JP7003974B2 - Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester. - Google Patents

Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester. Download PDF

Info

Publication number
JP7003974B2
JP7003974B2 JP2019122903A JP2019122903A JP7003974B2 JP 7003974 B2 JP7003974 B2 JP 7003974B2 JP 2019122903 A JP2019122903 A JP 2019122903A JP 2019122903 A JP2019122903 A JP 2019122903A JP 7003974 B2 JP7003974 B2 JP 7003974B2
Authority
JP
Japan
Prior art keywords
catalyst
raw material
liquid
methacrylic acid
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019122903A
Other languages
Japanese (ja)
Other versions
JP2019195807A5 (en
JP2019195807A (en
Inventor
裕樹 加藤
雄一 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2019195807A publication Critical patent/JP2019195807A/en
Publication of JP2019195807A5 publication Critical patent/JP2019195807A5/ja
Application granted granted Critical
Publication of JP7003974B2 publication Critical patent/JP7003974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、メタクリル酸製造用触媒の製造方法、メタクリル酸の製造方法およびメタクリル酸エステルの製造方法に関する。 The present invention relates to a method for producing a catalyst for producing methacrylic acid, a method for producing methacrylic acid, and a method for producing a methacrylic acid ester.

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられるメタクリル酸製造用触媒としては、モリブデンおよびリンを含むヘテロポリ酸系触媒が知られている。このようなヘテロポリ酸系触媒としては、カウンターカチオンがプロトンであるプロトン型ヘテロポリ酸、およびそのプロトンの一部をプロトン以外のカチオンで置換したヘテロポリ酸塩が存在する。ヘテロポリ酸塩としては、カチオンがアルカリ金属イオンであるアルカリ金属塩や、カチオンがアンモニウムイオンであるアンモニウム塩が知られている(以下、プロトン型ヘテロポリ酸を単に「ヘテロポリ酸」とも言い、プロトン型ヘテロポリ酸およびヘテロポリ酸塩より選ばれる少なくとも1種類を単に「ヘテロポリ酸(塩)」とも示す。)。 As a catalyst for producing methacrylic acid used for producing methacrylic acid by gas-phase catalytic oxidation of methacrolein with molecular oxygen, a heteropolyacid-based catalyst containing molybdenum and phosphorus is known. As such a heteropolyacid-based catalyst, there are a proton-type heteropolyacid in which the counter cation is a proton, and a heteropolylate in which a part of the proton is replaced with a cation other than the proton. As the heteropolyrate, an alkali metal salt in which the cation is an alkali metal ion and an ammonium salt in which the cation is an ammonium ion are known (hereinafter, the proton-type heteropolyacid is also simply referred to as "heteropolyacid", and the proton-type heteropolyacid is used. At least one selected from acid and heteropolyrate is also simply referred to as "heteropolyacid (salt)").

メタクリル酸製造用触媒の製造方法としては、例えば特許文献1に、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するための触媒の製造方法であって、(i)少なくともモリブデン(Mo)、リン(P)およびバナジウム(V)を含む溶液またはスラリー(I液)を調製する工程と、(ii)アンモニウム根を含む溶液またはスラリー(II液)を調製する工程と、(iii)前記I液またはII液のいずれか一方の液(PR液)を槽(A槽)に装入し、該A槽に装入された該PR液の液面の全面積に対し0.01~10%の面積を有する連続する液面域に他方の前記液(LA液)を投入してI液II液混合液を調製する工程と、(iv)前記全触媒成分を含有する触媒前駆体を含む溶液またはスラリーを乾燥、焼成する工程とを含むことを特徴とする、所定原子を所定の原子比率で含むメタクリル酸製造用触媒の製造方法が開示されている。 As a method for producing a catalyst for producing methacrylic acid, for example, Patent Document 1 describes a method for producing a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of metachlorine with molecular oxygen, wherein (i) at least molybdenum. A step of preparing a solution or slurry (Liquid I) containing (Mo), phosphorus (P) and vanadium (V), a step of preparing a solution or slurry (Liquid II) containing (ii) ammonium root, and (iii). ) The liquid (PR liquid) of either the liquid I or the liquid II is charged into the tank (tank A), and 0.01 with respect to the total area of the liquid surface of the PR liquid charged in the tank A. A step of pouring the other liquid (LA liquid) into a continuous liquid level region having an area of about 10% to prepare a liquid I liquid II mixed liquid, and (iv) a catalyst precursor containing all the catalyst components. Disclosed is a method for producing a catalyst for producing methacrylic acid, which comprises a step of drying and firing a solution or slurry containing a predetermined atom in a predetermined atomic ratio.

国際公開第2005/039760号International Publication No. 2005/039760

しかしながら、特許文献1に開示された方法で製造されるメタクリル酸製造用触媒は、該触媒をメタクリル酸製造に使用した場合、メタクリル酸の収率が十分ではなく、更なる改良が望まれている。本発明では、メタクリル酸収率の高いメタクリル酸製造用触媒を提供することを目的とする。 However, the methacrylic acid production catalyst produced by the method disclosed in Patent Document 1 does not have a sufficient yield of methacrylic acid when the catalyst is used for methacrylic acid production, and further improvement is desired. .. An object of the present invention is to provide a catalyst for producing methacrylic acid having a high yield of methacrylic acid.

本発明は、以下の[1]から[18]である。 The present invention is the following [1] to [18].

[1]メタクロレインを分子状酸素により気相接触酸化して、メタクリル酸を製造する際に用いられるメタクリル酸製造用触媒の製造方法であって、
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程と、
(2)カチオン原料を含む触媒原料液Bを準備する工程と、
(3)前記触媒原料液Aおよび前記触媒原料液Bのいずれか一方に、他方の液を添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程と、を含み、
前記工程(3)において、下記式(i)および(ii)を満たすメタクリル酸製造用触媒の製造方法。
[1] A method for producing a catalyst for producing methacrylic acid, which is used when methacrolein is subjected to gas-phase catalytic oxidation with molecular oxygen to produce methacrylic acid.
(1) A step of preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium, and
(2) A step of preparing a catalyst raw material liquid B containing a cationic raw material, and
(3) A step of adding the other liquid to either one of the catalyst raw material liquid A and the catalyst raw material liquid B and mixing them to prepare a liquid containing a heteropolyacid having a Keggin-type structure or a salt thereof. Including,
A method for producing a catalyst for producing methacrylic acid, which satisfies the following formulas (i) and (ii) in the step (3).

3.0≦T/(√V)≦13.0 (i)
0.01≦u1≦1.0 (ii)
(式(i)および(ii)中、Vは前記触媒原料液Aの容積[m]、Tは他方の液を添加するための添加口の数、u1は添加する他方の液の体積流速[L/分]を示す。なおTが2以上である場合、u1は各添加口から添加される他方の液の体積流速の平均値を示す。)。
3.0 ≤ T / ( 3 √V) ≤ 13.0 (i)
0.01 ≤ u1 ≤ 1.0 (ii)
(In formulas (i) and (ii), V is the volume of the catalyst raw material liquid A [m 3 ], T is the number of addition ports for adding the other liquid, and u1 is the volume flow rate of the other liquid to be added. [L / min] is shown. When T is 2 or more, u1 indicates the average value of the volumetric flow velocity of the other liquid added from each addition port).

[2]メタクロレインを分子状酸素により気相接触酸化して、メタクリル酸を製造する際に用いられるメタクリル酸製造用触媒の製造方法であって、
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程と、
(2)カチオン原料を含む触媒原料液Bを準備する工程と、
(3)前記触媒原料液Aに前記触媒原料液Bを添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程と、を含み、
前記工程(3)において、下記式(i)および(iii)を満たすメタクリル酸製造用触媒の製造方法。
[2] A method for producing a catalyst for producing methacrylic acid, which is used when methacrolein is subjected to gas-phase catalytic oxidation with molecular oxygen to produce methacrylic acid.
(1) A step of preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium, and
(2) A step of preparing a catalyst raw material liquid B containing a cationic raw material, and
(3) The step of adding the catalyst raw material liquid B to the catalyst raw material liquid A and mixing them to prepare a liquid containing a heteropolyacid having a Keggin-type structure or a salt thereof is included.
A method for producing a catalyst for producing methacrylic acid, which satisfies the following formulas (i) and (iii) in the step (3).

3.0≦T/(√V)≦13.0 (i)
0.01≦u2≦8 (iii)
(式(i)および(iii)中、Vは前記触媒原料液Aの容積[m]、Tは前記触媒原料液Bを添加するための添加口の数、u2は前記触媒原料液Bのカチオン原料の流速[mol/分]を示す。なおTが2以上である場合、u2は各添加口から添加される前記触媒原料液Bのカチオン原料の流速の平均値を示す。)。
3.0 ≤ T / ( 3 √V) ≤ 13.0 (i)
0.01 ≤ u2 ≤ 8 (iii)
(In formulas (i) and (iii), V is the volume of the catalyst raw material liquid A [m 3 ], T is the number of addition ports for adding the catalyst raw material liquid B, and u2 is the catalyst raw material liquid B. The flow velocity [mol / min] of the cation raw material is shown. When T is 2 or more, u2 indicates the average value of the flow velocities of the cation raw material of the catalyst raw material liquid B added from each addition port).

[3]前記式(i)において、Tが2以上である[1]または[2]に記載のメタクリル酸製造用触媒の製造方法。 [3] The method for producing a catalyst for producing methacrylic acid according to [1] or [2], wherein T is 2 or more in the above formula (i).

[4]前記工程(3)において、前記触媒原料液Aおよび前記触媒原料液Bのいずれか一方が入った下記式(iv)を満たす容器内に、他方の液を添加して混合する[1]に記載のメタクリル酸製造用触媒の製造方法。 [4] In the step (3), the other liquid is added and mixed in a container satisfying the following formula (iv) containing either one of the catalyst raw material liquid A and the catalyst raw material liquid B [1]. ]. The method for producing a catalyst for producing methacrylic acid.

0.1≦S/W≦50 (iv)
(式(iv)中、Sは容器内液の液面の表面積[m]を示し、Wは容器内液の容積[m]を示す。)。
0.1 ≤ S 3 / W 2 ≤ 50 (iv)
(In the formula (iv), S indicates the surface area [m 2 ] of the liquid surface of the liquid in the container, and W indicates the volume [m 3 ] of the liquid in the container.)

[5]前記工程(3)において、前記触媒原料液Aが入った下記式(iv)を満たす容器内に、前記触媒原料液Bを添加して混合する[2]に記載のメタクリル酸製造用触媒の製造方法。 [5] The methacrylic acid production according to [2], wherein the catalyst raw material liquid B is added and mixed in a container satisfying the following formula (iv) containing the catalyst raw material liquid A in the step (3). Method for manufacturing catalyst.

0.1≦S/W≦50 (iv)
(式(iv)中、Sは容器内液の液面の表面積[m]を示し、Wは容器内液の容積[m]を示す。)。
0.1 ≤ S 3 / W 2 ≤ 50 (iv)
(In the formula (iv), S indicates the surface area [m 2 ] of the liquid surface of the liquid in the container, and W indicates the volume [m 3 ] of the liquid in the container.)

[6]前記工程(3)において、前記容器内液の液面の上部に前記添加口が配置されている[4]または[5]に記載のメタクリル酸製造用触媒の製造方法。 [6] The method for producing a catalyst for producing methacrylic acid according to [4] or [5], wherein the addition port is arranged above the liquid surface of the liquid in the container in the step (3).

[7]前記工程(3)において、下記式(v)を満たす[6]に記載のメタクリル酸製造用触媒の製造方法。 [7] The method for producing a catalyst for producing methacrylic acid according to [6], which satisfies the following formula (v) in the step (3).

2≦T/S≦100 (v)
(式(v)中、Tは前記式(i)と同義であり、Sは前記式(iv)と同義である。)。
2 ≦ T / S ≦ 100 (v)
(In the formula (v), T is synonymous with the formula (i), and S is synonymous with the formula (iv)).

[8]前記工程(3)において、前記容器内液の液面の中心から、中心角が360°/Tとなるように、該液面に略平行に容器の壁面へ向けて引いたT本の直線で分割される該液面の領域をそれぞれY~Yとするとき、前記添加口が各Y~Yの上部にそれぞれ1つずつ配置されている[6]または[7]に記載のメタクリル酸製造用触媒の製造方法。 [8] In the step (3), T pieces drawn from the center of the liquid level in the container toward the wall surface of the container substantially parallel to the liquid level so that the central angle is 360 ° / T. When the region of the liquid surface divided by the straight line is Y 1 to Y T , one of the addition ports is arranged on the upper part of each of Y 1 to Y T [6] or [7]. The method for producing a catalyst for producing methacrylic acid according to.

[9]前記工程(3)において、前記添加口が、前記容器内液の液面の中心を中心として、下記式(vi)で算出される半径R[m]で描かれる円形領域内の上部に存在しない[6]から[8]のいずれかに記載のメタクリル酸製造用触媒の製造方法。 [9] In the step (3), the upper portion of the addition port in the circular region drawn by the radius R [m] calculated by the following formula (vi) with the center of the liquid surface of the liquid in the container as the center. The method for producing a catalyst for producing methacrylic acid according to any one of [6] to [8], which is not present in the above.

Figure 0007003974000001
(式(vi)中、Sは前記式(iv)と同義である。)。
Figure 0007003974000001
(In the formula (vi), S is synonymous with the above formula (iv)).

[10]前記工程(3)において、前記触媒原料液Aが入った容器に、前記触媒原料液Bを添加して混合する[1]に記載のメタクリル酸製造用触媒の製造方法。 [10] The method for producing a methacrylic acid production catalyst according to [1], wherein in the step (3), the catalyst raw material liquid B is added to and mixed with the container containing the catalyst raw material liquid A.

[11]前記工程(1)で準備する触媒原料液Aと、前記工程(2)で準備する触媒原料液Bとの合計の容積が、0.2m以上である[1]から[10]のいずれかに記載のメタクリル酸製造用触媒の製造方法。 [11] The total volume of the catalyst raw material liquid A prepared in the step (1) and the catalyst raw material liquid B prepared in the step (2) is 0.2 m 3 or more [1] to [10]. The method for producing a catalyst for producing methacrylic acid according to any one of the above.

[12]前記カチオン原料が、アルカリ金属を含む化合物およびアンモニウムイオンを含む化合物からなる群から選択される少なくとも1種である[1]から[11]のいずれかに記載のメタクリル酸製造用触媒の製造方法。 [12] The catalyst for producing methacrylic acid according to any one of [1] to [11], wherein the cation raw material is at least one selected from the group consisting of a compound containing an alkali metal and a compound containing an ammonium ion. Production method.

[13]さらに、前記ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を乾燥し、触媒前駆体を得る工程を含む[1]から[12]のいずれかに記載のメタクリル酸製造用触媒の製造方法。 [13] The catalyst for producing methacrylic acid according to any one of [1] to [12], further comprising a step of drying a liquid containing the heteropolyacid having a Keggin-type structure or a salt thereof to obtain a catalyst precursor. Production method.

[14]さらに、前記触媒前駆体を熱処理する工程を含む[13]に記載のメタクリル酸製造用触媒の製造方法。 [14] The method for producing a catalyst for producing methacrylic acid according to [13], which further comprises a step of heat-treating the catalyst precursor.

[15]前記メタクリル酸製造用触媒が、下記式(vii)で示される元素組成を有する[1]から[14]のいずれかに記載のメタクリル酸製造用触媒の製造方法。 [15] The method for producing a methacrylic acid production catalyst according to any one of [1] to [14], wherein the methacrylic acid production catalyst has an elemental composition represented by the following formula (vii).

MoCu (vii)
(式(vii)中、Mo、P、V、CuおよびOはそれぞれモリブデン、リン、バナジウム、銅および酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種の元素を示す。Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、a=12の時、b=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。)。
Mo a P b V c Cu d A e E f G g Oh (vii)
(In the formula (vii), Mo, P, V, Cu and O are element symbols indicating molybdenum, phosphorus, vanadium, copper and oxygen, respectively. A is antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, Represents at least one element selected from the group consisting of selenium, silicon, tungsten and boron. E represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin and lead. , At least one element selected from the group consisting of niobium, indium, sulfur, palladium, gallium, cerium and lanthanum. G is at least one selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and tarium. A, b, c, d, e, f, g and h represent the atomic ratio of each element, and when a = 12, b = 0.5 to 3, c = 0.01 to 3 , D = 0.01 to 2, e = 0 to 3, f = 0 to 3, g = 0.01 to 3, and h is the atomic ratio of oxygen required to satisfy the atomic value of each element. It is.).

[16][1]から[15]のいずれかに記載の方法により製造されたメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法。 [16] A method for producing methacrylic acid, in which methacrolein is vapor-phase contact-oxidized with molecular oxygen in the presence of a catalyst for producing methacrylic acid produced by the method according to any one of [1] to [15].

[17][1]から[15]のいずれかに記載の方法によりメタクリル酸製造用触媒を製造し、該メタクリル酸製造用触媒の存在下でメタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法。 [17] A methacrolein produced by the method according to any one of [1] to [15], and methacrolein is vapor-phase contact oxidized with molecular oxygen in the presence of the methacrylic acid production catalyst. Method for producing acid.

[18][16]または[17]に記載のメタクリル酸の製造方法により製造されたメタクリル酸をエステル化するメタクリル酸エステルの製造方法。 [18] A method for producing a methacrylic acid ester that esterifies methacrylic acid produced by the method for producing methacrylic acid according to [16] or [17].

本発明によれば、メタクリル酸収率の高いメタクリル酸製造用触媒を提供できる。 According to the present invention, it is possible to provide a catalyst for producing methacrylic acid having a high yield of methacrylic acid.

[メタクリル酸製造用触媒の製造方法]
本発明に係るメタクリル酸製造用触媒の製造方法は、メタクロレインを分子状酸素により気相接触酸化して、メタクリル酸を製造する際に用いられるメタクリル酸製造用触媒の製造方法である。該方法の第一の実施形態は、以下の工程(1)~(3)を含む。
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程。
(2)カチオン原料を含む触媒原料液Bを準備する工程。
(3)前記触媒原料液Aおよび前記触媒原料液Bのいずれか一方に、他方の液を添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程。
[Manufacturing method of catalyst for methacrylic acid production]
The method for producing a catalyst for producing methacrylic acid according to the present invention is a method for producing a catalyst for producing methacrylic acid, which is used for producing methacrylic acid by gas-phase catalytic oxidation of methacrolein with molecular oxygen. The first embodiment of the method includes the following steps (1) to (3).
(1) A step of preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium.
(2) A step of preparing a catalyst raw material liquid B containing a cationic raw material.
(3) A step of adding the other liquid to either one of the catalyst raw material liquid A and the catalyst raw material liquid B and mixing them to prepare a liquid containing a heteropolyacid having a Keggin-type structure or a salt thereof.

前記工程(3)では、下記式(i)および(ii)を満たす。 In the step (3), the following formulas (i) and (ii) are satisfied.

3.0≦T/(√V)≦13.0 (i)
0.01≦u1≦1.0 (ii)
式(i)および(ii)中、Vは前記触媒原料液Aの容積[m]、Tは他方の液を添加するための添加口の数、u1は添加する他方の液の体積流速[L/分]を示す。なおTが2以上である場合、u1は各添加口から添加される他方の液の体積流速の平均値を示す。
3.0 ≤ T / ( 3 √V) ≤ 13.0 (i)
0.01 ≤ u1 ≤ 1.0 (ii)
In the formulas (i) and (ii), V is the volume [m 3 ] of the catalyst raw material liquid A, T is the number of addition ports for adding the other liquid, and u1 is the volume flow rate of the other liquid to be added [i]. L / min] is shown. When T is 2 or more, u1 indicates the average value of the volumetric flow velocity of the other liquid added from each addition port.

また、前記方法の第二の実施形態は、以下の工程(1)~(3)を含む。
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程。
(2)カチオン原料を含む触媒原料液Bを準備する工程。
(3)前記触媒原料液Aに前記触媒原料液Bを添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程。
In addition, the second embodiment of the method includes the following steps (1) to (3).
(1) A step of preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium.
(2) A step of preparing a catalyst raw material liquid B containing a cationic raw material.
(3) A step of adding the catalyst raw material liquid B to the catalyst raw material liquid A and mixing them to prepare a liquid containing a heteropolyacid having a Keggin-type structure or a salt thereof.

前記工程(3)では、下記式(i)および(iii)を満たす。 In the step (3), the following formulas (i) and (iii) are satisfied.

3.0≦T/(√V)≦13.0 (i)
0.01≦u2≦8 (iii)
式(i)および(iii)中、Vは前記触媒原料液Aの容積[m]、Tは前記触媒原料液Bを添加するための添加口の数、u2は前記触媒原料液Bのカチオン原料の流速[mol/分]を示す。なおTが2以上である場合、u2は各添加口から添加される前記触媒原料液Bのカチオン原料の流速の平均値を示す。
3.0 ≤ T / ( 3 √V) ≤ 13.0 (i)
0.01 ≤ u2 ≤ 8 (iii)
In the formulas (i) and (iii), V is the volume of the catalyst raw material liquid A [m 3 ], T is the number of addition ports for adding the catalyst raw material liquid B, and u2 is the cation of the catalyst raw material liquid B. The flow velocity [mol / min] of the raw material is shown. When T is 2 or more, u2 indicates the average value of the flow rates of the cationic raw materials of the catalyst raw material liquid B added from each addition port.

本発明に係る方法の第一および第二の実施形態では、前記工程(1)~(3)を含み、かつ、前記工程(3)において前記式(i)および(ii)を満たすことにより、または、前記(i)および(iii)を満たすことにより、高い収率でメタクリル酸を製造可能なメタクリル酸製造用触媒を製造することができる。その詳細なメカニズムは必ずしも明らかになっていないが、メタクリル酸収率向上に有効な触媒粒子が生成されやすくなるものと推測される。 In the first and second embodiments of the method according to the present invention, the steps (1) to (3) are included, and the formulas (i) and (ii) are satisfied in the step (3). Alternatively, by satisfying the above (i) and (iii), a catalyst for producing methacrylic acid capable of producing methacrylic acid in a high yield can be produced. Although the detailed mechanism has not been clarified, it is presumed that catalyst particles effective for improving the yield of methacrylic acid are likely to be produced.

本発明に係る方法により製造されるメタクリル酸製造用触媒は、少なくともモリブデン、リンおよびバナジウムを含むが、これら以外にも銅などの他の元素をさらに含むことができる。該触媒は、高い収率でメタクリル酸を製造できる観点から、下記式(vii)で示される元素組成を有することが好ましい。 The catalyst for producing methacrylic acid produced by the method according to the present invention contains at least molybdenum, phosphorus and vanadium, but can further contain other elements such as copper. The catalyst preferably has an elemental composition represented by the following formula (vii) from the viewpoint of producing methacrylic acid in a high yield.

MoCu (vii)
式(vii)中、Mo、P、V、CuおよびOはそれぞれモリブデン、リン、バナジウム、銅および酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種の元素を示す。Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、a=12の時、b=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。なお、前記元素組成は触媒をアンモニア水に溶解した成分をICP発光分析法で分析することによって算出される値である。
Mo a P b V c Cu d A e E f G g Oh (vii)
In formula (vii), Mo, P, V, Cu and O are element symbols indicating molybdenum, phosphorus, vanadium, copper and oxygen, respectively. A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron. E is at least selected from the group consisting of iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum. Shows one element. G represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium. a, b, c, d, e, f, g and h represent the atomic ratio of each element, and when a = 12, b = 0.5 to 3, c = 0.01 to 3, d = 0. 01 to 2, e = 0 to 3, f = 0 to 3, g = 0.01 to 3, and h is the atomic ratio of oxygen required to satisfy the valence of each element. The elemental composition is a value calculated by analyzing a component obtained by dissolving a catalyst in aqueous ammonia by an ICP emission spectrometry method.

(工程(1))
工程(1)では、少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する。例えば、調製容器を用いて、モリブデン、リンおよびバナジウムを含む触媒成分の原料化合物を溶媒に溶解又は懸濁させることにより、触媒原料液Aを得ることができる。触媒原料液Aが、少なくともモリブデン、リンおよびバナジウムを含むことにより、メタクリル酸収率がより高いメタクリル酸製造用触媒を製造できる。
(Step (1))
In the step (1), the catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium is prepared. For example, the catalyst raw material liquid A can be obtained by dissolving or suspending the raw material compound of the catalyst component containing molybdenum, phosphorus and vanadium in a solvent using a preparation container. When the catalyst raw material liquid A contains at least molybdenum, phosphorus and vanadium, a catalyst for producing methacrylic acid having a higher methacrylic acid yield can be produced.

前記触媒成分の原料化合物は特に限定されず、触媒の各構成元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、オキソ酸、オキソ酸塩等を単独で又は2種以上を組み合わせて使用することができる。モリブデンの原料化合物としては、例えば、三酸化モリブデン等の酸化モリブデン、パラモリブデン酸アンモニウム、ジモリブデン酸アンモニウム等のモリブデン酸アンモニウム等が挙げられる。リンの原料化合物としては、例えば、リン酸、五酸化リン、リン酸アンモニウム等が挙げられる。バナジウムの原料化合物としては、例えば、メタバナジン酸アンモニウム、五酸化バナジウム、蓚酸バナジル等が挙げられる。銅の原料化合物としては、例えば、硝酸銅、酸化銅、炭酸銅、酢酸銅等が挙げられる。触媒成分の原料化合物は、触媒成分を構成する各元素に対して1種を用いてもよく、2種以上を組み合わせて用いてもよい。 The raw material compound of the catalyst component is not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxoacids, oxoacids, etc. of each constituent element of the catalyst may be used alone or in combination of two or more. Can be used in combination. Examples of the raw material compound for molybdenum include molybdenum oxide such as molybdenum trioxide, ammonium molybdate such as ammonium paramolybdate, and ammonium molybdate such as ammonium dimolybdate. Examples of the raw material compound of phosphorus include phosphoric acid, phosphorus pentoxide, ammonium phosphate and the like. Examples of the raw material compound of vanadium include ammonium metavanadate, vanadium pentoxide, vanadyl oxalate and the like. Examples of the raw material compound for copper include copper nitrate, copper oxide, copper carbonate, copper acetate and the like. As the raw material compound of the catalyst component, one kind may be used for each element constituting the catalyst component, or two or more kinds may be used in combination.

前記溶媒としては、例えば、水、エチルアルコール、アセトン等が挙げられる。これらは1種を用いてもよく、2種以上を併用してもよい。これらの中でも、水を用いることが好ましい。 Examples of the solvent include water, ethyl alcohol, acetone and the like. These may be used alone or in combination of two or more. Among these, it is preferable to use water.

触媒原料液Aは、調製容器を用いて、溶媒に触媒成分の原料化合物を加え、加熱しながら撹拌して調製することが好ましい。加熱温度は80~130℃が好ましく、下限は90℃以上がより好ましい。また、触媒原料液AのpHは3.0以下が好ましく、2.5以下がより好ましい。触媒原料液AのpHを3.0以下とする方法としては、例えばモリブデン原料として三酸化モリブデンを使用する、硝酸イオンが多く含まれるように触媒成分の原料化合物を選択する等の方法が挙げられる。触媒原料液A中の触媒成分の原料化合物の濃度は特に限定されないが、例えば5~90質量%であることができる。 The catalyst raw material liquid A is preferably prepared by adding the raw material compound of the catalyst component to the solvent using a preparation container and stirring while heating. The heating temperature is preferably 80 to 130 ° C, and the lower limit is more preferably 90 ° C or higher. The pH of the catalyst raw material liquid A is preferably 3.0 or less, more preferably 2.5 or less. Examples of the method for setting the pH of the catalyst raw material liquid A to 3.0 or less include a method of using molybdenum trioxide as a molybdenum raw material and a method of selecting a raw material compound of a catalyst component so as to contain a large amount of nitrate ions. .. The concentration of the raw material compound of the catalyst component in the catalyst raw material liquid A is not particularly limited, but may be, for example, 5 to 90% by mass.

(工程(2))
工程(2)では、カチオン原料を含む触媒原料液Bを準備する。例えば、調製容器を用いて、カチオン原料を溶媒に溶解又は懸濁させることにより、触媒原料液Bを得ることができる。
(Step (2))
In the step (2), the catalyst raw material liquid B containing the cationic raw material is prepared. For example, the catalyst raw material liquid B can be obtained by dissolving or suspending the cationic raw material in a solvent using a preparation container.

ここで、「カチオン原料」とは、アルカリ金属を含む化合物、アルカリ土類金属を含む化合物、遷移金属を含む化合物、卑金属を含む化合物および窒素を含む化合物(アンモニア、アンモニウムイオンもしくはアルキルアンモニウムイオンを含む化合物、または含窒素ヘテロ環化合物)からなる群から選択される少なくとも1種を示す。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが挙げられる。アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられる。アルカリ金属を含む化合物、アルカリ土類金属を含む化合物、遷移金属を含む化合物、卑金属を含む化合物としては、アルカリ金属、アルカリ土類金属、遷移金属または卑金属の硝酸塩、炭酸塩、重炭酸塩、酢酸塩、硫酸塩、アンモニウム塩、酸化物、水酸化物、ハロゲン化物、オキソ酸、オキソ酸塩等が挙げられる。アンモニウムイオンを含む化合物としては、重炭酸アンモニウム、炭酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、バナジン酸アンモニウム等が挙げられる。アルキルアンモニウムイオンを含む化合物としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラn-プロピルアンモニウム、テトラn-ブチルアンモニウム、トリエチルメチルアンモニウム等のハロゲン化物または水酸化物等が挙げられる。含窒素ヘテロ環化合物としては、ピリジン、ピペリジン、ピペラジン、ピリミジン、キノリン、イソキノリンおよびこれらのアルキル誘導体等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。これらの中でもカチオン原料としては、メタクリル酸収率がより高いメタクリル酸製造用触媒を得られる観点から、アルカリ金属を含む化合物およびアンモニウムイオンを含む化合物からなる群から選択される少なくとも1種であることが好ましい。 Here, the "cation raw material" includes a compound containing an alkali metal, a compound containing an alkaline earth metal, a compound containing a transition metal, a compound containing a base metal, and a compound containing nitrogen (including ammonia, ammonium ion or alkylammonium ion). A compound or at least one selected from the group consisting of a nitrogen-containing heterocyclic compound) is shown. Examples of the alkali metal include lithium, sodium, potassium, rubidium and cesium. Examples of alkaline earth metals include magnesium, calcium, strontium and barium. Compounds containing alkali metals, compounds containing alkaline earth metals, compounds containing transition metals, and compounds containing base metals include alkali metals, alkaline earth metals, nitrates of transition metals or base metals, carbonates, bicarbonates, and acetic acids. Examples thereof include salts, sulfates, ammonium salts, oxides, hydroxides, halides, oxo acids, oxo acid salts and the like. Examples of the compound containing ammonium ion include ammonium bicarbonate, ammonium carbonate, ammonium nitrate, ammonium phosphate, ammonium vanadate and the like. Examples of the compound containing an alkylammonium ion include halides such as tetramethylammonium, tetraethylammonium, tetran-propylammonium, tetran-butylammonium, and triethylmethylammonium, and hydroxides. Examples of the nitrogen-containing heterocyclic compound include pyridine, piperidine, piperazine, pyrimidine, quinoline, isoquinoline and alkyl derivatives thereof. These may be used alone or in combination of two or more. Among these, the cation raw material is at least one selected from the group consisting of compounds containing alkali metals and compounds containing ammonium ions from the viewpoint of obtaining a catalyst for producing methacrylic acid having a higher yield of methacrylic acid. Is preferable.

前記溶媒としては、例えば、水、エチルアルコール、アセトン等が挙げられる。これらは1種を用いてもよく、2種以上を併用してもよい。これらの中でも、水を用いることが好ましい。 Examples of the solvent include water, ethyl alcohol, acetone and the like. These may be used alone or in combination of two or more. Among these, it is preferable to use water.

なお、カチオン原料として複数の種類を用いる場合には、調製容器を複数用いて、各カチオン原料をそれぞれ溶媒に溶解又は懸濁させることにより、触媒原料液B1、B2、…のように複数の触媒原料液Bを調製してもよい。触媒原料液Aに対して触媒原料液Bを添加する場合は、触媒原料液Aに対して、触媒原料液B1、B2、…を順不同で添加してもよく、また同時に添加してもよい。第一の実施形態において、触媒原料液Bに対して触媒原料液Aを添加する場合は、いずれかの触媒原料液Bに対して触媒原料液Aを添加し、得られた液体と他の触媒原料液Bとを混合してもよく、また触媒原料液A1、A2、…のように複数の触媒原料液Aに分割して触媒原料液Bに添加した後、得られた各液体を混合してもよい。また、触媒原料液B中のカチオン原料の濃度は特に限定されないが、例えば5~90質量%であることができる。 When a plurality of types of cation raw materials are used, a plurality of catalyst raw materials such as catalyst raw material liquids B1, B2, ... Are used by dissolving or suspending each cation raw material in a solvent by using a plurality of preparation containers. The raw material liquid B may be prepared. When the catalyst raw material liquid B is added to the catalyst raw material liquid A, the catalyst raw material liquids B1, B2, ... May be added to the catalyst raw material liquid A in no particular order, or may be added at the same time. In the first embodiment, when the catalyst raw material liquid A is added to the catalyst raw material liquid B, the catalyst raw material liquid A is added to any of the catalyst raw material liquid B, and the obtained liquid and another catalyst are added. The raw material liquid B may be mixed, or the catalyst raw material liquids A1, A2, ... Are divided into a plurality of catalyst raw material liquids A and added to the catalyst raw material liquid B, and then the obtained liquids are mixed. You may. The concentration of the cationic raw material in the catalyst raw material liquid B is not particularly limited, but may be, for example, 5 to 90% by mass.

また、前記工程(1)および(2)において触媒原料液AおよびBを準備する場合、工業的な製造を考慮すると、製造コストの観点から、前記工程(1)で準備する触媒原料液Aと、前記工程(2)で準備する触媒原料液Bとの合計の容積は、0.2m以上であることが好ましく、0.8m以上であることがより好ましく、1.5m以上であることがさらに好ましい。なお、該容積の範囲の上限は特に限定されないが、例えば5m以下であることができる。 Further, when the catalyst raw material liquids A and B are prepared in the steps (1) and (2), the catalyst raw material liquid A prepared in the step (1) is considered from the viewpoint of manufacturing cost in consideration of industrial production. The total volume of the catalyst raw material liquid B prepared in the step (2) is preferably 0.2 m 3 or more, more preferably 0.8 m 3 or more, and 1.5 m 3 or more. Is even more preferable. The upper limit of the volume range is not particularly limited, but may be, for example, 5 m 3 or less.

(工程(3))
第一の実施形態では、工程(3)において、前記触媒原料液Aおよび前記触媒原料液Bのいずれか一方に、他方の液を添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する。即ち、触媒原料液Aに触媒原料液Bを添加して混合するか、または触媒原料液Bに触媒原料液Aを添加して混合する。前者では触媒原料液Bが、後者では触媒原料液Aが、それぞれ「他方の液」にあたる。以下、「他方の液」を添加液とも示す。また、第二の実施形態では、工程(3)において、前記触媒原料液Aに前記触媒原料液Bを添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する。第一の実施形態では、工程(3)において、下記式(i)および(ii)の条件を両方とも満たす必要がある。また、第二の実施形態では、工程(3)において、下記式(i)および(iii)の条件を両方とも満たす必要がある。
(Step (3))
In the first embodiment, in the step (3), one of the catalyst raw material liquid A and the catalyst raw material liquid B is mixed with the other liquid, and the heteropolyacid or a salt thereof having a Keggin-type structure is added. Prepare a liquid containing. That is, the catalyst raw material liquid B is added to the catalyst raw material liquid A and mixed, or the catalyst raw material liquid A is added to the catalyst raw material liquid B and mixed. In the former case, the catalyst raw material liquid B corresponds to the "other liquid", and in the latter case, the catalyst raw material liquid A corresponds to the "other liquid". Hereinafter, the "other liquid" is also referred to as an additive liquid. Further, in the second embodiment, in the step (3), the catalyst raw material liquid B is added to the catalyst raw material liquid A and mixed to prepare a liquid containing a heteropolyacid having a Keggin-type structure or a salt thereof. In the first embodiment, in the step (3), it is necessary to satisfy both the conditions of the following formulas (i) and (ii). Further, in the second embodiment, it is necessary to satisfy both the conditions of the following formulas (i) and (iii) in the step (3).

3.0≦T/(√V)≦13.0 (i)
0.01≦u1≦1.0 (ii)
0.01≦u2≦8 (iii)
式(i)、(ii)および(iii)中、Vは前記触媒原料液Aの容積[m]、Tは他方の液(前記触媒原料液B)を添加するための添加口の数、u1は添加する他方の液の体積流速[L/分]、u2は前記触媒原料液Bのカチオン原料の流速[mol/分]を示す。また、「添加口」とは、触媒原料液Aおよび触媒原料液Bのいずれか一方(触媒原料液A)に他方の液(触媒原料液B)を添加するために設けられた他方の液(触媒原料液B)の出口である。なお、Tが2以上である場合、u1およびu2はそれぞれ、各添加口から添加される他方の液の体積流速、各添加口から添加される前記触媒原料液Bのカチオン原料の流速、の平均値を示す。なお、添加液が複数ある場合、それぞれが上記条件を満たす必要がある。即ち、添加液として触媒原料液B1、B2、…がある場合、各液の添加それぞれ全てが式(i)および(ii)の条件を両方とも満たすか、または、式(i)および(iii)の条件を両方とも満たす必要がある。また、第一の実施形態において、添加液として触媒原料液A1、A2、…がある場合も同様に、各液の添加それぞれ全てが式(i)および(ii)の条件を両方とも満たす必要がある。
3.0 ≤ T / ( 3 √V) ≤ 13.0 (i)
0.01 ≤ u1 ≤ 1.0 (ii)
0.01 ≤ u2 ≤ 8 (iii)
In the formulas (i), (ii) and (iii), V is the volume of the catalyst raw material liquid A [m 3 ], and T is the number of addition ports for adding the other liquid (catalyst raw material liquid B). u1 indicates the volumetric flow rate [L / min] of the other liquid to be added, and u2 indicates the flow rate [mol / min] of the cationic raw material of the catalyst raw material liquid B. The "addition port" is the other liquid (catalyst raw material liquid B) provided for adding the other liquid (catalyst raw material liquid B) to either one of the catalyst raw material liquid A and the catalyst raw material liquid B (catalyst raw material liquid A). This is the outlet of the catalyst raw material liquid B). When T is 2 or more, u1 and u2 are the average of the volumetric flow rate of the other liquid added from each addition port and the flow rate of the cation raw material of the catalyst raw material liquid B added from each addition port, respectively. Indicates a value. When there are a plurality of additive liquids, each of them must satisfy the above conditions. That is, when there are catalyst raw material liquids B1, B2, ... As the additive liquids, all of the additions of the respective liquids satisfy both the conditions of the formulas (i) and (ii), or the formulas (i) and (iii). It is necessary to meet both of the conditions of. Further, in the first embodiment, when there are catalyst raw material liquids A1, A2, ... As additive liquids, it is necessary that all of the additions of the respective liquids satisfy both the conditions of the formulas (i) and (ii). be.

触媒原料液Aと触媒原料液Bを混合することで、ケギン型構造を有するヘテロポリ酸(塩)を含む液体が得られる。前記式(i)において、T/(√V)は添加口の数Tを触媒原料液Aの容積Vの三乗根で除したものであり、触媒原料液Aと触媒原料液Bとを混合する際の、各液の接触状態に影響を与える。そのため、前記式(i)においてT/(√V)を特定の範囲とすることで、ヘテロポリ酸(塩)の中でもメタクリル酸収率向上に有効なヘテロポリ酸(塩)が生成されやすくなると推測される。なお、得られるヘテロポリ酸(塩)の総量は、触媒原料液Aに含まれる触媒成分の量に関係する。T/(√V)の値は、3.0≦T/(√V)≦13.0を満たし、下限は4.0以上が好ましく、5.0以上がより好ましく、6.0以上がさらに好ましい。上限は12.0以下が好ましく、11.0以下がより好ましく、9.0以下がさらに好ましい。 By mixing the catalyst raw material liquid A and the catalyst raw material liquid B, a liquid containing a heteropolyacid (salt) having a Keggin-type structure can be obtained. In the above formula (i), T / ( 3 √V) is obtained by dividing the number T of the addition ports by the cube root of the volume V of the catalyst raw material liquid A, and the catalyst raw material liquid A and the catalyst raw material liquid B are separated. It affects the contact state of each liquid when mixing. Therefore, it is presumed that by setting T / ( 3 √V) in the specific range in the above formula (i), a heteropolyacid (salt) effective for improving the methacrylic acid yield is likely to be produced among the heteropolyacids (salts). Will be done. The total amount of the obtained heteropolyacid (salt) is related to the amount of the catalyst component contained in the catalyst raw material liquid A. The value of T / ( 3 √V) satisfies 3.0 ≦ T / ( 3 √V) ≦ 13.0, the lower limit is preferably 4.0 or more, more preferably 5.0 or more, and 6.0 or more. Is even more preferable. The upper limit is preferably 12.0 or less, more preferably 11.0 or less, and even more preferably 9.0 or less.

Tの値は、メタクリル酸収率がより高いメタクリル酸製造用触媒を得られる観点から、2以上が好ましく、4以上がより好ましく、8以上がさらに好ましい。Tの値の範囲の上限は特に限定されないが、例えば20以下とすることができる。Tの値を2以上とする方法としては、例えば複数の穴を有する配管を用いる、複数の吐出口を有する多連ノズルを用いる等が挙げられる。添加口の直径は、0.5~30mmが好ましく、下限は1mm以上、上限は10mm以下がより好ましい。 The value of T is preferably 2 or more, more preferably 4 or more, still more preferably 8 or more, from the viewpoint of obtaining a catalyst for producing methacrylic acid having a higher methacrylic acid yield. The upper limit of the range of the value of T is not particularly limited, but may be, for example, 20 or less. Examples of the method of setting the value of T to 2 or more include using a pipe having a plurality of holes, using a multiple nozzle having a plurality of discharge ports, and the like. The diameter of the addition port is preferably 0.5 to 30 mm, the lower limit is 1 mm or more, and the upper limit is 10 mm or less.

前記式(ii)において、添加液の体積流速u1は、触媒原料液Aと触媒原料液Bとを混合する際の、両液の接触速度に影響する。そのため前記式(ii)を満たすように触媒原料液Aおよび触媒原料液Bのいずれか一方に他方の液を添加することで、メタクリル酸収率向上に有効な触媒粒子が生成されやすくなると推測される。u1の値は、0.01≦u1≦1.0を満たし、下限は0.05以上が好ましく、0.1以上がより好ましい。上限は0.5以下が好ましく、0.4以下がより好ましく、0.3以下がさらに好ましい。 In the formula (ii), the volumetric flow velocity u1 of the additive liquid affects the contact speed of both liquids when the catalyst raw material liquid A and the catalyst raw material liquid B are mixed. Therefore, it is presumed that by adding the other liquid to either the catalyst raw material liquid A or the catalyst raw material liquid B so as to satisfy the above formula (ii), catalyst particles effective for improving the methacrylic acid yield can be easily generated. To. The value of u1 satisfies 0.01 ≦ u1 ≦ 1.0, and the lower limit is preferably 0.05 or more, more preferably 0.1 or more. The upper limit is preferably 0.5 or less, more preferably 0.4 or less, and even more preferably 0.3 or less.

また、前記式(iii)において、添加する触媒原料液Bのカチオン原料の流速u2は、触媒原料液Aと触媒原料液Bとを混合する際の、両液の接触速度に影響する。そのため前記式(iii)を満たすように触媒原料液Aに対して触媒原料液Bを添加することで、メタクリル酸収率向上に有効な触媒粒子が生成されやすくなると推測される。u2の値は、0.01≦u2≦8を満たし、下限は0.1以上が好ましく、0.5以上がより好ましい。上限は5以下が好ましく、4以下がより好ましく、2以下がさらに好ましい。 Further, in the above formula (iii), the flow velocity u2 of the cationic raw material of the catalyst raw material liquid B to be added affects the contact speed of both liquids when the catalyst raw material liquid A and the catalyst raw material liquid B are mixed. Therefore, it is presumed that by adding the catalyst raw material liquid B to the catalyst raw material liquid A so as to satisfy the above formula (iii), catalyst particles effective for improving the methacrylic acid yield can be easily generated. The value of u2 satisfies 0.01 ≦ u2 ≦ 8, and the lower limit is preferably 0.1 or more, more preferably 0.5 or more. The upper limit is preferably 5 or less, more preferably 4 or less, and even more preferably 2 or less.

第一の実施形態において、工程(3)では、触媒原料液Aおよび触媒原料液Bのいずれか一方が入った下記式(iv)を満たす容器内に、他方の液を添加して混合することが好ましい。また、第二の実施形態において、工程(3)では、触媒原料液Aが入った下記式(iv)を満たす容器内に、触媒原料液Bを添加して混合することが好ましい。 In the first embodiment, in the step (3), the other liquid is added and mixed in a container satisfying the following formula (iv) containing either one of the catalyst raw material liquid A and the catalyst raw material liquid B. Is preferable. Further, in the second embodiment, in the step (3), it is preferable to add the catalyst raw material liquid B and mix it in a container satisfying the following formula (iv) containing the catalyst raw material liquid A.

0.1≦S/W≦50 (iv)
式(iv)中、Sは容器内液の液面の表面積[m]を示し、Wは容器内液の容積[m]を示す。ここで、「容器内液」とは容器内に入れられている前記触媒原料液A又は前記触媒原料液Bを示す。
0.1 ≤ S 3 / W 2 ≤ 50 (iv)
In the formula (iv), S indicates the surface area [m 2 ] of the liquid surface of the liquid in the container, and W indicates the volume [m 3 ] of the liquid in the container. Here, the "container liquid" refers to the catalyst raw material liquid A or the catalyst raw material liquid B contained in the container.

/Wは触媒原料液Aと触媒原料液Bとを混合する容器の形状に係る値である。前記式(iv)を満たすように触媒原料液Aと触媒原料液Bとを混合する容器の形状を調整することで、容器内液の容積に対する液面の表面積が好ましい範囲となり、安定した撹拌状態を維持することができる。S/Wの値は、下限は0.5以上がより好ましく、0.8以上がさらに好ましい。 S 3 / W 2 is a value related to the shape of the container in which the catalyst raw material liquid A and the catalyst raw material liquid B are mixed. By adjusting the shape of the container in which the catalyst raw material liquid A and the catalyst raw material liquid B are mixed so as to satisfy the above formula (iv), the surface area of the liquid surface with respect to the volume of the liquid in the container becomes a preferable range, and a stable stirring state is obtained. Can be maintained. The lower limit of the value of S 3 / W 2 is more preferably 0.5 or more, and further preferably 0.8 or more.

前記工程(1)および(2)において調製容器を用いて前記触媒原料液Aおよび前記触媒原料液Bをそれぞれ調製した場合には、触媒原料液A及び触媒原料液Bのいずれか一方(触媒原料液A)をそのまま該調製容器に入れておき、他方の液(触媒原料液B)を添加してもよく、前記式(iv)を満たすようにするため、新たに用意した容器に移し替えて、添加液を添加してもよい。また、容器を複数用いて、それぞれの容器において前記式(iv)を満たすように容器内液に添加液を添加してもよい。 When the catalyst raw material liquid A and the catalyst raw material liquid B are prepared using the preparation container in the steps (1) and (2), either the catalyst raw material liquid A or the catalyst raw material liquid B (catalyst raw material). The liquid A) may be placed in the preparation container as it is, and the other liquid (catalyst raw material liquid B) may be added, and the liquid A) is transferred to a newly prepared container so as to satisfy the above formula (iv). , The additive liquid may be added. Further, a plurality of containers may be used, and the additive liquid may be added to the liquid in the container so as to satisfy the above formula (iv) in each container.

Sの値は特に限定されないが、0.01m≦S≦3mが好ましく、下限は0.05m以上、上限は2m以下がより好ましい。また、Wの値は特に限定されないが、0.1m≦W≦4.5mが好ましく、下限は0.5m以上、上限は3.0m以下がより好ましい。 The value of S is not particularly limited, but 0.01 m 2 ≤ S ≤ 3 m 2 is preferable, the lower limit is 0.05 m 2 or more, and the upper limit is 2 m 2 or less. The value of W is not particularly limited, but is preferably 0.1 m 3 ≤ W ≤ 4.5 m 3 , the lower limit is 0.5 m 3 or more, and the upper limit is 3.0 m 3 or less.

工程(3)において、前記容器内液の液面の上部に前記添加口が配置されていることが好ましい。また、T/Sの値は下記式(v)を満たすことが好ましい。 In the step (3), it is preferable that the addition port is arranged above the liquid level of the liquid in the container. Further, the T / S value preferably satisfies the following formula (v).

2≦T/S≦100 (v)
式(v)中、Tは前記式(i)と同義であり、Sは前記式(iv)と同義である。T/Sは容器内液の液面の単位表面積当たりの添加口の数を示し、前記式(v)を満たすように調整することで、安定した撹拌状態を維持することができる。T/Sの値は、下限は3以上がより好ましく、4以上がさらに好ましい。上限は80以下がより好ましく、60以下がさらに好ましい。
2 ≦ T / S ≦ 100 (v)
In the formula (v), T is synonymous with the formula (i) and S is synonymous with the formula (iv). T / S indicates the number of addition ports per unit surface area of the liquid surface of the liquid in the container, and by adjusting so as to satisfy the above formula (v), a stable stirring state can be maintained. The lower limit of the T / S value is more preferably 3 or more, and further preferably 4 or more. The upper limit is more preferably 80 or less, and even more preferably 60 or less.

更に、前記容器内液の液面の中心から、中心角が360°/Tとなるように、該液面に略平行に容器の壁面へ向けて引いたT本の直線で分割される該液面の領域をそれぞれY~Yとするとき、前記添加口は各Y~Yの上部にそれぞれ1つずつ配置されていることがより好ましい。前記添加口をこのように配置することで、触媒原料液Aと触媒原料液Bを混合する際に、両液の接触面がより均等となり、混合状態が安定することでメタクリル酸収率向上に有効な触媒粒子を安定して生成することができる。なお、「容器内液の液面の中心」とは、容器内液の液面の重心を示し、例えば液面の形状が円形の場合には円の中心、液面の形状が長方形の場合には対角線の交点であることができる。また、「略平行」とは±5°の範囲内で平行であることを示す。特に、Yの上部に存在する添加口から容器内液の液面上に垂線を下したときの接点をZとするとき、容器内液の液面の中心を軸として360°/TずつZを回転移動させた位置の上部に、全ての添加口が存在することが好ましい。 Further, the liquid is divided by T straight lines drawn from the center of the liquid surface in the container toward the wall surface of the container substantially parallel to the liquid surface so that the central angle is 360 ° / T. When the surface regions are Y 1 to Y T , it is more preferable that one addition port is arranged on the upper part of each Y 1 to Y T. By arranging the addition port in this way, when the catalyst raw material liquid A and the catalyst raw material liquid B are mixed, the contact surfaces of both liquids become more uniform, and the mixed state is stabilized, thereby improving the methacrylic acid yield. Effective catalyst particles can be stably produced. The "center of the liquid level in the container" indicates the center of gravity of the liquid level in the container. For example, when the shape of the liquid surface is circular, it is the center of a circle, and when the shape of the liquid surface is rectangular. Can be the intersection of diagonal lines. Further, "substantially parallel" means that they are parallel within a range of ± 5 °. In particular, when Z 1 is the contact point when a perpendicular line is drawn from the addition port located above Y 1 onto the liquid level of the liquid in the container, 360 ° / T each with the center of the liquid level in the container as the axis. It is preferable that all the addition ports are present at the upper part of the position where Z 1 is rotated and moved.

工程(3)において、前記添加口は、前記容器内液の液面の中心を中心として、下記式(vi)で算出される半径R[m]で描かれる円形領域内の上部に存在しないことが好ましい。すなわち、前記添加口は、前記円形領域の範囲外の上部に全て存在することが好ましい。 In the step (3), the addition port does not exist in the upper part of the circular region drawn by the radius R [m] calculated by the following formula (vi) with the center of the liquid surface of the liquid in the container as the center. Is preferable. That is, it is preferable that all the addition ports are present in the upper part outside the range of the circular region.

Figure 0007003974000002
式(vi)中、Sは前記式(iv)と同義である。前記容器内液の液面が円形である場合、下記式(vi)においてRは容器内液の液面の半径の1/3となる。添加口をこのように配置することで、触媒原料液Aと触媒原料液Bを混合する際に、両液の接触面がさらに均等となり、混合状態が安定することでメタクリル酸収率向上に有効な触媒粒子を安定して生成することができる。
Figure 0007003974000002
In the formula (vi), S is synonymous with the formula (iv). When the liquid level in the container is circular, R is 1/3 of the radius of the liquid level in the container in the following formula (vi). By arranging the addition port in this way, when the catalyst raw material liquid A and the catalyst raw material liquid B are mixed, the contact surfaces of both liquids become more even, and the mixed state is stabilized, which is effective in improving the methacrylic acid yield. It is possible to stably generate various catalyst particles.

また、第一の実施形態では、工程(3)において、触媒原料液Aが入った容器に、触媒原料液Bを添加して混合することが好ましい。カチオン原料を含む触媒原料液を添加液として混合することで、よりメタクリル酸収率向上に有効な触媒粒子が生成されやすくなると推測される。 Further, in the first embodiment, in the step (3), it is preferable to add the catalyst raw material liquid B to the container containing the catalyst raw material liquid A and mix them. It is presumed that by mixing the catalyst raw material liquid containing the cation raw material as an additive liquid, it becomes easier to generate catalyst particles that are more effective in improving the methacrylic acid yield.

工程(3)で得られる液体は、ケギン型構造を有するヘテロポリ酸またはその塩を含む。液体がケギン型構造を有するヘテロポリ酸またはその塩を含むことにより、生成した触媒粒子が変化せず安定して存在できるため、メタクリル酸収率の高い触媒を得ることができる。なお、前記液体がケギン型構造を有するヘテロポリ酸またはその塩を含むことは、前記液体を乾燥させたものを赤外吸収分析で測定することにより確認することができる。ケギン型構造を有するヘテロポリ酸またはその塩を含む場合、得られる赤外吸収スペクトルは、1060、960、870、780cm-1付近に特徴的なピークを有する。 The liquid obtained in step (3) contains a heteropolyacid having a Keggin-type structure or a salt thereof. When the liquid contains a heteropolyacid having a Keggin-type structure or a salt thereof, the produced catalyst particles can exist stably without change, so that a catalyst having a high methacrylic acid yield can be obtained. It should be noted that the fact that the liquid contains a heteropolyacid having a Keggin-type structure or a salt thereof can be confirmed by measuring the dried liquid by infrared absorption analysis. When a heteropolyacid having a Keggin-type structure or a salt thereof is contained, the obtained infrared absorption spectrum has a characteristic peak near 1060, 960, 870, 780 cm -1 .

工程(3)で得られる液体のpHは、3.0以下であることが好ましく、2.5以下であることがより好ましい。該pHが3.0以下であることにより、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を簡便に得ることができる。該pHを3.0以下とする方法としては、触媒原料液AのpHを予め低く調節しておく方法等が挙げられる。 The pH of the liquid obtained in the step (3) is preferably 3.0 or less, more preferably 2.5 or less. When the pH is 3.0 or less, a liquid containing a heteropolyacid having a Keggin-type structure or a salt thereof can be easily obtained. Examples of the method of setting the pH to 3.0 or less include a method of adjusting the pH of the catalyst raw material liquid A to a low level in advance.

(乾燥工程)
本発明に係る方法は、前記工程(3)で得られた前記ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を乾燥し、触媒前駆体を得る工程を含むことが好ましい。前記液体の乾燥方法や乾燥温度等の条件は特に限定されず、所望の乾燥物の形状や大きさにより適宣選択することができる。乾燥方法としては、例えば、箱型乾燥器を用いた乾燥方法、ドラム乾燥法、気流乾燥法、蒸発乾固法、噴霧乾燥法等が挙げられる。乾燥温度は、例えば120~500℃とすることができ、下限は140℃以上、上限は400℃以下が好ましい。乾燥は、前記液体が乾固するまで行うことができる。
(Drying process)
The method according to the present invention preferably includes a step of drying a liquid containing the heteropolyacid having a Keggin-type structure or a salt thereof obtained in the step (3) to obtain a catalyst precursor. The conditions such as the drying method and the drying temperature of the liquid are not particularly limited, and can be appropriately selected depending on the shape and size of the desired dried product. Examples of the drying method include a drying method using a box-type dryer, a drum drying method, an air flow drying method, an evaporative drying method, a spray drying method, and the like. The drying temperature can be, for example, 120 to 500 ° C., preferably a lower limit of 140 ° C. or higher and an upper limit of 400 ° C. or lower. Drying can be performed until the liquid dries.

(成形工程)
本発明に係る方法は、後述する熱処理工程の前に、前記乾燥工程で得られた前記触媒前駆体を成形する工程を実施してもよい。成形方法は特に制限されず、公知の乾式又は湿式の成形方法が適用できる。例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状は特に限定されず、例えば、円柱状、リング状、球状等が挙げられる。また、成形時には触媒前駆体に担体やバインダー等を添加せず、触媒前駆体を単独で成形することが好ましいが、必要に応じて例えばグラファイト、タルク等の公知の添加剤や有機物、無機物由来の公知のバインダーを添加してもよい。以下、前記乾燥工程により得られる触媒前駆体および前記成形工程により得られる触媒前駆体の成形品をまとめて触媒前駆体と示す。
(Molding process)
In the method according to the present invention, a step of molding the catalyst precursor obtained in the drying step may be carried out before the heat treatment step described later. The molding method is not particularly limited, and a known dry or wet molding method can be applied. For example, tablet molding, press molding, extrusion molding, granulation molding and the like can be mentioned. The shape of the molded product is not particularly limited, and examples thereof include a columnar shape, a ring shape, and a spherical shape. Further, it is preferable to mold the catalyst precursor alone without adding a carrier or a binder to the catalyst precursor at the time of molding, but if necessary, it is derived from known additives such as graphite and talc, organic substances and inorganic substances. A known binder may be added. Hereinafter, the catalyst precursor obtained by the drying step and the molded product of the catalyst precursor obtained by the molding step are collectively referred to as a catalyst precursor.

(熱処理工程)
本発明に係る方法は、前記触媒前駆体を熱処理する工程を含むことが好ましい。例えば、前記触媒前駆体を空気及び不活性ガスの少なくとも一方の流通下で熱処理することができる。前記熱処理は、空気等の酸素含有ガス流通下で行われることが好ましい。また、「不活性ガス」とは触媒活性を低下させない気体のことを示し、例えば窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。これらは一種を用いてもよく、二種以上を混合して使用してもよい。熱処理容器の形状は特に制限されないが、断面積が2平方センチメートル以上、100平方センチメートル以下である管状熱処理容器を用いることが好ましい。熱処理温度は300℃以上700℃以下が好ましく、下限は320℃以上、上限は450℃以下がより好ましい。
(Heat treatment process)
The method according to the present invention preferably includes a step of heat-treating the catalyst precursor. For example, the catalyst precursor can be heat treated under the flow of at least one of air and an inert gas. The heat treatment is preferably performed under the flow of an oxygen-containing gas such as air. The "inert gas" refers to a gas that does not reduce the catalytic activity, and examples thereof include nitrogen, carbon dioxide, helium, and argon. These may be used alone or in admixture of two or more. The shape of the heat treatment container is not particularly limited, but it is preferable to use a tubular heat treatment container having a cross-sectional area of 2 square centimeters or more and 100 square centimeters or less. The heat treatment temperature is preferably 300 ° C. or higher and 700 ° C. or lower, the lower limit is 320 ° C. or higher, and the upper limit is 450 ° C. or lower.

このようにして得られるメタクリル酸製造用触媒は、ケギン型構造を有するヘテロポリ酸またはその塩を含むことが、メタクリル酸収率がより高い観点から好ましい。ケギン型構造を有するヘテロポリ酸またはその塩を含むことは、前述したように赤外吸収分析で測定することにより確認することができる。 The catalyst for producing methacrylic acid thus obtained preferably contains a heteropolyacid having a Keggin-type structure or a salt thereof, from the viewpoint of higher methacrylic acid yield. The inclusion of a heteropolyacid or a salt thereof having a Keggin-type structure can be confirmed by measurement by infrared absorption analysis as described above.

[メタクリル酸の製造方法]
本発明に係るメタクリル酸の製造方法では、本発明に係る方法により製造されたメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する。また、本発明に係るメタクリル酸の製造方法では、本発明に係る方法によりメタクリル酸製造用触媒を製造し、該メタクリル酸製造用触媒の存在下でメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する。これらの方法によれば、高い収率でメタクリル酸を製造することができる。具体的には、メタクロレインおよび分子状酸素を含む原料ガスと、本発明に係るメタクリル酸製造用触媒とを接触させることでメタクリル酸を製造することができる。この反応は固定床で行うことができる。触媒層は1層でもよく、2層以上でもよい。メタクリル酸製造用触媒は、担体に担持されていてもよく、その他の添加剤を含んでもよい。原料ガス中のメタクロレインの濃度は特に限定されないが、1~20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。メタクロレインは、低級飽和アルデヒド等の本反応に実質的に影響を与えない不純物を少量含んでいてもよい。原料ガス中の分子状酸素の濃度は、メタクロレイン1モルに対して0.4~4モルが好ましく、下限は0.5モル以上、上限は3モル以下がより好ましい。なお、分子状酸素源としては、経済性の観点から空気が好ましいが、必要であれば、空気に純酸素を加えて分子状酸素を富化した気体等を用いてもよい。原料ガスは、メタクロレインおよび分子状酸素を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。さらに、原料ガスに水蒸気を加えてもよい。水蒸気の存在下で反応を行うことにより、メタクリル酸をより高い収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1~50容量%が好ましく、下限は1容量%以上、上限は40容量%以下がより好ましい。原料ガスとメタクリル酸製造用触媒との接触時間は、1.5~15秒が好ましく、下限は2秒以上、上限は5秒以下がより好ましい。反応圧力は、0.1MPa(G)~1.0MPa(G)が好ましい。なお、(G)はゲージ圧であることを意味する。反応温度は200~450℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。
[Method for producing methacrylic acid]
In the method for producing methacrylic acid according to the present invention, methacrolein is vapor-phase catalytically oxidized with molecular oxygen in the presence of a catalyst for producing methacrylic acid produced by the method according to the present invention to produce methacrylic acid. Further, in the method for producing methacrylic acid according to the present invention, a catalyst for producing methacrylic acid is produced by the method according to the present invention, and methacrolein is vapor-phase contact oxidized with molecular oxygen in the presence of the catalyst for producing methacrylic acid. To produce methacrylic acid. According to these methods, methacrylic acid can be produced in a high yield. Specifically, methacrylic acid can be produced by contacting a raw material gas containing methacrolein and molecular oxygen with the catalyst for producing methacrylic acid according to the present invention. This reaction can be done on a fixed bed. The catalyst layer may be one layer or two or more layers. The catalyst for producing methacrylic acid may be supported on a carrier or may contain other additives. The concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, more preferably 3% by volume or more at the lower limit and 10% by volume or less at the upper limit. Methacrolein may contain a small amount of impurities such as lower saturated aldehyde which do not substantially affect this reaction. The concentration of molecular oxygen in the raw material gas is preferably 0.4 to 4 mol per 1 mol of methacrolein, more preferably 0.5 mol or more at the lower limit and 3 mol or less at the upper limit. As the molecular oxygen source, air is preferable from the viewpoint of economy, but if necessary, a gas enriched with molecular oxygen by adding pure oxygen to air may be used. The raw material gas may be a gas obtained by diluting methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide. Further, water vapor may be added to the raw material gas. By carrying out the reaction in the presence of water vapor, methacrylic acid can be obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably 0.1 to 50% by volume, more preferably 1% by volume or more at the lower limit and 40% by volume or less at the upper limit. The contact time between the raw material gas and the catalyst for producing methacrylic acid is preferably 1.5 to 15 seconds, the lower limit is 2 seconds or more, and the upper limit is 5 seconds or less. The reaction pressure is preferably 0.1 MPa (G) to 1.0 MPa (G). In addition, (G) means that it is a gauge pressure. The reaction temperature is preferably 200 to 450 ° C., the lower limit is 250 ° C. or higher, and the upper limit is 400 ° C. or lower.

[メタクリル酸エステルの製造方法]
本発明に係るメタクリル酸エステルの製造方法は、本発明に係る方法により製造されたメタクリル酸をエステル化する。該方法によれば、メタクロレインの気相接触酸化により得られるメタクリル酸を用いて、メタクリル酸エステルを得ることができる。メタクリル酸と反応させるアルコールとしては、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール等が挙げられる。得られるメタクリル酸エステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等が挙げられる。反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。反応温度は50~200℃が好ましい。
[Method for manufacturing methacrylic acid ester]
The method for producing a methacrylic acid ester according to the present invention esterifies the methacrylic acid produced by the method according to the present invention. According to the method, a methacrylic acid ester can be obtained by using methacrylic acid obtained by vapor phase catalytic oxidation of methacrolein. Examples of the alcohol to react with methacrylic acid include methanol, ethanol, isopropanol, n-butanol, isobutanol and the like. Examples of the obtained methacrylic acid ester include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate and the like. The reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin. The reaction temperature is preferably 50 to 200 ° C.

以下、実施例および比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例および比較例中の「部」は質量部を意味する。触媒の元素組成のモル比は、触媒をアンモニア水に溶解した成分をICP発光分析法で分析することによって算出した。原料ガスおよび生成物の分析は、ガスクロマトグラフィーを用いて行った。ガスクロマトグラフィーの結果から、メタクロレインの転化率、生成するメタクリル酸の選択率及びメタクリル酸の単流収率を下記式にて求めた。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. "Parts" in Examples and Comparative Examples means parts by mass. The molar ratio of the elemental composition of the catalyst was calculated by analyzing the components of the catalyst dissolved in aqueous ammonia by ICP emission spectrometry. Analysis of the source gas and products was performed using gas chromatography. From the results of gas chromatography, the conversion rate of methacrolein, the selectivity of methacrylic acid to be produced, and the single flow yield of methacrylic acid were determined by the following formulas.

メタクロレイン転化率(%)=(B/A)×100
メタクリル酸選択率(%)=(C/B)×100
メタクリル酸単流収率=(C/A)×100
式中、Aは供給したメタクロレインの炭素数、Bは反応したメタクロレインの炭素数、Cは生成したメタクリル酸の炭素数を示す。
Methacrolein conversion rate (%) = (B / A) x 100
Methacrylic acid selectivity (%) = (C / B) x 100
Methacrylic acid single flow yield = (C / A) x 100
In the formula, A indicates the number of carbon atoms of the supplied methacrolein, B indicates the number of carbon atoms of the reacted methacrolein, and C indicates the number of carbon atoms of the produced methacrolein.

またu2は、触媒原料液Bのモル濃度[mol/L]とu1の積として算出した。 Further, u2 was calculated as the product of the molar concentration [mol / L] of the catalyst raw material liquid B and u1.

[実施例1]
純水400部に、三酸化モリブデン100部、メタバナジン酸アンモニウム7.5部、85質量%リン酸水溶液11.4部、および硝酸銅(II)3水和物7.0部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌して触媒原料液Aを得た。触媒原料液AのpHは2.1であった。一方、純水20部に重炭酸セシウム15.7部を溶解して触媒原料液B1を得た。また、純水20部に重炭酸アンモニウム20.0部を溶解して触媒原料液B2を得た。前記触媒原料液A、前記触媒原料液B1および前記触媒原料液B2の合計の容積は2.1mであった。
[Example 1]
In 400 parts of pure water, 100 parts of molybdenum trioxide, 7.5 parts of ammonium metavanadate, 11.4 parts of 85 mass% phosphoric acid aqueous solution, and 7.0 parts of copper (II) nitrate trihydrate were dissolved. The temperature was raised to 95 ° C. while stirring this, and the mixture was stirred for 2 hours while maintaining the liquid temperature at 95 ° C. to obtain a catalyst raw material liquid A. The pH of the catalyst raw material liquid A was 2.1. On the other hand, 15.7 parts of cesium bicarbonate was dissolved in 20 parts of pure water to obtain a catalyst raw material liquid B1. Further, 20.0 parts of ammonium bicarbonate was dissolved in 20 parts of pure water to obtain a catalyst raw material liquid B2. The total volume of the catalyst raw material liquid A, the catalyst raw material liquid B1 and the catalyst raw material liquid B2 was 2.1 m 3 .

容器内の触媒原料液Aの液温を95℃に保持したまま、触媒原料液Aを、回転翼攪拌機を用いて攪拌しつつ、触媒原料液B1を添加して15分攪拌した。その後、触媒原料液B2を添加して15分攪拌した。なお、触媒原料液B1およびB2を添加する際には、T=10、S=1.54m、V=1.9m、S/W=1.01、T/(√V)=8.1、T/S=6.5、u1=0.20L/分とした。この時のu2については、触媒原料液B1が0.62mol/分、触媒原料液B2が1.40mol/分であった。また、直径2mmの添加口が等間隔に設けられた半径3×(√(S/π))/7[m]のリング状配管を、該リング状配管の中心が容器内液の液面の中心の上部に位置するように、また領域Y~Y10の上部に添加口がそれぞれ1つずつ配置されるように配置した。該リング状配管の添加口から触媒原料液B1およびB2を順次添加した。得られたスラリーには、ケギン型構造を有するヘテロポリ酸またはその塩が含まれていた。その後、該スラリーを噴霧乾燥することで、触媒前駆体を得た。 While maintaining the temperature of the catalyst raw material liquid A in the container at 95 ° C., the catalyst raw material liquid A was stirred using a rotary blade stirrer, and the catalyst raw material liquid B1 was added and stirred for 15 minutes. Then, the catalyst raw material liquid B2 was added and stirred for 15 minutes. When the catalyst raw material liquids B1 and B2 are added, T = 10, S = 1.54 m 2 , V = 1.9 m 3 , S 3 / W 2 = 1.01, T / ( 3 √V). = 8.1, T / S = 6.5, u1 = 0.20 L / min. Regarding u2 at this time, the catalyst raw material liquid B1 was 0.62 mol / min and the catalyst raw material liquid B2 was 1.40 mol / min. Further, a ring-shaped pipe having a radius of 3 × (√ (S / π)) / 7 [m] in which addition ports having a diameter of 2 mm are provided at equal intervals is provided, and the center of the ring-shaped pipe is the liquid level in the container. It was arranged so as to be located at the upper part of the center and one addition port was arranged at the upper part of the areas Y1 to Y10 . The catalyst raw material liquids B1 and B2 were sequentially added from the addition port of the ring-shaped pipe. The obtained slurry contained a heteropolyacid having a Keggin-type structure or a salt thereof. Then, the slurry was spray-dried to obtain a catalyst precursor.

前記触媒前駆体を成形し、内径3cmの円筒状石英ガラス製焼成容器に入れた。空気流通下、10℃/hで昇温し、380℃にて2時間熱処理することで、メタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ケギン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo121.71.1Cu0.5Cs1.4であった。 The catalyst precursor was formed and placed in a cylindrical quartz glass firing container having an inner diameter of 3 cm. A catalyst for producing methacrylic acid was prepared by raising the temperature at 10 ° C./h and heat-treating at 380 ° C. for 2 hours under air flow. The obtained catalyst for producing methacrylic acid had a Keggin-type structure. The elemental composition of the obtained catalyst for producing methacrylic acid other than oxygen was Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 .

前記メタクリル酸製造用触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%および窒素55容量%からなる原料ガスを流通させ、反応温度300℃で反応を行った。生成物を捕集し、ガスクロマトグラフィーで分析して、メタクリル酸収率を算出した。結果を表1に示す。 The catalyst for producing methacrylic acid was filled in a reaction tube, and a raw material gas composed of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor and 55% by volume of nitrogen was circulated, and the reaction was carried out at a reaction temperature of 300 ° C. .. The product was collected and analyzed by gas chromatography to calculate the methacrylic acid yield. The results are shown in Table 1.

[実施例2]
触媒原料液A、触媒原料液B1および触媒原料液B2の合計の容積を0.10m、T=4、S=0.196m、V=0.088m、S/W=0.97、T/(√V)=9.0、T/S=20.4、u1=0.03L/分に変更し、領域Y~Yの上部に添加口がそれぞれ1つずつ配置されるように、直径2mmの添加口が等間隔に設けられた半径3×(√(S/π))/5[m]のリング状配管を用いた。また、この時のu2については、触媒原料液B1が0.09mol/分、触媒原料液B2が0.21mol/分であった。これら以外は、実施例1と同様の方法によりスラリーを得た。得られたスラリーには、ケギン型構造を有するヘテロポリ酸またはその塩が含まれていた。その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ケギン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo121.71.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。
[Example 2]
The total volume of the catalyst raw material liquid A, the catalyst raw material liquid B1 and the catalyst raw material liquid B2 is 0.10 m 3 , T = 4, S = 0.196 m 2 , V = 0.088 m 3 , S 3 / W 2 = 0. 97, T / ( 3 √V) = 9.0, T / S = 20.4, u1 = 0.03L / min, and one addition port is placed on each of the upper parts of regions Y1 to Y4. As a result, a ring-shaped pipe having a radius of 3 × (√ (S / π)) / 5 [m] in which addition ports having a diameter of 2 mm were provided at equal intervals was used. Regarding u2 at this time, the catalyst raw material liquid B1 was 0.09 mol / min and the catalyst raw material liquid B2 was 0.21 mol / min. Except for these, a slurry was obtained by the same method as in Example 1. The obtained slurry contained a heteropolyacid having a Keggin-type structure or a salt thereof. Then, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The obtained catalyst for producing methacrylic acid had a Keggin-type structure. The elemental composition of the obtained catalyst for producing methacrylic acid other than oxygen was Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the catalyst for producing methacrylic acid was used. The results are shown in Table 1.

[実施例3]
T=13、S=1.54m、V=1.9m、S/W=1.01、T/(√V)=10.5、T/S=8.4、u1=0.26L/分に変更し、領域Yおいて、容器内液の液面の中心から半径5×(√(S/π))/7[m]以上の領域の上部に全ての添加口を配置した。また、この時のu2については、触媒原料液B1が0.80mol/分、触媒原料液B2が1.83mol/分であった。これら以外は、実施例1と同様の方法によりスラリーを得た。得られたスラリーには、ケギン型構造を有するヘテロポリ酸またはその塩が含まれていた。その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ケギン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo121.71.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。
[Example 3]
T = 13, S = 1.54m 2 , V = 1.9m 3 , S 3 / W 2 = 1.01, T / ( 3 √V) = 10.5, T / S = 8.4, u1 = Change to 0.26 L / min, and in region Y1, all the addition ports at the top of the region with a radius of 5 × (√ (S / π)) / 7 [m] or more from the center of the liquid level in the container. Was placed. Regarding u2 at this time, the catalyst raw material liquid B1 was 0.80 mol / min and the catalyst raw material liquid B2 was 1.83 mol / min. Except for these, a slurry was obtained by the same method as in Example 1. The obtained slurry contained a heteropolyacid having a Keggin-type structure or a salt thereof. Then, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The obtained catalyst for producing methacrylic acid had a Keggin-type structure. The elemental composition of the obtained catalyst for producing methacrylic acid other than oxygen was Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the catalyst for producing methacrylic acid was used. The results are shown in Table 1.

[比較例1]
触媒原料液A、触媒原料液B1および触媒原料液B2の合計の容積を0.0014m、T=1、S=0.0177m、V=0.0013m、S/W=3.28、T/(√V)=9.2、T/S=56.5、u1=1.41L/分に変更し、容器内液の液面の中心から4×(√(S/π))/5[m]の位置の上部に添加口を配置した。また、この時のu2については、触媒原料液B1が4.35mol/分、触媒原料液B2が9.90mol/分であった。これら以外は、実施例1と同様の方法によりスラリーを得た。得られたスラリーには、ケギン型構造を有するヘテロポリ酸またはその塩が含まれていた。その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ケギン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo121.71.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。
[Comparative Example 1]
The total volume of the catalyst raw material liquid A, the catalyst raw material liquid B1 and the catalyst raw material liquid B2 is 0.0014 m 3 , T = 1, S = 0.0177 m 2 , V = 0.0013 m 3 , S 3 / W 2 = 3. 28, T / ( 3 √V) = 9.2, T / S = 56.5, u1 = 1.41 L / min, and 4 × (√ (S / π)) from the center of the liquid level in the container. )) / 5 [m] The addition port was placed at the top of the position. Regarding u2 at this time, the catalyst raw material liquid B1 was 4.35 mol / min and the catalyst raw material liquid B2 was 9.90 mol / min. Except for these, a slurry was obtained by the same method as in Example 1. The obtained slurry contained a heteropolyacid having a Keggin-type structure or a salt thereof. Then, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The obtained catalyst for producing methacrylic acid had a Keggin-type structure. The elemental composition of the obtained catalyst for producing methacrylic acid other than oxygen was Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the catalyst for producing methacrylic acid was used. The results are shown in Table 1.

[比較例2]
触媒原料液A、触媒原料液B1および触媒原料液B2の合計の容積を0.00048m、T=1、S=0.00785m、V=0.00043m、S/W=2.62、T/(√V)=13.2、T/S=127.4、u1=0.07L/分に変更し、容器内液の液面の中心から2×(√(S/π))/5[m]の位置の上部に添加口を配置した。また、この時のu2については、触媒原料液B1が0.22mol/分、触媒原料液B2が0.49mol/分であった。これら以外は、実施例1と同様の方法によりスラリーを得た。得られたスラリーには、ケギン型構造を有するヘテロポリ酸またはその塩が含まれていた。その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ケギン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo121.71.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。
[Comparative Example 2]
The total volume of the catalyst raw material liquid A, the catalyst raw material liquid B1 and the catalyst raw material liquid B2 is 0.00048m 3 , T = 1, S = 0.00785m 2 , V = 0.00043m 3 , S 3 / W 2 = 2. 62, T / ( 3 √V) = 13.2, T / S = 127.4, u1 = 0.07L / min, and 2 × (√ (S / π)) from the center of the liquid level in the container. )) / 5 [m] The addition port was placed at the top of the position. Regarding u2 at this time, the catalyst raw material liquid B1 was 0.22 mol / min and the catalyst raw material liquid B2 was 0.49 mol / min. Except for these, a slurry was obtained by the same method as in Example 1. The obtained slurry contained a heteropolyacid having a Keggin-type structure or a salt thereof. Then, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The obtained catalyst for producing methacrylic acid had a Keggin-type structure. The elemental composition of the obtained catalyst for producing methacrylic acid other than oxygen was Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the catalyst for producing methacrylic acid was used. The results are shown in Table 1.

[比較例3]
純水400部に、三酸化モリブデン100部、メタバナジン酸アンモニウム7.5部、85質量%リン酸水溶液11.4部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌して触媒原料液Aを調製した。触媒原料液AのpHは6.9であった。一方、純水20部に硝酸セシウム15.8部を溶解して触媒原料液B1を調製した。また、純水20部に30質量%のアンモニア水40.0部を溶解して触媒原料液B2を調製した。また、純水40部に硝酸銅(II)3水和物7.0部を溶解して触媒原料液B3を調製した。前記触媒原料液A、前記触媒原料液B1~B3の合計の容積は2.3mであった。
[Comparative Example 3]
In 400 parts of pure water, 100 parts of molybdenum trioxide, 7.5 parts of ammonium metavanadate, and 11.4 parts of an 85 mass% phosphoric acid aqueous solution were dissolved. The temperature was raised to 95 ° C. while stirring this, and the mixture was stirred for 2 hours while maintaining the liquid temperature at 95 ° C. to prepare a catalyst raw material liquid A. The pH of the catalyst raw material liquid A was 6.9. On the other hand, 15.8 parts of cesium nitrate was dissolved in 20 parts of pure water to prepare a catalyst raw material liquid B1. Further, 40.0 parts of 30% by mass ammonia water was dissolved in 20 parts of pure water to prepare a catalyst raw material liquid B2. Further, 7.0 parts of copper (II) nitrate trihydrate was dissolved in 40 parts of pure water to prepare a catalyst raw material liquid B3. The total volume of the catalyst raw material liquid A and the catalyst raw material liquids B1 to B3 was 2.3 m 3 .

容器内の触媒原料液Aの液温を50℃に冷却して保持したまま、触媒原料液Aを、回転翼攪拌機を用いて攪拌しつつ、触媒原料液B1を添加して15分攪拌した。その後、触媒原料液B2を添加して15分攪拌した。さらに、触媒原料液B3を添加した。なお、触媒原料B1からB3は実施例3と同様に添加した。また、この時のu2については、触媒原料液B1が0.80mol/分、触媒原料液B2が2.87mol/分、触媒原料液B3が0.18mol/分であった。得られたスラリーには、ドーソン型構造を有するヘテロポリ酸またはその塩が含まれていた。 While the temperature of the catalyst raw material liquid A in the container was cooled to 50 ° C. and maintained, the catalyst raw material liquid A was stirred using a rotary blade stirrer, and the catalyst raw material liquid B1 was added and stirred for 15 minutes. Then, the catalyst raw material liquid B2 was added and stirred for 15 minutes. Further, the catalyst raw material liquid B3 was added. The catalyst raw materials B1 to B3 were added in the same manner as in Example 3. Regarding u2 at this time, the catalyst raw material liquid B1 was 0.80 mol / min, the catalyst raw material liquid B2 was 2.87 mol / min, and the catalyst raw material liquid B3 was 0.18 mol / min. The obtained slurry contained a heteropolyacid having a Dawson-type structure or a salt thereof.

その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ドーソン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo121.71.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。 Then, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The obtained catalyst for producing methacrylic acid had a Dawson-type structure. The elemental composition of the obtained catalyst for producing methacrylic acid other than oxygen was Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the catalyst for producing methacrylic acid was used. The results are shown in Table 1.

[比較例4]
比較例3と同様に、触媒原料液A、B1~B3を調製した。容器内の触媒原料液Aの液温を50℃に冷却して保持したまま、触媒原料液Aを、回転翼攪拌機を用いて攪拌しつつ、触媒原料液B1を添加して15分攪拌した。その後、触媒原料液B2を添加して15分攪拌した。さらに、触媒原料液B3を添加した。なお、触媒原料B1からB3は実施例1と同様に添加した。また、この時のu2については、触媒原料液B1が0.62mol/分、触媒原料液B2が2.21mol/分、触媒原料液B3が0.14mol/分であった。得られたスラリーには、ドーソン型構造を有するヘテロポリ酸またはその塩が含まれていた。
[Comparative Example 4]
Similar to Comparative Example 3, catalyst raw material liquids A and B1 to B3 were prepared. While the temperature of the catalyst raw material liquid A in the container was cooled to 50 ° C. and maintained, the catalyst raw material liquid A was stirred using a rotary blade stirrer, and the catalyst raw material liquid B1 was added and stirred for 15 minutes. Then, the catalyst raw material liquid B2 was added and stirred for 15 minutes. Further, the catalyst raw material liquid B3 was added. The catalyst raw materials B1 to B3 were added in the same manner as in Example 1. Regarding u2 at this time, the catalyst raw material liquid B1 was 0.62 mol / min, the catalyst raw material liquid B2 was 2.21 mol / min, and the catalyst raw material liquid B3 was 0.14 mol / min. The obtained slurry contained a heteropolyacid having a Dawson-type structure or a salt thereof.

その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ドーソン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo121.71.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。 Then, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The obtained catalyst for producing methacrylic acid had a Dawson-type structure. The elemental composition of the obtained catalyst for producing methacrylic acid other than oxygen was Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the catalyst for producing methacrylic acid was used. The results are shown in Table 1.

Figure 0007003974000003
Figure 0007003974000003

実施例1、2および3では、T/(√V)の値並びにu1およびu2の値が本発明の範囲内にあり、収率が高い触媒であることが確認された。なお、実施例3では、添加口が領域Y1の上部にのみ配置されており、実施例1および2と比較すると収率がやや低い触媒となった。また、比較例1ではu1および触媒原料液B2のu2の値が、比較例2ではT/(√V)の値がそれぞれ本発明の範囲外であるため、実施例と比較して収率が低かった。また、比較例3および4では、得られたスラリーがケギン型構造を有するヘテロポリ酸またはその塩を含まなかったため、実施例と比較して収率が低かった。なお、本実施例で得られたメタクリル酸をエステル化することで、メタクリル酸エステルを得ることができる。 In Examples 1, 2 and 3, it was confirmed that the value of T / ( 3 √V) and the value of u1 and u2 were within the range of the present invention, and the catalyst had a high yield. In Example 3, the addition port was arranged only in the upper part of the region Y1, and the yield of the catalyst was slightly lower than that of Examples 1 and 2. Further, in Comparative Example 1, the values of u1 and the catalyst raw material liquid B2 are out of the range of the present invention, and in Comparative Example 2, the value of T / ( 3 √V) is out of the range of the present invention. Was low. Further, in Comparative Examples 3 and 4, the yield was lower than that of Examples because the obtained slurry did not contain a heteropolyacid having a Keggin-type structure or a salt thereof. A methacrylic acid ester can be obtained by esterifying the methacrylic acid obtained in this example.

この出願は、2016年8月22日に出願された日本出願特願2016-161888を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2016-161888 filed on August 22, 2016 and incorporates all of its disclosures herein.

以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made within the scope of the present invention in terms of the configuration and details of the present invention.

本発明に係る方法により得られるメタクリル酸製造用触媒は、高い収率でメタクリル酸を製造できるため、工業的に有用である。 The catalyst for producing methacrylic acid obtained by the method according to the present invention is industrially useful because it can produce methacrylic acid in a high yield.

Claims (15)

メタクロレインを分子状酸素により気相接触酸化して、メタクリル酸を製造する際に用いられるメタクリル酸製造用触媒の製造方法であって、
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程と、
(2)カチオン原料を含む触媒原料液Bを準備する工程と、
(3)前記触媒原料液Aが入った容器に、前記触媒原料液Bを添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程と、を含み、
前記工程(3)において、下記式(i)および(ii)を満たし、
3.0≦T/(√V)≦13.0 (i)
0.01≦u1≦0.5 (ii)
(式(i)および(ii)中、Vは前記触媒原料液Aの容積[m]、Tは他方の液を添加するための2以上の添加口の数、u1は添加する他方の液の体積流速[L/分]を示す。なお、u1は各添加口から添加される他方の液の体積流速の平均値を示す。)
前記工程(1)で準備する触媒原料液Aと、前記工程(2)で準備する触媒原料液Bとの合計の容積が、0.2m以上であって、
前記工程(3)において、前記触媒原料液Aおよび前記触媒原料液Bのいずれか一方が入った下記式(iv)を満たす容器内に、他方の液を添加して混合し、
0.1≦S/W≦50 (iv)
(式(iv)中、Sは容器内液の液面の表面積[m]を示し、Wは容器内液の容積[m]を示す。)
前記工程(3)において、前記容器内液の液面の上部に前記添加口が配置され、かつ、前記添加口が、前記容器内液の液面の中心を中心として、下記式(vi)で算出される半径R[m]で描かれる円形領域内の上部に存在しない、メタクリル酸製造用触媒の製造方法。
Figure 0007003974000004
(式(vi)中、Sは前記式(iv)と同義である。)
A method for producing a catalyst for producing methacrylic acid, which is used when methacrolein is subjected to gas-phase catalytic oxidation with molecular oxygen to produce methacrylic acid.
(1) A step of preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium, and
(2) A step of preparing a catalyst raw material liquid B containing a cationic raw material, and
(3) The step of adding and mixing the catalyst raw material liquid B to the container containing the catalyst raw material liquid A to prepare a liquid containing a heteropolyacid having a kegin-type structure or a salt thereof is included.
In the step (3), the following formulas (i) and (ii) are satisfied, and
3.0 ≤ T / ( 3 √V) ≤ 13.0 (i)
0.01 ≤ u1 ≤ 0.5 (ii)
(In formulas (i) and (ii), V is the volume of the catalyst raw material liquid A [m 3 ], T is the number of two or more addition ports for adding the other liquid, and u1 is the other liquid to be added. The volumetric flow velocity [L / min] of is shown. In addition, u1 shows the average value of the volumetric flow velocity of the other liquid added from each addition port.)
The total volume of the catalyst raw material liquid A prepared in the step (1) and the catalyst raw material liquid B prepared in the step (2) is 0.2 m 3 or more.
In the step (3), the other liquid is added and mixed in a container satisfying the following formula (iv) containing either one of the catalyst raw material liquid A and the catalyst raw material liquid B.
0.1 ≤ S 3 / W 2 ≤ 50 (iv)
(In the formula (iv), S indicates the surface area [m 2 ] of the liquid surface of the liquid in the container, and W indicates the volume [m 3 ] of the liquid in the container.)
In the step (3), the addition port is arranged above the liquid level of the liquid in the container, and the addition port is centered on the center of the liquid level of the liquid in the container by the following formula (vi). A method for producing a catalyst for producing methacrylic acid, which does not exist in the upper part of the circular region drawn by the calculated radius R [m].
Figure 0007003974000004
(In the formula (vi), S is synonymous with the above formula (iv).)
メタクロレインを分子状酸素により気相接触酸化して、メタクリル酸を製造する際に用いられるメタクリル酸製造用触媒の製造方法であって、
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程と、
(2)カチオン原料を含む触媒原料液Bを準備する工程と、
(3)前記触媒原料液Aに前記触媒原料液Bを添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程と、を含み、
前記工程(3)において、下記式(i)および(iii)を満たし、
3.0≦T/(√V)≦13.0 (i)
0.01≦u2≦5 (iii)
(式(i)および(iii)中、Vは前記触媒原料液Aの容積[m]、Tは前記触媒原料液Bを添加するための2以上の添加口の数、u2は前記触媒原料液Bのカチオン原料の流速[mol/分]を示す。なお、u2は各添加口から添加される前記触媒原料液Bのカチオン原料の流速の平均値を示す。)
前記工程(1)で準備する触媒原料液Aと、前記工程(2)で準備する触媒原料液Bとの合計の容積が、0.2m以上であって、
前記工程(3)において前記触媒原料液Aが入った下記式(iv)を満たす容器内に、前記触媒原料液Bを添加して混合し、
0.1≦S/W≦50 (iv)
(式(iv)中、Sは容器内液の液面の表面積[m]を示し、Wは容器内液の容積[m]を示す。)
前記工程(3)において、前記容器内液の液面の上部に前記添加口が配置され、かつ、前記添加口が、前記容器内液の液面の中心を中心として、下記式(vi)で算出される半径R[m]で描かれる円形領域内の上部に存在しない、メタクリル酸製造用触媒の製造方法。
Figure 0007003974000005
(式(vi)中、Sは前記式(iv)と同義である。)
A method for producing a catalyst for producing methacrylic acid, which is used when methacrolein is subjected to gas-phase catalytic oxidation with molecular oxygen to produce methacrylic acid.
(1) A step of preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium, and
(2) A step of preparing a catalyst raw material liquid B containing a cationic raw material, and
(3) The step of adding the catalyst raw material liquid B to the catalyst raw material liquid A and mixing them to prepare a liquid containing a heteropolyacid having a Keggin-type structure or a salt thereof is included.
In the step (3), the following formulas (i) and (iii) are satisfied.
3.0 ≤ T / ( 3 √V) ≤ 13.0 (i)
0.01 ≤ u2 ≤ 5 (iii)
(In formulas (i) and (iii), V is the volume of the catalyst raw material liquid A [m 3 ], T is the number of two or more addition ports for adding the catalyst raw material liquid B, and u2 is the catalyst raw material. The flow rate [mol / min] of the cation raw material of the liquid B is shown. In addition, u2 shows the average value of the flow velocities of the cation raw material of the catalyst raw material liquid B added from each addition port.)
The total volume of the catalyst raw material liquid A prepared in the step (1) and the catalyst raw material liquid B prepared in the step (2) is 0.2 m 3 or more.
In the step (3), the catalyst raw material liquid B is added and mixed in a container satisfying the following formula (iv) containing the catalyst raw material liquid A.
0.1 ≤ S 3 / W 2 ≤ 50 (iv)
(In the formula (iv), S indicates the surface area [m 2 ] of the liquid surface of the liquid in the container, and W indicates the volume [m 3 ] of the liquid in the container.)
In the step (3), the addition port is arranged above the liquid level of the liquid in the container, and the addition port is centered on the center of the liquid level of the liquid in the container by the following formula (vi). A method for producing a catalyst for producing methacrylic acid, which does not exist in the upper part of the circular region drawn by the calculated radius R [m].
Figure 0007003974000005
(In the formula (vi), S is synonymous with the above formula (iv).)
前記工程(3)において下記式(i-1)を満たす、請求項1または2に記載のメタクリル酸製造用触媒の製造方法。
4.0≦T/(√V)≦12.0 (i-1)
The method for producing a catalyst for producing methacrylic acid according to claim 1 or 2, which satisfies the following formula (i-1) in the step (3).
4.0 ≤ T / ( 3 √V) ≤ 12.0 (i-1)
前記工程(3)において、前記触媒原料液Aおよび前記触媒原料液Bのいずれか一方が入った下記式(iv)を満たす容器内に、他方の液を添加して混合する請求項1に記載のメタクリル酸製造用触媒の製造方法。
0.5≦S/W≦50 (iv)
(式(iv)中、Sは容器内液の液面の表面積[m]を示し、Wは容器内液の容積[m]を示す。)
The first aspect of claim 1 is that in the step (3), the other liquid is added and mixed in a container satisfying the following formula (iv) containing either one of the catalyst raw material liquid A and the catalyst raw material liquid B. A method for producing a catalyst for producing methacrylic acid.
0.5 ≤ S 3 / W 2 ≤ 50 (iv)
(In the formula (iv), S indicates the surface area [m 2 ] of the liquid surface of the liquid in the container, and W indicates the volume [m 3 ] of the liquid in the container.)
前記工程(3)において、前記触媒原料液Aが入った下記式(iv)を満たす容器内に、前記触媒原料液Bを添加して混合する請求項2に記載のメタクリル酸製造用触媒の製造方法。
0.5≦S/W≦50(iv)
(式(iv)中、Sは容器内液の液面の表面積[m]を示し、Wは容器内液の容積[m]を示す。)
The production of the catalyst for producing methacrylic acid according to claim 2, wherein in the step (3), the catalyst raw material liquid B is added and mixed in a container satisfying the following formula (iv) containing the catalyst raw material liquid A. Method.
0.5 ≤ S 3 / W 2 ≤ 50 (iv)
(In the formula (iv), S indicates the surface area [m 2 ] of the liquid surface of the liquid in the container, and W indicates the volume [m 3 ] of the liquid in the container.)
前記工程(3)において下記式(ii-1)を満たす、請求項1に記載のメタクリル酸製造用触媒の製造方法。
0.05≦u1≦0.4 (ii-1)
The method for producing a catalyst for producing methacrylic acid according to claim 1, which satisfies the following formula (ii-1) in the step (3).
0.05 ≤ u1 ≤ 0.4 (ii-1)
前記工程(3)において下記式(iii-1)を満たす、請求項2に記載のメタクリル酸製造用触媒の製造方法。
0.1≦u2≦4 (iii-1)
The method for producing a catalyst for producing methacrylic acid according to claim 2, which satisfies the following formula (iii-1) in the step (3).
0.1 ≤ u2 ≤ 4 (iii-1)
前記添加口の直径が0.5~30mmである、請求項1から7のいずれか1項に記載のメタクリル酸製造用触媒の製造方法。 The method for producing a catalyst for producing methacrylic acid according to any one of claims 1 to 7, wherein the addition port has a diameter of 0.5 to 30 mm. 前記カチオン原料が、アルカリ金属を含む化合物およびアンモニウムイオンを含む化合物からなる群から選択される少なくとも1種である請求項1からのいずれか1項に記載のメタクリル酸製造用触媒の製造方法。 The method for producing a catalyst for producing methacrylic acid according to any one of claims 1 to 8 , wherein the cation raw material is at least one selected from the group consisting of a compound containing an alkali metal and a compound containing ammonium ions. さらに、前記ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を乾燥し、触媒前駆体を得る工程を含む請求項1からのいずれか1項に記載のメタクリル酸製造用触媒の製造方法。 The method for producing a catalyst for producing methacrylic acid according to any one of claims 1 to 9 , further comprising a step of drying a liquid containing the heteropolyacid having a Keggin-type structure or a salt thereof to obtain a catalyst precursor. さらに、前記触媒前駆体を熱処理する工程を含む請求項10に記載のメタクリル酸製造用触媒の製造方法。 The method for producing a catalyst for producing methacrylic acid according to claim 10 , further comprising a step of heat-treating the catalyst precursor. 前記メタクリル酸製造用触媒が、下記式(vii)で示される元素組成を有する請求項1から11のいずれか1項に記載のメタクリル酸製造用触媒の製造方法。
MoCu (vii)
(式(vii)中、Mo、P、V、CuおよびOはそれぞれモリブデン、リン、バナジウム、銅および酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種の元素を示す。Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、a=12の時、b=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。)
The method for producing a methacrylic acid production catalyst according to any one of claims 1 to 11 , wherein the methacrylic acid production catalyst has an elemental composition represented by the following formula (vii).
Mo a P b V c Cu d A e E f G g Oh (vii)
(In the formula (vii), Mo, P, V, Cu and O are element symbols indicating molybdenum, phosphorus, vanadium, copper and oxygen, respectively. A is antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, Represents at least one element selected from the group consisting of selenium, silicon, tungsten and boron. E represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin and lead. , At least one element selected from the group consisting of niobium, indium, sulfur, palladium, gallium, cerium and lanthanum. G is at least one selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and tarium. A, b, c, d, e, f, g and h represent the atomic ratio of each element, and when a = 12, b = 0.5 to 3, c = 0.01 to 3 , D = 0.01 to 2, e = 0 to 3, f = 0 to 3, g = 0.01 to 3, and h is the atomic ratio of oxygen required to satisfy the atomic value of each element. Is.)
請求項1から12のいずれか1項に記載の方法により製造されたメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法。 A method for producing methacrylic acid, in which methacrolein is vapor-phase contact-oxidized with molecular oxygen in the presence of a catalyst for producing methacrylic acid produced by the method according to any one of claims 1 to 12 . 請求項1から12のいずれか1項に記載の方法によりメタクリル酸製造用触媒を製造し、該メタクリル酸製造用触媒の存在下でメタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法。 A catalyst for producing methacrylic acid is produced by the method according to any one of claims 1 to 12 , and methacrolein is produced by vapor-phase catalytic oxidation of methacrolein with molecular oxygen in the presence of the catalyst for producing methacrylic acid. Method. 請求項13または14に記載のメタクリル酸の製造方法により製造されたメタクリル酸をエステル化するメタクリル酸エステルの製造方法。 A method for producing a methacrylic acid ester that esterifies methacrylic acid produced by the method for producing methacrylic acid according to claim 13 or 14 .
JP2019122903A 2016-08-22 2019-07-01 Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester. Active JP7003974B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016161888 2016-08-22
JP2016161888 2016-08-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017545978A Division JPWO2018037998A1 (en) 2016-08-22 2017-08-17 Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester

Publications (3)

Publication Number Publication Date
JP2019195807A JP2019195807A (en) 2019-11-14
JP2019195807A5 JP2019195807A5 (en) 2020-08-27
JP7003974B2 true JP7003974B2 (en) 2022-02-04

Family

ID=61246669

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017545978A Pending JPWO2018037998A1 (en) 2016-08-22 2017-08-17 Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester
JP2019122903A Active JP7003974B2 (en) 2016-08-22 2019-07-01 Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017545978A Pending JPWO2018037998A1 (en) 2016-08-22 2017-08-17 Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester

Country Status (6)

Country Link
JP (2) JPWO2018037998A1 (en)
KR (1) KR102228713B1 (en)
CN (2) CN109641202A (en)
MY (1) MY190344A (en)
SG (1) SG11201900018RA (en)
WO (1) WO2018037998A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114981008A (en) * 2020-01-08 2022-08-30 三菱化学株式会社 Method for producing catalyst for methacrylic acid production, method for producing methacrylic acid ester, and apparatus for producing catalyst for methacrylic acid production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005039760A1 (en) 2003-10-27 2005-05-06 Mitsubishi Rayon Co., Ltd. Process for producing catalyst for methacrylic acid production, catalyst for methacrylic acid production, and process for producing methacrylic acid
JP2007098345A (en) 2005-10-07 2007-04-19 Mitsubishi Rayon Co Ltd Catalyst for methacrylic acid production and its production method, and production method of methacrylic acid using this catalyst
JP2010162460A (en) 2009-01-14 2010-07-29 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing methacrylic acid
JP2014226614A (en) 2013-05-23 2014-12-08 住友化学株式会社 Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717165A1 (en) * 1997-04-23 1998-10-29 Basf Ag Device and method for temperature measurement in tubular reactors
JP3763245B2 (en) * 2000-04-06 2006-04-05 住友化学株式会社 Method for regenerating heteropolyacid catalyst and method for producing methacrylic acid
JP4691359B2 (en) * 2002-07-05 2011-06-01 三菱レイヨン株式会社 Method for producing a catalyst for methacrylic acid production
US7732367B2 (en) * 2005-07-25 2010-06-08 Saudi Basic Industries Corporation Catalyst for methacrolein oxidation and method for making and using same
JP5340732B2 (en) * 2007-05-14 2013-11-13 三菱レイヨン株式会社 Method for producing methacrylic acid
US8481448B2 (en) * 2010-07-19 2013-07-09 Saudi Basic Industries Corporation Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof
US20150105583A1 (en) * 2012-05-18 2015-04-16 Nippon Kayaku Kabushiki Kaisha Catalyst For Methacrylic Acid Production, Process For Producing The Same, And Process For Producing Methacrylic Acid Using The Catalyst
KR101621678B1 (en) * 2013-09-11 2016-05-16 미쯔비시 레이온 가부시끼가이샤 Method of preparing catalyst for production of methacrylic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005039760A1 (en) 2003-10-27 2005-05-06 Mitsubishi Rayon Co., Ltd. Process for producing catalyst for methacrylic acid production, catalyst for methacrylic acid production, and process for producing methacrylic acid
JP2007098345A (en) 2005-10-07 2007-04-19 Mitsubishi Rayon Co Ltd Catalyst for methacrylic acid production and its production method, and production method of methacrylic acid using this catalyst
JP2010162460A (en) 2009-01-14 2010-07-29 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing methacrylic acid
JP2014226614A (en) 2013-05-23 2014-12-08 住友化学株式会社 Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid

Also Published As

Publication number Publication date
WO2018037998A1 (en) 2018-03-01
CN115155630A (en) 2022-10-11
JPWO2018037998A1 (en) 2018-08-23
JP2019195807A (en) 2019-11-14
KR102228713B1 (en) 2021-03-16
CN109641202A (en) 2019-04-16
KR20190039262A (en) 2019-04-10
MY190344A (en) 2022-04-15
SG11201900018RA (en) 2019-02-27

Similar Documents

Publication Publication Date Title
US9751822B2 (en) Method for producing unsaturated carboxylic acid and supported catalyst
JP6414343B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid and methacrylic acid ester
US20180029018A1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JP4691359B2 (en) Method for producing a catalyst for methacrylic acid production
JP6819699B2 (en) Methacrylic acid production catalyst, methacrylic acid production catalyst precursor, and their production methods, methacrylic acid production method, and methacrylic acid ester production method.
KR20010098470A (en) Method for regenerating heteropolyacid catalyst and method for producing methacrylic acid
JP4925415B2 (en) Method for producing a catalyst for methacrylic acid production
JP7003974B2 (en) Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester.
JP5915894B2 (en) Method for producing a catalyst for methacrylic acid production
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP6798617B2 (en) A method for producing a catalyst, a method for producing an unsaturated carboxylic acid, a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, and a method for producing an unsaturated carboxylic acid ester.
JP6680367B2 (en) Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid and α, β-unsaturation Method for producing carboxylic acid ester
JP6452169B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid
JP5789917B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP4951230B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst
JP7306491B2 (en) Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, method for producing methacrylic acid ester, and apparatus for producing catalyst for producing methacrylic acid
JP6769557B2 (en) Catalyst precursor, catalyst production method, methacrylic acid and acrylic acid production method, and methacrylic acid ester and acrylic acid ester production method.
JP5424914B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
WO2023182425A1 (en) Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid and methacrylic acid esters using catalyst
JP2006212520A (en) Catalyst for manufacturing methacrylic acid, its manufacturing method, and manufacturing method of methacrylic acid
JP5063493B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JPWO2019163984A1 (en) A method for producing a catalyst for producing α, β-unsaturated carboxylic acid, and a method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid ester.
JP2010264397A (en) Catalyst for synthesizing unsaturated carboxylic acid and method for manufacturing unsaturated carboxylic acid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213