .

合焦近傍における変換係数の値および合焦近傍外(大デフォーカス)における変換係数の値の決め方には以下のような方法(1)〜(3)がある。例えばコンピュータを有する不図示の変換係数決定装置がボディ駆動制御装置214に含まれ、変換係数決定装置の内部に記憶された演算プログラムに従って、それらの方法(1)〜(3)により変換係数の値を決定し、決定した変換係数の値に基づき、以下で説明する変換係数のルックアップテーブルを作成し、ボディ駆動制御装置214に記憶させる。   There are the following methods (1) to (3) for determining the value of the conversion coefficient in the vicinity of in-focus and the value of the conversion coefficient in the vicinity of in-focus (large defocus). For example, a conversion coefficient determination device (not shown) having a computer is included in the body drive control device 214, and the values of the conversion coefficients are obtained by the methods (1) to (3) according to an arithmetic program stored in the conversion coefficient determination device. Based on the determined value of the conversion coefficient, a conversion coefficient lookup table described below is created and stored in the body drive control device 214.

(1)変換係数を理論計算で求めるという方法
変換係数決定装置は、図13の測距瞳分布402,403の形状、図19の測距瞳分布404,405の形状、および図20の測距瞳分布406,407の形状を、光学系の射出瞳の光学特性、焦点検出画素の光学設計パラメータ(マイクロレンズ径、マイクロレンズから光電変換部までの距離など)、測距瞳距離、焦点検出画素の像高などに基づいて予め特定される。光学系の射出瞳の光学特性は、光学系の射出瞳距離と、光学系の射出瞳径と、光学系のF値とを含む。変換係数決定装置は、形状を特定した図13に示す一対の測距瞳分布402,403、図19に示す一対の測距瞳分布404,405、および図20に示す一対の測距瞳分布406,407の重心位置を計算して求め、各対の測距瞳分布における該重心位置間の距離を測距瞳距離で除することにより合焦近傍時における変換係数を算出する。変換係数決定装置は、算出した合焦近傍時における変換係数に基づき、光学系の射出瞳の光学特性(光学系の射出瞳距離、射出瞳径およびF値)、測距瞳距離、焦点検出画素の像高などを入力パラメータとする変換係数のルックアップテーブルを作成する。
(1) Method of Finding Conversion Coefficients by Theoretical Calculation The conversion coefficient determination apparatus is configured by the shape of the distance measurement pupil distributions 402 and 403 in FIG. 13, the shape of the distance measurement pupil distributions 404 and 405 in FIG. 19, and the distance measurement in FIG. The shape of the pupil distributions 406 and 407, the optical characteristics of the exit pupil of the optical system, the optical design parameters of the focus detection pixel (microlens diameter, distance from the microlens to the photoelectric conversion unit, etc.), distance measurement pupil distance, focus detection pixel Is specified in advance based on the image height or the like. The optical characteristics of the exit pupil of the optical system include the exit pupil distance of the optical system, the exit pupil diameter of the optical system, and the F value of the optical system. The conversion coefficient determination device includes a pair of distance measurement pupil distributions 402 and 403 shown in FIG. 13 whose shape has been specified, a pair of distance measurement pupil distributions 404 and 405 shown in FIG. 19, and a pair of distance measurement pupil distributions 406 shown in FIG. , 407 is calculated and obtained by dividing the distance between the centroid positions in each pair of distance measurement pupil distributions by the distance measurement pupil distance, thereby calculating a conversion coefficient in the vicinity of the in-focus state. Based on the calculated conversion coefficient in the vicinity of the in-focus state, the conversion coefficient determination device is configured to provide optical characteristics of the exit pupil of the optical system (exit pupil distance, exit pupil diameter and F value of the optical system), ranging pupil distance, and focus detection pixel. Create a conversion coefficient lookup table using the image height of the input as an input parameter.

また、変換係数決定装置は、計算で求めた測距瞳分布に基づき、図14に示すような大デフォーカス時の所定デフォーカス量におけるボケ像の分布形状を推定算出し、算出したボケ像の分布に対して差分型位相差検出相関演算を施し、その演算の結果に基づいて得られる像ズレ量と上述した所定デフォーカス量とに基づいて合焦近傍外における変換係数を算出する。変換係数決定装置は、算出した合焦近傍外における変換係数に基づき、光学系の射出瞳の光学特性(光学系の射出瞳距離、射出瞳径およびF値)、焦点検出画素の像高などを入力パラメータとする変換係数のルックアップテーブルを作成する。変換係数決定装置は、作成したルックアップテーブルを、ボディ駆動制御装置214に記憶させる。   Further, the conversion coefficient determination apparatus estimates and calculates the distribution shape of the blurred image at a predetermined defocus amount at the time of large defocus as shown in FIG. 14 based on the distance measurement pupil distribution obtained by calculation, and calculates the calculated blur image. A differential phase difference detection correlation calculation is performed on the distribution, and a conversion coefficient outside the vicinity of the focus is calculated based on the image shift amount obtained based on the calculation result and the above-described predetermined defocus amount. The conversion coefficient determination device calculates the optical characteristics of the exit pupil of the optical system (exit pupil distance, exit pupil diameter and F value) of the optical system, the image height of the focus detection pixel, and the like based on the calculated conversion coefficient outside the vicinity of the focus. Create a lookup table of conversion coefficients as input parameters. The conversion coefficient determination device stores the created lookup table in the body drive control device 214.

測距瞳分布やボケ像の分布を計算で求めると誤差が大きくなる可能性があるので、測距瞳分布およびボケ像の分布を実際に測定し、測定した測距瞳分布およびボケ像の分布を用いて上述した変換係数の計算を行い、変換係数のルックアップテーブルを作成することとしてもよい。   If the distance measurement pupil distribution or blur image distribution is calculated, the error may increase. Therefore, the distance measurement pupil distribution and blur image distribution are actually measured, and the measured distance pupil distribution and blur image distribution are measured. It is also possible to calculate the above-described conversion coefficient using, and create a conversion coefficient lookup table.

実際の焦点検出処理時に像ズレ量からデフォーカス量への変換を行う場合には、ボディ駆動制御装置214は、カメラボディ203に装着されている交換レンズ202から光学系の射出瞳の光学特性に関する情報、すなわち射出瞳距離、射出瞳径およびF値の情報を読み出す。ボディ駆動制御装置214は、それらの読み出した情報と、焦点検出を行う焦点検出エリアに対応する焦点検出画素の像高とに基づき、上記ルックアップテーブルを参照して合焦近傍における変換係数Kd1および合焦近傍外(大デフォーカス)における変換係数Kd2を取得する。ボディ駆動制御装置214は、取得した変換係数を、差分型位相差検出相関演算で算出した像ズレ量shftに乗じることによってデフォーカス量を算出する。   When converting the image shift amount to the defocus amount at the time of actual focus detection processing, the body drive control device 214 relates to the optical characteristics of the exit pupil of the optical system from the interchangeable lens 202 mounted on the camera body 203. Information, ie, exit pupil distance, exit pupil diameter, and F value information is read. The body drive control device 214 refers to the look-up table based on the read information and the image height of the focus detection pixel corresponding to the focus detection area where focus detection is performed, and the conversion coefficient Kd1 in the vicinity of the focus and A conversion coefficient Kd2 outside the focus vicinity (large defocus) is acquired. The body drive control device 214 calculates the defocus amount by multiplying the acquired conversion coefficient by the image shift amount shft calculated by the differential phase difference detection correlation calculation.

実際の焦点検出処理時に変換係数の算出演算を短時間に簡略に行うことが出来る場合には上述した変換係数のルックアップテーブルを作成する必要は無い。その場合、変換係数決定装置を内部に有するボディ駆動制御装置214は、カメラボディ203に装着されている交換レンズ202から読み出した光学系の射出瞳の光学特性に関する情報(射出瞳距離、射出瞳径およびF値の情報)と、焦点検出を行う焦点検出エリアに対応する焦点検出画素の像高と、焦点検出画素の光学パラメータなどとに基づき、実際の焦点検出処理のたびに変換係数をその都度算出し、算出した変換係数に基づき像ズレ量からデフォーカス量への変換を行うこととしてもよい。   When the calculation calculation of the conversion coefficient can be performed in a short time during the actual focus detection process, it is not necessary to create the conversion coefficient lookup table described above. In that case, the body drive control device 214 having a conversion coefficient determination device therein includes information on the optical characteristics of the exit pupil of the optical system read from the interchangeable lens 202 attached to the camera body 203 (exit pupil distance, exit pupil diameter). And F value information), the image height of the focus detection pixel corresponding to the focus detection area where the focus detection is performed, the optical parameters of the focus detection pixel, and the like. It is also possible to calculate and convert the image shift amount to the defocus amount based on the calculated conversion coefficient.

(2)各交換レンズ毎に変換係数を測定するという方法
測距瞳分布やボケ像の分布は光学系の収差に影響されるので、実際に焦点検出処理時に使用される個々の光学系についてそれぞれ合焦近傍における変換係数および合焦近傍外における変換係数が、変換係数決定装置によって予め測定されることとしてもよい。測定された変換係数のルックアップテーブルが、光学系のF値および焦点距離、ならびに像高をパラメータとして変換係数決定装置によって作成され、交換レンズ202側のレンズ駆動制御装置206に予め記憶されている。実際の焦点検出処理時に像ズレ量からデフォーカス量への変換を行う場合には、ボディ駆動制御装置214はカメラボディ203に装着されている交換レンズ202に像高を送る。交換レンズ202のレンズ駆動制御装置206は、その像高を受信した時に設定されているF値と焦点距離と受信した像高とに応じた合焦近傍における変換係数および合焦近傍外(大デフォーカス)における変換係数を、カメラボディ側のボディ駆動制御装置214に送る。カメラボディのボディ駆動制御装置214は、受信した合焦近傍における変換係数および合焦近傍外(大デフォーカス)における変換係数を用いて像ズレ量をデフォーカス量へ変換する。すなわち、ボディ駆動制御装置214は、カメラボディ203に装着されている実際の交換レンズ202が有する光学系と同一の光学系に対応して予め測定された変換係数を用いて、像ズレ量をデフォーカス量へ変換する。
(2) Method of measuring the conversion coefficient for each interchangeable lens The distance pupil distribution and blur image distribution are affected by the aberration of the optical system, so each optical system actually used during the focus detection process The conversion coefficient near the focus and the conversion coefficient outside the focus may be measured in advance by the conversion coefficient determination device. A look-up table of the measured conversion coefficient is created by the conversion coefficient determination device using the F value and focal length of the optical system and the image height as parameters, and is stored in advance in the lens drive control device 206 on the interchangeable lens 202 side. . When performing conversion from the image shift amount to the defocus amount during the actual focus detection process, the body drive control device 214 sends the image height to the interchangeable lens 202 attached to the camera body 203. The lens drive control device 206 of the interchangeable lens 202 receives a conversion coefficient near the in-focus state and an out-of-focus area (large data) according to the F value set when the image height is received, the focal length, and the received image height. The conversion coefficient in (focus) is sent to the body drive control device 214 on the camera body side. The body drive control unit 214 of the camera body converts the image shift amount into the defocus amount using the received conversion coefficient in the vicinity of in-focus and the conversion coefficient in the vicinity of in-focus (large defocus). That is, the body drive control device 214 uses the conversion coefficient measured in advance corresponding to the same optical system as the optical system of the actual interchangeable lens 202 mounted on the camera body 203 to descale the image shift amount. Convert to focus amount.

上述した合焦近傍における変換係数の測定においては、各交換レンズ202により点像または線像が結像面に形成され、結像面が予定焦点面に対して交換レンズ202の光軸方向に微小変位した際の、変位量と差分型位相差検出相関演算で算出される像ズレ量との関係が測定される。その測定された変位量をその算出された像ズレ量で除した値が変換係数の値として定められる。複数組の変位量と像ズレ量との関係が測定される場合は、その関係がグラフ化された時の回帰直線の傾きに基づき合焦近傍の変換係数の値を定めることによって、より高精度な変換係数の測定が行われることとしてもよい。   In the above-described measurement of the conversion coefficient in the vicinity of the in-focus state, a point image or a line image is formed on the imaging plane by each interchangeable lens 202, and the imaging plane is minute in the optical axis direction of the interchangeable lens 202 with respect to the planned focal plane. The relationship between the displacement amount and the image shift amount calculated by the differential phase difference detection correlation calculation is measured. A value obtained by dividing the measured displacement amount by the calculated image shift amount is determined as the value of the conversion coefficient. When the relationship between multiple sets of displacement and image displacement is measured, it is possible to obtain higher accuracy by determining the conversion coefficient value near the focus based on the slope of the regression line when the relationship is graphed. It is also possible to perform measurement of various conversion coefficients.

合焦近傍外における変換係数の測定においては、各交換レンズ202により点像または線像が形成される結像面が予定焦点面に対して交換レンズ202の光軸方向に大デフォーカス量変位した時に測定される変位量と、該点像または該線像に対応して該予定焦点面に形成されるボケ像に対して差分型位相差検出相関演算を施すことにより算出される像ズレ量との関係が測定される。その測定された変位量をその算出された像ズレ量で除した値が変換係数の値として定められる。   In the measurement of the conversion coefficient outside the vicinity of the in-focus position, the image forming surface on which a point image or a line image is formed by each interchangeable lens 202 is displaced by a large defocus amount in the optical axis direction of the interchangeable lens 202 with respect to the intended focal plane. A displacement amount that is sometimes measured, and an image shift amount calculated by performing a differential phase difference detection correlation operation on a blurred image formed on the planned focal plane corresponding to the point image or the line image The relationship is measured. A value obtained by dividing the measured displacement amount by the calculated image shift amount is determined as the value of the conversion coefficient.

(3)基準光学系に対して測定した値を変換係数として用いるという方法
上述した方法(2)のように個々の光学系について変換係数が測定されるのは手間がかかる。本方法(3)によると、変換係数決定装置は、所定の基準光学系において、F値、射出瞳距離および像高をパラメータとして合焦近傍における変換係数および合焦近傍外における変換係数を測定し、測定した該変換係数のルックアップテーブルを作成し、そのルックアップテーブルをカメラボディ203側のボディ駆動制御装置214に予め記憶させる。実際の焦点検出時に像ズレ量からデフォーカス量への変換を行う場合には、ボディ駆動制御装置214はカメラボディ203に装着されている交換レンズ202から読み出したF値および射出瞳距離の情報と、焦点検出を行う焦点検出エリアに対応する焦点検出画素の像高とに基づき、上記ルックアップテーブルを参照して合焦近傍における変換係数および合焦近傍外(大デフォーカス)における変換係数を取得し、取得した変換係数に基づいてデフォーカス量を算出する。すなわち、カメラボディ203に装着されている交換レンズ202が所定の基準光学系とは異なる光学系を有する場合であっても、所定の基準光学系において測定された変換係数に基づいてデフォーカス量が算出される。
(3) Method of using a value measured with respect to the reference optical system as a conversion coefficient It takes time and effort to measure the conversion coefficient for each optical system as in the method (2) described above. According to the method (3), the conversion coefficient determination device measures the conversion coefficient in the vicinity of focusing and the conversion coefficient in the vicinity of focusing using the F value, exit pupil distance, and image height as parameters in a predetermined reference optical system. Then, a lookup table of the measured conversion coefficients is created, and the lookup table is stored in advance in the body drive control device 214 on the camera body 203 side. When converting from the image shift amount to the defocus amount at the time of actual focus detection, the body drive control device 214 includes information on the F value and the exit pupil distance read from the interchangeable lens 202 attached to the camera body 203. Based on the image height of the focus detection pixel corresponding to the focus detection area where focus detection is performed, the conversion coefficient near the focus and the conversion coefficient outside the focus vicinity (large defocus) are obtained by referring to the lookup table. Then, the defocus amount is calculated based on the acquired conversion coefficient. That is, even when the interchangeable lens 202 attached to the camera body 203 has an optical system different from the predetermined reference optical system, the defocus amount is based on the conversion coefficient measured in the predetermined reference optical system. Calculated.

上述した方法(1)、(2)、(3)によって算出する合焦近傍外(大デフォーカス)における変換係数は、合焦近傍外における変換誤差の増大を防止するという、本発明が解決しようとする課題に対応する必要があるものの、合焦近傍における変換係数ほどの精度は要求されない。例えば、合焦近傍における変換係数に対して像ズレ量に応じた調整係数(<1)を乗ずることにより、合焦近傍外における変換係数を簡略的に求めるようにしてもかまわない。その調整係数を1未満の値、例えば0.8とすることにより合焦近傍外における変換係数が得られることで、合焦近傍外における変換誤差の増大を防止するという上記課題が解決される。変換係数決定装置は、予め変換係数決定装置の内部に記憶されたその調整係数と演算プログラムとに基づいて、合焦近傍における変換係数にその調整係数を乗じ、合焦近傍外における変換係数を算出する。   The present invention solves that the conversion coefficient outside the focus vicinity (large defocus) calculated by the methods (1), (2), and (3) described above prevents an increase in conversion error outside the focus vicinity. However, the accuracy as high as the conversion coefficient in the vicinity of the focus is not required. For example, the conversion coefficient in the vicinity of the focus may be simply obtained by multiplying the conversion coefficient in the vicinity of the focus by an adjustment coefficient (<1) corresponding to the image shift amount. By setting the adjustment coefficient to a value less than 1, for example, 0.8, the conversion coefficient outside the focus vicinity can be obtained, thereby solving the above-described problem of preventing an increase in conversion error outside the focus vicinity. The conversion coefficient determining device multiplies the adjustment coefficient in the vicinity of the focus by the adjustment coefficient based on the adjustment coefficient stored in advance in the conversion coefficient determination device and the calculation program, and calculates the conversion coefficient outside the focus vicinity. To do.

上述した一実施の形態では、一対のデータ列に対し、相関演算式(1)または(6)を用いた減算を含む差分型相関演算処理により相関量C(k)を演算することとしたが、例えば下記の相関演算式(10)を用いた乗算を含む乗算型相関演算処理により相関量C(k)を演算することとしてもよい。式(10)による相関演算においては、相関量C(k)は、一対の像の一致度に対応する一対のデータ列の相関度が最も高いときの位相差kにおいて極大値をとる特性を示す。相関量C(k)が大きいほど相関度が高い。
C(k)=Σ(A1×A2n+k) ・・・(10)
In the above-described embodiment, the correlation amount C (k) is calculated for the pair of data strings by the differential correlation calculation process including the subtraction using the correlation calculation formula (1) or (6). For example, the correlation amount C (k) may be calculated by multiplication type correlation calculation processing including multiplication using the following correlation calculation formula (10). In the correlation calculation according to Expression (10), the correlation amount C (k) indicates a characteristic that takes a maximum value in the phase difference k when the correlation degree of the pair of data strings corresponding to the degree of coincidence of the pair of images is the highest. . The larger the correlation amount C (k) is, the higher the degree of correlation is.
C (k) = Σ (A1 n × A2 n + k ) (10)

図3に示す撮像素子212では、焦点検出画素312、313がひとつの画素内にひとつの光電変換部を備えた例を示したが、ひとつの画素内に一対の光電変換部を備えてもよい。図21は、図3に示す撮像素子212に対応する変形例の撮像素子212Bを示す。図21において、焦点検出画素311はひとつの画素内に一対の光電変換部を備える。図21に示す焦点検出画素311が、図3に示す焦点検出画素312と焦点検出画素313とのペアに相当した機能を果たす。   In the imaging device 212 illustrated in FIG. 3, the focus detection pixels 312 and 313 include one photoelectric conversion unit in one pixel. However, a pair of photoelectric conversion units may be included in one pixel. . FIG. 21 shows an image sensor 212B of a modification corresponding to the image sensor 212 shown in FIG. In FIG. 21, the focus detection pixel 311 includes a pair of photoelectric conversion units in one pixel. The focus detection pixel 311 illustrated in FIG. 21 performs a function corresponding to the pair of the focus detection pixel 312 and the focus detection pixel 313 illustrated in FIG.

焦点検出画素311は、マイクロレンズ10、一対の光電変換部22,23からなる。焦点検出画素311には光量をかせぐために色フィルタが配置されていない。焦点検出画素311の示す分光感度特性は、光電変換部に含まれる光電変換を行うフォトダイオードの分光感度特性、赤外カットフィルタ(不図示)の分光感度特性とを総合した分光感度特性となる。すなわち、焦点検出画素311は、緑画素、赤画素、青画素の分光感度特性を加算したような分光感度特性を示す。高い感度を示す光波長領域は、緑画素、赤画素、青画素の各々において各色フィルタが高い感度を示す光波長領域を包括している。   The focus detection pixel 311 includes a microlens 10 and a pair of photoelectric conversion units 22 and 23. The focus detection pixel 311 is not provided with a color filter in order to increase the amount of light. The spectral sensitivity characteristic indicated by the focus detection pixel 311 is a spectral sensitivity characteristic that combines the spectral sensitivity characteristic of a photodiode that performs photoelectric conversion included in the photoelectric conversion unit and the spectral sensitivity characteristic of an infrared cut filter (not shown). That is, the focus detection pixel 311 exhibits spectral sensitivity characteristics that are obtained by adding the spectral sensitivity characteristics of green pixels, red pixels, and blue pixels. The light wavelength region exhibiting high sensitivity includes the light wavelength region in which each color filter exhibits high sensitivity in each of the green pixel, red pixel, and blue pixel.

上述した一実施の形態では、マイクロレンズを用いた瞳分割方式による焦点検出動作を説明したが、本発明はこのような方式の焦点検出に限定されず、特開平7-159680号公報に開示されたような再結像瞳分割方式の焦点検出にも、一対の測距瞳の分布がそれぞれの分布重心位置に関して不対称となる場合には適用可能である。   In the above-described embodiment, the focus detection operation by the pupil division method using the microlens has been described. However, the present invention is not limited to the focus detection of such a method, and is disclosed in JP-A-7-159680. The focus detection by the re-imaging pupil division method as described above can also be applied when the distribution of the pair of distance measurement pupils is asymmetric with respect to the respective distribution center positions.

図3に示す撮像素子212において、撮像画素310がベイヤー配列の色フィルタを備えた例を示したが、色フィルタの構成や配列はこれに限定されることはない。たとえば、補色フィルタ(緑:G、イエロー:Ye、マゼンタ:Mg,シアン:Cy)の配列を採用してもよい。   In the imaging device 212 illustrated in FIG. 3, an example in which the imaging pixel 310 includes a Bayer color filter is shown, but the configuration and arrangement of the color filter are not limited thereto. For example, an array of complementary color filters (green: G, yellow: Ye, magenta: Mg, cyan: Cy) may be employed.

図3に示す撮像素子212において、焦点検出画素312および313には色フィルタを設けない例を示したが、撮像画素310が有する色フィルタのうちのひとつのフィルタ(たとえば緑フィルタ)を焦点検出画素312および313が備えるようにした場合でも、本発明を適用することができる。   In the image sensor 212 shown in FIG. 3, the focus detection pixels 312 and 313 are not provided with a color filter. However, one of the color filters (for example, a green filter) of the image pickup pixel 310 is used as the focus detection pixel. Even when 312 and 313 are provided, the present invention can be applied.

図3に示す撮像素子212では、撮像画素310、ならびに焦点検出画素312および313を稠密正方格子配列に配置した例を示したが、稠密六方格子配列に配置してもよい。   In the imaging device 212 shown in FIG. 3, the example in which the imaging pixels 310 and the focus detection pixels 312 and 313 are arranged in a dense square lattice arrangement is shown, but they may be arranged in a dense hexagonal lattice arrangement.

撮像装置としては、上述したような、カメラボディに交換レンズが装着される構成のデジタルスチルカメラやフィルムスチルカメラに限定されない。例えば、レンズ一体型のデジタルスチルカメラ、フィルムスチルカメラ、あるいはビデオカメラにも本発明を適用することができる。さらには、携帯電話などに内蔵される小型カメラモジュール、監視カメラやロボット用の視覚認識装置などにも適用できる。カメラ以外の焦点検出装置や測距装置、さらにはステレオ測距装置にも適用できる。   The imaging device is not limited to a digital still camera or a film still camera having a configuration in which an interchangeable lens is attached to the camera body as described above. For example, the present invention can also be applied to a lens-integrated digital still camera, film still camera, or video camera. Furthermore, the present invention can be applied to a small camera module built in a mobile phone, a surveillance camera, a visual recognition device for a robot, and the like. The present invention can also be applied to a focus detection device other than a camera, a distance measuring device, and a stereo distance measuring device.

10 マイクロレンズ、11、12、13、22、23 光電変換部、
72、73、82、83 焦点検出光束、
90 測距瞳面、 91 光軸、 92、93 測距瞳、95 射出瞳、
96 結像面、97、98 予定焦点面、
100 撮影画面、101、102、103 焦点検出エリア、
172、173、182、183 焦点検出光束、
201 デジタルスチルカメラ、202 交換レンズ、203 カメラボディ、
204 マウント部、206 レンズ駆動制御装置、
208 ズーミング用レンズ、209 レンズ、210 フォーカシング用レンズ、
211 絞り、212 撮像素子、213 電気接点、
214 ボディ駆動制御装置、
215 液晶表示素子駆動回路、216 液晶表示素子、217 接眼レンズ、
219 メモリカード、
272、273、282、283、292、293 焦点検出光束、
301 一点鎖線、302 破線、303 実線、
310 撮像画素、311、312、313 焦点検出画素、
322、323 直線、
402、403、404、405、406、407 測距瞳分布、
412、413、414、415、416、417 重心線、
502、503、602、603 ボケ像、
512、513、612、613 重心線、
10 microlens, 11, 12, 13, 22, 23 photoelectric conversion unit,
72, 73, 82, 83 Focus detection luminous flux,
90 Distance pupil plane, 91 Optical axis, 92, 93 Distance pupil, 95 Exit pupil,
96 Imaging plane, 97, 98 Planned focal plane,
100 shooting screen, 101, 102, 103 focus detection area,
172, 173, 182, 183 Focus detection light flux,
201 digital still camera, 202 interchangeable lens, 203 camera body,
204 mount unit, 206 lens drive control device,
208 zooming lens, 209 lens, 210 focusing lens,
211 Aperture, 212 Image sensor, 213 Electrical contact,
214 body drive control device,
215 liquid crystal display element driving circuit, 216 liquid crystal display element, 217 eyepiece,
219 memory card,
272, 273, 282, 283, 292, 293, focus detection light flux,
301 dashed line, 302 broken line, 303 solid line,
310 imaging pixels, 311, 312, 313 focus detection pixels,
322, 323 straight line,
402, 403, 404, 405, 406, 407 Distance pupil distribution,
412, 413, 414, 415, 416, 417 center of gravity line,
502, 503, 602, 603 blurred image,
512, 513, 612, 613

Claims (14)

光学系の射出瞳面を通過する一対の光束を受光し、一対の信号を出力する複数の焦点検出画素と、
前記一対の信号に対する相関演算処理により、前記一対の光束による一対の像の像ズレ量を検出する像ズレ量検出手段と、
前記像ズレ量に所定の変換係数を乗じて前記光学系のデフォーカス量を算出するデフォーカス量算出手段とを備え、
前記射出瞳面における前記一対の光束の光量分布の各々は、前記一対の光量分布の各々の分布重心に関して不対称性を有し、
前記デフォーカス量算出手段は、算出した前記デフォーカス量の絶対値が所定の閾値未満である合焦近傍状態においては前記所定の変換係数の値として第1の値を用いるとともに、前記絶対値が前記所定の閾値以上である大デフォーカス状態においては前記所定の変換係数の値として前記第1の値よりも小さい第2の値を用いることを特徴とする焦点検出装置。
A plurality of focus detection pixels that receive a pair of light beams passing through an exit pupil plane of the optical system and output a pair of signals;
An image shift amount detecting means for detecting an image shift amount of the pair of images by the pair of light fluxes by the correlation calculation processing for the pair of signals;
Defocus amount calculation means for calculating a defocus amount of the optical system by multiplying the image shift amount by a predetermined conversion coefficient;
Each of the light quantity distributions of the pair of light fluxes on the exit pupil plane has an asymmetry with respect to the distribution centroid of each of the pair of light quantity distributions,
The defocus amount calculating means uses the first value as the value of the predetermined conversion coefficient in the in-focus state where the calculated absolute value of the defocus amount is less than a predetermined threshold, and the absolute value is A focus detection apparatus using a second value smaller than the first value as the value of the predetermined conversion coefficient in a large defocus state that is equal to or greater than the predetermined threshold.
請求項1に記載の焦点検出装置において、
前記第1の値は前記光学系のF値が大きくなるほど大きく定められるとともに、
前記第1の値と前記第2の値との比の値は、前記光学系のF値が大きくなるほど1に近づくことを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1,
The first value is determined to increase as the F value of the optical system increases,
The focus detection apparatus according to claim 1, wherein the ratio value between the first value and the second value approaches 1 as the F value of the optical system increases.
請求項1に記載の焦点検出装置において、
前記合焦近傍状態においては、前記第1の値が、前記光学系の結像面が前記光学系の光軸方向に変位する際に測定される前記結像面の変位量と、前記像ズレ量検出手段により検出される前記像ズレ量との関係に基づいて定められることを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1,
In the in-focus state, the first value is the amount of displacement of the imaging plane measured when the imaging plane of the optical system is displaced in the optical axis direction of the optical system, and the image displacement. A focus detection apparatus characterized in that the focus detection apparatus is determined based on a relationship with the image shift amount detected by an amount detection means.
請求項3に記載の焦点検出装置において、
前記関係が測定される際の前記光学系は所定の基準光学系であることを特徴とする焦点検出装置。
The focus detection apparatus according to claim 3,
The focus detection apparatus, wherein the optical system when the relationship is measured is a predetermined reference optical system.
請求項3に記載の焦点検出装置において、
前記関係が測定される際の前記光学系は、前記デフォーカス量算出手段により前記デフォーカス量が算出される際の前記光学系と同一であることを特徴とする焦点検出装置。
The focus detection apparatus according to claim 3,
The focus detection apparatus characterized in that the optical system when the relationship is measured is the same as the optical system when the defocus amount is calculated by the defocus amount calculation means.
請求項1に記載の焦点検出装置において、
前記第1の値は、前記光学系のF値と、前記光学系の射出瞳距離と、前記光学系の射出瞳径とに基づいて定められることを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1,
The focus detection apparatus, wherein the first value is determined based on an F value of the optical system, an exit pupil distance of the optical system, and an exit pupil diameter of the optical system.
請求項1に記載の焦点検出装置において、
前記大デフォーカス状態においては、前記第2の値が、前記光学系の結像面が前記光学系の光軸方向に変位する際に測定される前記結像面の変位量と、前記像ズレ量検出手段により検出される前記像ズレ量との関係に基づいて定められることを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1,
In the large defocus state, the second value is determined by the amount of displacement of the imaging plane measured when the imaging plane of the optical system is displaced in the optical axis direction of the optical system, and the image displacement. A focus detection apparatus characterized in that the focus detection apparatus is determined based on a relationship with the image shift amount detected by an amount detection means.
請求項1乃至6のいずれか一項に記載の焦点検出装置において、
前記第2の値は、前記第1の値に1未満の調整係数を乗じて得られることを特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 1 to 6,
The focus detection apparatus according to claim 1, wherein the second value is obtained by multiplying the first value by an adjustment coefficient less than 1.
請求項1に記載の焦点検出装置において、
前記光学系の結像面上の中央で検出される前記像ズレ量に乗じられる前記所定の変換係数の前記第1の値および前記第2の値の比の値と、前記結像面上の周辺で検出される前記像ズレ量に乗じられる前記所定の変換係数の前記第1の値および前記第2の値の比の値とは相異なることを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1,
A ratio value of the first value and the second value of the predetermined conversion coefficient multiplied by the image shift amount detected at the center on the image plane of the optical system; The focus detection apparatus, wherein the ratio value between the first value and the second value of the predetermined conversion coefficient multiplied by the image shift amount detected in the vicinity is different.
請求項1に記載の焦点検出装置において、
前記相関演算処理は前記一対の信号に関する減算を含む差分型相関演算処理であり、
前記像ズレ量検出手段は、前記一対の信号を相対的に変位させ、相対的に変位された前記一対の信号に対する前記差分型相関演算処理により、相対的に変位された前記一対の信号間の相関量を検出するとともに、相対的に変位された前記一対の信号間の位相差に応じて変化する該相関量が極小値を示すときの前記位相差に基づいて前記像ズレ量を検出することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1,
The correlation calculation process is a differential correlation calculation process including subtraction for the pair of signals,
The image shift amount detection means relatively displaces the pair of signals, and the difference type correlation calculation processing for the pair of relatively displaced signals causes a difference between the pair of relatively displaced signals. Detecting the amount of correlation, and detecting the amount of image shift based on the phase difference when the amount of correlation changing according to the phase difference between the pair of relatively displaced signals exhibits a minimum value. A focus detection device.
請求項10に記載の焦点検出装置において、
前記一対の信号は、n個の信号を含む一方の信号A1〜A1nと、n個の信号を含む他方の信号A2〜A2nとを含み、
相対的に変位された前記一対の信号間の前記位相差kに応じて変化する前記相関量C(k)は、式「C(k)=Σ|A1n・A2n+1+k−A2n+k・A1n+1|」により算出されることを特徴とする焦点検出装置。
The focus detection apparatus according to claim 10, wherein
The pair of signals includes one signal A1 1 to A1 n including n signals and the other signal A2 1 to A2 n including n signals,
The correlation amount C (k) that changes according to the phase difference k between the pair of relatively displaced signals is expressed by the equation “C (k) = Σ | A1 n · A2 n + 1 + k− A2”. n + k · A1 n + 1 || ”.
請求項1に記載の焦点検出装置において、
前記複数の焦点検出画素は、第1焦点検出画素と第2焦点検出画素とを含み、
前記第1焦点検出画素は、マイクロレンズと、該マイクロレンズに対応する第1光電変換部とを有して、前記一対の光束の一方を受光し、
前記第2焦点検出画素は、マイクロレンズと、該マイクロレンズに対応する第2光電変換部とを有して、前記一対の光束の他方を受光することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1,
The plurality of focus detection pixels include a first focus detection pixel and a second focus detection pixel,
The first focus detection pixel includes a microlens and a first photoelectric conversion unit corresponding to the microlens, and receives one of the pair of light beams.
The second focus detection pixel includes a microlens and a second photoelectric conversion unit corresponding to the microlens, and receives the other of the pair of light beams.
請求項1乃至12のいずれか一項に記載の焦点検出装置と、
前記焦点検出装置により算出された前記デフォーカス量に応じて前記光学系の焦点調節を行う焦点調節手段とを備えることを特徴とする焦点調節装置。
The focus detection device according to any one of claims 1 to 12,
A focus adjustment device comprising: a focus adjustment unit that performs focus adjustment of the optical system according to the defocus amount calculated by the focus detection device.
光学系の射出瞳面を通過する一対の光束を受光し、一対の信号を出力する複数の焦点検出画素と、
前記一対の信号に対する相関演算処理により、前記一対の光束による一対の像の像ズレ量を検出する像ズレ量検出手段と、
前記像ズレ量に所定の変換係数を乗じて前記光学系のデフォーカス量を算出するデフォーカス量算出手段とを備え、
前記デフォーカス量算出手段は、算出した前記デフォーカス量の絶対値が所定の閾値未満である合焦近傍状態においては前記所定の変換係数の値として第1の値を用いるとともに、前記絶対値が前記所定の閾値以上である大デフォーカス状態においては前記所定の変換係数の値として前記第1の値よりも小さい第2の値を用いることを特徴とする焦点検出装置。
A plurality of focus detection pixels that receive a pair of light beams passing through an exit pupil plane of the optical system and output a pair of signals;
An image shift amount detecting means for detecting an image shift amount of the pair of images by the pair of light fluxes by the correlation calculation processing for the pair of signals;
Defocus amount calculation means for calculating a defocus amount of the optical system by multiplying the image shift amount by a predetermined conversion coefficient;
The defocus amount calculating means uses the first value as the value of the predetermined conversion coefficient in the in-focus state where the calculated absolute value of the defocus amount is less than a predetermined threshold, and the absolute value is A focus detection apparatus using a second value smaller than the first value as the value of the predetermined conversion coefficient in a large defocus state that is equal to or greater than the predetermined threshold.
JP2011190920A 2011-09-01 2011-09-01 Focus detection device and focus adjustment device Active JP5857547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190920A JP5857547B2 (en) 2011-09-01 2011-09-01 Focus detection device and focus adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190920A JP5857547B2 (en) 2011-09-01 2011-09-01 Focus detection device and focus adjustment device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015246578A Division JP2016085465A (en) 2015-12-17 2015-12-17 Focus detection device and imaging device

Publications (2)

Publication Number Publication Date
JP2013054120A true JP2013054120A (en) 2013-03-21
JP5857547B2 JP5857547B2 (en) 2016-02-10

Family

ID=48131179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190920A Active JP5857547B2 (en) 2011-09-01 2011-09-01 Focus detection device and focus adjustment device

Country Status (1)

Country Link
JP (1) JP5857547B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174460A (en) * 2013-03-12 2014-09-22 Canon Inc Focus detection device and control method of the same, imaging device, program and storage medium
WO2014208488A1 (en) * 2013-06-27 2014-12-31 オリンパス株式会社 Focus adjustment device, camera system, and focus adjustment method
JP2015070433A (en) * 2013-09-27 2015-04-13 オリンパス株式会社 Image processor, image processing method, and image processing program
JP2017067857A (en) * 2015-09-28 2017-04-06 キヤノン株式会社 Focus detection device, prediction method, program and storage medium
JP2017156764A (en) * 2017-04-20 2017-09-07 株式会社ニコン Focus detection device and focus adjustment device
US10148865B2 (en) 2016-06-23 2018-12-04 Olympus Corporation Focus detection apparatus and focus detection method
JP2019028142A (en) * 2017-07-26 2019-02-21 キヤノン株式会社 Imaging apparatus and control method thereof
US10477197B2 (en) 2014-02-18 2019-11-12 Covestro Deutschland Ag Autostereoscopic 3D display device using holographic optical elements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12047680B2 (en) 2020-11-18 2024-07-23 Canon Kabushiki Kaisha Image pickup apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145527A (en) * 2007-12-13 2009-07-02 Nikon Corp Imaging element, focus detecting device, and imaging device
JP2011081365A (en) * 2009-09-09 2011-04-21 Nikon Corp Focus detector, photographic lens unit, imaging apparatus and camera system
JP2011128302A (en) * 2009-12-16 2011-06-30 Nikon Corp Imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145527A (en) * 2007-12-13 2009-07-02 Nikon Corp Imaging element, focus detecting device, and imaging device
JP2011081365A (en) * 2009-09-09 2011-04-21 Nikon Corp Focus detector, photographic lens unit, imaging apparatus and camera system
JP2011128302A (en) * 2009-12-16 2011-06-30 Nikon Corp Imaging apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174460A (en) * 2013-03-12 2014-09-22 Canon Inc Focus detection device and control method of the same, imaging device, program and storage medium
WO2014208488A1 (en) * 2013-06-27 2014-12-31 オリンパス株式会社 Focus adjustment device, camera system, and focus adjustment method
JP2015011089A (en) * 2013-06-27 2015-01-19 オリンパス株式会社 Focal point adjustment device, camera system, and focal point adjustment method
CN105308489A (en) * 2013-06-27 2016-02-03 奥林巴斯株式会社 Focus adjustment device, camera system, and focus adjustment method
US9420165B2 (en) 2013-06-27 2016-08-16 Olympus Corporation Focus adjustment apparatus, camera system, and focus adjustment method
JP2015070433A (en) * 2013-09-27 2015-04-13 オリンパス株式会社 Image processor, image processing method, and image processing program
US10477197B2 (en) 2014-02-18 2019-11-12 Covestro Deutschland Ag Autostereoscopic 3D display device using holographic optical elements
JP2017067857A (en) * 2015-09-28 2017-04-06 キヤノン株式会社 Focus detection device, prediction method, program and storage medium
US10148865B2 (en) 2016-06-23 2018-12-04 Olympus Corporation Focus detection apparatus and focus detection method
JP2017156764A (en) * 2017-04-20 2017-09-07 株式会社ニコン Focus detection device and focus adjustment device
JP2019028142A (en) * 2017-07-26 2019-02-21 キヤノン株式会社 Imaging apparatus and control method thereof
JP7005209B2 (en) 2017-07-26 2022-01-21 キヤノン株式会社 Image pickup device and its control method

Also Published As

Publication number Publication date
JP5857547B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5857547B2 (en) Focus detection device and focus adjustment device
JP5458475B2 (en) Focus detection apparatus and imaging apparatus
JP5012495B2 (en) IMAGING ELEMENT, FOCUS DETECTION DEVICE, FOCUS ADJUSTMENT DEVICE, AND IMAGING DEVICE
EP1975695B1 (en) Focus detection device, focusing state detection method and imaging apparatus
JP4992481B2 (en) Focus detection apparatus and imaging apparatus
JP7264192B2 (en) Imaging element and imaging device
JP5067148B2 (en) Imaging device, focus detection device, and imaging device
JP5381472B2 (en) Imaging device
JP5866760B2 (en) Imaging device
JP5278123B2 (en) Imaging device
JP5600941B2 (en) Focus detection apparatus and imaging apparatus
JP5338112B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5338113B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5685892B2 (en) Focus detection device, focus adjustment device, and imaging device
JP2018180135A (en) Imaging device
JP5332384B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5399627B2 (en) Focus detection device, focus adjustment device, and imaging device
JP2014235237A (en) Focus detection device and focus adjustment device
JP5338119B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5440585B2 (en) Digital camera
JP2017219791A (en) Control device, imaging device, control method, program, and storage medium
JP2017191326A (en) Focus detection device and imaging device
JP2010139624A (en) Imaging element and imaging apparatus
JP2016085465A (en) Focus detection device and imaging device
JP5949893B2 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5857547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250