JP7004583B2 - 配線異常検出装置、及び、配線異常検出方法 - Google Patents

配線異常検出装置、及び、配線異常検出方法 Download PDF

Info

Publication number
JP7004583B2
JP7004583B2 JP2018009312A JP2018009312A JP7004583B2 JP 7004583 B2 JP7004583 B2 JP 7004583B2 JP 2018009312 A JP2018009312 A JP 2018009312A JP 2018009312 A JP2018009312 A JP 2018009312A JP 7004583 B2 JP7004583 B2 JP 7004583B2
Authority
JP
Japan
Prior art keywords
waveform
voltage
cable
peak value
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018009312A
Other languages
English (en)
Other versions
JP2019128215A (ja
Inventor
利康 樋熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018009312A priority Critical patent/JP7004583B2/ja
Publication of JP2019128215A publication Critical patent/JP2019128215A/ja
Application granted granted Critical
Publication of JP7004583B2 publication Critical patent/JP7004583B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、配線異常検出装置、及び、配線異常検出方法に関する。
ビルや工場に構築された照明システムや空調システムなどの通信システムでは、一対の通信線を含むケーブルにより相互に接続された複数の機器が、このケーブルを介してシリアル通信する通信方式が採用されることがある。このような通信システムの施工時には、施工者は、ケーブルの誤接続、ケーブルの断線、ケーブルの短絡などの配線異常がないことを確認することが望まれる。
現在、ケーブルの誤接続を検出する種々の技術が知られている。例えば、特許文献1には、検査対象の芯線対のうち一方の芯線に正のパルスを印加し、他方の芯線に負のパルスを印加し、他の芯線対にクロストークが生じるか否かを判別することにより、検査対象の芯線対がツイストペアであるか否かを判別する技術が記載されている。
特開2002-78130号公報
ところで、上述した通信方式では、ケーブルがループを構成するように構成されている場合、つまり、ケーブルがループ接続されている場合、シリアル通信が正常にできなくなる可能性がある。このため、施工時に、ケーブルがループ接続されていることを検出することは重要である。しかしながら、特許文献1に記載された技術では、ケーブルがループ接続されていることを検出できなかった。このため、ケーブルがループ接続されていることを容易に検出する技術が望まれている。
本発明は、上記問題に鑑みてなされたものであり、ケーブルがループ接続されていることを容易に検出する配線異常検出装置、及び、配線異常検出方法を提供することを目的とする。
上記目的を達成するために、本発明に係る配線異常検出装置は、
複数の機器が接続されたケーブルに含まれる一対の通信線の一端間に電圧パルスを印加するパルス印加手段と、
前記一対の通信線の一端間の電圧波形を測定する波形測定手段と、
前記電圧波形における前記電圧パルスの波高値に対する、前記電圧波形における前記電圧パルスから派生した派生波の波高値の割合である波高値割合が、予め定められた割合閾値を超える場合、前記ケーブルがループ接続されていることを報知する情報であるループ接続報知情報を表示する表示手段と、を備える。
本発明では、電圧パルスの波高値に対する、電圧パルスから派生した派生波の波高値の割合である波高値割合が、予め定められた割合閾値を超える場合、ケーブルがループ接続されていることが報知される。つまり、本発明によれば、ケーブルがループ接続されていることを容易に検出することができる。
本発明の実施形態に係る配線異常検出装置が適用される通信システムの構成図 ケーブルの構成図 本発明の実施形態に係る配線異常検出装置の機能ブロック図 ループ接続がないときに測定される電圧波形を示す図 第1のループ接続がある通信システムの構成図 第1のループ接続があるときに測定される電圧波形を示す図 第2のループ接続がある通信システムの構成図 第2のループ接続があるときに測定される電圧波形を示す図 ループ接続がないときに電圧パルスに反射波が合成される様子を示す図 第1のループ接続があるときに電圧パルスに周回波が合成される様子を示す図 本発明の実施形態に係る配線異常検出装置が実行する配線異常検出処理を示すフローチャート 報知画面を示す図
本発明の実施形態を、図面を参照して説明する。
(実施形態)
まず、図1を参照して、本発明の実施形態に係る配線異常検出装置100が適用される通信システム1000について説明する。通信システム1000は、複数の機器が一対の通信線により接続されたシステムである。一対の通信線は、一対の通信線間の電圧と一対の通信線に流れる電流とのうちの少なくとも一方により、データを送受信するためのものである。一対の通信線は、第1の電位に設定される通信線と、第2の電位に設定される通信線と、を備える。この一対の通信線には、途中で分岐するものも含まれる。
配線異常検出装置100は、通信システム1000が備える複数の機器間を接続する配線の異常を検知する装置である。配線の異常は、例えば、ループ接続、断線、短絡である。ここで、ループ接続は、ループを構成するように配線された接続である。配線異常検出装置100は、一対の通信線にパルス電圧を印加して一対の通信線間の電圧波形を測定するTDR(Time Domain Reflectometry)計測により、配線の異常を検出する。配線異常検出装置100は、一対の通信線が接続される端子121,122を備える。
配線異常検出装置100は、ループ接続がないときに電圧パルスに上乗せされる反射波の波高値よりも、ループ接続があるときに電圧パルスに上乗せされる周回波の波高値の方が、相対的に大きいことを利用して、ループ接続を検出する。ループ接続があると、通信システム1000の導入時に問題がなくても、通信システム1000の導入後に問題が生じる可能性が高くなる。例えば、ループ接続がある場合、通信システム1000の導入後に新たな機器を追加したときに、正常に機器間で通信できなくなる可能性がある。そこで、通信システム1000の導入時に、ループ接続がないことを検証することは重要である。
図1に示すように、通信システム1000は、制御装置200と、機器300と、機器400と、機器500と、ケーブル610と、ケーブル620と、ケーブル630と、を備える。制御装置200と機器300と機器400と機器500とを、適宜、機器という。各機器は、一対の通信線を介して、電圧信号又は電流信号によりシリアル通信する。通信システム1000は、例えば、照明制御機器と複数の照明機器とを備える照明システムである。この場合、制御装置200は照明制御機器に対応し、機器300,400,500が複数の照明機器に対応する。
制御装置200は、機器300,400,500に電力を供給するとともに、機器300,400,500の動作を制御する。制御装置200は、一対の通信線間に電圧を印加することにより、機器300,400,500に電力を供給する。従って、制御装置200は、直流電源(図示せず)を備える。また、制御装置200は、一対の通信線間に印加する電圧の極性を切り替えることにより、機器300,400,500に電圧信号を送信する。また、制御装置200は、一対の通信線間に流れる電流の有無を検出して、機器300,400,500から電流信号を受信する。制御装置200は、一対の通信線が接続される端子201,202を備える。
機器300,400,500は、制御装置200から電力の供給を受けるとともに、制御装置200から受信した電圧信号による指示に従って動作する。機器300,400,500は、一対の通信線間に印加された電圧を整流し、直流電力を得る。従って、機器300,400,500は、整流回路(図示せず)を備える。また、機器300,400,500は、一対の通信線間に印加された電圧の極性を検出して、制御装置200から送信された電圧信号を受信する。また、機器300,400,500は、一対の通信線間に流れる電流を制御することにより、制御装置200に電流信号を送信する。機器300は、一対の通信線が接続される端子301,302を備える。機器400は、一対の通信線が接続される端子401,402を備える。機器500は、一対の通信線が接続される端子501,502を備える。
なお、機器300,400,500は、制御装置200のみに電流信号を送信し、機器300,400,500が互いに電流信号を送受信しない。また、機器300,400,500は、同じタイミングで電流信号を送信しない。制御装置200と、機器300,400,500のうちの1つの機器とは、全二重通信が可能である。電圧信号と電流信号とを用いたシリアル通信の詳細は、ここでは説明を省略するが、例えば、特開平2-210935号公報に記載されている。
各機器は、ケーブル610,620,630により相互に接続される。具体的には、制御装置200と機器300とはケーブル610により接続され、機器300と機器400とはケーブル620により接続され、機器400と機器500とはケーブル630により接続される。このように、原則的には、各機器は、直列に接続される。
ケーブル610,620,630は、シリアル通信に用いられるケーブルである。本実施形態では、ケーブル610,620,630は、シールドが施されたツイストペアケーブル、つまり、STP(Shielded Twisted Pair)ケーブルである。ただし、ケーブル610,620,630は、シールドが施されていないツイストペアケーブル、つまり、UTP(Unshielded Twisted Pair)ケーブルであってもよいし、平行ケーブルであってもよい。以下、図2を参照して、ケーブル610の構成について説明する。
ケーブル610は、芯線611と、芯線612と、絶縁部材613と、絶縁部材614と、シールド線615と、絶縁部材616とを備える。芯線611と芯線612とは、電力や電気信号を送信するための電線であり、例えば、銅やアルミニウムにより構成される。絶縁部材613は、芯線611を被覆する絶縁体である。絶縁部材614は、芯線612を被覆する絶縁体である。絶縁部材613,614は、例えば、塩化ビニール樹脂などにより構成される。
シールド線615は、芯線611と芯線612とを被覆して遮蔽する。つまり、シールド線615は、外部空間から放射されたノイズが芯線611,612に進入することを防止する。また、シールド線615は、芯線611,612から外部空間にノイズが放射されることを防止する。また、シールド線615は、機器のシャーシに接続され、接地される。シールド線615は、例えば、銅やアルミニウムにより構成される。絶縁部材616は、シールド線615を被覆する絶縁体である。
ケーブル620,630の構成は、長さを除き、基本的には、ケーブル610の構成と同様である。本実施形態では、ケーブル610の長さをL1とし、ケーブル620の長さをL2とし、ケーブル630の長さをL3とする。L1,L2,L3は、例えば、数メートルから数百メートル程度の長さである。ケーブル620は、芯線621と、芯線622と、を備える。ケーブル630は、芯線631と、芯線632と、を備える。
端子201と端子301とは芯線611により接続され、端子202と端子302とは芯線612により接続される。端子301と端子401とは芯線621により接続され、端子302と端子402とは芯線622により接続される。端子401と端子501とは芯線631により接続され、端子402と端子502とは芯線632により接続される。
芯線611と芯線621と芯線631とは、直列に接続されて通信線601を構成する。芯線612と芯線622と芯線632とは、直列に接続されて通信線602を構成する。通信線601と通信線602とは、通信に用いられる一対の通信線を構成する。端子121と端子201とは、電線11を介して接続され、端子122と端子202とは、電線12を介して接続される。このように、本実施形態では、配線異常検出装置100が、一対の通信線上における制御装置200の接続部分に接続される例について説明する。本実施形態では、電線11,12の長さは、L1,L2,L3に比べて十分に短く、例えば、数十センチメートル程度であるものとする。
次に、図3を参照して、配線異常検出装置100の機能について説明する。図3に示すように、配線異常検出装置100は、機能的には、操作受付部101と、パルス印加部102と、波形測定部103と、波形記憶部104と、位置特定部105と、波高値特定部106と、割合閾値記憶部107と、時間閾値記憶部108と、判別部109と、表示部110と、を備える。パルス印加手段は、例えば、パルス印加部102に対応する。波形測定手段は、例えば、波形測定部103に対応する。波形記憶手段は、例えば、波形記憶部104に対応する。位置特定手段は、例えば、位置特定部105に対応する。波高値特定手段は、例えば、波高値特定部106に対応する。表示手段は、例えば、表示部110に対応する。
操作受付部101は、ユーザから各種の操作を受け付ける。操作受付部101は、例えば、配線異常検出処理の開始指示とシステム構成の指定とを受け付ける。操作受付部101の機能は、例えば、タッチスクリーン(図示せず)、ボタン(図示せず)、マウス(図示せず)、キーボード(図示せず)の機能により実現される。
パルス印加部102は、ケーブル600に含まれる一対の通信線の一端間に電圧パルスを印加する。ケーブル600は、ケーブル610とケーブル620とケーブル630とを直列に接続することにより構成される。つまり、ケーブル600は、芯線611と芯線621と芯線631とが直列に接続されて構成される通信線601と、芯線612と芯線622と芯線632とが直列に接続されて構成される通信線602とを含むケーブルである。一対の通信線の一端は、芯線611の端子201への接続部分と、芯線612の端子202への接続部分とである。一対の通信線の他端は、芯線611の端子501への接続部分と、芯線612の端子502への接続部分とである。
電圧パルスは、例えば、矩形状のパルスである。電圧パルスの振幅は、例えば、数百mVから数十mV程度である。電圧パルスの振幅は、電圧パルスの波高値である。電圧パルスのパルス幅は、例えば、数μSecから数Sec程度である。電圧パルスのパルス幅は、電気信号が、ケーブル600を往復する時間(以下、適宜「パルス往復時間」という。)よりも十分に長い時間に設定される。パルス印加部102の機能は、例えば、直流電源(図示せず)とスイッチング素子(図示せず)と制御回路(図示せず)とが協働することにより実現される。
波形測定部103は、一対の通信線の一端間の電圧波形を測定する。測定される電圧波形は、基本的に、電圧パルスに派生波が合成された合成波の電圧波形である。派生波は、電圧パルスに派生した波であり、電圧パルスの印加に伴って発生した波である。派生波は、反射波と周回波とを含む概念である。反射波は、電圧パルスが一対の通信線の他端において反射することにより、一対の通信線の他端において発生する波である。周回波は、ループ接続があるときに、ループ接続の分岐点において一方の分岐路に分岐し、ループを周回して他方の分岐路に戻ってくる電圧パルスである。波形測定部103は、測定した電圧波形を示す情報を記憶する。波形測定部103の機能は、例えば、A/D(Analog/digital)変換器(図示せず)の機能とフラッシュメモリ(図示せず)の機能とにより実現される。
波形記憶部104は、第1の波形情報と第2の波形情報とを記憶する。第1の波形情報は、モデル波形に含まれる第1の部分波形を示す情報である。モデル波形は、例えば、ケーブル600がループ接続されていない状態で一対の通信線の一端間に電圧パルスが印加されたときに一対の通信線の一端間で測定される電圧波形である。第1の部分波形は、電圧パルスの立ち上がり時のモデル電圧波形である。第2の波形情報は、モデル波形に含まれる第2の部分波形を示す情報である。第2の部分波形は、派生波の立ち上がり時のモデル電圧波形である。波形記憶部104の機能は、例えば、フラッシュメモリ(図示せず)の機能により実現される。
以下、図4を参照して、モデル波形と、第1の部分波形と、第2の部分波形とを説明する。図4は、図1に示すように、ループ接続がないときに測定される電圧波形、つまり、モデル波形を示すグラフである。ループ接続がないときは、一対の通信線の他端間が開放状態となる。このため、ケーブル600を分布定数回路としてみると、一対の通信線の他端で正の反射が発生する。つまり、一対の通信線の一端間に印加された電圧パルスは、一対の通信線の他端で反射波を発生させる。この反射波は、一対の通信線の一端に戻り、電圧パルスに上乗せされる。
図4において、t11は、電圧パルスの立ち上がり時刻であり、t12は、反射波の立ち上がり時刻である。図4は、t11からt12までの時間が電圧パルスの波形であり、t12以降の時間が電圧パルスに反射波が上乗せされた波形であるモデル波形を示している。t11からt12までの時間の長さは、電気信号が一対の通信線を往復するのに要する時間に対応する長さ、つまり、パルス往復時間に対応する長さである。
第1の部分波形は、モデル波形のうち、電圧パルスの立ち上がり時刻を含む予め定められた時間長(以下「第1の時間長」という。)分の波形である。例えば、第1の部分波形は、モデル波形のうち、t11の20nSec前の時刻からt11の30nSec後の時刻までの50nSec分の波形である。第1の部分波形は、電圧パルスの立ち上がり方のモデルを示す波形である。図4において、第1の部分波形は、モデル波形のうち、枠701で囲まれた部分の波形である。
第2の部分波形は、モデル波形のうち、派生波の立ち上がり時刻を含む予め定められた時間長(以下「第2の時間長」という。)分の波形である。例えば、第2の部分波形は、モデル波形のうち、t12の20nSec前の時刻からt12の30nSec後の時刻までの50nSec分の波形である。第2の部分波形は、派生波の立ち上がり方のモデルを示す波形である。図4において、第2の部分波形は、モデル波形のうち、枠702で囲まれた部分の波形である。この派生波は、典型的には、反射波である。
ここで、電圧パルスの立ち上がり方と派生波の立ち上がり方とは、基本的に、ケーブル600の種類や機器が備えるトランシーバ(図示せず)の種類に依存するが、ケーブル600の長さにはあまり依存しない。従って、ケーブル600の種類とトランシーバの種類とが不変であれば、ケーブル600の長さが変わっても、電圧波形の測定時とモデル波形の測定時とで、電圧パルスの立ち上がり方と派生波の立ち上がり方とに差異はないはずである。
このため、測定された電圧波形において、第1の部分波形と類似する波形部分の位置から、電圧パルスの立ち上がり位置を特定することが可能となる。同様に、測定された電圧波形において、第2の部分波形と類似する波形部分の位置から、派生波の立ち上がり位置を特定することが可能となる。このため、波形記憶部104は、ケーブル600の種類とトランシーバの種類との組み合わせ毎に、第1の波形情報と第2の波形情報とを記憶することが好適である。
位置特定部105は、第1の部分波形に基づいて第1の立ち上がり位置を特定し、第2の部分波形に基づいて第2の立ち上がり位置を特定する。第1の立ち上がり位置は、波形測定部103により測定された電圧波形における電圧パルスの立ち上がり位置である。第2の立ち上がり位置は、波形測定部103により測定された電圧波形における派生波の立ち上がり位置である。位置特定部105の機能は、例えば、プロセッサ(図示せず)の機能により実現される。
以下、図5を参照して、第1のループ接続について説明した後、図6を参照して、第1の立ち上がり位置と第2の立ち上がり位置とを特定する手法について説明する。図5に、第1のループ接続を有する通信システム1100を示す。通信システム1100は、通信システム1000にケーブル640を追加したシステムである。
ケーブル640は、ケーブル610と同様の種類のケーブルであり、L2+L3の長さを有するケーブルである。ケーブル640は、芯線641と、芯線642と、を備える。ここで、端子301と端子501とは芯線641により接続され、端子302と端子502とは芯線642により接続される。
このように、芯線611と芯線621と芯線631と芯線641とが直列に接続されて構成された通信線601の他端が、芯線611と芯線621との接続部分に接続されて、通信線601上にループが構成される。同様に、芯線612と芯線622と芯線632と芯線642とが直列に接続されて構成された通信線602の他端が、芯線612と芯線622との接続部分に接続されて、通信線602上にループが構成される。つまり、ケーブル610とケーブル620とケーブル630とケーブル640とが直列に接続されて構成されたケーブル600の他端が、ケーブル610とケーブル620との接続部分に接続されて、ケーブル600上にループが構成される。以下、図5に示すループ接続を、適宜、第1のループ接続という。
第1のループ接続がある場合、一対の通信線の他端間が開放状態とならないため、反射波は発生しない。一方、第1のループ接続がある場合、一対の通信線の一端間に印加された電圧パルスが、ケーブル620とケーブル630とケーブル640とにより構成されるループ(以下、適宜「第1のループ」という。)を周回して一対の通信線の一端に戻る経路ができる。つまり、第1のループ接続がある場合、一対の通信線の一端間に印加された電圧パルスは、第1のループを周回して電圧パルスに上乗せされる周回波を発生させる。
以下、図6を参照して、第1のループ接続があるときに測定される電圧波形を説明する。図6において、t21は、電圧パルスの立ち上がり時刻であり、t22は、周回波の立ち上がり時刻である。図6は、t21からt22までの時間が電圧パルスの波形であり、t22以降の時間が電圧パルスに周回波が上乗せされた波形である電圧波形を示している。t21からt22までの時間の長さは、一対の通信線の一端間に印加された電気信号が第1のループを周回して戻るのに要する時間に対応する長さである。
第1のループ接続がある場合、電気信号が第1のループを周回して戻るまでの経路の長さは、(L1+L2+L3)×2である。また、ループ接続がない場合、電気信号が一対の通信線を往復するときの経路の長さも、(L1+L2+L3)×2である。従って、t21からt22までの時間の長さは、基本的に、t11からt12までの時間の長さと同様である。
ここで、ケーブル600の種類とトランシーバとが不変であれば、ループ接続がないときの電圧パルスの立ち上がり方も、第1のループ接続があるときの電圧パルスの立ち上がり方も、同様であると考えられる。従って、第1のループ接続があるときに測定された電圧波形から抽出される第1の時間長分の波形(以下、「第1の抽出波形」という。)のうち、第1の部分波形と最も類似する第1の抽出波形の抽出位置を、第1の立ち上がり位置とすることが好適である。図6において、第1の抽出波形は、測定された電圧波形のうち、枠711で囲まれた部分の波形である。
どのような第1の抽出波形が第1の部分波形に最も類似するとみなすのかは、適宜、調整することができる。例えば、第1の抽出波形のうち、第1の部分波形との相関係数が最も大きい第1の抽出波形を、第1の部分波形に最も類似する第1の抽出波形とみなすことができる。この場合、例えば、抽出位置の初期値を電圧波形の先頭位置にして、第1の抽出波形と第1の部分波形との相関係数を求める処理と、抽出位置をシフトする処理とを、抽出位置が電圧波形の末尾位置になるまで繰り返す。そして、相関係数が最大となる第1の抽出波形を特定し、特定した第1の抽出波形の抽出位置を第1の立ち上がり位置として特定する。
第1の部分波形及び第1の抽出波形がn個の要素(n個の電圧値)を含む場合、相関係数は、例えば、相関係数をr、第1の部分波形を構成するi番目の要素をx、第1の部分波形を構成するi番目の要素をy、第1の部分波形を構成するn個の要素の平均値をm、第1の部分波形を構成するn個の要素の平均値をmとして、式(1)により表すことができる。
Figure 0007004583000001
また、ケーブル600の種類とトランシーバの種類とが不変であれば、ループ接続がないときの反射波の立ち上がり方も、第1のループ接続があるときの周回波の立ち上がり方も、それ程変わらないと考えられる。反射波と周回波とのいずれも、基本的には、矩形状のパルス電圧に派生して発生する派生波に変わりないためである。従って、第1のループ接続があるときに測定された電圧波形から抽出される第2の時間長分の波形(以下、「第2の抽出波形」という。)のうち、第2の部分波形と最も類似する第2の抽出波形の抽出位置を、第2の立ち上がり位置とすることが好適である。図6において、第2の抽出波形は、測定された電圧波形のうち、枠712で囲まれた部分の波形である。
どのような第2の抽出波形が第2の部分波形に最も類似するとみなすのかは、適宜、調整することができる。例えば、第2の抽出波形のうち、第2の部分波形との相関係数が最も大きい第2の抽出波形を、第2の部分波形に最も類似する第2の抽出波形とみなすことができる。この場合、例えば、抽出位置の初期値を電圧波形の第1の立ち上がり位置にして、第2の抽出波形と第2の部分波形との相関係数を求める処理と、抽出位置をシフトする処理とを、抽出位置が電圧波形の末尾位置になるまで繰り返す。そして、相関係数が最大となる第2の抽出波形を特定し、特定した第2の抽出波形の抽出位置を第2の立ち上がり位置として特定する。相関係数の求め方は、基本的に、上述の通りである。
次に、図7を参照して、第2のループ接続について説明した後、図8を参照して、第2のループ接続があるときに測定される電圧波形について説明する。図7に、第2のループ接続を有する通信システム1200を示す。通信システム1200は、通信システム1000にケーブル650を追加したシステムである。
ケーブル650は、ケーブル610と同様の種類のケーブルであり、L2の長さを有するケーブルである。ケーブル650は、芯線651と、芯線652と、を備える。ここで、端子301と端子401とは芯線651により接続され、端子302と端子402とは芯線652により接続される。
このように、芯線611と芯線621と芯線631とが直列に接続され、芯線651が芯線621と並列に接続されて、ループが構成された通信線601が構成される。同様に、芯線612と芯線622と芯線632とが直列に接続され、芯線652が芯線622と並列に接続されて、ループが構成された通信線602が構成される。つまり、ケーブル610とケーブル620とケーブル630とが直列に接続され、ケーブル650がケーブル620と並列に接続されて、ループが構成されたケーブル600が構成される。以下、図7に示すループ接続を、適宜、第2のループ接続という。
第2のループ接続がある場合、一対の通信線の他端間が開放状態となるため、反射波は発生する。また、第2のループ接続がある場合、一対の通信線の一端間に印加された電圧パルスが、ケーブル620とケーブル650とにより構成されるループ(以下、適宜「第2のループ」という。)を周回して一対の通信線の一端に戻る経路ができる。つまり、第2のループ接続がある場合、一対の通信線の一端間に印加された電圧パルスは、一対の通信線の他端で発生して電圧パルスに上乗せされる反射波と、第2のループを周回して電圧パルスに上乗せされる周回波と、を発生させる。
以下、図8を参照して、第2のループ接続があるときに測定される電圧波形を説明する。図8において、t31は、電圧パルスの立ち上がり時刻であり、t32は、周回波の立ち上がり時刻である。t33は、反射波の立ち上がり時刻である。図8は、t31からt32までの時間が電圧パルスの波形であり、t32からt33までの時間が電圧パルスに周回波が上乗せされた波形であり、t33以降の時間が電圧パルスに周回波と反射波とが上乗せされた波形である電圧波形を示している。t31からt32までの時間の長さは、一対の通信線の一端間に印加された電気信号が第2のループを周回して戻るのに要する時間に対応する長さである。一方、t31からt33までの時間の長さは、一対の通信線の一端間に印加された電気信号が一対の通信線の他端で反射して戻るのに要する時間に対応する長さである。
第2のループ接続がある場合、電気信号が第2のループを周回して戻るまでの経路の長さは、(L1+L2)×2である。一方、第2のループ接続がある場合、電気信号が一対の通信線を往復するときの経路の長さは、(L1+L2+L3)×2である。従って、t31からt32までの時間の長さは、t31からt33までの時間の長さよりも短い。つまり、第2のループ接続がある場合、周回波は反射波よりも早く一対の通信線の一端に到達する。
ここで、ケーブル600の種類とトランシーバの種類とが不変であれば、ループ接続がないときの電圧パルスの立ち上がり方も、第2のループ接続があるときの電圧パルスの立ち上がり方も、同様であると考えられる。従って、第2のループ接続があるときに測定された電圧波形から抽出される第1の抽出波形のうち、第1の部分波形と最も類似する第1の抽出波形の抽出位置を、第1の立ち上がり位置とすることが好適である。例えば、第1の抽出波形のうち、第1の部分波形との相関係数が最も大きい第1の抽出波形を、第1の部分波形に最も類似する第1の抽出波形とみなすことができる。
また、ケーブル600の種類とトランシーバの種類とが不変であれば、ループ接続がないときの反射波の立ち上がり方も、第2のループ接続があるときの周回波の立ち上がり方も、それ程変わらないと考えられる。反射波と周回波とのいずれも、基本的には、矩形状のパルス電圧に派生して発生する派生波に変わりないためである。従って、第2のループ接続があるときに測定された電圧波形から抽出される第2の抽出波形のうち、第2の部分波形と最も類似する第2の抽出波形の抽出位置を、第2の立ち上がり位置とすることが好適である。例えば、第2の抽出波形のうち、第2の部分波形との相関係数が最も大きい第2の抽出波形を、第2の部分波形に最も類似する第2の抽出波形とみなすことができる。
波高値特定部106は、第1の電圧を電圧パルスの波高値として特定し、第2の電圧から第1の電圧を減じた電圧を派生波の波高値として特定する。第1の電圧は、第1の立ち上がり位置から第2の立ち上がり位置までの範囲の電圧から特定される電圧である。第1の電圧は、例えば、この範囲における平均電圧である。第2の電圧は、第2の立ち上がり位置以降の予め定められた範囲の電圧から特定される電圧である。第2の電圧は、例えば、この範囲において電圧の上昇が無くなった時点における電圧、この範囲における最大電圧、又は、この範囲における平均電圧である。
図6において、第1の電圧はA2であり、第2の電圧はA2+B2である。この場合、電圧パルスの波高値としてA2が特定され、派生波の波高値としてB2が特定される。また、図8において、第1の電圧はA3であり、第2の電圧はA3+B3である。この場合、電圧パルスの波高値としてA3が特定され、派生波の波高値としてB3が特定される。波高値特定部106の機能は、例えば、プロセッサ(図示せず)の機能により実現される。
割合閾値記憶部107は、割合閾値を示す情報である割合閾値情報を記憶する。割合閾値は、電圧パルスの波高値に対する派生波の波高値の割合である波高値割合の閾値である。ここで、システム構成が変わると、例えば、ケーブル600を含む分布定数回路における容量成分が変わるため、波高値割合も変わると考えられる。このため、システム構成毎に、割合閾値を用意することが好適である。つまり、割合閾値情報は、システム構成毎に割合閾値を示す情報であることが好適である。なお、システム構成は、例えば、ケーブル600の種類とトランシーバの種類とケーブル600の長さとケーブル600に接続された機器の個数とのうちの少なくとも1つにより特定される。
ここで、本願の発明者は、実験、検討、検証などを重ねた結果、後述するように、ループ接続があるときの波高値割合は、ループ接続がないときの波高値割合よりも高くなることを発見した。例えば、図4に示すモデル波形において、電圧パルスの波高値をA1、反射波の波高値である派生波の波高値をB1とすると、閾値割合は、B1/A1である。一方、図6に示す電圧波形、つまり、第1のループ接続があるときに測定される電圧波形において、電圧パルスの波高値をA2、周回波の波高値である派生波の波高値をB2とすると、閾値割合は、B2/A2である。また、図8に示す電圧波形、つまり、第2のループ接続があるときに測定される電圧波形において、電圧パルスの波高値をA3、周回波の波高値又は周回波と反射波との合成波の波高値である派生波の波高値をB3とすると、閾値割合は、B3/A3である。
この場合、B2/A2はB1/A1よりも大きく、B3/A3はB1/A1よりも大きい。従って、閾値割合は、ループ接続がないときの波高値割合、つまり、B1/A1よりも少し大きな値に設定される。例えば、B1/A1が0.25である場合、閾値割合は0.30に設定される。このように、システム構成毎に、ループ接続がないときの波高値割合と、ループ接続があるときの波高値割合とを求め、ループ接続がないときの波高値割合とループ接続があるときの波高値割合との中間の波高値割合を、閾値割合に設定することが好適である。割合閾値記憶部107の機能は、例えば、フラッシュメモリ(図示せず)の機能により実現される。
時間閾値記憶部108は、時間閾値を示す情報である時間閾値情報を記憶する。時間閾値は、パルス往復時間の下限値である。パルス往復時間は、ケーブル600の一端に印加された電気信号が、このケーブル600を往復するのに要する時間である。パルス往復時間は、ケーブル600の長さに比例する。従って、時間閾値は、ケーブル600の長さの下限値を示す閾値でもある。なお、パルス往復時間とケーブル600の長さとの関係は、ケーブル600の長さ(m)をD、真空中における光速(m/sec)をVc、パルス往復時間(sec)をTr、ケーブル600の実効比誘電率をεrとして、式(2)により表すことができる。時間閾値記憶部108の機能は、例えば、フラッシュメモリ(図示せず)の機能により実現される。
Figure 0007004583000002
判別部109は、測定された電圧波形から求められる波高値割合が、割合閾値情報により示される割合閾値を超えるか否かを判別する。この波高値割合は、測定された電圧波形における電圧パルスの波高値に対する、測定された電圧波形における電圧パルスから派生した派生波の波高値の割合である。判別部109は、求められた波高値割合が、割合閾値情報により示される割合閾値のうち、配線異常検出対象のシステム構成に対応する割合閾値を超えているか否かを判別する。判別部109の機能は、例えば、プロセッサ(図示せず)の機能により実現される。
表示部110は、判別部109により波高値割合が割合閾値を超えると判別された場合、ループ接続報知情報を表示する。ループ接続報知情報は、ケーブル600がループ接続されていることを報知する情報である。表示部110の機能は、例えば、プロセッサ(図示せず)とタッチスクリーン(図示せず)とが協働することにより実現される。
ここで、判別部109は、波高値割合が割合閾値を超えない場合において、パルス往復時間が予め定められた時間閾値よりも短いか否かを判別する。パルス往復時間は、測定された電圧波形における第1の立ち上がり位置から第2の立ち上がり位置までの長さに対応する時間である。言い換えれば、判別部109は、測定された電圧波形から求められるケーブル600の長さが、ケーブル600の長さの下限値よりも短いか否かを判別する。なお、ケーブル600が断線している場合、断線箇所で正の反射波が発生するため、パルス往復時間が時間閾値よりも短くなる。
ケーブル600が断線していることは、例えば、通信線601と通信線602とのうちの少なくとも一方が断線していることを意味する。この断線は、通信線601又は通信線602を構成する、接続されるべき複数の芯線が、相互に接続されていないことも含む概念である。例えば、図1に示すように、芯線611と芯線621と芯線631とにより通信線601が構成されるべきときに、芯線611と芯線621とが接続されていない場合、通信線601が断線しているとみなされる。一方、表示部110は、判別部109によりパルス往復時間が時間閾値よりも短いと判別された場合、断線報知情報を表示する。断線報知情報は、ケーブル600が断線していることを報知する情報である。
また、判別部109は、位置特定部105により第2の立ち上がり位置が特定されないか否かを判別する。第2の立ち上がり位置が特定されないことは、測定された電圧波形において電圧パルスに上乗せされた派生波が観測されないことを意味する。なお、ケーブル600が短絡している場合、短絡箇所で負の反射波が発生するため、電圧パルスに上乗せされる派生波が観測されない。
ケーブル600が短絡していることは、例えば、通信線601と通信線602とがいずれかの箇所において短絡していることを意味する。例えば、図1に示すように、芯線611と芯線621と芯線631とにより通信線601が構成され、芯線612と芯線622と芯線632とにより通信線602が構成されているときに、端子301と端子302との間が短絡されている場合、ケーブル600が短絡しているとみなされる。一方、表示部110は、判別部109により第2の立ち上がり位置が特定されないと判別された場合、短絡報知情報を表示する。短絡報知情報は、ケーブル600が短絡していることを報知する情報である。
次に、図9と図10とを参照して、ループ接続がある場合、ループ接続がない場合に比べて、波高値割合が高くなる理由について説明する。図9と図10とには、ケーブル600が備える一対の通信線のうち、正の電圧が印加される一方の通信線601のみを示している。
まず、図9を参照して、ループ接続がない場合に測定される電圧波形が形成される様子について説明する。図9に示すように、波高値がV10である電圧パルスが一対の通信線の一端間に印加されたものとする。この電圧パルスは、端子201から端子501に向かって通信線601を伝播する過程において減衰する。端子501では、電圧パルスの波高値がV11であるものとする。ここで、電圧パルスが端子501で正の反射をすることにより、波高値がV11である反射波が発生するものとする。なお、電圧パルスは、端子501の反射では減衰せず、全反射するものとする。
この反射波は、端子501から端子201に向かって通信線601を伝播する過程において減衰する。端子501では、反射波の波高値がV12であるものとする。端子201では、波高値がV10である電圧パルスに波高値がV12である反射波が合成される。そして、端子201では、前半の波高値がV10であり、後半の波高値がV10+V12=V13である合成波の波形が電圧波形として測定される。ここで、電圧信号は、ケーブル600を往復するときに、0.25倍に減衰するものとする。すると、V12=0.25×V10となり、波高値割合は0.25となる。
次に、図10を参照して、第1のループ接続がある場合に測定される電圧波形が形成される様子について説明する。図10に示すように、波高値がV10である電圧パルスが一対の通信線の一端間に印加されたものとする。この電圧パルスは、端子201から端子301に向かって通信線601を伝播する過程において減衰する。端子301では、電圧パルスの波高値がV14であるものとする。波高値がV14である電圧パルスは、端子301において2つの経路に分岐し、分岐後の電圧パルスが反対回りでループを周回する。
つまり、一方の電圧パルスは、周回波として、端子301、端子501、端子401、端子301という経路を伝播する。他方の電圧パルスは、周回波として、端子301、端子401、端子501、端子301という経路を伝播する。2つの周回波は、ループを周回する間に減衰し、ループを周回後、波高値がV15になるものとする。この場合、端子301に戻ってきた2つの周回波の合成波である合成周回波の波高値は、V15+V15=V16となる。
合成周回波は、端子301から端子201に伝播する間に減衰する。合成周回波の波高値は、端子201においてV17であるものとする。端子201では、波高値がV10である電圧パルスに波高値がV17である合成周回波が合成される。そして、端子201では、前半の波高値がV10であり、後半の波高値がV10+V17=V18である合成波の波形が電圧波形として測定される。ここで、電圧信号は、ケーブル600を往復するときに、0.25倍に減衰するものとする。すると、V17=0.50×V10となり、波高値割合は0.50となる。このように、第1のループ接続があるときの波高値割合は、上述した条件では、ループ接続がないときの波高値割合の倍程度となる。
詳細な説明は省略するが、第2のループ接続があるときの波高値割合も、少なくとも、ループ接続がないときの波高値割合よりも大きくなる。なお、第2のループ接続がある場合、2つの周回波は、ループを周回する際、端子401において、端子501に向かう成分が発生すると考えられる。しかしながら、第2のループ接続におけるループの長さは、第1のループ接続におけるループの長さよりも短い。このため、第2のループ接続においてループを周回するときの減衰量は、第1のループ接続においてループを周回するときの減衰量よりも少ない。その結果、第2のループ接続があるときの波高値割合も、第1のループ接続があるときの波高値割合と同程度になり、ループ接続がないときの波高値割合の倍程度となるとも考えられる。
次に、図11に示すフローチャートを参照して、配線異常検出装置100が実行する配線異常検出処理について説明する。配線異常検出処理は、配線異常検出装置100の電源が投入されると開始される。
まず、配線異常検出装置100は、検出開始指示があるか否かを判別する(ステップS101)。例えば、配線異常検出装置100は、操作受付部101に対して、配線異常検出処理の開始を指示する操作がユーザによりなされたか否かを判別する。なお、ユーザは、図1に示すように、一対の通信線上における制御装置200の接続位置に配線異常検出装置100を接続した後に、上記操作を実行する。配線異常検出装置100は、検出開始指示がないと判別すると(ステップS101:NO)、ステップS101に処理を戻す。
配線異常検出装置100は、検出開始指示があると判別すると(ステップS101:YES)、電圧波形の測定を開始する(ステップS102)。つまり、波形測定部103は、検出開始指示がなされたことに応答して、一対の通信線間の電圧波形の測定を開始する。波形測定部103は、電圧波形の測定を開始した後、予め定められたサンプリング周期が経過する毎に、一対の通信線間の電圧をサンプリングする。波形測定部103は、サンプリングにより得られた電圧値を示す情報を、フラッシュメモリ(図示せず)に記憶する。
配線異常検出装置100は、ステップS102の処理を完了すると、電圧パルスを印加する(ステップS103)。つまり、パルス印加部102は、波形測定部103により電圧波形の測定が開始されたことに応答して、一対の通信線間に電圧パルスを印加する。配線異常検出装置100は、ステップS103の処理を完了すると、電圧波形の測定を終了する(ステップS104)。
配線異常検出装置100は、ステップS104の処理を完了すると、第1の立ち上がり位置を特定する(ステップS105)。つまり、位置特定部105は、測定された電圧波形における電圧パルスの立ち上がり位置を特定する。配線異常検出装置100は、ステップS105の処理を完了すると、電圧パルスの波高値を特定する(ステップS106)。つまり、波高値特定部106は、測定された電圧波形における電圧パルスの波高値を特定する。
配線異常検出装置100は、ステップS106の処理を完了すると、第2の立ち上がり位置を特定する(ステップS107)。つまり、位置特定部105は、測定された電圧波形における派生波の立ち上がり位置を特定する。配線異常検出装置100は、ステップS107の処理を完了すると、派生波の波高値を特定する(ステップS108)。つまり、波高値特定部106は、測定された電圧波形における派生波の波高値を特定する。
配線異常検出装置100は、ステップS108の処理を完了すると、派生波があるか否かを判別する(ステップS109)。例えば、判別部109は、第2の部分波形との相関係数が予め定められた閾値以上である抽出波形が、測定した電圧波形から抽出されたか否かを判別する。配線異常検出装置100は、派生波がないと判別すると(ステップS109:NO)、短絡報知情報を表示する(ステップS110)。つまり、表示部110は、図12に示すような報知画面において、ケーブルが短絡されている可能性がある旨を報知する。
図12に示す画面800は、報知画面の一例である。画面800は、枠810で囲まれた領域と、枠820で囲まれた領域と、を備える。枠810で囲まれた領域内には、例えば、概略メッセージ、つまり、配線の異常が検出された旨のメッセージが表示される。枠820で囲まれた領域内には、例えば、詳細メッセージが表示される。報知画面で短絡報知情報を表示する場合、枠820で囲まれた領域内には、ケーブル600が短絡されている可能性がある旨のメッセージと、ケーブル600の短絡のチェックを促す旨のメッセージとが表示される。配線異常検出装置100は、ステップS110の処理を完了すると、ステップS101に処理を戻す。
配線異常検出装置100は、派生波があると判別すると(ステップS109:YES)、波高値割合を算出し(ステップS111)、波高値割合が異常閾値以上であるか否かを判別する(ステップS112)。つまり、判別部109は、何らかの異常があるとみなせる程、波高値割合が高いか否かを判別する。異常閾値は、例えば、1から3程度の値にすることができる。本実施形態では、異常閾値は、1.2であるものとする。
配線異常検出装置100は、波高値割合が異常閾値以上であると判別すると(ステップS112:YES)、配線異常報知情報を表示する(ステップS113)。つまり、表示部110は、図12に示すような報知画面において、何らかの異常がある可能性がある旨を報知する。この場合、枠820で囲まれた領域内には、例えば、配線に何らかの異常がある可能性がある旨のメッセージと、ケーブル600のチェックを促す旨のメッセージとが表示される。配線異常検出装置100は、ステップS113の処理を完了すると、ステップS101に処理を戻す。
配線異常検出装置100は、波高値割合が異常閾値以上でないと判別すると(ステップS112:NO)、波高値割合が割合閾値以上であるか否かを判別する(ステップS114)。つまり、判別部109は、ループ接続されているとみなせる程、波高値割合が高いか否かを判別する。割合閾値は、例えば、0.1から1.0程度の値にすることができる。本実施形態では、割合閾値は、0.3であるものとする。
配線異常検出装置100は、波高値割合が割合閾値以上であると判別すると(ステップS114:YES)、ループ接続報知情報を表示する(ステップS115)。つまり、表示部110は、図12に示すような報知画面において、ループ接続されている可能性がある旨を報知する。この場合、枠820で囲まれた領域内には、例えば、ケーブル600がループ接続されている可能性がある旨のメッセージと、ケーブル600の接続関係のチェックを促す旨のメッセージとが表示される。配線異常検出装置100は、ステップS115の処理を完了すると、ステップS101に処理を戻す。
配線異常検出装置100は、波高値割合が割合閾値以上でないと判別すると(ステップS114:NO)、パルス往復時間を算出し(ステップS116)、パルス往復時間が時間閾値以下であるか否かを判別する(ステップS117)。つまり、判別部109は、ケーブル600が断線しているとみなせる程、パルス往復時間が短いか否かを判別する。なお、時間閾値は、例えば、想定されるパルス往復時間の50%から90%程度の値にすることができる。本実施形態では、時間閾値は、想定されるパルス往復時間の80%であるものとする。
配線異常検出装置100は、パルス往復時間が時間閾値以下であると判別すると(ステップS117:YES)、断線報知情報を表示する(ステップS118)。つまり、表示部110は、図12に示すような報知画面において、ケーブル600が断線している可能性がある旨を報知する。この場合、枠820で囲まれた領域内には、例えば、ケーブル600が断線している可能性がある旨のメッセージと、ケーブル600の断線のチェックを促す旨のメッセージとが表示される。配線異常検出装置100は、ステップS118の処理を完了すると、ステップS101に処理を戻す。
配線異常検出装置100は、パルス往復時間が時間閾値以下でないと判別すると(ステップS117:NO)、配線正常報知情報を表示する(ステップS119)。つまり、表示部110は、図12に示すような報知画面において、配線が正常である旨を報知する。この場合、枠810で囲まれた領域内には、例えば、配線が正常である旨のメッセージが表示される。なお、枠820で囲まれた領域内には、何も表示されない。配線異常検出装置100は、ステップS119の処理を完了すると、ステップS101に処理を戻す。
以上説明したように、本実施形態では、電圧パルスの波高値に対する、電圧パルスから派生した派生波の波高値の割合である波高値割合が、予め定められた割合閾値を超える場合、ケーブル600がループ接続されていることが報知される。つまり、本実施形態によれば、ケーブル600がループ接続されていることを検出することができる。
また、本実施形態では、電圧パルスの立ち上がり時のモデル電圧波形である第1の部分モデル波形に基づいて、測定された電圧波形における電圧パルスの立ち上がり位置が特定され、派生波の立ち上がり時のモデル電圧波形である第2の部分モデル波形に基づいて、測定された電圧波形における派生波の立ち上がり位置が特定される。従って、本実施形態によれば、電圧パルスの波高値と派生波の波高値とを求めるために重要な、電圧パルスの立ち上がり位置と派生パルスの立ち上がり位置とを正確に求めることができる。その結果、本実施形態によれば、ループ接続の有無を精度高く検出することができる。
また、本実施形態では、波高値割合が割合閾値を超えない場合において、パルス往復時間が時間閾値よりも短い場合、ケーブル600が断線していることが報知される。従って、本実施形態によれば、ループ接続と断線とを適切に区別して、報知することができる。なお、パルス往復時間が時間閾値よりも短いことのみを条件にケーブル600が断線していると判別すると、ループ接続に起因してパルス往復時間が時間閾値よりも短くなった場合にも、断線である旨が誤って報知される可能性がある。本実施形態では、このような誤りを排除することができる。
また、本実施形態では、第2の立ち上がり位置が特定されない場合、ケーブル600が短絡していることが報知される。つまり、本実施形態によれば、ケーブル600がループ接続されていることに加え、ケーブル600が短絡していることも検出することができる。
(変形例)
以上、本発明の実施形態を説明したが、本発明を実施するにあたっては、種々の形態による変形及び応用が可能である。本発明において、上記実施形態において説明した構成、機能、動作のどの部分を採用するのかは任意である。また、本発明において、上述した構成、機能、動作のほか、更なる構成、機能、動作が採用されてもよい。
例えば、実施形態では、波高値割合が異常閾値以上である場合、ループ接続があると判別されず、何らかの異常があると判別される例について説明した。本発明において、異常閾値による判別はなくてもよい。この場合、波高値割合が割合閾値以上である場合、ループ接続があると判別される。また、本発明において、短絡の報知や断線の報知はされなくてもよい。
実施形態では、機器300,400,500が照明機器である例について説明した。機器300,400,500は、照明機器に限定されず、照度センサ又は人感センサであってもよい。また、通信システム1000は、照明システムに限定されず、他の通信システムであってもよい。例えば、通信システム1000は、室外機として機能する制御装置200と、複数の室内機として機能する機器300,400,500とが、相互に通信する空調システムであってもよい。
実施形態では、基本的に、ケーブル610とケーブル620とケーブル630とが直列に接続されてケーブル600が構成される例について説明した。ケーブル600は、一直線状に構成されたケーブルである必要はなく、途中で分岐されていてもよい。例えば、ケーブル610に対して、ケーブル620とケーブル630とが並列に接続されていてもよい。かかる場合でも、ループ接続がある場合、ループ接続がない場合に比べ、波高値割合が高くなると考えられる。
実施形態では、ケーブル610,620,630が2本の芯線を含む例について説明した。本発明において、ケーブル610,620,630に含まれる芯線の本数は3本以上であってもよい。この場合、3本以上の芯線から選択される2本の芯線を上述した一対の通信線を構成する芯線とみなして、上述した配線異常検出処理を実行することができる。
本発明に係る配線異常検出装置100の動作を規定する動作プログラムを既存のパーソナルコンピュータや情報端末装置に適用することで、当該パーソナルコンピュータ等を本発明に係る配線異常検出装置100として機能させることも可能である。また、このようなプログラムの配布方法は任意であり、例えば、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、メモリカードなどのコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネットなどの通信ネットワークを介して配布してもよい。
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
本発明は、複数の機器が一対の通信線を介して通信する通信システムに適用可能である。
11,12 電線、100 配線異常検出装置、101 操作受付部、102 パルス印加部、103 波形測定部、104 波形記憶部、105 位置特定部、106 波高値特定部、107 割合閾値記憶部、108 時間閾値記憶部、109 判別部、110 表示部、121,122,201,202,301,302,401,402,501,502 端子、200 制御装置、300,400,500 機器、600,610,620,630,640,650 ケーブル、601,602 通信線、611,612,621,622,631,632,641,642,651,652 芯線、613,614,616 絶縁部材、615 シールド線、701,702,711,712,810,820 枠、800 画面、1000,1100,1200 通信システム

Claims (5)

  1. 複数の機器が接続されたケーブルに含まれる一対の通信線の一端間に電圧パルスを印加するパルス印加手段と、
    前記一対の通信線の一端間の電圧波形を測定する波形測定手段と、
    前記電圧波形における前記電圧パルスの波高値に対する、前記電圧波形における前記電圧パルスから派生した派生波の波高値の割合である波高値割合が、予め定められた割合閾値を超える場合、前記ケーブルがループ接続されていることを報知する情報であるループ接続報知情報を表示する表示手段と、を備える、
    配線異常検出装置。
  2. 前記電圧パルスの立ち上がり時のモデル電圧波形である第1の部分波形を示す情報である第1の波形情報と、前記派生波の立ち上がり時のモデル電圧波形である第2の部分波形を示す情報である第2の波形情報と、を記憶する波形記憶手段と、
    前記第1の部分波形に基づいて、前記電圧波形における前記電圧パルスの立ち上がり位置である第1の立ち上がり位置を特定し、前記第2の部分波形に基づいて、前記電圧波形における前記派生波の立ち上がり位置である第2の立ち上がり位置を特定する位置特定手段と、
    前記第1の立ち上がり位置から前記第2の立ち上がり位置までの範囲の電圧から特定される第1の電圧を前記電圧パルスの波高値として特定し、前記第2の立ち上がり位置以降の予め定められた範囲の電圧から特定される第2の電圧から前記第1の電圧を減じた電圧を前記派生波の波高値として特定する波高値特定手段と、を更に備える、
    請求項1に記載の配線異常検出装置。
  3. 前記表示手段は、前記波高値割合が前記割合閾値を超えない場合において、前記第1の立ち上がり位置から前記第2の立ち上がり位置までの長さに対応する時間が、予め定められた時間閾値よりも短い場合、前記ケーブルが断線していることを報知する情報である断線報知情報を表示する、
    請求項2に記載の配線異常検出装置。
  4. 前記表示手段は、前記位置特定手段により前記第2の立ち上がり位置が特定されない場合、前記ケーブルが短絡されていることを報知する情報である短絡報知情報を表示する、
    請求項2又は3に記載の配線異常検出装置。
  5. 複数の機器が接続されたケーブルに含まれる一対の通信線の一端間に電圧パルスを印加し、
    前記一対の通信線の一端間の電圧波形を測定し、
    前記電圧波形における前記電圧パルスの波高値に対する、前記電圧波形における前記電圧パルスから派生した派生波の波高値の割合である波高値割合が、予め定められた割合閾値を超える場合、前記ケーブルがループ接続されていると判別する、
    配線異常検出方法。
JP2018009312A 2018-01-24 2018-01-24 配線異常検出装置、及び、配線異常検出方法 Active JP7004583B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018009312A JP7004583B2 (ja) 2018-01-24 2018-01-24 配線異常検出装置、及び、配線異常検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018009312A JP7004583B2 (ja) 2018-01-24 2018-01-24 配線異常検出装置、及び、配線異常検出方法

Publications (2)

Publication Number Publication Date
JP2019128215A JP2019128215A (ja) 2019-08-01
JP7004583B2 true JP7004583B2 (ja) 2022-02-04

Family

ID=67471275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009312A Active JP7004583B2 (ja) 2018-01-24 2018-01-24 配線異常検出装置、及び、配線異常検出方法

Country Status (1)

Country Link
JP (1) JP7004583B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7270485B2 (ja) * 2019-07-01 2023-05-10 三菱電機株式会社 判定システム
JP7394596B2 (ja) * 2019-11-19 2023-12-08 三菱重工業株式会社 断線判別装置、断線判別方法およびプログラム。
CN112858952B (zh) * 2020-11-04 2022-12-23 昆明船舶设备集团有限公司 一种电缆连通性快速检测装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089528A (ja) 2006-10-05 2008-04-17 Toshiba Corp 埋め殺しケーブル判定装置及び方法
JP2017009548A (ja) 2015-06-26 2017-01-12 三菱電機株式会社 異常検知システム、及び、異常検知方法
JP2017158185A (ja) 2016-03-02 2017-09-07 フィッシャー−ローズマウント システムズ,インコーポレイテッド ハンドヘルドメンテナンスツールによるプロセス制御通信ライン障害検出及び障害箇所特定

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225366A (ja) * 1983-06-06 1984-12-18 Fujitsu Ltd 断線位置検出方式
JP2516431B2 (ja) * 1989-07-14 1996-07-24 日本電信電話株式会社 通信線路の故障位置探索装置
JP3368771B2 (ja) * 1996-10-24 2003-01-20 日産自動車株式会社 断線検知機能を有する信号処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089528A (ja) 2006-10-05 2008-04-17 Toshiba Corp 埋め殺しケーブル判定装置及び方法
JP2017009548A (ja) 2015-06-26 2017-01-12 三菱電機株式会社 異常検知システム、及び、異常検知方法
JP2017158185A (ja) 2016-03-02 2017-09-07 フィッシャー−ローズマウント システムズ,インコーポレイテッド ハンドヘルドメンテナンスツールによるプロセス制御通信ライン障害検出及び障害箇所特定

Also Published As

Publication number Publication date
JP2019128215A (ja) 2019-08-01

Similar Documents

Publication Publication Date Title
JP7004583B2 (ja) 配線異常検出装置、及び、配線異常検出方法
CN103930789B (zh) 用于远程监视电气设备中的局部放电的设备和方法
US7212008B1 (en) Surveillance device detection utilizing non linear junction detection and reflectometry
KR101570506B1 (ko) 선형 첩 반사파 계측법을 이용한 케이블 고장점 추정 및 임피던스 추정 장치 및 방법
JP2004529370A (ja) 障害検出システムとその方法
US20110181295A1 (en) Fault detection using combined reflectometry and electronic parameter measurement
US20110202292A1 (en) Sensor-powered wireless cable leak detection
JP6091554B2 (ja) 異常検知システム、及び、異常検知方法
EP2503345A2 (en) Testing and monitoring an electrical system
KR101519923B1 (ko) Ae센서를 구비한 수배전반의 부분방전 검출 시스템
EP2278346B1 (en) Electricity meter tampering detection
EP3685173A1 (en) Distance protection using traveling waves in an electric power delivery system
TWI442038B (zh) 液體洩漏偵測系統及液體洩漏偵測方法
EP1787135A2 (en) Traveling wave based relay protection
JP7252041B2 (ja) コモンモード挿入損失を使用したケーブル又は配線設備のシールド導通試験
US11204382B2 (en) Traveling wave based fault location using unsynchronized measurements for transmission lines
US20200400734A1 (en) Parameter Free Traveling Wave Based Fault Location for Power Transmission Lines
JP5072949B2 (ja) 端末システム異常検出装置、端末システム異常検出方法、端末システム並びにプログラム
US9588169B1 (en) Live circuit monitoring
Hartebrodt et al. Fault detection in fieldbuses with time domain reflectometry
CN111175609B (zh) 配电网线路故障定位方法及系统
JP4853379B2 (ja) 電線・ケーブルの断線検出方法及びその装置
JP6998907B2 (ja) 検知システム、検知器及び検知方法
JP2013137251A (ja) ケーブル長測定装置、通信システム及びケーブル長測定方法
RU2464688C1 (ru) Способ и устройство для генерации сигнала неисправности

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220104

R150 Certificate of patent or registration of utility model

Ref document number: 7004583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150