JP2019195807A - Method of producing catalyst for production of methacrylic acid, method of producing methacrylic acid and method of producing methacrylic acid ester - Google Patents
Method of producing catalyst for production of methacrylic acid, method of producing methacrylic acid and method of producing methacrylic acid ester Download PDFInfo
- Publication number
- JP2019195807A JP2019195807A JP2019122903A JP2019122903A JP2019195807A JP 2019195807 A JP2019195807 A JP 2019195807A JP 2019122903 A JP2019122903 A JP 2019122903A JP 2019122903 A JP2019122903 A JP 2019122903A JP 2019195807 A JP2019195807 A JP 2019195807A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- raw material
- methacrylic acid
- liquid
- material liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 333
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 title claims abstract description 155
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 49
- 125000005397 methacrylic acid ester group Chemical group 0.000 title claims description 7
- 239000007788 liquid Substances 0.000 claims abstract description 344
- 239000002994 raw material Substances 0.000 claims abstract description 250
- 239000011964 heteropoly acid Substances 0.000 claims abstract description 38
- 150000003839 salts Chemical class 0.000 claims abstract description 36
- 150000001768 cations Chemical class 0.000 claims abstract description 29
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 18
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims description 27
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 claims description 24
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 18
- 229910001882 dioxygen Inorganic materials 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 17
- 229910052750 molybdenum Inorganic materials 0.000 claims description 17
- 239000011733 molybdenum Substances 0.000 claims description 17
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 16
- 239000012018 catalyst precursor Substances 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 16
- 229910052698 phosphorus Inorganic materials 0.000 claims description 16
- 239000011574 phosphorus Substances 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 14
- 230000003197 catalytic effect Effects 0.000 claims description 13
- 230000003647 oxidation Effects 0.000 claims description 12
- 238000007254 oxidation reaction Methods 0.000 claims description 12
- 239000012808 vapor phase Substances 0.000 claims description 11
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 7
- 150000001340 alkali metals Chemical class 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical group [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052792 caesium Inorganic materials 0.000 claims description 4
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000011575 calcium Chemical group 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Chemical group 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical group [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Chemical group 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Chemical group 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical group [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 239000012071 phase Substances 0.000 claims description 3
- 229910052711 selenium Inorganic materials 0.000 claims description 3
- 239000011669 selenium Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical group [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052714 tellurium Inorganic materials 0.000 claims description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 239000011701 zinc Chemical group 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 5
- 238000007792 addition Methods 0.000 description 38
- 239000002002 slurry Substances 0.000 description 16
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- -1 alkali metal salt Chemical class 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- ZFYIQPIHXRFFCZ-QMMMGPOBSA-N (2s)-2-(cyclohexylamino)butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NC1CCCCC1 ZFYIQPIHXRFFCZ-QMMMGPOBSA-N 0.000 description 2
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 2
- 239000004254 Ammonium phosphate Substances 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 2
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 2
- 235000019289 ammonium phosphates Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 150000004715 keto acids Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- XUFUCDNVOXXQQC-UHFFFAOYSA-L azane;hydroxy-(hydroxy(dioxo)molybdenio)oxy-dioxomolybdenum Chemical compound N.N.O[Mo](=O)(=O)O[Mo](O)(=O)=O XUFUCDNVOXXQQC-UHFFFAOYSA-L 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- ZMCUDHNSHCRDBT-UHFFFAOYSA-M caesium bicarbonate Chemical compound [Cs+].OC([O-])=O ZMCUDHNSHCRDBT-UHFFFAOYSA-M 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000002036 drum drying Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- OGUCKKLSDGRKSH-UHFFFAOYSA-N oxalic acid oxovanadium Chemical compound [V].[O].C(C(=O)O)(=O)O OGUCKKLSDGRKSH-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- SEACXNRNJAXIBM-UHFFFAOYSA-N triethyl(methyl)azanium Chemical compound CC[N+](C)(CC)CC SEACXNRNJAXIBM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/195—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
- B01J27/198—Vanadium
- B01J27/199—Vanadium with chromium, molybdenum, tungsten or polonium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
- C07C51/235—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/08—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/52—Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
- C07C69/533—Monocarboxylic acid esters having only one carbon-to-carbon double bond
- C07C69/54—Acrylic acid esters; Methacrylic acid esters
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、メタクリル酸製造用触媒の製造方法、メタクリル酸の製造方法およびメタクリル酸エステルの製造方法に関する。 The present invention relates to a method for producing a catalyst for producing methacrylic acid, a method for producing methacrylic acid, and a method for producing a methacrylic ester.
メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられるメタクリル酸製造用触媒としては、モリブデンおよびリンを含むヘテロポリ酸系触媒が知られている。このようなヘテロポリ酸系触媒としては、カウンターカチオンがプロトンであるプロトン型ヘテロポリ酸、およびそのプロトンの一部をプロトン以外のカチオンで置換したヘテロポリ酸塩が存在する。ヘテロポリ酸塩としては、カチオンがアルカリ金属イオンであるアルカリ金属塩や、カチオンがアンモニウムイオンであるアンモニウム塩が知られている(以下、プロトン型ヘテロポリ酸を単に「ヘテロポリ酸」とも言い、プロトン型ヘテロポリ酸およびヘテロポリ酸塩より選ばれる少なくとも1種類を単に「ヘテロポリ酸(塩)」とも示す。)。 As a catalyst for producing methacrylic acid used for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen, a heteropolyacid catalyst containing molybdenum and phosphorus is known. As such heteropolyacid catalysts, there are proton-type heteropolyacids in which the counter cation is a proton, and heteropolyacid salts in which a part of the proton is substituted with a cation other than the proton. As the heteropolyacid salt, an alkali metal salt whose cation is an alkali metal ion and an ammonium salt whose cation is an ammonium ion are known (hereinafter, the proton-type heteropolyacid is also simply referred to as “heteropolyacid”, (At least one selected from acids and heteropolyacid salts is also simply referred to as “heteropolyacid (salt)”.)
メタクリル酸製造用触媒の製造方法としては、例えば特許文献1に、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するための触媒の製造方法であって、(i)少なくともモリブデン(Mo)、リン(P)およびバナジウム(V)を含む溶液またはスラリー(I液)を調製する工程と、(ii)アンモニウム根を含む溶液またはスラリー(II液)を調製する工程と、(iii)前記I液またはII液のいずれか一方の液(PR液)を槽(A槽)に装入し、該A槽に装入された該PR液の液面の全面積に対し0.01〜10%の面積を有する連続する液面域に他方の前記液(LA液)を投入してI液II液混合液を調製する工程と、(iv)前記全触媒成分を含有する触媒前駆体を含む溶液またはスラリーを乾燥、焼成する工程とを含むことを特徴とする、所定原子を所定の原子比率で含むメタクリル酸製造用触媒の製造方法が開示されている。 As a method for producing a methacrylic acid production catalyst, for example, Patent Document 1 discloses a production method of a catalyst for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen, and (i) at least molybdenum. (Iii) preparing a solution or slurry (liquid I) containing phosphorus (P) and vanadium (V); (ii) preparing a solution or slurry (liquid II) containing ammonium root; and (iii) ) Either one of the liquid I or liquid II (PR liquid) is charged into the tank (A tank), and 0.01% of the total area of the liquid surface of the PR liquid charged into the tank A. Adding the other liquid (LA liquid) to a continuous liquid surface area having an area of 10% to prepare an I liquid II liquid mixture, and (iv) a catalyst precursor containing all the catalyst components Drying the solution or slurry containing, Characterized in that it comprises a step of forming, it is disclosed method of manufacturing for producing methacrylic acid catalyst comprising a predetermined atoms at predetermined atomic ratios.
しかしながら、特許文献1に開示された方法で製造されるメタクリル酸製造用触媒は、該触媒をメタクリル酸製造に使用した場合、メタクリル酸の収率が十分ではなく、更なる改良が望まれている。本発明では、メタクリル酸収率の高いメタクリル酸製造用触媒を提供することを目的とする。 However, the catalyst for producing methacrylic acid produced by the method disclosed in Patent Document 1 is not sufficient in yield of methacrylic acid when the catalyst is used for producing methacrylic acid, and further improvement is desired. . An object of the present invention is to provide a catalyst for producing methacrylic acid having a high yield of methacrylic acid.
本発明は、以下の[1]から[18]である。 The present invention includes the following [1] to [18].
[1]メタクロレインを分子状酸素により気相接触酸化して、メタクリル酸を製造する際に用いられるメタクリル酸製造用触媒の製造方法であって、
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程と、
(2)カチオン原料を含む触媒原料液Bを準備する工程と、
(3)前記触媒原料液Aおよび前記触媒原料液Bのいずれか一方に、他方の液を添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程と、を含み、
前記工程(3)において、下記式(i)および(ii)を満たすメタクリル酸製造用触媒の製造方法。
[1] A method for producing a methacrylic acid production catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen,
(1) preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium;
(2) preparing a catalyst raw material liquid B containing a cation raw material;
(3) The step of adding the other liquid to one of the catalyst raw material liquid A and the catalyst raw material liquid B and mixing to prepare a liquid containing a heteropolyacid having a Keggin structure or a salt thereof. Including
A method for producing a methacrylic acid production catalyst satisfying the following formulas (i) and (ii) in the step (3).
3.0≦T/(3√V)≦13.0 (i)
0.01≦u1≦1.0 (ii)
(式(i)および(ii)中、Vは前記触媒原料液Aの容積[m3]、Tは他方の液を添加するための添加口の数、u1は添加する他方の液の体積流速[L/分]を示す。なおTが2以上である場合、u1は各添加口から添加される他方の液の体積流速の平均値を示す。)。
3.0 ≦ T / ( 3 √V) ≦ 13.0 (i)
0.01 ≦ u1 ≦ 1.0 (ii)
(In the formulas (i) and (ii), V is the volume [m 3 ] of the catalyst raw material liquid A, T is the number of addition ports for adding the other liquid, and u1 is the volume flow rate of the other liquid to be added. [L / min.] When T is 2 or more, u1 represents an average value of volume flow rates of the other liquid added from each addition port.
[2]メタクロレインを分子状酸素により気相接触酸化して、メタクリル酸を製造する際に用いられるメタクリル酸製造用触媒の製造方法であって、
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程と、
(2)カチオン原料を含む触媒原料液Bを準備する工程と、
(3)前記触媒原料液Aに前記触媒原料液Bを添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程と、を含み、
前記工程(3)において、下記式(i)および(iii)を満たすメタクリル酸製造用触媒の製造方法。
[2] A method for producing a catalyst for producing methacrylic acid used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen,
(1) preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium;
(2) preparing a catalyst raw material liquid B containing a cation raw material;
(3) adding and mixing the catalyst raw material liquid B to the catalyst raw material liquid A to prepare a liquid containing a heteropolyacid having a Keggin structure or a salt thereof, and
A method for producing a methacrylic acid production catalyst satisfying the following formulas (i) and (iii) in the step (3).
3.0≦T/(3√V)≦13.0 (i)
0.01≦u2≦8 (iii)
(式(i)および(iii)中、Vは前記触媒原料液Aの容積[m3]、Tは前記触媒原料液Bを添加するための添加口の数、u2は前記触媒原料液Bのカチオン原料の流速[mol/分]を示す。なおTが2以上である場合、u2は各添加口から添加される前記触媒原料液Bのカチオン原料の流速の平均値を示す。)。
3.0 ≦ T / ( 3 √V) ≦ 13.0 (i)
0.01 ≦ u2 ≦ 8 (iii)
(In the formulas (i) and (iii), V is the volume [m 3 ] of the catalyst raw material liquid A, T is the number of addition ports for adding the catalyst raw material liquid B, and u2 is the catalyst raw material liquid B. The flow rate [mol / min] of the cation raw material is shown.When T is 2 or more, u2 represents the average value of the flow rate of the cation raw material of the catalyst raw material liquid B added from each addition port.
[3]前記式(i)において、Tが2以上である[1]または[2]に記載のメタクリル酸製造用触媒の製造方法。 [3] The method for producing a catalyst for producing methacrylic acid according to [1] or [2], wherein T is 2 or more in the formula (i).
[4]前記工程(3)において、前記触媒原料液Aおよび前記触媒原料液Bのいずれか一方が入った下記式(iv)を満たす容器内に、他方の液を添加して混合する[1]に記載のメタクリル酸製造用触媒の製造方法。 [4] In the step (3), the other liquid is added and mixed in a container satisfying the following formula (iv) containing either the catalyst raw material liquid A or the catalyst raw material liquid B [1] ] The manufacturing method of the catalyst for methacrylic acid manufacture of description.
0.1≦S3/W2≦50 (iv)
(式(iv)中、Sは容器内液の液面の表面積[m2]を示し、Wは容器内液の容積[m3]を示す。)。
0.1 ≦ S 3 / W 2 ≦ 50 (iv)
(In formula (iv), S represents the surface area [m 2 ] of the liquid level of the liquid in the container, and W represents the volume [m 3 ] of the liquid in the container.)
[5]前記工程(3)において、前記触媒原料液Aが入った下記式(iv)を満たす容器内に、前記触媒原料液Bを添加して混合する[2]に記載のメタクリル酸製造用触媒の製造方法。 [5] In the step (3), the catalyst raw material liquid B is added and mixed in a container satisfying the following formula (iv) in which the catalyst raw material liquid A is contained. A method for producing a catalyst.
0.1≦S3/W2≦50 (iv)
(式(iv)中、Sは容器内液の液面の表面積[m2]を示し、Wは容器内液の容積[m3]を示す。)。
0.1 ≦ S 3 / W 2 ≦ 50 (iv)
(In formula (iv), S represents the surface area [m 2 ] of the liquid level of the liquid in the container, and W represents the volume [m 3 ] of the liquid in the container.)
[6]前記工程(3)において、前記容器内液の液面の上部に前記添加口が配置されている[4]または[5]に記載のメタクリル酸製造用触媒の製造方法。 [6] The method for producing a catalyst for methacrylic acid production according to [4] or [5], wherein, in the step (3), the addition port is disposed above the liquid level of the liquid in the container.
[7]前記工程(3)において、下記式(v)を満たす[6]に記載のメタクリル酸製造用触媒の製造方法。 [7] The method for producing a catalyst for producing methacrylic acid according to [6], which satisfies the following formula (v) in the step (3).
2≦T/S≦100 (v)
(式(v)中、Tは前記式(i)と同義であり、Sは前記式(iv)と同義である。)。
2 ≦ T / S ≦ 100 (v)
(In the formula (v), T has the same meaning as the formula (i), and S has the same meaning as the formula (iv)).
[8]前記工程(3)において、前記容器内液の液面の中心から、中心角が360°/Tとなるように、該液面に略平行に容器の壁面へ向けて引いたT本の直線で分割される該液面の領域をそれぞれY1〜YTとするとき、前記添加口が各Y1〜YTの上部にそれぞれ1つずつ配置されている[6]または[7]に記載のメタクリル酸製造用触媒の製造方法。 [8] T pieces drawn from the center of the liquid level of the liquid in the container toward the wall surface of the container so as to have a central angle of 360 ° / T in the step (3). When the liquid surface areas divided by the straight lines are Y 1 to Y T , one of the addition ports is arranged above each Y 1 to Y T [6] or [7] The manufacturing method of the catalyst for methacrylic acid manufacture as described in any one of.
[9]前記工程(3)において、前記添加口が、前記容器内液の液面の中心を中心として、下記式(vi)で算出される半径R[m]で描かれる円形領域内の上部に存在しない[6]から[8]のいずれかに記載のメタクリル酸製造用触媒の製造方法。 [9] In the step (3), the addition port is an upper portion in a circular region drawn by a radius R [m] calculated by the following formula (vi) with the center of the liquid level of the liquid in the container as the center. The manufacturing method of the catalyst for methacrylic acid manufacture in any one of [6] to [8] which does not exist in.
[10]前記工程(3)において、前記触媒原料液Aが入った容器に、前記触媒原料液Bを添加して混合する[1]に記載のメタクリル酸製造用触媒の製造方法。 [10] The method for producing a catalyst for methacrylic acid production according to [1], wherein in the step (3), the catalyst raw material liquid B is added and mixed in a container containing the catalyst raw material liquid A.
[11]前記工程(1)で準備する触媒原料液Aと、前記工程(2)で準備する触媒原料液Bとの合計の容積が、0.2m3以上である[1]から[10]のいずれかに記載のメタクリル酸製造用触媒の製造方法。 [11] The total volume of the catalyst raw material liquid A prepared in the step (1) and the catalyst raw material liquid B prepared in the step (2) is 0.2 m 3 or more. [1] to [10] The manufacturing method of the catalyst for methacrylic acid manufacture in any one of.
[12]前記カチオン原料が、アルカリ金属を含む化合物およびアンモニウムイオンを含む化合物からなる群から選択される少なくとも1種である[1]から[11]のいずれかに記載のメタクリル酸製造用触媒の製造方法。 [12] The catalyst for methacrylic acid production according to any one of [1] to [11], wherein the cation raw material is at least one selected from the group consisting of a compound containing an alkali metal and a compound containing an ammonium ion. Production method.
[13]さらに、前記ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を乾燥し、触媒前駆体を得る工程を含む[1]から[12]のいずれかに記載のメタクリル酸製造用触媒の製造方法。 [13] The catalyst for producing methacrylic acid according to any one of [1] to [12], further comprising a step of drying a liquid containing the heteropolyacid having a Keggin structure or a salt thereof to obtain a catalyst precursor. Production method.
[14]さらに、前記触媒前駆体を熱処理する工程を含む[13]に記載のメタクリル酸製造用触媒の製造方法。 [14] The method for producing a catalyst for methacrylic acid production according to [13], further comprising a step of heat treating the catalyst precursor.
[15]前記メタクリル酸製造用触媒が、下記式(vii)で示される元素組成を有する[1]から[14]のいずれかに記載のメタクリル酸製造用触媒の製造方法。 [15] The method for producing a catalyst for producing methacrylic acid according to any one of [1] to [14], wherein the catalyst for producing methacrylic acid has an elemental composition represented by the following formula (vii).
MoaPbVcCudAeEfGgOh (vii)
(式(vii)中、Mo、P、V、CuおよびOはそれぞれモリブデン、リン、バナジウム、銅および酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種の元素を示す。Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、a=12の時、b=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。)。
Mo a P b V c Cu d A e E f G g O h (vii)
(In the formula (vii), Mo, P, V, Cu and O are element symbols indicating molybdenum, phosphorus, vanadium, copper and oxygen, respectively. A is antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, E represents at least one element selected from the group consisting of selenium, silicon, tungsten and boron, where E is iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, lead And at least one element selected from the group consisting of niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, wherein G is at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium A, b, c, d, e f, g and h represent the atomic ratio of each element, and when a = 12, b = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0-3, f = 0-3, g = 0.01-3, and h is the atomic ratio of oxygen necessary to satisfy the valence of each element.
[16][1]から[15]のいずれかに記載の方法により製造されたメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法。 [16] A method for producing methacrylic acid, wherein methacrolein is vapor-phase contact oxidized with molecular oxygen in the presence of the catalyst for producing methacrylic acid produced by the method according to any one of [1] to [15].
[17][1]から[15]のいずれかに記載の方法によりメタクリル酸製造用触媒を製造し、該メタクリル酸製造用触媒の存在下でメタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法。 [17] A methacrylic acid production catalyst is produced by the method according to any one of [1] to [15], and methacrolein is vapor-phase catalytically oxidized with molecular oxygen in the presence of the methacrylic acid production catalyst. Acid production method.
[18][16]または[17]に記載のメタクリル酸の製造方法により製造されたメタクリル酸をエステル化するメタクリル酸エステルの製造方法。 [18] A method for producing methacrylic acid ester, which comprises esterifying methacrylic acid produced by the method for producing methacrylic acid according to [16] or [17].
本発明によれば、メタクリル酸収率の高いメタクリル酸製造用触媒を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the catalyst for methacrylic acid manufacture with a high methacrylic acid yield can be provided.
[メタクリル酸製造用触媒の製造方法]
本発明に係るメタクリル酸製造用触媒の製造方法は、メタクロレインを分子状酸素により気相接触酸化して、メタクリル酸を製造する際に用いられるメタクリル酸製造用触媒の製造方法である。該方法の第一の実施形態は、以下の工程(1)〜(3)を含む。
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程。
(2)カチオン原料を含む触媒原料液Bを準備する工程。
(3)前記触媒原料液Aおよび前記触媒原料液Bのいずれか一方に、他方の液を添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程。
[Method for producing catalyst for producing methacrylic acid]
The method for producing a catalyst for producing methacrylic acid according to the present invention is a method for producing a catalyst for producing methacrylic acid, which is used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. The first embodiment of the method includes the following steps (1) to (3).
(1) A step of preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium.
(2) A step of preparing a catalyst raw material liquid B containing a cation raw material.
(3) A step of preparing a liquid containing a heteropolyacid having a Keggin structure or a salt thereof by adding and mixing the other liquid to one of the catalyst raw material liquid A and the catalyst raw material liquid B.
前記工程(3)では、下記式(i)および(ii)を満たす。 In the step (3), the following formulas (i) and (ii) are satisfied.
3.0≦T/(3√V)≦13.0 (i)
0.01≦u1≦1.0 (ii)
式(i)および(ii)中、Vは前記触媒原料液Aの容積[m3]、Tは他方の液を添加するための添加口の数、u1は添加する他方の液の体積流速[L/分]を示す。なおTが2以上である場合、u1は各添加口から添加される他方の液の体積流速の平均値を示す。
3.0 ≦ T / ( 3 √V) ≦ 13.0 (i)
0.01 ≦ u1 ≦ 1.0 (ii)
In the formulas (i) and (ii), V is the volume [m 3 ] of the catalyst raw material liquid A, T is the number of addition ports for adding the other liquid, u1 is the volume flow rate of the other liquid to be added [ L / min]. In addition, when T is 2 or more, u1 shows the average value of the volume flow rate of the other liquid added from each addition port.
また、前記方法の第二の実施形態は、以下の工程(1)〜(3)を含む。
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程。
(2)カチオン原料を含む触媒原料液Bを準備する工程。
(3)前記触媒原料液Aに前記触媒原料液Bを添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程。
In addition, the second embodiment of the method includes the following steps (1) to (3).
(1) A step of preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium.
(2) A step of preparing a catalyst raw material liquid B containing a cation raw material.
(3) A step of adding the catalyst raw material liquid B to the catalyst raw material liquid A and mixing them to prepare a liquid containing a heteropolyacid having a Keggin structure or a salt thereof.
前記工程(3)では、下記式(i)および(iii)を満たす。 In the step (3), the following formulas (i) and (iii) are satisfied.
3.0≦T/(3√V)≦13.0 (i)
0.01≦u2≦8 (iii)
式(i)および(iii)中、Vは前記触媒原料液Aの容積[m3]、Tは前記触媒原料液Bを添加するための添加口の数、u2は前記触媒原料液Bのカチオン原料の流速[mol/分]を示す。なおTが2以上である場合、u2は各添加口から添加される前記触媒原料液Bのカチオン原料の流速の平均値を示す。
3.0 ≦ T / ( 3 √V) ≦ 13.0 (i)
0.01 ≦ u2 ≦ 8 (iii)
In the formulas (i) and (iii), V is the volume [m 3 ] of the catalyst raw material liquid A, T is the number of addition ports for adding the catalyst raw material liquid B, u2 is a cation of the catalyst raw material liquid B The flow rate [mol / min] of a raw material is shown. When T is 2 or more, u2 represents an average value of the flow rate of the cation raw material of the catalyst raw material liquid B added from each addition port.
本発明に係る方法の第一および第二の実施形態では、前記工程(1)〜(3)を含み、かつ、前記工程(3)において前記式(i)および(ii)を満たすことにより、または、前記(i)および(iii)を満たすことにより、高い収率でメタクリル酸を製造可能なメタクリル酸製造用触媒を製造することができる。その詳細なメカニズムは必ずしも明らかになっていないが、メタクリル酸収率向上に有効な触媒粒子が生成されやすくなるものと推測される。 In the first and second embodiments of the method according to the present invention, including the steps (1) to (3) and satisfying the formulas (i) and (ii) in the step (3), Or the catalyst for methacrylic acid production which can manufacture methacrylic acid with a high yield can be manufactured by satisfy | filling said (i) and (iii). Although the detailed mechanism is not necessarily clarified, it is presumed that catalyst particles effective for improving the methacrylic acid yield are likely to be generated.
本発明に係る方法により製造されるメタクリル酸製造用触媒は、少なくともモリブデン、リンおよびバナジウムを含むが、これら以外にも銅などの他の元素をさらに含むことができる。該触媒は、高い収率でメタクリル酸を製造できる観点から、下記式(vii)で示される元素組成を有することが好ましい。 The catalyst for producing methacrylic acid produced by the method according to the present invention contains at least molybdenum, phosphorus and vanadium, but can further contain other elements such as copper in addition to these. The catalyst preferably has an elemental composition represented by the following formula (vii) from the viewpoint of producing methacrylic acid with a high yield.
MoaPbVcCudAeEfGgOh (vii)
式(vii)中、Mo、P、V、CuおよびOはそれぞれモリブデン、リン、バナジウム、銅および酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種の元素を示す。Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、a=12の時、b=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。なお、前記元素組成は触媒をアンモニア水に溶解した成分をICP発光分析法で分析することによって算出される値である。
Mo a P b V c Cu d A e E f G g O h (vii)
In formula (vii), Mo, P, V, Cu and O are element symbols indicating molybdenum, phosphorus, vanadium, copper and oxygen, respectively. A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron. E is at least selected from the group consisting of iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum One element is shown. G represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium. a, b, c, d, e, f, g, and h represent the atomic ratio of each element. When a = 12, b = 0.5-3, c = 0.01-3, d = 0. 01 to 2, e = 0 to 3, f = 0 to 3, g = 0.01 to 3, and h is an atomic ratio of oxygen necessary to satisfy the valence of each element. The elemental composition is a value calculated by analyzing a component obtained by dissolving the catalyst in aqueous ammonia by ICP emission spectrometry.
(工程(1))
工程(1)では、少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する。例えば、調製容器を用いて、モリブデン、リンおよびバナジウムを含む触媒成分の原料化合物を溶媒に溶解又は懸濁させることにより、触媒原料液Aを得ることができる。触媒原料液Aが、少なくともモリブデン、リンおよびバナジウムを含むことにより、メタクリル酸収率がより高いメタクリル酸製造用触媒を製造できる。
(Process (1))
In the step (1), a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium is prepared. For example, the catalyst raw material liquid A can be obtained by dissolving or suspending a raw material compound of a catalyst component containing molybdenum, phosphorus and vanadium in a solvent using a preparation container. When catalyst raw material liquid A contains at least molybdenum, phosphorus, and vanadium, a methacrylic acid production catalyst with a higher methacrylic acid yield can be produced.
前記触媒成分の原料化合物は特に限定されず、触媒の各構成元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、オキソ酸、オキソ酸塩等を単独で又は2種以上を組み合わせて使用することができる。モリブデンの原料化合物としては、例えば、三酸化モリブデン等の酸化モリブデン、パラモリブデン酸アンモニウム、ジモリブデン酸アンモニウム等のモリブデン酸アンモニウム等が挙げられる。リンの原料化合物としては、例えば、リン酸、五酸化リン、リン酸アンモニウム等が挙げられる。バナジウムの原料化合物としては、例えば、メタバナジン酸アンモニウム、五酸化バナジウム、蓚酸バナジル等が挙げられる。銅の原料化合物としては、例えば、硝酸銅、酸化銅、炭酸銅、酢酸銅等が挙げられる。触媒成分の原料化合物は、触媒成分を構成する各元素に対して1種を用いてもよく、2種以上を組み合わせて用いてもよい。 The raw material compound of the catalyst component is not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxoacids, oxoacid salts, etc. of the respective constituent elements of the catalyst may be used alone or in combination of two or more. Can be used in combination. Examples of the molybdenum source compound include molybdenum oxide such as molybdenum trioxide, and ammonium molybdate such as ammonium paramolybdate and ammonium dimolybdate. Examples of the phosphorus source compound include phosphoric acid, phosphorus pentoxide, and ammonium phosphate. Examples of the vanadium raw material compound include ammonium metavanadate, vanadium pentoxide, and vanadyl oxalate. Examples of the raw material compound for copper include copper nitrate, copper oxide, copper carbonate, and copper acetate. As the raw material compound of the catalyst component, one kind may be used for each element constituting the catalyst component, or two or more kinds may be used in combination.
前記溶媒としては、例えば、水、エチルアルコール、アセトン等が挙げられる。これらは1種を用いてもよく、2種以上を併用してもよい。これらの中でも、水を用いることが好ましい。 Examples of the solvent include water, ethyl alcohol, acetone and the like. These may use 1 type and may use 2 or more types together. Among these, it is preferable to use water.
触媒原料液Aは、調製容器を用いて、溶媒に触媒成分の原料化合物を加え、加熱しながら撹拌して調製することが好ましい。加熱温度は80〜130℃が好ましく、下限は90℃以上がより好ましい。また、触媒原料液AのpHは3.0以下が好ましく、2.5以下がより好ましい。触媒原料液AのpHを3.0以下とする方法としては、例えばモリブデン原料として三酸化モリブデンを使用する、硝酸イオンが多く含まれるように触媒成分の原料化合物を選択する等の方法が挙げられる。触媒原料液A中の触媒成分の原料化合物の濃度は特に限定されないが、例えば5〜90質量%であることができる。 The catalyst raw material liquid A is preferably prepared by adding a raw material compound of a catalyst component to a solvent using a preparation vessel and stirring while heating. The heating temperature is preferably 80 to 130 ° C, and the lower limit is more preferably 90 ° C or higher. The pH of the catalyst raw material liquid A is preferably 3.0 or less, and more preferably 2.5 or less. Examples of the method of setting the pH of the catalyst raw material liquid A to 3.0 or less include a method of using molybdenum trioxide as a molybdenum raw material, or selecting a raw material compound of the catalyst component so as to contain a large amount of nitrate ions. . Although the density | concentration of the raw material compound of the catalyst component in the catalyst raw material liquid A is not specifically limited, For example, it can be 5-90 mass%.
(工程(2))
工程(2)では、カチオン原料を含む触媒原料液Bを準備する。例えば、調製容器を用いて、カチオン原料を溶媒に溶解又は懸濁させることにより、触媒原料液Bを得ることができる。
(Process (2))
In the step (2), a catalyst raw material liquid B containing a cation raw material is prepared. For example, the catalyst raw material liquid B can be obtained by dissolving or suspending the cation raw material in a solvent using a preparation container.
ここで、「カチオン原料」とは、アルカリ金属を含む化合物、アルカリ土類金属を含む化合物、遷移金属を含む化合物、卑金属を含む化合物および窒素を含む化合物(アンモニア、アンモニウムイオンもしくはアルキルアンモニウムイオンを含む化合物、または含窒素ヘテロ環化合物)からなる群から選択される少なくとも1種を示す。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが挙げられる。アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられる。アルカリ金属を含む化合物、アルカリ土類金属を含む化合物、遷移金属を含む化合物、卑金属を含む化合物としては、アルカリ金属、アルカリ土類金属、遷移金属または卑金属の硝酸塩、炭酸塩、重炭酸塩、酢酸塩、硫酸塩、アンモニウム塩、酸化物、水酸化物、ハロゲン化物、オキソ酸、オキソ酸塩等が挙げられる。アンモニウムイオンを含む化合物としては、重炭酸アンモニウム、炭酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、バナジン酸アンモニウム等が挙げられる。アルキルアンモニウムイオンを含む化合物としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラn−プロピルアンモニウム、テトラn−ブチルアンモニウム、トリエチルメチルアンモニウム等のハロゲン化物または水酸化物等が挙げられる。含窒素ヘテロ環化合物としては、ピリジン、ピペリジン、ピペラジン、ピリミジン、キノリン、イソキノリンおよびこれらのアルキル誘導体等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。これらの中でもカチオン原料としては、メタクリル酸収率がより高いメタクリル酸製造用触媒を得られる観点から、アルカリ金属を含む化合物およびアンモニウムイオンを含む化合物からなる群から選択される少なくとも1種であることが好ましい。 Here, the “cationic raw material” means a compound containing an alkali metal, a compound containing an alkaline earth metal, a compound containing a transition metal, a compound containing a base metal, and a compound containing nitrogen (including ammonia, ammonium ion or alkylammonium ion). Or at least one selected from the group consisting of nitrogen-containing heterocyclic compounds). Examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium. Examples of the alkaline earth metal include magnesium, calcium, strontium, and barium. Compounds containing alkali metals, compounds containing alkaline earth metals, compounds containing transition metals, compounds containing base metals include alkali metals, alkaline earth metals, transition metal or base metal nitrates, carbonates, bicarbonates, acetic acids Examples thereof include salts, sulfates, ammonium salts, oxides, hydroxides, halides, oxoacids, oxoacid salts and the like. Examples of the compound containing ammonium ions include ammonium bicarbonate, ammonium carbonate, ammonium nitrate, ammonium phosphate, and ammonium vanadate. Examples of the compound containing an alkylammonium ion include halides or hydroxides such as tetramethylammonium, tetraethylammonium, tetran-propylammonium, tetran-butylammonium, and triethylmethylammonium. Examples of the nitrogen-containing heterocyclic compound include pyridine, piperidine, piperazine, pyrimidine, quinoline, isoquinoline, and alkyl derivatives thereof. These may use 1 type and may use 2 or more types together. Among these, the cation raw material is at least one selected from the group consisting of a compound containing an alkali metal and a compound containing an ammonium ion from the viewpoint of obtaining a methacrylic acid production catalyst having a higher methacrylic acid yield. Is preferred.
前記溶媒としては、例えば、水、エチルアルコール、アセトン等が挙げられる。これらは1種を用いてもよく、2種以上を併用してもよい。これらの中でも、水を用いることが好ましい。 Examples of the solvent include water, ethyl alcohol, acetone and the like. These may use 1 type and may use 2 or more types together. Among these, it is preferable to use water.
なお、カチオン原料として複数の種類を用いる場合には、調製容器を複数用いて、各カチオン原料をそれぞれ溶媒に溶解又は懸濁させることにより、触媒原料液B1、B2、…のように複数の触媒原料液Bを調製してもよい。触媒原料液Aに対して触媒原料液Bを添加する場合は、触媒原料液Aに対して、触媒原料液B1、B2、…を順不同で添加してもよく、また同時に添加してもよい。第一の実施形態において、触媒原料液Bに対して触媒原料液Aを添加する場合は、いずれかの触媒原料液Bに対して触媒原料液Aを添加し、得られた液体と他の触媒原料液Bとを混合してもよく、また触媒原料液A1、A2、…のように複数の触媒原料液Aに分割して触媒原料液Bに添加した後、得られた各液体を混合してもよい。また、触媒原料液B中のカチオン原料の濃度は特に限定されないが、例えば5〜90質量%であることができる。 In addition, when using several types as a cation raw material, using a plurality of preparation containers, by dissolving or suspending each cation raw material in a solvent, a plurality of catalysts such as catalyst raw material liquids B1, B2,. The raw material liquid B may be prepared. When the catalyst raw material liquid B is added to the catalyst raw material liquid A, the catalyst raw material liquids B1, B2,... May be added to the catalyst raw material liquid A in any order, or may be added simultaneously. In the first embodiment, when the catalyst raw material liquid A is added to the catalyst raw material liquid B, the catalyst raw material liquid A is added to any one of the catalyst raw material liquids B, and the obtained liquid and another catalyst The raw material liquid B may be mixed, or divided into a plurality of catalyst raw material liquids A such as catalyst raw material liquids A1, A2,... And added to the catalyst raw material liquid B, and then the obtained liquids are mixed. May be. Further, the concentration of the cation raw material in the catalyst raw material liquid B is not particularly limited, but may be, for example, 5 to 90% by mass.
また、前記工程(1)および(2)において触媒原料液AおよびBを準備する場合、工業的な製造を考慮すると、製造コストの観点から、前記工程(1)で準備する触媒原料液Aと、前記工程(2)で準備する触媒原料液Bとの合計の容積は、0.2m3以上であることが好ましく、0.8m3以上であることがより好ましく、1.5m3以上であることがさらに好ましい。なお、該容積の範囲の上限は特に限定されないが、例えば5m3以下であることができる。 Moreover, when preparing catalyst raw material liquid A and B in the said process (1) and (2), when industrial manufacture is considered, from the viewpoint of manufacturing cost, the catalyst raw material liquid A prepared by the said process (1) and The total volume of the catalyst raw material liquid B prepared in the step (2) is preferably 0.2 m 3 or more, more preferably 0.8 m 3 or more, and 1.5 m 3 or more. More preferably. The upper limit of the volume range is not particularly limited, but can be, for example, 5 m 3 or less.
(工程(3))
第一の実施形態では、工程(3)において、前記触媒原料液Aおよび前記触媒原料液Bのいずれか一方に、他方の液を添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する。即ち、触媒原料液Aに触媒原料液Bを添加して混合するか、または触媒原料液Bに触媒原料液Aを添加して混合する。前者では触媒原料液Bが、後者では触媒原料液Aが、それぞれ「他方の液」にあたる。以下、「他方の液」を添加液とも示す。また、第二の実施形態では、工程(3)において、前記触媒原料液Aに前記触媒原料液Bを添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する。第一の実施形態では、工程(3)において、下記式(i)および(ii)の条件を両方とも満たす必要がある。また、第二の実施形態では、工程(3)において、下記式(i)および(iii)の条件を両方とも満たす必要がある。
(Process (3))
In the first embodiment, in step (3), the other liquid is added to and mixed with one of the catalyst raw material liquid A and the catalyst raw material liquid B, and the heteropolyacid having a Keggin type structure or a salt thereof A liquid containing is prepared. That is, the catalyst raw material liquid B is added to and mixed with the catalyst raw material liquid A, or the catalyst raw material liquid A is added and mixed with the catalyst raw material liquid B. In the former case, the catalyst raw material liquid B corresponds to “the other liquid”, and in the latter case, the catalyst raw material liquid A corresponds. Hereinafter, the “other liquid” is also referred to as an additive liquid. In the second embodiment, in the step (3), the catalyst raw material liquid B is added to the catalyst raw material liquid A and mixed to prepare a liquid containing a heteropolyacid having a Keggin structure or a salt thereof. In 1st embodiment, it is necessary to satisfy | fill both the conditions of following formula (i) and (ii) in process (3). Moreover, in 2nd embodiment, it is necessary to satisfy | fill both the conditions of following formula (i) and (iii) in process (3).
3.0≦T/(3√V)≦13.0 (i)
0.01≦u1≦1.0 (ii)
0.01≦u2≦8 (iii)
式(i)、(ii)および(iii)中、Vは前記触媒原料液Aの容積[m3]、Tは他方の液(前記触媒原料液B)を添加するための添加口の数、u1は添加する他方の液の体積流速[L/分]、u2は前記触媒原料液Bのカチオン原料の流速[mol/分]を示す。また、「添加口」とは、触媒原料液Aおよび触媒原料液Bのいずれか一方(触媒原料液A)に他方の液(触媒原料液B)を添加するために設けられた他方の液(触媒原料液B)の出口である。なお、Tが2以上である場合、u1およびu2はそれぞれ、各添加口から添加される他方の液の体積流速、各添加口から添加される前記触媒原料液Bのカチオン原料の流速、の平均値を示す。なお、添加液が複数ある場合、それぞれが上記条件を満たす必要がある。即ち、添加液として触媒原料液B1、B2、…がある場合、各液の添加それぞれ全てが式(i)および(ii)の条件を両方とも満たすか、または、式(i)および(iii)の条件を両方とも満たす必要がある。また、第一の実施形態において、添加液として触媒原料液A1、A2、…がある場合も同様に、各液の添加それぞれ全てが式(i)および(ii)の条件を両方とも満たす必要がある。
3.0 ≦ T / ( 3 √V) ≦ 13.0 (i)
0.01 ≦ u1 ≦ 1.0 (ii)
0.01 ≦ u2 ≦ 8 (iii)
In the formulas (i), (ii) and (iii), V is the volume [m 3 ] of the catalyst raw material liquid A, T is the number of addition ports for adding the other liquid (the catalyst raw material liquid B), u1 represents the volume flow rate [L / min] of the other liquid to be added, and u2 represents the flow rate [mol / min] of the cation raw material of the catalyst raw material liquid B. The “addition port” is the other liquid (catalyst raw material liquid B) provided for adding the other liquid (catalyst raw material liquid B) to either one of the catalyst raw material liquid A or the catalyst raw material liquid B (catalyst raw material liquid A). It is an outlet of the catalyst raw material liquid B). When T is 2 or more, each of u1 and u2 is an average of the volume flow rate of the other liquid added from each addition port and the flow rate of the cation raw material of the catalyst raw material liquid B added from each addition port. Indicates the value. In addition, when there are a plurality of additive liquids, each needs to satisfy the above conditions. That is, when there are catalyst raw material liquids B1, B2,... As the additive liquid, all the additions of the respective liquids satisfy both the conditions of formulas (i) and (ii), or the formulas (i) and (iii) Both conditions must be met. In addition, in the first embodiment, when there are catalyst raw material liquids A1, A2,... As addition liquids, it is necessary that all the additions of the liquids satisfy both the conditions of formulas (i) and (ii). is there.
触媒原料液Aと触媒原料液Bを混合することで、ケギン型構造を有するヘテロポリ酸(塩)を含む液体が得られる。前記式(i)において、T/(3√V)は添加口の数Tを触媒原料液Aの容積Vの三乗根で除したものであり、触媒原料液Aと触媒原料液Bとを混合する際の、各液の接触状態に影響を与える。そのため、前記式(i)においてT/(3√V)を特定の範囲とすることで、ヘテロポリ酸(塩)の中でもメタクリル酸収率向上に有効なヘテロポリ酸(塩)が生成されやすくなると推測される。なお、得られるヘテロポリ酸(塩)の総量は、触媒原料液Aに含まれる触媒成分の量に関係する。T/(3√V)の値は、3.0≦T/(3√V)≦13.0を満たし、下限は4.0以上が好ましく、5.0以上がより好ましく、6.0以上がさらに好ましい。上限は12.0以下が好ましく、11.0以下がより好ましく、9.0以下がさらに好ましい。 By mixing the catalyst raw material liquid A and the catalyst raw material liquid B, a liquid containing a heteropolyacid (salt) having a Keggin structure is obtained. In the formula (i), T / ( 3 √V) is obtained by dividing the number T of the addition ports by the cube root of the volume V of the catalyst raw material liquid A, and the catalyst raw material liquid A and the catalyst raw material liquid B are This affects the contact state of each liquid during mixing. Therefore, it is speculated that by setting T / ( 3 √V) in the specific range in the formula (i), a heteropolyacid (salt) effective for improving the yield of methacrylic acid among the heteropolyacids (salts) is likely to be generated. Is done. The total amount of heteropolyacid (salt) obtained is related to the amount of the catalyst component contained in the catalyst raw material liquid A. The value of T / (3 √V) satisfies 3.0 ≦ T / (3 √V) ≦ 13.0, the lower limit is preferably 4.0 or more, more preferably 5.0 or more, 6.0 or more Is more preferable. The upper limit is preferably 12.0 or less, more preferably 11.0 or less, and even more preferably 9.0 or less.
Tの値は、メタクリル酸収率がより高いメタクリル酸製造用触媒を得られる観点から、2以上が好ましく、4以上がより好ましく、8以上がさらに好ましい。Tの値の範囲の上限は特に限定されないが、例えば20以下とすることができる。Tの値を2以上とする方法としては、例えば複数の穴を有する配管を用いる、複数の吐出口を有する多連ノズルを用いる等が挙げられる。添加口の直径は、0.5〜30mmが好ましく、下限は1mm以上、上限は10mm以下がより好ましい。 The value of T is preferably 2 or more, more preferably 4 or more, and even more preferably 8 or more, from the viewpoint of obtaining a methacrylic acid production catalyst having a higher methacrylic acid yield. Although the upper limit of the range of the value of T is not specifically limited, For example, it can be 20 or less. Examples of the method of setting the value of T to 2 or more include using a pipe having a plurality of holes and using a multiple nozzle having a plurality of discharge ports. The diameter of the addition port is preferably 0.5 to 30 mm, the lower limit is preferably 1 mm or more, and the upper limit is more preferably 10 mm or less.
前記式(ii)において、添加液の体積流速u1は、触媒原料液Aと触媒原料液Bとを混合する際の、両液の接触速度に影響する。そのため前記式(ii)を満たすように触媒原料液Aおよび触媒原料液Bのいずれか一方に他方の液を添加することで、メタクリル酸収率向上に有効な触媒粒子が生成されやすくなると推測される。u1の値は、0.01≦u1≦1.0を満たし、下限は0.05以上が好ましく、0.1以上がより好ましい。上限は0.5以下が好ましく、0.4以下がより好ましく、0.3以下がさらに好ましい。 In the above formula (ii), the volume flow rate u1 of the additive liquid affects the contact speed of the two liquids when the catalyst raw material liquid A and the catalyst raw material liquid B are mixed. Therefore, it is presumed that by adding the other liquid to either one of the catalyst raw material liquid A and the catalyst raw material liquid B so as to satisfy the formula (ii), catalyst particles effective for improving the methacrylic acid yield are likely to be generated. The The value of u1 satisfies 0.01 ≦ u1 ≦ 1.0, and the lower limit is preferably 0.05 or more, and more preferably 0.1 or more. The upper limit is preferably 0.5 or less, more preferably 0.4 or less, and even more preferably 0.3 or less.
また、前記式(iii)において、添加する触媒原料液Bのカチオン原料の流速u2は、触媒原料液Aと触媒原料液Bとを混合する際の、両液の接触速度に影響する。そのため前記式(iii)を満たすように触媒原料液Aに対して触媒原料液Bを添加することで、メタクリル酸収率向上に有効な触媒粒子が生成されやすくなると推測される。u2の値は、0.01≦u2≦8を満たし、下限は0.1以上が好ましく、0.5以上がより好ましい。上限は5以下が好ましく、4以下がより好ましく、2以下がさらに好ましい。 In the formula (iii), the flow rate u2 of the cation raw material of the catalyst raw material liquid B to be added affects the contact speed between the two liquids when the catalyst raw material liquid A and the catalyst raw material liquid B are mixed. Therefore, it is speculated that by adding the catalyst raw material liquid B to the catalyst raw material liquid A so as to satisfy the formula (iii), catalyst particles effective for improving the methacrylic acid yield are easily generated. The value of u2 satisfies 0.01 ≦ u2 ≦ 8, and the lower limit is preferably 0.1 or more, and more preferably 0.5 or more. The upper limit is preferably 5 or less, more preferably 4 or less, and still more preferably 2 or less.
第一の実施形態において、工程(3)では、触媒原料液Aおよび触媒原料液Bのいずれか一方が入った下記式(iv)を満たす容器内に、他方の液を添加して混合することが好ましい。また、第二の実施形態において、工程(3)では、触媒原料液Aが入った下記式(iv)を満たす容器内に、触媒原料液Bを添加して混合することが好ましい。 In the first embodiment, in step (3), the other liquid is added and mixed in a container satisfying the following formula (iv) containing either one of the catalyst raw material liquid A and the catalyst raw material liquid B. Is preferred. In the second embodiment, in the step (3), it is preferable to add and mix the catalyst raw material liquid B in a container satisfying the following formula (iv) containing the catalyst raw material liquid A.
0.1≦S3/W2≦50 (iv)
式(iv)中、Sは容器内液の液面の表面積[m2]を示し、Wは容器内液の容積[m3]を示す。ここで、「容器内液」とは容器内に入れられている前記触媒原料液A又は前記触媒原料液Bを示す。
0.1 ≦ S 3 / W 2 ≦ 50 (iv)
In the formula (iv), S represents the surface area [m 2 ] of the liquid level of the liquid in the container, and W represents the volume [m 3 ] of the liquid in the container. Here, the “in-container liquid” refers to the catalyst raw material liquid A or the catalyst raw material liquid B contained in the container.
S3/W2は触媒原料液Aと触媒原料液Bとを混合する容器の形状に係る値である。前記式(iv)を満たすように触媒原料液Aと触媒原料液Bとを混合する容器の形状を調整することで、容器内液の容積に対する液面の表面積が好ましい範囲となり、安定した撹拌状態を維持することができる。S3/W2の値は、下限は0.5以上がより好ましく、0.8以上がさらに好ましい。 S 3 / W 2 is a value related to the shape of the container in which the catalyst raw material liquid A and the catalyst raw material liquid B are mixed. By adjusting the shape of the container in which the catalyst raw material liquid A and the catalyst raw material liquid B are mixed so as to satisfy the formula (iv), the surface area of the liquid surface with respect to the volume of the liquid in the container becomes a preferable range, and a stable stirring state Can be maintained. As for the value of S 3 / W 2 , the lower limit is more preferably 0.5 or more, and even more preferably 0.8 or more.
前記工程(1)および(2)において調製容器を用いて前記触媒原料液Aおよび前記触媒原料液Bをそれぞれ調製した場合には、触媒原料液A及び触媒原料液Bのいずれか一方(触媒原料液A)をそのまま該調製容器に入れておき、他方の液(触媒原料液B)を添加してもよく、前記式(iv)を満たすようにするため、新たに用意した容器に移し替えて、添加液を添加してもよい。また、容器を複数用いて、それぞれの容器において前記式(iv)を満たすように容器内液に添加液を添加してもよい。 When the catalyst raw material liquid A and the catalyst raw material liquid B are respectively prepared in the steps (1) and (2) using a preparation container, either one of the catalyst raw material liquid A and the catalyst raw material liquid B (catalyst raw material) Liquid A) may be left in the preparation container as it is, and the other liquid (catalyst raw material liquid B) may be added. In order to satisfy the formula (iv), the liquid A) is transferred to a newly prepared container. An additive solution may be added. Further, a plurality of containers may be used, and the additive liquid may be added to the liquid in the container so as to satisfy the formula (iv) in each container.
Sの値は特に限定されないが、0.01m2≦S≦3m2が好ましく、下限は0.05m2以上、上限は2m2以下がより好ましい。また、Wの値は特に限定されないが、0.1m3≦W≦4.5m3が好ましく、下限は0.5m3以上、上限は3.0m3以下がより好ましい。 The value of S is not particularly limited, but is preferably 0.01m 2 ≦ S ≦ 3m 2, the lower limit is 0.05 m 2 or more, the upper limit is 2m 2 or less being more preferred. Further, the value of W is not particularly limited, but 0.1 m 3 ≦ W ≦ 4.5 m 3 is preferable, the lower limit is 0.5 m 3 or more, and the upper limit is more preferably 3.0 m 3 or less.
工程(3)において、前記容器内液の液面の上部に前記添加口が配置されていることが好ましい。また、T/Sの値は下記式(v)を満たすことが好ましい。 In the step (3), it is preferable that the addition port is disposed above the liquid level of the liquid in the container. Moreover, it is preferable that the value of T / S satisfy | fills following formula (v).
2≦T/S≦100 (v)
式(v)中、Tは前記式(i)と同義であり、Sは前記式(iv)と同義である。T/Sは容器内液の液面の単位表面積当たりの添加口の数を示し、前記式(v)を満たすように調整することで、安定した撹拌状態を維持することができる。T/Sの値は、下限は3以上がより好ましく、4以上がさらに好ましい。上限は80以下がより好ましく、60以下がさらに好ましい。
2 ≦ T / S ≦ 100 (v)
In formula (v), T has the same meaning as in formula (i), and S has the same meaning as in formula (iv). T / S indicates the number of addition ports per unit surface area of the liquid level of the liquid in the container, and a stable stirring state can be maintained by adjusting so as to satisfy the formula (v). As for the value of T / S, the lower limit is more preferably 3 or more, and further preferably 4 or more. The upper limit is more preferably 80 or less, and still more preferably 60 or less.
更に、前記容器内液の液面の中心から、中心角が360°/Tとなるように、該液面に略平行に容器の壁面へ向けて引いたT本の直線で分割される該液面の領域をそれぞれY1〜YTとするとき、前記添加口は各Y1〜YTの上部にそれぞれ1つずつ配置されていることがより好ましい。前記添加口をこのように配置することで、触媒原料液Aと触媒原料液Bを混合する際に、両液の接触面がより均等となり、混合状態が安定することでメタクリル酸収率向上に有効な触媒粒子を安定して生成することができる。なお、「容器内液の液面の中心」とは、容器内液の液面の重心を示し、例えば液面の形状が円形の場合には円の中心、液面の形状が長方形の場合には対角線の交点であることができる。また、「略平行」とは±5°の範囲内で平行であることを示す。特に、Y1の上部に存在する添加口から容器内液の液面上に垂線を下したときの接点をZ1とするとき、容器内液の液面の中心を軸として360°/TずつZ1を回転移動させた位置の上部に、全ての添加口が存在することが好ましい。 Furthermore, the liquid divided by T straight lines drawn from the center of the liquid level of the liquid in the container toward the wall surface of the container substantially parallel to the liquid level so that the central angle is 360 ° / T. When the surface regions are Y 1 to Y T , respectively, it is more preferable that one of the addition ports is arranged above each Y 1 to Y T. By arranging the addition port in this way, when the catalyst raw material liquid A and the catalyst raw material liquid B are mixed, the contact surfaces of both liquids become more uniform, and the mixed state is stabilized, thereby improving the methacrylic acid yield. Effective catalyst particles can be stably produced. The “center of the liquid level of the liquid in the container” indicates the center of gravity of the liquid level of the liquid in the container. For example, when the liquid level is circular, the center of the circle, and when the liquid level is rectangular, Can be the intersection of diagonal lines. Further, “substantially parallel” means parallel within a range of ± 5 °. In particular, when Z 1 is a contact point when a perpendicular line is dropped on the liquid level of the liquid in the container from the addition port existing at the top of Y 1 , 360 ° / T about the center of the liquid level of the liquid in the container the top position of the Z 1 is rotated moving, it is preferred that all addition port exists.
工程(3)において、前記添加口は、前記容器内液の液面の中心を中心として、下記式(vi)で算出される半径R[m]で描かれる円形領域内の上部に存在しないことが好ましい。すなわち、前記添加口は、前記円形領域の範囲外の上部に全て存在することが好ましい。 In the step (3), the addition port does not exist in the upper part in the circular region drawn by the radius R [m] calculated by the following formula (vi) with the center of the liquid level of the liquid in the container as the center. Is preferred. That is, it is preferable that all of the addition ports exist at the upper part outside the range of the circular region.
また、第一の実施形態では、工程(3)において、触媒原料液Aが入った容器に、触媒原料液Bを添加して混合することが好ましい。カチオン原料を含む触媒原料液を添加液として混合することで、よりメタクリル酸収率向上に有効な触媒粒子が生成されやすくなると推測される。 In the first embodiment, in the step (3), it is preferable to add and mix the catalyst raw material liquid B into the container containing the catalyst raw material liquid A. It is presumed that catalyst particles that are more effective in improving the yield of methacrylic acid are more likely to be produced by mixing a catalyst raw material solution containing a cation raw material as an additive solution.
工程(3)で得られる液体は、ケギン型構造を有するヘテロポリ酸またはその塩を含む。液体がケギン型構造を有するヘテロポリ酸またはその塩を含むことにより、生成した触媒粒子が変化せず安定して存在できるため、メタクリル酸収率の高い触媒を得ることができる。なお、前記液体がケギン型構造を有するヘテロポリ酸またはその塩を含むことは、前記液体を乾燥させたものを赤外吸収分析で測定することにより確認することができる。ケギン型構造を有するヘテロポリ酸またはその塩を含む場合、得られる赤外吸収スペクトルは、1060、960、870、780cm−1付近に特徴的なピークを有する。 The liquid obtained in the step (3) contains a heteropolyacid having a Keggin structure or a salt thereof. When the liquid contains a heteropolyacid having a Keggin-type structure or a salt thereof, the produced catalyst particles can be stably present without change, and thus a catalyst having a high methacrylic acid yield can be obtained. In addition, it can confirm that the said liquid contains the heteropoly acid which has a Keggin type structure, or its salt by measuring what dried the said liquid by infrared absorption analysis. When a heteropolyacid having a Keggin structure or a salt thereof is included, the obtained infrared absorption spectrum has characteristic peaks in the vicinity of 1060, 960, 870, and 780 cm −1 .
工程(3)で得られる液体のpHは、3.0以下であることが好ましく、2.5以下であることがより好ましい。該pHが3.0以下であることにより、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を簡便に得ることができる。該pHを3.0以下とする方法としては、触媒原料液AのpHを予め低く調節しておく方法等が挙げられる。 The pH of the liquid obtained in the step (3) is preferably 3.0 or less, and more preferably 2.5 or less. When the pH is 3.0 or less, a liquid containing a heteropolyacid having a Keggin structure or a salt thereof can be easily obtained. Examples of the method of adjusting the pH to 3.0 or less include a method of previously adjusting the pH of the catalyst raw material liquid A to be low.
(乾燥工程)
本発明に係る方法は、前記工程(3)で得られた前記ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を乾燥し、触媒前駆体を得る工程を含むことが好ましい。前記液体の乾燥方法や乾燥温度等の条件は特に限定されず、所望の乾燥物の形状や大きさにより適宣選択することができる。乾燥方法としては、例えば、箱型乾燥器を用いた乾燥方法、ドラム乾燥法、気流乾燥法、蒸発乾固法、噴霧乾燥法等が挙げられる。乾燥温度は、例えば120〜500℃とすることができ、下限は140℃以上、上限は400℃以下が好ましい。乾燥は、前記液体が乾固するまで行うことができる。
(Drying process)
The method according to the present invention preferably includes a step of drying the liquid containing the heteropolyacid having a Keggin structure obtained in the step (3) or a salt thereof to obtain a catalyst precursor. Conditions such as the drying method and drying temperature of the liquid are not particularly limited, and can be appropriately selected depending on the desired shape and size of the dried product. Examples of the drying method include a drying method using a box-type dryer, a drum drying method, an airflow drying method, an evaporation to dryness method, and a spray drying method. A drying temperature can be 120-500 degreeC, for example, a minimum is 140 degreeC or more, and an upper limit is 400 degrees C or less. Drying can be performed until the liquid is dried.
(成形工程)
本発明に係る方法は、後述する熱処理工程の前に、前記乾燥工程で得られた前記触媒前駆体を成形する工程を実施してもよい。成形方法は特に制限されず、公知の乾式又は湿式の成形方法が適用できる。例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状は特に限定されず、例えば、円柱状、リング状、球状等が挙げられる。また、成形時には触媒前駆体に担体やバインダー等を添加せず、触媒前駆体を単独で成形することが好ましいが、必要に応じて例えばグラファイト、タルク等の公知の添加剤や有機物、無機物由来の公知のバインダーを添加してもよい。以下、前記乾燥工程により得られる触媒前駆体および前記成形工程により得られる触媒前駆体の成形品をまとめて触媒前駆体と示す。
(Molding process)
The method which concerns on this invention may implement the process of shape | molding the said catalyst precursor obtained at the said drying process before the heat treatment process mentioned later. The molding method is not particularly limited, and a known dry or wet molding method can be applied. For example, tableting molding, press molding, extrusion molding, granulation molding and the like can be mentioned. The shape of the molded product is not particularly limited, and examples thereof include a columnar shape, a ring shape, and a spherical shape. In addition, it is preferable to form the catalyst precursor alone without adding a carrier or a binder to the catalyst precursor at the time of molding, but if necessary, known additives such as graphite and talc, organic substances, and inorganic substances are used. A known binder may be added. Hereinafter, the catalyst precursor obtained by the drying step and the molded product of the catalyst precursor obtained by the molding step are collectively referred to as a catalyst precursor.
(熱処理工程)
本発明に係る方法は、前記触媒前駆体を熱処理する工程を含むことが好ましい。例えば、前記触媒前駆体を空気及び不活性ガスの少なくとも一方の流通下で熱処理することができる。前記熱処理は、空気等の酸素含有ガス流通下で行われることが好ましい。また、「不活性ガス」とは触媒活性を低下させない気体のことを示し、例えば窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。これらは一種を用いてもよく、二種以上を混合して使用してもよい。熱処理容器の形状は特に制限されないが、断面積が2平方センチメートル以上、100平方センチメートル以下である管状熱処理容器を用いることが好ましい。熱処理温度は300℃以上700℃以下が好ましく、下限は320℃以上、上限は450℃以下がより好ましい。
(Heat treatment process)
The method according to the present invention preferably includes a step of heat-treating the catalyst precursor. For example, the catalyst precursor can be heat-treated under the flow of at least one of air and inert gas. The heat treatment is preferably performed under a flow of oxygen-containing gas such as air. The “inert gas” refers to a gas that does not decrease the catalytic activity, and examples thereof include nitrogen, carbon dioxide gas, helium, and argon. These may use 1 type and may mix and use 2 or more types. The shape of the heat treatment container is not particularly limited, but it is preferable to use a tubular heat treatment container having a cross-sectional area of 2 square centimeters or more and 100 square centimeters or less. The heat treatment temperature is preferably 300 ° C. or higher and 700 ° C. or lower, the lower limit is 320 ° C. or higher, and the upper limit is more preferably 450 ° C. or lower.
このようにして得られるメタクリル酸製造用触媒は、ケギン型構造を有するヘテロポリ酸またはその塩を含むことが、メタクリル酸収率がより高い観点から好ましい。ケギン型構造を有するヘテロポリ酸またはその塩を含むことは、前述したように赤外吸収分析で測定することにより確認することができる。 The methacrylic acid production catalyst thus obtained preferably contains a heteropolyacid having a Keggin structure or a salt thereof from the viewpoint of higher yield of methacrylic acid. The inclusion of a heteropolyacid having a Keggin structure or a salt thereof can be confirmed by measurement by infrared absorption analysis as described above.
[メタクリル酸の製造方法]
本発明に係るメタクリル酸の製造方法では、本発明に係る方法により製造されたメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する。また、本発明に係るメタクリル酸の製造方法では、本発明に係る方法によりメタクリル酸製造用触媒を製造し、該メタクリル酸製造用触媒の存在下でメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する。これらの方法によれば、高い収率でメタクリル酸を製造することができる。具体的には、メタクロレインおよび分子状酸素を含む原料ガスと、本発明に係るメタクリル酸製造用触媒とを接触させることでメタクリル酸を製造することができる。この反応は固定床で行うことができる。触媒層は1層でもよく、2層以上でもよい。メタクリル酸製造用触媒は、担体に担持されていてもよく、その他の添加剤を含んでもよい。原料ガス中のメタクロレインの濃度は特に限定されないが、1〜20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。メタクロレインは、低級飽和アルデヒド等の本反応に実質的に影響を与えない不純物を少量含んでいてもよい。原料ガス中の分子状酸素の濃度は、メタクロレイン1モルに対して0.4〜4モルが好ましく、下限は0.5モル以上、上限は3モル以下がより好ましい。なお、分子状酸素源としては、経済性の観点から空気が好ましいが、必要であれば、空気に純酸素を加えて分子状酸素を富化した気体等を用いてもよい。原料ガスは、メタクロレインおよび分子状酸素を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。さらに、原料ガスに水蒸気を加えてもよい。水蒸気の存在下で反応を行うことにより、メタクリル酸をより高い収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1〜50容量%が好ましく、下限は1容量%以上、上限は40容量%以下がより好ましい。原料ガスとメタクリル酸製造用触媒との接触時間は、1.5〜15秒が好ましく、下限は2秒以上、上限は5秒以下がより好ましい。反応圧力は、0.1MPa(G)〜1.0MPa(G)が好ましい。なお、(G)はゲージ圧であることを意味する。反応温度は200〜450℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。
[Method for producing methacrylic acid]
In the method for producing methacrylic acid according to the present invention, methacrylic acid is produced by vapor-phase catalytic oxidation of methacrolein with molecular oxygen in the presence of the catalyst for producing methacrylic acid produced by the method according to the present invention. Further, in the method for producing methacrylic acid according to the present invention, a catalyst for producing methacrylic acid is produced by the method according to the present invention, and methacrolein is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst for producing methacrylic acid. To produce methacrylic acid. According to these methods, methacrylic acid can be produced with high yield. Specifically, methacrylic acid can be produced by bringing a raw material gas containing methacrolein and molecular oxygen into contact with the catalyst for producing methacrylic acid according to the present invention. This reaction can be carried out in a fixed bed. The catalyst layer may be one layer or two or more layers. The catalyst for producing methacrylic acid may be supported on a carrier and may contain other additives. The concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, the lower limit is 3% by volume or more, and the upper limit is more preferably 10% by volume or less. The methacrolein may contain a small amount of impurities such as lower saturated aldehydes that do not substantially affect this reaction. The concentration of molecular oxygen in the raw material gas is preferably 0.4 to 4 mol per mol of methacrolein, the lower limit is 0.5 mol or more, and the upper limit is more preferably 3 mol or less. As the molecular oxygen source, air is preferable from the viewpoint of economy, but if necessary, a gas enriched with molecular oxygen by adding pure oxygen to air may be used. The source gas may be obtained by diluting methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide. Further, water vapor may be added to the source gas. By performing the reaction in the presence of water vapor, methacrylic acid can be obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably 0.1 to 50% by volume, the lower limit is preferably 1% by volume or more, and the upper limit is more preferably 40% by volume or less. The contact time between the raw material gas and the catalyst for producing methacrylic acid is preferably 1.5 to 15 seconds, the lower limit is preferably 2 seconds or more, and the upper limit is more preferably 5 seconds or less. The reaction pressure is preferably 0.1 MPa (G) to 1.0 MPa (G). Note that (G) means a gauge pressure. The reaction temperature is preferably 200 to 450 ° C, the lower limit is 250 ° C or higher, and the upper limit is more preferably 400 ° C or lower.
[メタクリル酸エステルの製造方法]
本発明に係るメタクリル酸エステルの製造方法は、本発明に係る方法により製造されたメタクリル酸をエステル化する。該方法によれば、メタクロレインの気相接触酸化により得られるメタクリル酸を用いて、メタクリル酸エステルを得ることができる。メタクリル酸と反応させるアルコールとしては、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール等が挙げられる。得られるメタクリル酸エステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等が挙げられる。反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。反応温度は50〜200℃が好ましい。
[Method for producing methacrylate ester]
In the method for producing a methacrylic acid ester according to the present invention, methacrylic acid produced by the method according to the present invention is esterified. According to this method, a methacrylic acid ester can be obtained using methacrylic acid obtained by gas phase catalytic oxidation of methacrolein. Examples of the alcohol to be reacted with methacrylic acid include methanol, ethanol, isopropanol, n-butanol, and isobutanol. Examples of the resulting methacrylic acid ester include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate. The reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin. The reaction temperature is preferably 50 to 200 ° C.
以下、実施例および比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例および比較例中の「部」は質量部を意味する。触媒の元素組成のモル比は、触媒をアンモニア水に溶解した成分をICP発光分析法で分析することによって算出した。原料ガスおよび生成物の分析は、ガスクロマトグラフィーを用いて行った。ガスクロマトグラフィーの結果から、メタクロレインの転化率、生成するメタクリル酸の選択率及びメタクリル酸の単流収率を下記式にて求めた。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples. “Parts” in Examples and Comparative Examples means parts by mass. The molar ratio of the elemental composition of the catalyst was calculated by analyzing the component in which the catalyst was dissolved in aqueous ammonia by ICP emission spectrometry. The analysis of the raw material gas and the product was performed using gas chromatography. From the results of gas chromatography, the conversion rate of methacrolein, the selectivity of methacrylic acid to be produced, and the single flow yield of methacrylic acid were determined by the following formula.
メタクロレイン転化率(%)=(B/A)×100
メタクリル酸選択率(%)=(C/B)×100
メタクリル酸単流収率=(C/A)×100
式中、Aは供給したメタクロレインの炭素数、Bは反応したメタクロレインの炭素数、Cは生成したメタクリル酸の炭素数を示す。
Conversion rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid single yield = (C / A) × 100
In the formula, A represents the carbon number of the supplied methacrolein, B represents the carbon number of the reacted methacrolein, and C represents the carbon number of the produced methacrylic acid.
またu2は、触媒原料液Bのモル濃度[mol/L]とu1の積として算出した。 U2 was calculated as the product of the molar concentration [mol / L] of the catalyst raw material liquid B and u1.
[実施例1]
純水400部に、三酸化モリブデン100部、メタバナジン酸アンモニウム7.5部、85質量%リン酸水溶液11.4部、および硝酸銅(II)3水和物7.0部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌して触媒原料液Aを得た。触媒原料液AのpHは2.1であった。一方、純水20部に重炭酸セシウム15.7部を溶解して触媒原料液B1を得た。また、純水20部に重炭酸アンモニウム20.0部を溶解して触媒原料液B2を得た。前記触媒原料液A、前記触媒原料液B1および前記触媒原料液B2の合計の容積は2.1m3であった。
[Example 1]
In 400 parts of pure water, 100 parts of molybdenum trioxide, 7.5 parts of ammonium metavanadate, 11.4 parts of 85 mass% phosphoric acid aqueous solution, and 7.0 parts of copper (II) nitrate trihydrate were dissolved. While stirring this, the temperature was raised to 95 ° C., and the mixture was stirred for 2 hours while maintaining the liquid temperature at 95 ° C. to obtain catalyst raw material liquid A. The pH of the catalyst raw material liquid A was 2.1. On the other hand, 15.7 parts of cesium bicarbonate was dissolved in 20 parts of pure water to obtain catalyst raw material liquid B1. Further, 20.0 parts of ammonium bicarbonate was dissolved in 20 parts of pure water to obtain catalyst raw material liquid B2. The total volume of the catalyst raw material liquid A, the catalyst raw material liquid B1, and the catalyst raw material liquid B2 was 2.1 m 3 .
容器内の触媒原料液Aの液温を95℃に保持したまま、触媒原料液Aを、回転翼攪拌機を用いて攪拌しつつ、触媒原料液B1を添加して15分攪拌した。その後、触媒原料液B2を添加して15分攪拌した。なお、触媒原料液B1およびB2を添加する際には、T=10、S=1.54m2、V=1.9m3、S3/W2=1.01、T/(3√V)=8.1、T/S=6.5、u1=0.20L/分とした。この時のu2については、触媒原料液B1が0.62mol/分、触媒原料液B2が1.40mol/分であった。また、直径2mmの添加口が等間隔に設けられた半径3×(√(S/π))/7[m]のリング状配管を、該リング状配管の中心が容器内液の液面の中心の上部に位置するように、また領域Y1〜Y10の上部に添加口がそれぞれ1つずつ配置されるように配置した。該リング状配管の添加口から触媒原料液B1およびB2を順次添加した。得られたスラリーには、ケギン型構造を有するヘテロポリ酸またはその塩が含まれていた。その後、該スラリーを噴霧乾燥することで、触媒前駆体を得た。 While keeping the temperature of the catalyst raw material liquid A in the vessel at 95 ° C., the catalyst raw material liquid A was added using a rotary blade stirrer, and the catalyst raw material liquid B1 was added and stirred for 15 minutes. Thereafter, the catalyst raw material liquid B2 was added and stirred for 15 minutes. In addition, when adding catalyst raw material liquids B1 and B2, T = 10, S = 1.54 m 2 , V = 1.9 m 3 , S 3 / W 2 = 1.01, T / ( 3 √V) = 8.1, T / S = 6.5, u1 = 0.20 L / min. Regarding u2, the catalyst raw material liquid B1 was 0.62 mol / min and the catalyst raw material liquid B2 was 1.40 mol / min. Further, a ring-shaped pipe having a radius of 3 × (√ (S / π)) / 7 [m] in which addition ports having a diameter of 2 mm are provided at equal intervals, and the center of the ring-shaped pipe is the level of the liquid in the container. so as to be positioned on top of the center, also the upper to the addition port of the region Y 1 to Y 10 is arranged to be disposed one each. Catalyst raw material liquids B1 and B2 were sequentially added from the addition port of the ring-shaped pipe. The resulting slurry contained a heteropolyacid having a Keggin structure or a salt thereof. Thereafter, the slurry was spray-dried to obtain a catalyst precursor.
前記触媒前駆体を成形し、内径3cmの円筒状石英ガラス製焼成容器に入れた。空気流通下、10℃/hで昇温し、380℃にて2時間熱処理することで、メタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ケギン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo12P1.7V1.1Cu0.5Cs1.4であった。 The catalyst precursor was molded and placed in a cylindrical quartz glass baking vessel having an inner diameter of 3 cm. The catalyst for methacrylic acid production was prepared by heating at 10 ° C./h under air flow and heat treating at 380 ° C. for 2 hours. The resulting catalyst for methacrylic acid production had a Keggin type structure. Moreover, elemental compositions other than oxygen of the obtained catalyst for methacrylic acid production were Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 .
前記メタクリル酸製造用触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%および窒素55容量%からなる原料ガスを流通させ、反応温度300℃で反応を行った。生成物を捕集し、ガスクロマトグラフィーで分析して、メタクリル酸収率を算出した。結果を表1に示す。 The catalyst for producing methacrylic acid was filled in a reaction tube, and a raw material gas consisting of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor and 55% by volume of nitrogen was circulated and reacted at a reaction temperature of 300 ° C. . The product was collected and analyzed by gas chromatography to calculate the methacrylic acid yield. The results are shown in Table 1.
[実施例2]
触媒原料液A、触媒原料液B1および触媒原料液B2の合計の容積を0.10m3、T=4、S=0.196m2、V=0.088m3、S3/W2=0.97、T/(3√V)=9.0、T/S=20.4、u1=0.03L/分に変更し、領域Y1〜Y4の上部に添加口がそれぞれ1つずつ配置されるように、直径2mmの添加口が等間隔に設けられた半径3×(√(S/π))/5[m]のリング状配管を用いた。また、この時のu2については、触媒原料液B1が0.09mol/分、触媒原料液B2が0.21mol/分であった。これら以外は、実施例1と同様の方法によりスラリーを得た。得られたスラリーには、ケギン型構造を有するヘテロポリ酸またはその塩が含まれていた。その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ケギン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo12P1.7V1.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。
[Example 2]
The total volume of the catalyst raw material liquid A, the catalyst raw material liquid B1 and the catalyst raw material liquid B2 is 0.10 m 3 , T = 4, S = 0.196 m 2 , V = 0.088 m 3 , S 3 / W 2 = 0. 97, T / ( 3 √V) = 9.0, T / S = 20.4, u1 = 0.03 L / min, and one addition port is arranged above each of the regions Y 1 to Y 4 As described above, a ring-shaped pipe having a radius of 3 × (√ (S / π)) / 5 [m] in which addition ports having a diameter of 2 mm are provided at equal intervals was used. Moreover, about u2 at this time, catalyst raw material liquid B1 was 0.09 mol / min, and catalyst raw material liquid B2 was 0.21 mol / min. Except for these, a slurry was obtained in the same manner as in Example 1. The resulting slurry contained a heteropolyacid having a Keggin structure or a salt thereof. Thereafter, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The resulting catalyst for methacrylic acid production had a Keggin type structure. Moreover, elemental compositions other than oxygen of the obtained catalyst for methacrylic acid production were Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the methacrylic acid production catalyst was used. The results are shown in Table 1.
[実施例3]
T=13、S=1.54m2、V=1.9m3、S3/W2=1.01、T/(3√V)=10.5、T/S=8.4、u1=0.26L/分に変更し、領域Y1おいて、容器内液の液面の中心から半径5×(√(S/π))/7[m]以上の領域の上部に全ての添加口を配置した。また、この時のu2については、触媒原料液B1が0.80mol/分、触媒原料液B2が1.83mol/分であった。これら以外は、実施例1と同様の方法によりスラリーを得た。得られたスラリーには、ケギン型構造を有するヘテロポリ酸またはその塩が含まれていた。その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ケギン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo12P1.7V1.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。
[Example 3]
T = 13, S = 1.54m 2 , V = 1.9m 3, S 3 / W 2 = 1.01, T / (3 √V) = 10.5, T / S = 8.4, u1 = change to 0.26 L / min, area Y 1 Oite radius 5 × from the center of the liquid surface of the solution inside the container (√ (S / π)) / 7 [m] any addition port on top of or more regions Arranged. Moreover, about u2 at this time, catalyst raw material liquid B1 was 0.80 mol / min, and catalyst raw material liquid B2 was 1.83 mol / min. Except for these, a slurry was obtained in the same manner as in Example 1. The resulting slurry contained a heteropolyacid having a Keggin structure or a salt thereof. Thereafter, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The resulting catalyst for methacrylic acid production had a Keggin type structure. Moreover, elemental compositions other than oxygen of the obtained catalyst for methacrylic acid production were Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the methacrylic acid production catalyst was used. The results are shown in Table 1.
[比較例1]
触媒原料液A、触媒原料液B1および触媒原料液B2の合計の容積を0.0014m3、T=1、S=0.0177m2、V=0.0013m3、S3/W2=3.28、T/(3√V)=9.2、T/S=56.5、u1=1.41L/分に変更し、容器内液の液面の中心から4×(√(S/π))/5[m]の位置の上部に添加口を配置した。また、この時のu2については、触媒原料液B1が4.35mol/分、触媒原料液B2が9.90mol/分であった。これら以外は、実施例1と同様の方法によりスラリーを得た。得られたスラリーには、ケギン型構造を有するヘテロポリ酸またはその塩が含まれていた。その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ケギン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo12P1.7V1.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。
[Comparative Example 1]
The total volume of the catalyst raw material liquid A, the catalyst raw material liquid B1 and the catalyst raw material liquid B2 is 0.0014 m 3 , T = 1, S = 0.0177 m 2 , V = 0.003 m 3 , S 3 / W 2 = 3. 28, T / (3 √V) = 9.2, T / S = 56.5, u1 = change in 1.41L / min, 4 × from the center of the liquid surface of the solution inside the container (√ (S / π )) The addition port was arranged at the upper part of the position of / 5 [m]. Moreover, about u2 at this time, catalyst raw material liquid B1 was 4.35 mol / min, and catalyst raw material liquid B2 was 9.90 mol / min. Except for these, a slurry was obtained in the same manner as in Example 1. The resulting slurry contained a heteropolyacid having a Keggin structure or a salt thereof. Thereafter, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The resulting catalyst for methacrylic acid production had a Keggin type structure. Moreover, elemental compositions other than oxygen of the obtained catalyst for methacrylic acid production were Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the methacrylic acid production catalyst was used. The results are shown in Table 1.
[比較例2]
触媒原料液A、触媒原料液B1および触媒原料液B2の合計の容積を0.00048m3、T=1、S=0.00785m2、V=0.00043m3、S3/W2=2.62、T/(3√V)=13.2、T/S=127.4、u1=0.07L/分に変更し、容器内液の液面の中心から2×(√(S/π))/5[m]の位置の上部に添加口を配置した。また、この時のu2については、触媒原料液B1が0.22mol/分、触媒原料液B2が0.49mol/分であった。これら以外は、実施例1と同様の方法によりスラリーを得た。得られたスラリーには、ケギン型構造を有するヘテロポリ酸またはその塩が含まれていた。その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ケギン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo12P1.7V1.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。
[Comparative Example 2]
The total volume of the catalyst raw material liquid A, the catalyst raw material liquid B1 and the catalyst raw material liquid B2 is 0.00048 m 3 , T = 1, S = 0.00785 m 2 , V = 0.00043 m 3 , S 3 / W 2 = 2. 62, T / (3 √V) = 13.2, T / S = 127.4, u1 = change in 0.07 L / min, 2 × from the center of the liquid surface of the solution inside the container (√ (S / π )) The addition port was arranged at the upper part of the position of / 5 [m]. Moreover, about u2 at this time, catalyst raw material liquid B1 was 0.22 mol / min, and catalyst raw material liquid B2 was 0.49 mol / min. Except for these, a slurry was obtained in the same manner as in Example 1. The resulting slurry contained a heteropolyacid having a Keggin structure or a salt thereof. Thereafter, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The resulting catalyst for methacrylic acid production had a Keggin type structure. Moreover, elemental compositions other than oxygen of the obtained catalyst for methacrylic acid production were Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the methacrylic acid production catalyst was used. The results are shown in Table 1.
[比較例3]
純水400部に、三酸化モリブデン100部、メタバナジン酸アンモニウム7.5部、85質量%リン酸水溶液11.4部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌して触媒原料液Aを調製した。触媒原料液AのpHは6.9であった。一方、純水20部に硝酸セシウム15.8部を溶解して触媒原料液B1を調製した。また、純水20部に30質量%のアンモニア水40.0部を溶解して触媒原料液B2を調製した。また、純水40部に硝酸銅(II)3水和物7.0部を溶解して触媒原料液B3を調製した。前記触媒原料液A、前記触媒原料液B1〜B3の合計の容積は2.3m3であった。
[Comparative Example 3]
In 400 parts of pure water, 100 parts of molybdenum trioxide, 7.5 parts of ammonium metavanadate, and 11.4 parts of 85 mass% phosphoric acid aqueous solution were dissolved. While stirring this, the temperature was raised to 95 ° C., and the mixture was stirred for 2 hours while maintaining the liquid temperature at 95 ° C. to prepare catalyst raw material liquid A. The pH of the catalyst raw material liquid A was 6.9. On the other hand, 15.8 parts of cesium nitrate was dissolved in 20 parts of pure water to prepare catalyst raw material liquid B1. Further, 40.0 parts of 30% by mass of ammonia water was dissolved in 20 parts of pure water to prepare catalyst raw material liquid B2. Further, 7.0 parts of copper (II) nitrate trihydrate was dissolved in 40 parts of pure water to prepare catalyst raw material liquid B3. The total volume of the catalyst raw material liquid A and the catalyst raw material liquids B1 to B3 was 2.3 m 3 .
容器内の触媒原料液Aの液温を50℃に冷却して保持したまま、触媒原料液Aを、回転翼攪拌機を用いて攪拌しつつ、触媒原料液B1を添加して15分攪拌した。その後、触媒原料液B2を添加して15分攪拌した。さらに、触媒原料液B3を添加した。なお、触媒原料B1からB3は実施例3と同様に添加した。また、この時のu2については、触媒原料液B1が0.80mol/分、触媒原料液B2が2.87mol/分、触媒原料液B3が0.18mol/分であった。得られたスラリーには、ドーソン型構造を有するヘテロポリ酸またはその塩が含まれていた。 While the temperature of the catalyst raw material liquid A in the vessel was cooled to 50 ° C. and maintained, the catalyst raw material liquid A was added using a rotary blade stirrer, and the catalyst raw material liquid B1 was added and stirred for 15 minutes. Thereafter, the catalyst raw material liquid B2 was added and stirred for 15 minutes. Further, catalyst raw material liquid B3 was added. Catalyst raw materials B1 to B3 were added in the same manner as in Example 3. Further, regarding u2, the catalyst raw material liquid B1 was 0.80 mol / min, the catalyst raw material liquid B2 was 2.87 mol / min, and the catalyst raw material liquid B3 was 0.18 mol / min. The resulting slurry contained a heteropolyacid having a Dawson structure or a salt thereof.
その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ドーソン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo12P1.7V1.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。 Thereafter, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The resulting catalyst for methacrylic acid production had a Dawson type structure. Moreover, elemental compositions other than oxygen of the obtained catalyst for methacrylic acid production were Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the methacrylic acid production catalyst was used. The results are shown in Table 1.
[比較例4]
比較例3と同様に、触媒原料液A、B1〜B3を調製した。容器内の触媒原料液Aの液温を50℃に冷却して保持したまま、触媒原料液Aを、回転翼攪拌機を用いて攪拌しつつ、触媒原料液B1を添加して15分攪拌した。その後、触媒原料液B2を添加して15分攪拌した。さらに、触媒原料液B3を添加した。なお、触媒原料B1からB3は実施例1と同様に添加した。また、この時のu2については、触媒原料液B1が0.62mol/分、触媒原料液B2が2.21mol/分、触媒原料液B3が0.14mol/分であった。得られたスラリーには、ドーソン型構造を有するヘテロポリ酸またはその塩が含まれていた。
[Comparative Example 4]
In the same manner as in Comparative Example 3, catalyst raw material liquids A and B1 to B3 were prepared. While the temperature of the catalyst raw material liquid A in the vessel was cooled to 50 ° C. and maintained, the catalyst raw material liquid A was added using a rotary blade stirrer, and the catalyst raw material liquid B1 was added and stirred for 15 minutes. Thereafter, the catalyst raw material liquid B2 was added and stirred for 15 minutes. Further, catalyst raw material liquid B3 was added. Catalyst raw materials B1 to B3 were added in the same manner as in Example 1. Further, regarding u2, the catalyst raw material liquid B1 was 0.62 mol / min, the catalyst raw material liquid B2 was 2.21 mol / min, and the catalyst raw material liquid B3 was 0.14 mol / min. The resulting slurry contained a heteropolyacid having a Dawson structure or a salt thereof.
その後、実施例1と同様にメタクリル酸製造用触媒を調製した。得られたメタクリル酸製造用触媒は、ドーソン型構造を有していた。また、得られたメタクリル酸製造用触媒の酸素以外の元素組成は、Mo12P1.7V1.1Cu0.5Cs1.4であった。また、該メタクリル酸製造用触媒を用いた以外は、実施例1と同様にメタクリル酸を製造した。結果を表1に示す。 Thereafter, a catalyst for producing methacrylic acid was prepared in the same manner as in Example 1. The resulting catalyst for methacrylic acid production had a Dawson type structure. Moreover, elemental compositions other than oxygen of the obtained catalyst for methacrylic acid production were Mo 12 P 1.7 V 1.1 Cu 0.5 Cs 1.4 . Further, methacrylic acid was produced in the same manner as in Example 1 except that the methacrylic acid production catalyst was used. The results are shown in Table 1.
実施例1、2および3では、T/(3√V)の値並びにu1およびu2の値が本発明の範囲内にあり、収率が高い触媒であることが確認された。なお、実施例3では、添加口が領域Y1の上部にのみ配置されており、実施例1および2と比較すると収率がやや低い触媒となった。また、比較例1ではu1および触媒原料液B2のu2の値が、比較例2ではT/(3√V)の値がそれぞれ本発明の範囲外であるため、実施例と比較して収率が低かった。また、比較例3および4では、得られたスラリーがケギン型構造を有するヘテロポリ酸またはその塩を含まなかったため、実施例と比較して収率が低かった。なお、本実施例で得られたメタクリル酸をエステル化することで、メタクリル酸エステルを得ることができる。 In Examples 1, 2 and 3, in the range of T / values of and u1 and u2 of (3 √V) is the present invention, it was confirmed yield of high catalyst. In addition, in Example 3, the addition port was arrange | positioned only in the upper part of area | region Y1, and it became a catalyst with a somewhat low yield compared with Example 1 and 2. FIG. Further, since the value of u2 of Comparative Example 1, u1 and catalyst raw material solution B2 is the value of Comparative Example 2 T / (3 √V) is outside the scope of the present invention, respectively, yield compared with Example Was low. Moreover, in Comparative Examples 3 and 4, since the obtained slurry did not contain a heteropolyacid having a Keggin structure or a salt thereof, the yield was low as compared with Examples. In addition, a methacrylic acid ester can be obtained by esterifying the methacrylic acid obtained in the present Example.
この出願は、2016年8月22日に出願された日本出願特願2016−161888を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2006-161888 for which it applied on August 22, 2016, and takes in those the indications of all here.
以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the exemplary embodiments and examples, the present invention is not limited to the above exemplary embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
本発明に係る方法により得られるメタクリル酸製造用触媒は、高い収率でメタクリル酸を製造できるため、工業的に有用である。 The catalyst for producing methacrylic acid obtained by the method according to the present invention is industrially useful because it can produce methacrylic acid in a high yield.
Claims (18)
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程と、
(2)カチオン原料を含む触媒原料液Bを準備する工程と、
(3)前記触媒原料液Aおよび前記触媒原料液Bのいずれか一方に、他方の液を添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程と、を含み、
前記工程(3)において、下記式(i)および(ii)を満たすメタクリル酸製造用触媒の製造方法。
3.0≦T/(3√V)≦13.0 (i)
0.01≦u1≦1.0 (ii)
(式(i)および(ii)中、Vは前記触媒原料液Aの容積[m3]、Tは他方の液を添加するための添加口の数、u1は添加する他方の液の体積流速[L/分]を示す。なおTが2以上である場合、u1は各添加口から添加される他方の液の体積流速の平均値を示す。) A method for producing a catalyst for producing methacrylic acid used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen,
(1) preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium;
(2) preparing a catalyst raw material liquid B containing a cation raw material;
(3) The step of adding the other liquid to one of the catalyst raw material liquid A and the catalyst raw material liquid B and mixing to prepare a liquid containing a heteropolyacid having a Keggin structure or a salt thereof. Including
A method for producing a methacrylic acid production catalyst satisfying the following formulas (i) and (ii) in the step (3).
3.0 ≦ T / ( 3 √V) ≦ 13.0 (i)
0.01 ≦ u1 ≦ 1.0 (ii)
(In the formulas (i) and (ii), V is the volume [m 3 ] of the catalyst raw material liquid A, T is the number of addition ports for adding the other liquid, and u1 is the volume flow rate of the other liquid to be added. [L / min.] When T is 2 or more, u1 represents an average value of the volume flow rate of the other liquid added from each addition port.
(1)少なくともモリブデン、リンおよびバナジウムを含む触媒原料液Aを準備する工程と、
(2)カチオン原料を含む触媒原料液Bを準備する工程と、
(3)前記触媒原料液Aに前記触媒原料液Bを添加して混合し、ケギン型構造を有するヘテロポリ酸またはその塩を含む液体を調製する工程と、を含み、
前記工程(3)において、下記式(i)および(iii)を満たすメタクリル酸製造用触媒の製造方法。
3.0≦T/(3√V)≦13.0 (i)
0.01≦u2≦8 (iii)
(式(i)および(iii)中、Vは前記触媒原料液Aの容積[m3]、Tは前記触媒原料液Bを添加するための添加口の数、u2は前記触媒原料液Bのカチオン原料の流速[mol/分]を示す。なおTが2以上である場合、u2は各添加口から添加される前記触媒原料液Bのカチオン原料の流速の平均値を示す。) A method for producing a catalyst for producing methacrylic acid used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen,
(1) preparing a catalyst raw material liquid A containing at least molybdenum, phosphorus and vanadium;
(2) preparing a catalyst raw material liquid B containing a cation raw material;
(3) adding and mixing the catalyst raw material liquid B to the catalyst raw material liquid A to prepare a liquid containing a heteropolyacid having a Keggin structure or a salt thereof, and
A method for producing a methacrylic acid production catalyst satisfying the following formulas (i) and (iii) in the step (3).
3.0 ≦ T / ( 3 √V) ≦ 13.0 (i)
0.01 ≦ u2 ≦ 8 (iii)
(In the formulas (i) and (iii), V is the volume [m 3 ] of the catalyst raw material liquid A, T is the number of addition ports for adding the catalyst raw material liquid B, and u2 is the catalyst raw material liquid B. The flow rate [mol / min] of the cation raw material is shown.When T is 2 or more, u2 represents the average value of the flow rate of the cation raw material of the catalyst raw material liquid B added from each addition port.
0.1≦S3/W2≦50 (iv)
(式(iv)中、Sは容器内液の液面の表面積[m2]を示し、Wは容器内液の容積[m3]を示す。) The said process (3) WHEREIN: The other liquid is added and mixed in the container which satisfy | fills following formula (iv) in which any one of the said catalyst raw material liquid A and the said catalyst raw material liquid B entered. Of producing a catalyst for producing methacrylic acid.
0.1 ≦ S 3 / W 2 ≦ 50 (iv)
(In the formula (iv), S represents the surface area [m 2 ] of the liquid level of the liquid in the container, and W represents the volume [m 3 ] of the liquid in the container.)
0.1≦S3/W2≦50 (iv)
(式(iv)中、Sは容器内液の液面の表面積[m2]を示し、Wは容器内液の容積[m3]を示す。) The production of the catalyst for methacrylic acid production according to claim 2, wherein in the step (3), the catalyst raw material liquid B is added and mixed in a container satisfying the following formula (iv) containing the catalyst raw material liquid A. Method.
0.1 ≦ S 3 / W 2 ≦ 50 (iv)
(In the formula (iv), S represents the surface area [m 2 ] of the liquid level of the liquid in the container, and W represents the volume [m 3 ] of the liquid in the container.)
2≦T/S≦100 (v)
(式(v)中、Tは前記式(i)と同義であり、Sは前記式(iv)と同義である。) In the said process (3), the manufacturing method of the catalyst for methacrylic acid manufacture of Claim 6 which satisfy | fills following formula (v).
2 ≦ T / S ≦ 100 (v)
(In formula (v), T has the same meaning as in formula (i), and S has the same meaning as in formula (iv).)
MoaPbVcCudAeEfGgOh (vii)
(式(vii)中、Mo、P、V、CuおよびOはそれぞれモリブデン、リン、バナジウム、銅および酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種の元素を示す。Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、a=12の時、b=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。) The method for producing a catalyst for methacrylic acid production according to any one of claims 1 to 14, wherein the catalyst for methacrylic acid production has an elemental composition represented by the following formula (vii).
Mo a P b V c Cu d A e E f G g O h (vii)
(In the formula (vii), Mo, P, V, Cu and O are element symbols indicating molybdenum, phosphorus, vanadium, copper and oxygen, respectively. A is antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, E represents at least one element selected from the group consisting of selenium, silicon, tungsten and boron, where E is iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, lead And at least one element selected from the group consisting of niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, wherein G is at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium A, b, c, d, e f, g and h represent the atomic ratio of each element, and when a = 12, b = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0-3, f = 0-3, g = 0.01-3, and h is the atomic ratio of oxygen necessary to satisfy the valence of each element.)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016161888 | 2016-08-22 | ||
JP2016161888 | 2016-08-22 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017545978A Division JPWO2018037998A1 (en) | 2016-08-22 | 2017-08-17 | Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2019195807A true JP2019195807A (en) | 2019-11-14 |
JP2019195807A5 JP2019195807A5 (en) | 2020-08-27 |
JP7003974B2 JP7003974B2 (en) | 2022-02-04 |
Family
ID=61246669
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017545978A Pending JPWO2018037998A1 (en) | 2016-08-22 | 2017-08-17 | Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester |
JP2019122903A Active JP7003974B2 (en) | 2016-08-22 | 2019-07-01 | Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester. |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017545978A Pending JPWO2018037998A1 (en) | 2016-08-22 | 2017-08-17 | Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester |
Country Status (7)
Country | Link |
---|---|
JP (2) | JPWO2018037998A1 (en) |
KR (1) | KR102228713B1 (en) |
CN (2) | CN109641202A (en) |
MY (1) | MY190344A (en) |
SA (1) | SA519400951B1 (en) |
SG (1) | SG11201900018RA (en) |
WO (1) | WO2018037998A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021072085A (en) * | 2019-10-29 | 2021-05-06 | 株式会社Mobility Technologies | Vehicle allocation management system, management device, and vehicle presentation method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220098013A (en) | 2020-01-08 | 2022-07-08 | 미쯔비시 케미컬 주식회사 | A method for producing a catalyst for methacrylic acid production, a method for producing methacrylic acid and a method for producing a methacrylic acid ester, and an apparatus for producing a catalyst for producing methacrylic acid |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005039760A1 (en) * | 2003-10-27 | 2005-05-06 | Mitsubishi Rayon Co., Ltd. | Process for producing catalyst for methacrylic acid production, catalyst for methacrylic acid production, and process for producing methacrylic acid |
JP2007098345A (en) * | 2005-10-07 | 2007-04-19 | Mitsubishi Rayon Co Ltd | Catalyst for methacrylic acid production and its production method, and production method of methacrylic acid using this catalyst |
JP2010162460A (en) * | 2009-01-14 | 2010-07-29 | Mitsubishi Rayon Co Ltd | Method of manufacturing catalyst for synthesizing methacrylic acid |
JP2014226614A (en) * | 2013-05-23 | 2014-12-08 | 住友化学株式会社 | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19717165A1 (en) * | 1997-04-23 | 1998-10-29 | Basf Ag | Device and method for temperature measurement in tubular reactors |
JP3763245B2 (en) * | 2000-04-06 | 2006-04-05 | 住友化学株式会社 | Method for regenerating heteropolyacid catalyst and method for producing methacrylic acid |
WO2004004900A1 (en) * | 2002-07-05 | 2004-01-15 | Mitsubishi Rayon Co., Ltd. | Process for producing catalysts for the production of methacrylic acid |
US7732367B2 (en) * | 2005-07-25 | 2010-06-08 | Saudi Basic Industries Corporation | Catalyst for methacrolein oxidation and method for making and using same |
CN101679180B (en) * | 2007-05-14 | 2013-09-25 | 三菱丽阳株式会社 | Process for producing methacrylic acid |
JP5626583B2 (en) * | 2010-01-28 | 2014-11-19 | 三菱レイヨン株式会社 | Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid |
US8481448B2 (en) * | 2010-07-19 | 2013-07-09 | Saudi Basic Industries Corporation | Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof |
US20150105583A1 (en) * | 2012-05-18 | 2015-04-16 | Nippon Kayaku Kabushiki Kaisha | Catalyst For Methacrylic Acid Production, Process For Producing The Same, And Process For Producing Methacrylic Acid Using The Catalyst |
CN105517709A (en) * | 2013-09-11 | 2016-04-20 | 三菱丽阳株式会社 | Method of preparing catalyst for production of methacrylic acid |
-
2017
- 2017-08-17 MY MYPI2019000088A patent/MY190344A/en unknown
- 2017-08-17 WO PCT/JP2017/029556 patent/WO2018037998A1/en active Application Filing
- 2017-08-17 CN CN201780050136.5A patent/CN109641202A/en active Pending
- 2017-08-17 SG SG11201900018RA patent/SG11201900018RA/en unknown
- 2017-08-17 KR KR1020197007450A patent/KR102228713B1/en active IP Right Grant
- 2017-08-17 CN CN202210741113.1A patent/CN115155630A/en active Pending
- 2017-08-17 JP JP2017545978A patent/JPWO2018037998A1/en active Pending
-
2019
- 2019-01-23 SA SA519400951A patent/SA519400951B1/en unknown
- 2019-07-01 JP JP2019122903A patent/JP7003974B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005039760A1 (en) * | 2003-10-27 | 2005-05-06 | Mitsubishi Rayon Co., Ltd. | Process for producing catalyst for methacrylic acid production, catalyst for methacrylic acid production, and process for producing methacrylic acid |
JP2007098345A (en) * | 2005-10-07 | 2007-04-19 | Mitsubishi Rayon Co Ltd | Catalyst for methacrylic acid production and its production method, and production method of methacrylic acid using this catalyst |
JP2010162460A (en) * | 2009-01-14 | 2010-07-29 | Mitsubishi Rayon Co Ltd | Method of manufacturing catalyst for synthesizing methacrylic acid |
JP2014226614A (en) * | 2013-05-23 | 2014-12-08 | 住友化学株式会社 | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021072085A (en) * | 2019-10-29 | 2021-05-06 | 株式会社Mobility Technologies | Vehicle allocation management system, management device, and vehicle presentation method |
Also Published As
Publication number | Publication date |
---|---|
KR20190039262A (en) | 2019-04-10 |
SG11201900018RA (en) | 2019-02-27 |
SA519400951B1 (en) | 2024-01-23 |
CN115155630A (en) | 2022-10-11 |
CN109641202A (en) | 2019-04-16 |
MY190344A (en) | 2022-04-15 |
WO2018037998A1 (en) | 2018-03-01 |
KR102228713B1 (en) | 2021-03-16 |
JP7003974B2 (en) | 2022-02-04 |
JPWO2018037998A1 (en) | 2018-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9751822B2 (en) | Method for producing unsaturated carboxylic acid and supported catalyst | |
US10300463B2 (en) | Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid | |
US9656248B2 (en) | Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid | |
JP6414343B2 (en) | Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid and methacrylic acid ester | |
JP7003974B2 (en) | Method for producing catalyst for producing methacrylic acid, method for producing methacrylic acid, and method for producing methacrylic acid ester. | |
JP6819699B2 (en) | Methacrylic acid production catalyst, methacrylic acid production catalyst precursor, and their production methods, methacrylic acid production method, and methacrylic acid ester production method. | |
KR20010098470A (en) | Method for regenerating heteropolyacid catalyst and method for producing methacrylic acid | |
JP3800043B2 (en) | Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid | |
JP2007283265A (en) | Method of manufacturing catalyst for producing methacrylic acid | |
JP2018043196A (en) | Catalyst for producing acrylic acid and method for producing acrylic acid | |
JP5915894B2 (en) | Method for producing a catalyst for methacrylic acid production | |
JP6680367B2 (en) | Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid and α, β-unsaturation Method for producing carboxylic acid ester | |
JP4951230B2 (en) | Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst | |
JP6769557B2 (en) | Catalyst precursor, catalyst production method, methacrylic acid and acrylic acid production method, and methacrylic acid ester and acrylic acid ester production method. | |
US20220305481A1 (en) | Method for producing catalyst for production of methacrylic acid, method for producing methacrylic acid, method for producing methacrylic acid ester, and apparatus for producing catalyst for production of methacrylic acid | |
JP2013091016A (en) | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid | |
JP7031737B2 (en) | A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid and a methacrylic acid ester. | |
WO2023182425A1 (en) | Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid and methacrylic acid esters using catalyst | |
JP2008149262A (en) | Method for producing catalyst for unsaturated carboxylic acid synthesis | |
WO2024225230A1 (en) | Method for producing catalyst for methacrylic acid production, and method for producing methacrylic acid and methacrylic acid ester using same | |
JPWO2019163984A1 (en) | A method for producing a catalyst for producing α, β-unsaturated carboxylic acid, and a method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid ester. | |
JP5063493B2 (en) | Method for producing catalyst for synthesis of unsaturated carboxylic acid | |
JP2010142687A (en) | Method of manufacturing catalyst for synthesizing unsaturated carboxylic acid | |
JP2010264397A (en) | Catalyst for synthesizing unsaturated carboxylic acid and method for manufacturing unsaturated carboxylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200716 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200717 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211213 |