JP7003540B2 - 組成物および硬化物 - Google Patents

組成物および硬化物 Download PDF

Info

Publication number
JP7003540B2
JP7003540B2 JP2017188186A JP2017188186A JP7003540B2 JP 7003540 B2 JP7003540 B2 JP 7003540B2 JP 2017188186 A JP2017188186 A JP 2017188186A JP 2017188186 A JP2017188186 A JP 2017188186A JP 7003540 B2 JP7003540 B2 JP 7003540B2
Authority
JP
Japan
Prior art keywords
group
resin
composition
compound
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017188186A
Other languages
English (en)
Other versions
JP2019065063A (ja
Inventor
和郎 有田
智弘 下野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2017188186A priority Critical patent/JP7003540B2/ja
Publication of JP2019065063A publication Critical patent/JP2019065063A/ja
Application granted granted Critical
Publication of JP7003540B2 publication Critical patent/JP7003540B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Pyrrole Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、組成物および硬化物に関する。
従来、電子機器の高速化、大容量化が進んでおり、電子機器に用いられる部材には、高い電気特性が求められている。例えば、電子機器において発生する電気エネルギー(電流等)の損失を抑制または防止することができれば、電子機器の高性能化、長寿命化等が可能となる。
高い電気特性を有する材料として、例えば、特許文献1には、多官能エポキシ樹脂(A)、所定のポリフェニレンエーテル化合物(B)、および所定量のリン変性硬化剤(C)を含有する、エポキシ樹脂組成物に係る発明が記載されている。
特許文献1に記載の発明によれば、多官能エポキシ樹脂(A)により積層板や多層板に必要な難燃性、耐熱性を、所定のポリフェニレンエーテル化合物(B)により誘電特性を、所定量のリン変性硬化剤(C)により相間接着性の低下の抑制を、それぞれ実現することが記載されている。
このように、ポリフェニレンエーテルは、極性官能基がない、またはほとんどないため電気特性に優れることが知られている。一方で、ポリフェニレンエーテルは耐熱性が不十分であるため、通常、エポキシ樹脂等の耐熱性に優れる樹脂と併用される。
ところで、近年注目されている、ガラス繊維等の強化繊維をマトリックス樹脂に入れて強度を向上させた繊維強化プラスチック(FRP)や、炭化ケイ素(SiC)や窒化ガリウム(GaN)を用いるパワー半導体や等の先端技術用途においては、より高温条件下での使用が求められており、優れた電気特性とともに高耐熱性が求められている。
耐熱性を有する化合物として、硬化物が剛直な構造を有する芳香族ビスマレイミド化合物が知られている。当該芳香族ビスマレイミド化合物としては、例えば、4,4’-ジフェニルメタンビスマレイミド、特許文献1に記載の4,4’-ビフェニレン型のビスマレイミド化合物等が挙げられる。
例えば、特許文献2には、前記4,4’-ビフェニレン型のビスマレイミド化合物等が、高耐熱基板材料、高温プロセス対応フレキシブル基板材料、高耐熱CFRP用材料、車載向けSiCパワーデバイス用封止材料等の極めて高い耐熱性を有する材料に好適に使用できることが記載されている。
国際公開第2010/109948号 特開2015-193628号公報
電気特性に優れるポリフェニレンエーテルを、耐熱性に優れる4,4’-ジフェニルメタンビスマレイミド等のマレイミド化合物と併用した組成物を用いることにより、電気特性に優れ、かつ、より高い耐熱性を有する硬化物が得られうるとも考えられる。しかしながら、このような組成物を用いて得られる硬化物の物性は、必ずしも十分とはいえない場合があることが判明した。
そこで、本発明は、得られる硬化物が電気特性および耐熱性に優れる組成物を提供することを目的とする。
本発明者らは、上記課題を解決するべく、鋭意検討を行った。その結果、ポリフェニレンエーテルを所定の構造を有する置換または非置換アリル基含有マレイミド化合物と併用することにより、上記課題が解決されうることを見出し、本発明を完成させるに至った。
すなわち、本発明は、置換または非置換アリル基含有マレイミド化合物と、ポリフェニレンエーテルと、を含む、組成物に関する。この際、前記置換または非置換アリル基含有マレイミド化合物が、下記式(1)で表される。
Figure 0007003540000001
(式(1)中、
nおよびmは、それぞれ独立して、1~5の整数であり、
Alyは、下記式(2):
Figure 0007003540000002
で表される置換または非置換アリル基を含有する基であり、この際、式(2)中、Zは直接結合または置換基を有していてもよい炭素数1~10の炭化水素基であり、R、Rおよび、Rは、それぞれ独立して、水素原子またはメチル基を表し、
MIは、下記式(3):
Figure 0007003540000003
で表されるマレイミド基であり、この際、式(3)中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表し、
Aは、下記式(4-1)または(4-2):
Figure 0007003540000004
で表されるベンゼン環を2個有する構造であり、この際、前記ベンゼン環は置換基を有していてもよく、Xは直接結合または2価の連結基を表す。
本発明によれば、得られる硬化物が電気特性および耐熱性に優れる組成物が提供される。
<組成物>
本発明に係る組成物は、置換または非置換アリル基含有マレイミド化合物と、ポリフェニレンエーテルと、を含む。その他、必要に応じて、反応性化合物、フィラー、繊維質基質、分散媒、樹脂、硬化剤、硬化促進剤、その他の配合物等をさらに含んでいてもよい。
本発明に係る組成物は、得られる硬化物が優れた電気特性を有し、特に誘電正接が低い。この理由としては、例えば、極性基の少ないポリフェニレンエーテルを含むこと、マレイミド化合物が非極性基である置換または非置換アリル基を有することで、マレイミド化合物中の極性基(イミド基の部分構造等)の比率が相対的に低下すること等が挙げられる。
また、本発明に係る組成物は、得られる硬化物が優れた耐熱性を有する。この理由としては、マレイミド化合物そのものが耐熱性を有することに加え、マレイミド化合物が、ベンゼン環を2つ有すること、マレイミド基とともに架橋構造を形成可能な置換または非置換アリル基を有すること等が挙げられる。
さらに、一実施形態において、本発明に係る組成物は溶剤溶解性に優れる。このため、塗布液等の形態でも使用することができる。その結果、従来のマレイミド化合物では適用することができなかった耐熱塗料用樹脂等の用途にも好適に適用することができる。上記効果が得られる理由としては、マレイミド化合物が置換または非置換アリル基を有することで、芳香環由来の結晶性を緩和する、融点が低下する等が挙げられる。
これにより、例えば、耐熱部材や電子部材、特に半導体封止材、回路基板、ビルドアップフィルム、ビルドアップ基板、接着剤、レジスト材料、繊維強化樹脂のマトリクス樹脂、高耐熱性のプリプレグ、耐熱塗料用樹脂等の用途に好適に使用することができる。
[置換または非置換アリル基含有マレイミド化合物]
置換または非置換アリル基含有マレイミド化合物は、下記式(1)で表される。
Figure 0007003540000005
ここで、置換または非置換アリル基含有マレイミド化合物は、後述する式(4-1)または(4-2)で表されるベンゼン環を2個有する構造のうちいずれかを有することを特徴とする。ベンゼン環は置換基を有していても有していなくてもよく、結合方式に特に限定は無い。ベンゼン環同士は、直接結合していてもよく、連結基を介して結合していてもよく、ベンゼン環同士が縮合して縮合環を形成していてもかまわない。なお、本明細書において、「置換または非置換アリル基」とは、アリル基、アリル基の二重結合を構成する炭素原子に結合する水素原子の少なくとも1つがメチル基に置換された基を意味する。置換または非置換アリル基は、具体的には、以下の構造式で表される基を含む。
Figure 0007003540000006
なお、上記式において「*」は他の基と結合する箇所を示す。このうち、置換または非置換アリル基は、好ましくは以下の構造式で表される基を含む。
Figure 0007003540000007
式(1)中、nおよびmは、それぞれ独立して、1~5の整数であり、2~5であることが好ましく、2~3であることがより好ましく、2であることがさらに好ましい。なお、nが2以上であると、融点が下がる傾向があるため好ましい。また、mが2以上であると、耐熱性が向上する傾向があるため好ましい。
mとnとの比率としては、m:n=1:5~5:1であり、好ましくは1:2~2:1であり、より好ましくは1:1である。なお、mとnとの比率が上記範囲にあると、耐熱性と低融点が両立できうることから好ましい。
Alyは下記式(2)で表される置換または非置換アリル基を含有する基である。
Figure 0007003540000008
式(2)中、Zは直接結合または置換基を有していてもよい炭素数1~10の炭化水素基であり、R、R、およびRは、それぞれ独立して、水素原子またはメチル基を表す。
前記炭素数1~10の炭化水素基とは、例えばアルキレン、アルケニレン、アルキニレン、シクロアルキレン、アリーレン、およびこれらを複数組み合わせた基が挙げられる。この際、炭素数1~10の炭化水素基は2価の基である。
アルキレンとしては、メチレン、メチン、エチレン、プロピレン、ブチレン、ペンチレン、へキシレン等が挙げられる。
アルケニレンとしては、ビニレン、1-メチルビニレン、プロペニレン、ブテニレン、ペンテニレン等が挙げられる。
アルキニレンとしては、エチニレン、プロピニレン、ブチニレン、ペンチニレン、へキシニレン等が挙げられる。
シクロアルキレンとしては、シクロプロピレン、シクロブチレン、シクロペンチレン、シクロへキシレン等が挙げられる。
アリーレンとしては、フェニレン、トリレン、キシリレン、ナフチレン等が挙げられる。
これらのうち、Zは、直接結合またはメチレンであることが好ましく、直接結合であることがより好ましい。
Alyの具体的な構造としては、以下の構造式のものが挙げられる。
Figure 0007003540000009
このうち、Alyは以下の構造式で表されるものであることが好ましい。
Figure 0007003540000010
また、MIは下記式(3)で表されるマレイミド基である。
Figure 0007003540000011
この際、式(3)中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表す。
一実施形態において、置換または非置換アリル基を含有する基とマレイミド基との結合場所に特に限定はないが、マレイミド基と置換または非置換アリル基を含有する基が同じベンゼン環上に存在すると、耐熱性が更に向上するため好ましい。
さらに、Aは、下記式(4-1)または(4-2)で表されるベンゼン環を2個有する構造である。
Figure 0007003540000012
この際、ベンゼン環は置換基を有していてもよい。また、Xは直接結合または2価の連結基を表す。
前記2価の連結基としては、例えば、置換基を有していてもよい炭素数1~3の炭化水素基、酸素原子、カルボニル基、硫黄原子、スルホニル基、置換基を有していてもよい2価の脂環構造等が挙げられる。
炭素数1~3の炭化水素基としては、メチレン、エチレン、プロピレン等が挙げられる。
また、前記2価の脂環構造としては、シクロプロピレン、シクロブチレン、シクロペンチレン、シクロヘキシレン等が挙げられる。
前記炭化水素基、前記2価の脂環構造が置換基を有する場合において、当該置換基としては、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~5のアルキル基;フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、クロロフルオロメチル基、ペンタフルオロエチル基等の炭素数1~5のハロゲン化アルキル基等が挙げられる。
これらのうち、Xは、置換基を有していてもよい炭素数1~3の炭化水素基、酸素原子、硫黄原子であることが好ましく、置換基を有していてもよいメチレン、酸素原子であることがより好ましく、メチレン、エチレン、エチリデン、イソプロピリデン、1-トリフルオロメチレン、1,1-ジ(トリフルオロメチル)メチレンであることがさらに好ましい。
好ましいAの構造としては、以下の式(5-1)~(5-9)で表される構造のいずれかが挙げられる。
Figure 0007003540000013
なお、式(5-1)~(5-9)において、本発明の効果を損ねない範囲において、構造中のベンゼン環は置換基を有していてもよい、すなわち、ベンゼン環構造の水素原子が置換基に置き換わっていてもかまわない。前記置換基としては、公知慣用のものが挙げられる。例えば、置換基を有していてもよい炭素数1~6の炭化水素基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、トリフルオロメチル基、好ましくはメチル基、トリフルオロメチル基等)、ハロゲン原子、水酸基、アミノ基、アミド基、ウレイド基、ウレタン基、カルボキシル基、アルコキシ基、チオエーテル基、アシル基、アシルオキシ基、アルコキシカルボニル基、シアノ基、ニトロ基等が挙げられる。
例えば、前記式(5-1)および(5-2)は剛直な構造であることから、また(5-3)および(5-4)はベンゼン環同士の結合部分に分極を有することから、耐熱分解性に優れる化合物が得られうる。
また、前記(5-5)~(5-9)の構造は、接着性に優れる化合物が得られうる。
これらのうち、Aは、低融点、機械特性(曲げ弾性率、曲げ歪、曲げ強度)、流動性の観点から(5-5)~(5-7)、(5-9)のいずれかであることが好ましく、(5-7)、(5-9)であることがより好ましい。
置換または非置換アリル基含有マレイミド化合物として、特に好ましい構造は以下の式(6-1)~(6-16)で例示される構造である。
Figure 0007003540000014
Figure 0007003540000015
これらのうち、(6-1)~(6-12)で表される構造であることが好ましく、(6-1)、(6-2)、(6-5)、(6-6)、(6-9)、(6-10)、(6-11)、(6-12)で表される構造であることがより好ましく、(6-1)、(6-2)、(6-5)、(6-6)で表される構造であることがさらに好ましい。
置換または非置換アリル基含有マレイミド化合物の含有量は、不揮発分中、20~90質量%であることが好ましく、45~75質量%であることがより好ましい。置換または非置換アリル基含有マレイミド化合物の含有量が20質量%以上であると、耐熱性が発現することから好ましい。一方、置換または非置換アリル基含有マレイミド化合物の含有量が90質量%以下であると、組成物の溶融粘度が低下し、成形性が向上することから好ましい。なお、ここでいう不揮発分とは、組成物中の分散媒を除く総質量を指す。
(置換または非置換アリル基含有マレイミド化合物の製造方法)
上述の置換または非置換アリル基含有マレイミド化合物の製造方法は、特に限定は無いが、以下の工程を経ることで、効率的に製造を行うことが出来る。
一実施形態において、置換または非置換アリル基含有マレイミド化合物は、下記工程(1-1)~(1-4)により製造することができる;
1-1)ベンゼン環を2個有する水酸基含有芳香族アミノ化合物のアミノ基を保護する工程
1-2)1-1)で得られた化合物の水酸基に置換または非置換アリル基を導入する工程
1-3)1-2)で得られた化合物の保護アミノ基から脱保護する工程
1-4)1-3)で得られた化合物のアミノ基をマレイミド化する工程
上記工程を含む製造方法により、効率的かつ副生成物なく上述の置換または非置換アリル基含有マレイミド化合物を製造することができる。
ここで、工程(1-1)においてベンゼン環を2個有する水酸基含有芳香族アミノ化合物を用いることで、本発明のベンゼン環を2個有する構造を有し、置換または非置換アリル基を有する基を1個以上有し、さらにマレイミド基を1個以上有する化合物であることを特徴とする、置換または非置換アリル基含有マレイミド化合物を製造することが出来る。
前記ベンゼン環を2個有する水酸基含有芳香族アミノ化合物としては、好ましくは式(4-1)または(4-2)で表される構造と、水酸基およびアミノ基とを有する化合物が挙げられる。具体的には、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、5,5’-メチレンビス(2-アミノフェノール)等の従来公知の化合物が挙げられるが、これらに限定されることはない。
なお、前記ベンゼン環を2個有する水酸基含有芳香族アミノ化合物を製造する方法としては、水酸基含有芳香族化合物をニトロ化した後に還元する方法が挙げられる。
工程1-1)におけるアミノ基の保護は、公知慣用の方法を用いればよく、例えばアセチル化することで保護することが可能である。この際、アセチル化には、公知慣用のアセチル化剤を用いればよく、例えば無水酢酸、塩化アセチル等が挙げられる。
工程1-2)においては、例えばアミノ基が保護された水酸基含有芳香族アミノ化合物の水酸基に対し、置換または非置換アリル基含有化合物のハロゲン化物を塩基の存在化で反応させることで、置換または非置換アリル基を導入することが出来る。置換または非置換アリル基含有化合物のハロゲン化物としては、臭化アリル、臭化メタアリル(3-ブロモ-2-メチル-1-プロペン)、塩化アリル、塩化メタアリル(3-クロロ-2-メチル-1-プロペン)、cis-1-クロロ-2-ブテン、trans-1-クロロ-2-ブテン、1-クロロ-3-メチル-2-ブテン、1-ブロモ-3-メチル-2-ブテン等が挙げられる。また、塩基としては炭酸カリウム等が挙げられる。
工程1-3)と工程1-4)では、保護されていたアミノ基を脱保護し、そのアミノ基をマレイミド化する。アミノ基のマレイミド化は、例えば以下式(7)で表される化合物を反応させることで、マレイミド化させることが出来る。
Figure 0007003540000016
式(7)中、RおよびRはそれぞれ独立して水素原子またはメチル基を表す。
式(7)で表される化合物としては、例えば無水マレイン酸、シトラコン酸無水物、2,3-ジメチルマレイン酸無水物等が挙げられる。
上記工程を経ることで、本発明のベンゼン環を2個有する構造を有し、置換または非置換アリル基を有する基を1個以上有し、さらにマレイミド基を1個以上有する化合物であることを特徴とする、置換または非置換アリル基含有マレイミド化合物を製造することが出来る。
上述の置換または非置換アリル基含有マレイミド化合物を合成する場合、反応物中に未反応モノマーが残留したり、生成物として置換または非置換アリル基含有マレイミド化合物とは異なる他の化合物が生成することもある。他の化合物としては、例えば未閉環のアミック酸、イソイミド、モノマー類あるいは生成物のオリゴマーなどが挙げられる。これら置換または非置換アリル基含有マレイミド化合物以外の物質については、精製工程を経ることで取り除いてもかまわないし、用途によっては含有したまま使用してもかまわない。
[ポリフェニレンエーテル]
ポリフェニレンエーテルとしては、特に制限されないが、下記式(8-1)または(8-2)で表される構造を有する。
Figure 0007003540000017
上記(8-1)~(8-2)中、Rは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数1~5のシクロアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のチオエーテル基、炭素数2~5のアルキルカルボニル基、炭素数2~5のアルキルオキシカルボニル基、炭素数2~5のアルキルカルボニルオキシ基、炭素数1~5のアルキルスルホニル基等が挙げられる。
炭素数1~5のアルキル基としては、特に制限されないが、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、プロピル基等が挙げられる。
炭素数3~5のシクロアルキル基としては、特に制限されないが、シクロプロピル基、シクロブチル基、シクロペンチル基、メチルシクロブチル基等が挙げられる。
炭素数1~5のアルコキシ基としては、特に制限されないが、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、ペンチルオキシ基等が挙げられる。
炭素数1~5のチオエーテル基としては、特に制限されないが、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、ペンチルチオ基等が挙げられる。
炭素数2~5のアルキルカルボニル基としては、特に制限されないが、メチルカルボニル基、エチルカルボニル基、プロピルカルボニル基、イソプロピルカルボニル基、ブチルカルボニル基等が挙げられる。
炭素数2~5のアルキルオキシカルボニル基としては、特に制限されないが、メチルオキシカルボニル基、エチルオキシカルボニル基、プロピルオキシカルボニル基、イソプロピルオキシカルボニル基、ブチルオキシカルボニル基等が挙げられる。
炭素数2~5のアルキルカルボニルオキシ基としては、特に制限されないが、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、ブチルカルボニルオキシ基等が挙げられる。
炭素数1~5のアルキルスルホニル基としては、特に制限されないが、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、イソプロピルスルホニル基、ブチルスルホニル基、ペンチルスルホニル基等が挙げられる。
これらのうち、Rは、水素原子、炭素数1~5のアルキル基、炭素数1~5のシクロアルキル基であることが好ましく、水素原子、炭素数1~5のアルキル基であることがより好ましく、水素原子、メチル基、エチル基であることがさらに好ましく、水素原子、メチル基であることが特に好ましい。
また、前記Yはフェノール性水酸基を2つ有する芳香族化合物由来の2価の芳香族基である。前記フェノール性水酸基を2つ有する化合物としては、特に制限されないが、カテコール、レゾルシノール、ヒドロキノン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、4,4’-ビフェノール、ビスフェノールA、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールF、テトラメチルビスフェノールA等が挙げられる。これらのうち、ヒドロキノン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、4,4’-ビフェノール、ビスフェノールA、ビスフェノールE、ビスフェノールFであることが好ましく、4,4’-ビフェノール、ビスフェノールA、テトラメチルビスフェノールAであることがより好ましい。
フェノール性水酸基を2つ有する化合物の2つのフェノール性水酸基は、フェニレンエーテル結合(Yと結合する2つの酸素原子)を形成することとなるため、Yはフェノール性水酸基を2つ有する芳香族化合物由来の2価の芳香族基となる。
具体的なYの構造としては、下記式(9-1)~(9-14)で表される。
Figure 0007003540000018
また、oは、1~30である。
さらに、pおよびqは、それぞれ独立して、1~30である。
ポリフェニレンエーテルの末端構造は、原則として、水素原子または水酸基である。ただし、ポリフェニレンエーテルの末端構造が水酸基である場合、変性されていてもよい。当該末端変性されたポリフェニレンエーテルの末端構造としては、炭素原子数2~10のアルケニルオキシ基、炭素原子数3~10のシクロアルケニルオキシ基、炭素原子数2~10のアルキニルオキシ基、炭素原子数1~10のアルキルカルボニルオキシ基、炭素原子数1~10のアルケニルカルボニルオキシ基等が挙げられる。
前記炭素原子数2~10のアルケニルオキシ基としては、特に制限されないが、ビニルオキシ基、1-プロペニルオキシ基、イソプロペニルオキシ基、アリルオキシ基、1-ブテニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、1-ヘキセニルオキシ基、2-ヘキセニルオキシ基、3-ヘキセニルオキシ基、4-ヘキセニルオキシ基、5-ヘキセニルオキシ基、1-オクテニルオキシ基、2-オクテニルオキシ基、1,3-ブタジエニル基、1,4-ブタジエニル基、2,4-ブタジエニル基、ヘキサ-1,3-ジエニル基、ヘキサ-2,5-ジエニル基、ヘキサ-1,3,5-トリエニル基等が挙げられる。
前記炭素原子数3~10のシクロアルケニルオキシ基としては、特に制限されないが、
シクロペンテニルオキシ基、シクロヘキセニルオキシ基、シクロオクテニルオキシ基等が挙げられる。
前記炭素原子数1~10のアルキニルオキシ基としては、特に制限されないが、エチニルオキシ基、プロパルギルオキシ基、1-ブチニルオキシ基、2-ブチニルオキシ基、3-ブチニルオキシ基、3-ペンチニルオキシ基、4-ペンチニルオキシ基、1,3-ブタジイニルオキシ基等が挙げられる。
前記炭素原子数2~10のアルキルカルボニルオキシ基としては、特に制限されないが、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、ブチルカルボニルオキシ基等が挙げられる。
前記炭素原子数1~10のアルケニルカルボニルオキシ基としては、特に制限されないが、アクリロイルオキシ基、メタクリロイルオキシ基等が挙げられる。
ポリフェニレンエーテルの含有量は、不揮発分中、10質量%以上であることが好ましく、10~80質量%であることがより好ましく、25~55質量%であることがさらに好ましい。ポリフェニレンエーテルの含有量が10質量%以上であると硬化物の誘電正接の値が低下することから好ましい。ここでいう不揮発分は、前段の通り、組成物中の分散媒を除いた総質量を指す。
[反応性化合物]
本発明の組成物は、置換または非置換アリル基含有マレイミド化合物以外の反応性化合物を含んでいてもよい。当該反応性化合物を含むことで、反応性や耐熱性、ハンドリング性など様々な特徴を樹脂に付与することが可能である。
ここで言う反応性化合物とは、反応性基を有する化合物であり、モノマーであってもオリゴマーであってもポリマーであってもかまわない。
反応性基としては、上述の置換または非置換アリル基含有マレイミド化合物と反応しない官能基でも、反応する官能基でもよいが、耐熱性をより向上させるためには、上述の置換または非置換アリル基含有マレイミド化合物と反応する官能基であることが好ましい。
上述の置換または非置換アリル基含有マレイミド化合物と反応する官能基としては、例えばエポキシ基、シアナト基、マレイミド基、フェノール性水酸基、オキサジン環、アミノ基、炭素―炭素間二重結合を有する基が挙げられる。
エポキシ基を有する化合物としては、例えばエポキシ樹脂、フェノキシ樹脂が挙げられる。
シアナト基を有する化合物としては、シアネートエステル樹脂が挙げられる。
マレイミド基を有する化合物としては、マレイミド樹脂、ビスマレイミド樹脂が挙げられる。
フェノール性水酸基を有する化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニルアラルキル樹脂が挙げられる。
オキサジン環を有する化合物としては、フェノール化合物、芳香族アミノ化合物をホルムアルデヒドとを反応させることで得られるベンゾオキサジンが挙げられる。これらのフェノール化合物、芳香族アミノ化合物は構造中に反応性官能基を有していてもよい。
アミノ基を有する化合物としてはDDM(4,4’-ジアミノジフェニルメタン)やDDE(4,4’-ジアミノジフェニルエーテル)、3,4’-ジアミノジフェニルエーテル、2,2-{ビス4-(4-アミノフェノキシ)フェニル}プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル等の芳香族アミノ化合物が挙げられる。
炭素―炭素間二重結合を有する基を有する化合物としては、マレイミド化合物、ビニル系化合物、(メタ)アリル系化合物等が挙げられる。なお、本明細書において、特に断りがある場合を除き、単に「マレイミド化合物」と記載するときは、上述の置換または非置換アリル基含有マレイミド化合物以外のマレイミド化合物であることを意味する。同様に、特に断りがある場合を除き、単に「(メタ)アリル系化合物」と記載するときは、上述の置換または非置換アリル基含有マレイミド化合物以外の(メタ)アリル系化合物であることを意味する。
上記の反応性化合物は、反応性基を一種類だけ有していても、複数種有していてもよく、官能基数も1つであっても複数であってもかまわない。また、複数種を同時に使用してもかまわない。
好ましい反応性化合物としては、エポキシ樹脂、フェノキシ樹脂、シアネートエステル樹脂、マレイミド化合物、ビニル系化合物、芳香族アミノ化合物などが挙げられる。
その中でも特に好ましくは、マレイミド化合物、シアネートエステル樹脂、エポキシ樹脂、芳香族アミノ化合物である。
マレイミド化合物は上述の置換または非置換アリル基含有マレイミド化合物と、マレイミド基同士の自己付加反応やアリル基とマレイミド基とのエン反応により、架橋密度が向上し、その結果、耐熱性、特にガラス転移温度が向上する。
通常、マレイミド化合物を用い、均一な硬化物を得る為には、高温かつ長時間の硬化条件が必要となるため、多くの場合、反応促進のために過酸化物系触媒が併用される。しかし、上述の置換または非置換アリル基含有マレイミド化合物は触媒を使用しない場合においても、硬化反応が進行し、均一な硬化物を得ることができる。過酸化物系触媒を使用することで、組成物の粘度上昇や、ポットライフの低下、また、硬化物中に微量の過酸化物が残存することによる物性低下等の課題があるが、上述の置換または非置換アリル基含有マレイミド化合物は過酸化物系硬化剤を使用しなくてもよいことから、それら課題を解決することができる。
シアネートエステル樹脂と上述の置換または非置換アリル基含有マレイミド化合物との硬化物は優れた誘電特性を示す。
エポキシ樹脂は上述の置換または非置換アリル基含有マレイミド化合物と併用することで硬化物に靭性や金属密着性を付与できる。
芳香族アミノ化合物はアミノ基とマレイミド基とのマイケル付加反応により架橋密度が向上し耐熱分解温度、ガラス転移温度が向上する。
エポキシ樹脂としては、エポキシ基を有していれば特に限定は無く、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールスルフィド型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂、アントラセン型エポキシ樹脂等が挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
フェノキシ樹脂は、ジフェノールと、エピクロロヒドリン等のエピハロヒドリンに基づく高分子量熱可塑性ポリエーテル樹脂のことであり、重量平均分子量が、20,000~100,000であることが好ましい。フェノキシ樹脂の構造としては、例えばビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、トリメチルシクロヘキサン骨格から選択される1種以上の骨格を有するものが挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
シアネートエステル樹脂としては、例えば、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂、ビスフェノールスルフィド型シアネートエステル樹脂、フェニレンエーテル型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ビフェニル型シアネートエステル樹脂、テトラメチルビフェニル型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、フェノールノボラック型シアネートエステル樹脂、クレゾールノボラック型シアネートエステル樹脂、トリフェニルメタン型シアネートエステル樹脂、テトラフェニルエタン型シアネートエステル樹脂、ジシクロペンタジエン-フェノール付加反応型シアネートエステル樹脂、フェノールアラルキル型シアネートエステル樹脂、ナフトールノボラック型シアネートエステル樹脂、ナフトールアラルキル型シアネートエステル樹脂、ナフトール-フェノール共縮ノボラック型シアネートエステル樹脂、ナフトール-クレゾール共縮ノボラック型シアネートエステル樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型シアネートエステル樹脂、ビフェニル変性ノボラック型シアネートエステル樹脂、アントラセン型シアネートエステル樹脂等が挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
これらのシアネートエステル樹脂の中でも、特に耐熱性に優れる硬化物が得られる点においては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ノボラック型シアネートエステル樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン-フェノール付加反応型シアネートエステル樹脂が好ましい。
マレイミド化合物としては、例えば、下記構造式(i)~(iii)の何れかで表される各種の化合物等が挙げられる。
Figure 0007003540000019
式(i)中Rはs価の有機基であり、αおよびβはそれぞれ水素原子、ハロゲン原子、アルキル基、アリール基の何れかであり、sは1以上の整数である。
Figure 0007003540000020
式(ii)中、Rは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基の何れかであり、sは1~3の整数、tは繰り返し単位の平均で0~10である。
Figure 0007003540000021
式(iii)中、Rは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基の何れかであり、sは1~3の整数、tは繰り返し単位の平均で0~10である。
これらのマレイミド化合物はそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
オキサジン化合物としては、特に制限はないが、例えば、ビスフェノールFとホルマリンとアニリンの反応生成物(F-a型ベンゾオキサジン樹脂)や4,4’-ジアミノジフェニルメタンとホルマリンとフェノールの反応生成物(P-d型ベンゾオキサジン樹脂)、ビスフェノールAとホルマリンとアニリンの反応生成物、ジヒドロキシジフェニルエーテルとホルマリンとアニリンの反応生成物、ジアミノジフェニルエーテルとホルマリンとフェノールの反応生成物、ジシクロペンタジエン-フェノール付加型樹脂とホルマリンとアニリンの反応生成物、フェノールフタレインとホルマリンとアニリンの反応生成物、ジヒドロキシジフェニルスルフィドとホルマリンとアニリンの反応生成物などが挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
ビニル系化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素原子数が1~22のアルキル基を有するアルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート等のアラルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;2-メトキシエチル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート等のω-アルコキシアルキル(メタ)アクリレート類;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステル類;クロトン酸メチル、クロトン酸エチル等のクロトン酸のアルキルエステル類;ジメチルマレート、ジ-n-ブチルマレート、ジメチルフマレート、ジメチルイタコネート等の不飽和二塩基酸のジアルキルエステル類;エチレン、プロピレン等のα-オレフィン類;フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のフルオロオレフィン類;エチルビニルエーテル、n-ブチルビニルエーテル等のアルキルビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル類;N,N-ジメチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピロリジン、N-ビニルピロリドン等の3級アミド基含有モノマー類等が挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
(メタ)アリル系化合物としては、酢酸アリル、塩化アリル、カプロン酸アリル、カプリル酸アリル、ラウリン酸アリル、パルミチン酸アリル、ステアリン酸アリル、安息香酸アリル、アセト酢酸アリル、乳酸アリル等のアリルエステル類;アリルオキシメタノール、アリルオキシエタノール等のアリルオキシアルコール;、ジアリルフタレート、ジアリルイソフタレート、ジアリルシアヌレート、ジアリルイソシアヌレート、ペンタエリスリトールジアリルエーテル、トリメチロールプロパンジアリルエーテル、グリセリンジアリルエーテル、ビスフェノールAジアリルエーテル、ビスフェノールFジアリルエーテル、エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、トリエチレングリコールジアリルエーテル、プロピレングリコールジアリルエーテル、ジプロピレングリコールジアリルエーテル、トリプロピレングリコールジアリルエーテルなどのアリル基を2つ含有する化合物;トリアリルイソシアヌレート、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、トリメチロールプロパントリアリルエーテルなどのアリル基を3つ以上含有する化合物等、またはこれら化合物のメタアリル体が挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
本発明の組成物中には、マレイミド基と置換または非置換アリル基の両方が存在する。マレイミド基と置換または非置換アリル基の比率は特に限定は無いが、マレイミド基モル数:置換または非置換アリル基モル数=1:10~10:1が好ましく、1:5~5:1であると耐熱性に優れるため好ましい。特に、1:2~2:1の場合、耐熱性と配合物粘度のバランスに優れるため好ましい。なお、組成物中に上述の置換または非置換アリル基含有マレイミド化合物とともに、マレイミド基を有するマレイミド化合物や、(メタ)アリル基を有する(メタ)アリル系化合物等が含まれる場合、「マレイミド基モル数」および「置換または非置換アリル基モル数」は置換または非置換アリル基含有マレイミド化合物以外のものも含めて算出される。
[フィラー]
本発明の組成物は、置換または非置換アリル基含有マレイミド化合物の他に、更にフィラーを含有してもよい。フィラーとしては、無機フィラーと有機フィラーが挙げられる。無機フィラーとしては、例えば無機微粒子が挙げられる。
無機微粒子としては、例えば、耐熱性に優れるものとしては、アルミナ、マグネシア、チタニア、ジルコニア、シリカ(石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等)等;熱伝導に優れるものとしては、窒化ホウ素、窒化アルミ、酸化アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化ケイ素、ダイヤモンド等;導電性に優れるものとしては、金属単体又は合金(例えば、鉄、銅、マグネシウム、アルミニウム、金、銀、白金、亜鉛、マンガン、ステンレスなど)を用いた金属フィラーおよび/または金属被覆フィラー;バリア性に優れるものとしては、マイカ、クレイ、カオリン、タルク、ゼオライト、ウォラストナイト、スメクタイト等の鉱物等やチタン酸カリウム、硫酸マグネシウム、セピオライト、ゾノライト、ホウ酸アルミニウム、炭酸カルシウム、酸化チタン、硫酸バリウム、酸化亜鉛、水酸化マグネシウム;屈折率が高いものとしては、チタン酸バリウム、酸化ジルコニア、酸化チタン等;光触媒性を示すものとしては、チタン、セリウム、亜鉛、銅、アルミニウム、錫、インジウム、リン、炭素、イオウ、テリウム、ニッケル、鉄、コバルト、銀、モリブデン、ストロンチウム、クロム、バリウム、鉛等の光触媒金属、前記金属の複合物、それらの酸化物等;耐摩耗性に優れるものとしては、シリカ、アルミナ、ジルコニア、酸化マグネシウム等の金属、およびそれらの複合物および酸化物等;導電性に優れるものとしては、銀、銅などの金属、酸化錫、酸化インジウム等;絶縁性に優れるものとしては、シリカ等;紫外線遮蔽に優れるものとしては、酸化チタン、酸化亜鉛等である。
これらの無機微粒子は、用途によって適時選択すればよく、単独で使用しても、複数種組み合わせて使用してもかまわない。また、上記無機微粒子は、例に挙げた特性以外にも様々な特性を有することから、適時用途に合わせて選択すればよい。
例えば無機微粒子としてシリカを用いる場合、特に限定はなく粉末状のシリカやコロイダルシリカなど公知のシリカ微粒子を使用することができる。市販の粉末状のシリカ微粒子としては、例えば、日本アエロジル(株)製アエロジル50、200、旭硝子(株)製シルデックスH31、H32、H51、H52、H121、H122、日本シリカ工業(株)製E220A、E220、富士シリシア(株)製SYLYSIA470、日本板硝子(株)製SGフレ-ク等を挙げることができる。
また、市販のコロイダルシリカとしては、例えば、日産化学工業(株)製メタノ-ルシリカゾル、IPA-ST、MEK-ST、NBA-ST、XBA-ST、DMAC-ST、ST-UP、ST-OUP、ST-20、ST-40、ST-C、ST-N、ST-O、ST-50、ST-OL等を挙げることができる。
表面修飾をしたシリカ微粒子を用いてもよく、例えば、前記シリカ微粒子を、疎水性基を有する反応性シランカップリング剤で表面処理したものや、(メタ)アクリロイル基を有する化合物で修飾したものがあげられる。(メタ)アクリロイル基を有する化合物で修飾した市販の粉末状のシリカとしては、日本アエロジル(株)製アエロジルRM50、R711等、(メタ)アクリロイル基を有する化合物で修飾した市販のコロイダルシリカとしては、日産化学工業(株)製MIBK-SD等が挙げられる。
酸化チタン微粒子としては、体質顔料のみならず紫外光応答型光触媒が使用でき、例えばアナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタンなどが使用できる。更に、酸化チタンの結晶構造中に異種元素をドーピングさせて可視光に応答させるように設計された粒子についても用いることができる。酸化チタンにドーピングさせる元素としては、窒素、硫黄、炭素、フッ素、リン等のアニオン元素や、クロム、鉄、コバルト、マンガン等のカチオン元素が好適に用いられる。また、形態としては、粉末、有機溶媒中もしくは水中に分散させたゾルもしくはスラリーを用いることができる。市販の粉末状の酸化チタン微粒子としては、例えば、日本アエロジル(株)製アエロジルP-25、テイカ(株)製ATM-100等を挙げることができる。また、市販のスラリー状の酸化チタン微粒子としては、例えば、テイカ(株)TKD-701等が挙げられる。
フィラーの形状は特に限定はなく、球状、中空状、多孔質状、棒状、板状、繊維状、または不定形状のものを用いることができる。
また、フィラーの一次粒子径は、5~200nmの範囲が好ましい。5nm以上であると、分散体中に無機微粒子が好適に分散され、200nm以下であると、硬化物の強度の低下が防止できうる。
[繊維質基質]
本発明の組成物は、置換または非置換アリル基含有マレイミド化合物の他に、更に繊維質基質を含有してもよい。本発明の繊維質基質は、特に限定はないが、繊維強化樹脂に用いられるものが好ましく、無機繊維や有機繊維が挙げられる。
無機繊維としては、カーボン繊維、ガラス繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等の無機繊維のほか、炭素繊維、活性炭繊維、黒鉛繊維、ガラス繊維、タングステンカーバイド繊維、シリコンカーバイド繊維(炭化ケイ素繊維)、セラミックス繊維、アルミナ繊維、天然繊維、玄武岩などの鉱物繊維、ボロン繊維、窒化ホウ素繊維、炭化ホウ素繊維、および金属繊維等を挙げることができる。上記金属繊維としては、例えば、アルミニウム繊維、銅繊維、黄銅繊維、ステンレス繊維、スチール繊維を挙げることができる。
有機繊維としては、ポリベンザゾール、アラミド、PBO(ポリパラフェニレンベンズオキサゾール)、ポリフェニレンスルフィド、ポリエステル、アクリル、ポリアミド、ポリオレフィン、ポリビニルアルコール、ポリアリレート等の樹脂材料からなる合成繊維や、セルロース、パルプ、綿、羊毛、絹といった天然繊維、タンパク質、ポリペプチド、アルギン酸等の再生繊維等を挙げることができる。
中でも、カーボン繊維とガラス繊維は、産業上利用範囲が広いため、好ましい。これらのうち、一種類のみ用いてもよく、複数種を同時に用いてもよい。
本発明の繊維質基質は、繊維の集合体であってもよく、繊維が連続していても、不連続状でもかまわず、織布状であっても、不織布状であってもかまわない。また、繊維を一方方向に整列した繊維束でもよく、繊維束を並べたシート状であってもよい。また、繊維の集合体に厚みを持たせた立体形状であってもかまわない。
[分散媒]
本発明の組成物は、組成物の固形分量や粘度を調整する目的として、分散媒を使用してもよい。分散媒としては、本発明の効果を損ねることのない液状媒体であればよく、各種有機溶剤、液状有機ポリマー等が挙げられる。
前記有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン類、テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の芳香族類、カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール類が挙げられ、これらを単独又は併用して使用可能であるが、中でもメチルエチルケトンが塗工時の揮発性や溶媒回収の面から好ましい。
前記液状有機ポリマーとは、硬化反応に直接寄与しない液状有機ポリマーであり、例えば、カルボキシル基含有ポリマー変性物(フローレンG-900、NC-500:共栄社)、アクリルポリマー(フローレンWK-20:共栄社)、特殊変性燐酸エステルのアミン塩(HIPLAAD ED-251:楠本化成)、変性アクリル系ブロック共重合物(DISPERBYK2000;ビックケミー)などが挙げられる。
分散媒の含有量は、組成物中、10~90質量%であることが好ましい。
[樹脂]
また、本発明の組成物は、上述の置換または非置換アリル基含有マレイミド化合物以外の樹脂を有していてもよい。樹脂としては、本発明の効果を損なわない範囲であれば公知慣用の樹脂を配合すればよく、例えば熱硬化性樹脂や熱可塑性樹脂を用いることができる。
熱硬化性樹脂とは、加熱または放射線や触媒などの手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂である。その具体例としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルテレフタレート樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化性ポリイミド樹脂、ベンゾオキサジン樹脂、活性エステル樹脂、アニリン樹脂、シアネートエステル樹脂、スチレン・無水マレイン酸(SMA)樹脂、本発明により得られるアリル基含有マレイミド化合物以外のマレイミド樹脂などが挙げられる。これらの熱硬化性樹脂は1種または2種以上を併用して用いることができる。
熱可塑性樹脂とは、加熱により溶融成形可能な樹脂を言う。その具体例としてはポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ゴム変性ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、アクリロニトリル-スチレン(AS)樹脂、ポリメチルメタクリレート樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート樹脂、エチレンビニルアルコール樹脂、酢酸セルロース樹脂、アイオノマー樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリ乳酸樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリサルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリケトン樹脂、液晶ポリエステル樹脂、フッ素樹脂、シンジオタクチックポリスチレン樹脂、環状ポリオレフィン樹脂などが挙げられる。これらの熱可塑性樹脂は1種または2種以上を併用して用いることができる。
[硬化剤]
本発明の組成物は、配合物に応じて硬化剤を用いてもよい。例えば、アミン系硬化剤、アミド系硬化剤、酸無水物系硬化剤、フェノール系硬化剤、活性エステル系硬化剤、カルボキシル基含有硬化剤、チオール系硬化剤などの各種の硬化剤が挙げられる。
アミン系硬化剤としてはジアミノジフェニルメタン、ジアミノジフェニルエタン、ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、オルトフェニレンジアミン、メタフェニレンジアミン、パラフェニレンジアミン、メタキシレンジアミン、パラキシレンジアミン、ジエチルトルエンジアミン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、イミダゾ-ル、BF3-アミン錯体、グアニジン誘導体、グアナミン誘導体等が挙げられる。
アミド系硬化剤としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。
酸無水物系硬化剤としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。
フェノール系硬化剤としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、レゾルシン、カテコール、ハイドロキノン、フルオレンビスフェノール、4,4’-ビフェノール、4,4’,4”-トリヒドロキシトリフェニルメタン、ナフタレンジオール、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、カリックスアレーン、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核およびアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
これらの硬化剤は、単独でも2種類以上の併用でも構わない。
[硬化促進剤]
本発明の組成物は、硬化促進剤をさらに含んでいてもよい。
硬化促進剤としては、硬化性樹脂の硬化反応を促す種々の化合物が使用できる。例えば、リン系化合物、第3級アミン化合物、イミダゾール化合物、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。この中でも、イミダゾール化合物、リン系化合物、第3級アミン化合物の使用が好ましく、特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルホスフィン、テトラフェニルホスホニウムテトラ-p-トリルボレート、第3級アミンでは1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)が好ましい。
[その他の配合物]
本発明の組成物は、その他の配合物を有していてもかまわない。例えば、触媒、重合開始剤、無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、カップリング剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、難燃剤、可塑剤等が挙げられる。
<硬化物>
本発明の組成物を硬化して得られる硬化物は、電気特性および耐熱性に優れる。また、一実施形態によれば、本発明の組成物は、溶剤溶解性にも優れる。その結果、耐熱部材や電子部材、特に半導体封止材、回路基板、ビルドアップフィルム、ビルドアップ基板、接着剤、レジスト材料、繊維強化樹脂のマトリクス樹脂、高耐熱性のプリプレグ、耐熱塗料用樹脂等の用途に好適に使用することができる。
硬化物の成形方法は特に限定は無く、組成物単独で成形してもよいし、基材と積層することで積層体としてもかまわない。
本発明の組成物を硬化させる場合には、熱硬化をおこなえばよい。熱硬化する際、公知慣用の硬化触媒を用いてもよいが、本発明の組成物は、マレイミド基とアリル基との反応により硬化触媒を用いなくても硬化することが可能である。
熱硬化を行う場合、1回の加熱で硬化させてもよいし、多段階の加熱工程を経て硬化させてもかまわない。
硬化触媒を用いる場合には、例えば、塩酸、硫酸、燐酸等の無機酸類;p-トルエンスルホン酸、燐酸モノイソプロピル、酢酸等の有機酸類;水酸化ナトリウム又は水酸化カリウム等の無機塩基類;テトライソプロピルチタネート、テトラブチルチタネート等のチタン酸エステル類;1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ-n-ブチルアミン、ジメチルベンジルアミン、モノエタノールアミン、イミダゾール、1-メチルイミダゾール等の各種の塩基性窒素原子を含有する化合物類;テトラメチルアンモニウム塩、テトラブチルアンモニウム塩、ジラウリルジメチルアンモニウム塩等の各種の4級アンモニウム塩類であって、対アニオンとして、クロライド、ブロマイド、カルボキシレートもしくはハイドロオキサイドなどを有する4級アンモニウム塩類;ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジアセチルアセトナート、オクチル酸錫又はステアリン酸錫など錫カルボン酸塩;過酸化ベンゾイル、クメンハイドロパーオキサイド、ジクミルパーオキサイド、過酸化ラウロイル、ジ-t-ブチルパーオキサイド、t-ブチルハイドロパーオキサイド、メチルエチルケトン過酸化物、t-ブチルパーベンゾエート、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3などの有機過酸化物等を使用することができる。触媒は単独で使用してもよいし、2種以上併用してもよい。
また、上述のアリル基含有マレイミド化合物は、炭素―炭素間二重結合を有することから、活性エネルギー線硬化を併用することもできる。活性エネルギー線硬化を行う場合、光重合開始剤を組成物に配合すればよい。
光重合開始剤としては公知のものを使用すればよく、例えば、アセトフェノン類、ベンジルケタール類、ベンゾフェノン類、ベンゾイン類からなる群から選ばれる一種以上を好ましく用いることができる。
前記アセトフェノン類としては、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン等が挙げられる。
前記ベンジルケタール類としては、例えば、1-ヒドロキシシクロヘキシル-フェニルケトン、ベンジルジメチルケタール等が挙げられる。
前記ベンゾフェノン類としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル等が挙げられる。
前記ベンゾイン類としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。
上述の光重合開始剤は単独で使用してもよいし、2種以上を併用してもよい。
熱硬化と活性エネルギー線硬化を併用して硬化させる場合、加熱と活性エネルギー線照射を同時に行ってもよいし、別々に行ってもよい。例えば、活性エネルギー線照射を行った後で熱硬化を行ってもよいし、熱硬化の後に活性エネルギー線硬化を行ってもよい。また、それぞれの硬化方法を2回以上組み合わせて行ってもよく、用途に合わせて適宜硬化方法を選択すればよい。
<積層体>
本発明の硬化物は基材と積層することで積層体とすることができる。
積層体の基材としては、金属やガラス等の無機材料や、プラスチックや木材といった有機材料等、用途によって適時使用すればよく、積層体の形状としても、平板、シート状、あるいは三次元構造を有していても立体状であってもかまわない。全面にまたは一部に曲率を有するもの等目的に応じた任意の形状であってよい。また、基材の硬度、厚み等にも制限はない。また、本発明の硬化物を基材とし、更に本発明の硬化物を積層してもかまわない。
回路基板や半導体パッケージ基板といった用途の場合、金属箔を積層することが好ましく、金属箔としては銅箔、アルミ箔、金箔、銀箔などが挙げられ、加工性が良好なことから銅箔を用いることが好ましい。
本発明の積層体において、硬化物層は、基材に対し直接塗工や成形により形成してもよく、すでに成形したものを積層させてもかまわない。直接塗工する場合、塗工方法としては特に限定は無く、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法等が挙げられる。直接成形する場合は、インモールド成形、インサート成形、真空成形、押出ラミネート成形、プレス成形等が挙げられる。
成形された組成物を積層する場合、未硬化または半硬化された組成物層を積層してから硬化させてもよいし、組成物を完全硬化した硬化物層を基材に対し積層してもよい。
また、本発明の硬化物に対して、基材となりうる前駆体を塗工して硬化させることで積層させてもよく、基材となりうる前駆体または本発明の組成物が未硬化あるいは半硬化の状態で接着させた後に硬化させてもよい。基材となりうる前駆体としては特に限定はなく、各種硬化性樹脂組成物等が挙げられる。
<繊維強化樹脂>
本発明の組成物が繊維質基質を有し、該繊維質基質が強化繊維の場合、繊維質基質を含有する組成物は繊維強化樹脂として用いることができる。
組成物に対し繊維質基質を含有させる方法は、本発明の効果を損なわない範囲であればとくに限定はなく、繊維質基質と組成物とを、混練、塗布、含浸、注入、圧着、等の方法で複合化する方法が挙げられ、繊維の形態および繊維強化樹脂の用途によって適時選択することができる。
本発明の繊維強化樹脂を成形する方法については、特に限定されない。板状の製品を製造するのであれば、押し出し成形法が一般的であるが、平面プレスによっても可能である。この他、押し出し成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法等を用いることが可能である。またフィルム状の製品を製造するのであれば、溶融押出法の他、溶液キャスト法を用いることができ、溶融成形方法を用いる場合、インフレーションフィルム成形、キャスト成形、押出ラミネーション成形、カレンダー成形、シート成形、繊維成形、ブロー成形、射出成形、回転成形、被覆成形等が挙げられる。また、活性エネルギー線で硬化する樹脂の場合、活性エネルギー線を用いた各種硬化方法を用いて硬化物を製造する事ができる。特に、熱硬化性樹脂をマトリクス樹脂の主成分とする場合には、成形材料をプリプレグ化してプレスやオートクレーブにより加圧加熱する成形法が挙げられ、この他にもRTM(Resin Transfer Molding)成形、VaRTM(Vaccum assist Resin Transfer Molding)成形、積層成形、ハンドレイアップ成形等が挙げられる。
<プリプレグ>
本発明の繊維強化樹脂は、未硬化あるいは半硬化のプリプレグと呼ばれる状態を形成することができる。プリプレグの状態で製品を流通させた後、最終硬化をおこなって硬化物を形成してもよい。積層体を形成する場合は、プリプレグを形成した後、その他の層を積層してから最終硬化を行うことで、各層が密着した積層体を形成できるため、好ましい。
この時用いる組成物と繊維質基質の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調整することが好ましい。
<耐熱材料および電子材料>
本発明の組成物を硬化してなる硬化物は、電気特性および耐熱性に優れることから、耐熱部材や電子部材に好適に使用可能である。特に、半導体封止材、回路基板、ビルドアップフィルム、ビルドアップ基板等や、接着剤やレジスト材料に好適に使用可能である。また、繊維強化樹脂のマトリクス樹脂にも好適に使用可能であり、高耐熱性のプリプレグとして特に適している。
また、一実施形態において、本発明の組成物は溶剤溶解性に優れることから、塗料化が可能であり、従来型の300℃以上の高温焼き付けを要する耐熱塗料と比較し、低温での硬化が可能であることから、耐熱塗料用樹脂としても好適に使用可能である。
こうして得られる耐熱部材や電子部材は、各種用途に好適に使用可能であり、例えば、産業用機械部品、一般機械部品、自動車・鉄道・車両等部品、宇宙・航空関連部品、電子・電気部品、建築材料、容器・包装部材、生活用品、スポーツ・レジャー用品、風力発電用筐体部材等が挙げられるが、これらに限定される物ではない。
以下、代表的な製品について例を挙げて説明する。
1.半導体封止材料
本発明の組成物から半導体封止材料を得る方法としては、前記組成物、および硬化促進剤、および無機充填剤等の配合剤とを必要に応じて押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、無機充填剤としては、通常、溶融シリカが用いられるが、パワートランジスタ、パワーIC用高熱伝導半導体封止材として用いる場合は、溶融シリカよりも熱伝導率の高い結晶シリカ,アルミナ,窒化ケイ素などの高充填化、または溶融シリカ、結晶性シリカ、アルミナ、窒化ケイ素などを用いるとよい。その充填率は硬化性樹脂組成物100質量部当たり、無機充填剤を30~95質量%の範囲で用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上がより好ましく、80質量部以上であることがさらに好ましい。
2.半導体装置
本発明の硬化性樹脂組成物から半導体装置を得る半導体パッケージ成形としては、上記半導体封止材料を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50~250℃で2~10時間の間、加熱する方法が挙げられる。
3.プリント回路基板
本発明の組成物からプリント回路基板を得る方法としては、上記プリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~300℃で10分~3時間、加熱圧着させる方法が挙げられる。
4.ビルドアップ基板
本発明の組成物からビルドアップ基板を得る方法は、例えば以下の工程が挙げられる。まず、ゴム、フィラーなどを適宜配合した上記組成物を、回路を形成した回路基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる工程(工程1)。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって凹凸を形成させ、銅などの金属をめっき処理する工程(工程2)。このような操作を所望に応じて順次繰り返し、樹脂絶縁層および所定の回路パターンの導体層を交互にビルドアップして形成する工程(工程3)。なお、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、本発明のビルドアップ基板は、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~300℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
5.ビルドアップフィルム
本発明の組成物からビルドアップフィルムを得る方法としては、基材である支持フィルム(Y)の表面に、上記組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて組成物の層(X)を形成させることにより製造することができる。
ここで用いる有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、また、不揮発分が30~60質量%となる割合で使用することが好ましい。
形成される層(X)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層の厚さは10~100μmの厚みを有するのが好ましい。なお、本発明における上記組成物の層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
前記した支持フィルムおよび保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルムおよび保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。
上記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。ビルドアップフィルムを構成する硬化性樹脂組成物層が加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
上記のようにして得られたビルドアップフィルムを用いて多層プリント回路基板を製造することができる。例えば、層(X)が保護フィルムで保護されている場合はこれらを剥離した後、層(X)を回路基板に直接接するように回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。また必要により、ラミネートを行う前にビルドアップフィルムおよび回路基板を必要により加熱(プレヒート)しておいてもよい。ラミネートの条件は、圧着温度(ラミネート温度)を70~140℃とすることが好ましく、圧着圧力を1~11kgf/cm(9.8×10~107.9×10N/m)とすることが好ましく、空気圧を20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
6.導電ペースト
本発明の組成物から導電ペーストを得る方法としては、例えば、導電性粒子を該組成物中に分散させる方法が挙げられる。上記導電ペーストは、用いる導電性粒子の種類によって、回路接続用ペースト樹脂組成物や異方性導電接着剤とすることができる。
次に本発明を実施例、比較例により具体的に説明するが、以下において「部」および「%」は特に断わりのない限り質量基準である。
<実施例1>
(アリル基含有マレイミド化合物の合成)
2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパンを用いて、アミノ基の保護、アリル基の導入、アミノ基の脱保護、マレイミド化により、置換または非置換アリル基含有マレイミド化合物を合成した。
(1)アミノ基の保護
滴下ロート、温度計、撹拌装置、加熱装置、冷却還流管を取り付けた2L4つ口フラスコに、窒素ガスを流しながら2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン(BAPA、和歌山精化工業株式会社製)101.11g(0.39mol)、イオン交換水300g、DMF(N,N-ジメチルホルムアミド)600gを仕込み室温で撹拌した。反応液を60℃まで昇温し、BPAPの溶解を確認した後、無水酢酸100.16g(0.98mol)を2時間かえて滴下した。滴下終了後、60℃で3時間反応させた後、室温まで空冷した。析出物をろ別し、イオン交換水400gで2度洗浄した。80℃で12時間真空乾燥することで、薄橙色粉末の反応物(a-1)121.28g(収率:90%)を得た。
(2)アリル基の導入
滴下ロート、温度計、撹拌装置、加熱装置、冷却還流管を取り付けた3L4つ口フラスコに、窒素ガスを流しながら上記(1)で得られた反応物(a-1)121.24g(0.35mol)、アセトン2Lを仕込み、撹拌溶解した。次に炭酸カリウム107.88g(0.78mol)を加え、55℃まで昇温し、還流状態とした。還流下で臭化アリル94.25g(0.78mol)を1時間かけて滴下した。滴下終了後、還流下で13時間反応させた後、室温まで空冷した。析出物をろ別し、反応液を減圧濃縮した後、さらに80℃で12時間真空乾燥を行うことで、薄茶色固体の反応物(a-2)148.29g(収率:99%)を得た。
(3)アミノ基の脱保護
温度計、撹拌装置、加熱装置、冷却還流管を取り付けた1L4つ口フラスコに、窒素ガスを流しながら上記(2)で得られた反応物(a-2)148.20g(0.35mol)、エタノール160mL、6M塩酸153mL(0.92mol)を仕込み、撹拌した。次いで、撹拌しながら60℃まで昇温し、60℃で35時間反応させた後、室温まで空冷した。10%水酸化ナトリウム水溶液420gで中和後、酢酸エチル880mLで抽出した。得られた抽出液をイオン交換水770gで1回、飽和食塩水で1回洗浄した。硫酸マグネシウムを加えて乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮した後、60℃で18時間真空乾燥を行うことで、褐色液体の反応物(a-3)111.58g(収率94%)を得た。
(4)マレイミド化
温度計、撹拌装置、加熱装置、冷却還流管、ディーンスタークトラップを取り付けた3L4つ口フラスコに、窒素ガスを流しながら無水マレイン酸71.16g(0.73mol)、トルエン1500g、DMF6.00gを仕込み、撹拌した後、氷浴を用いて0℃まで冷却した。得られた溶液に、上記(3)で得られた反応物(a-3)111.58gとDMF173gとの混合溶液を1.5時間かけて滴下した。なお、滴下中は反応温度を10℃以下に保持した。滴下後、反応液を室温まで昇温し、2.5時間反応させた。次に、p-トルエンスルホン酸一水和物9.28gを加え、反応液を105℃まで昇温して還流状態とし、10時間反応を行った。なお、反応の進行に伴い生成する水をトラップで回収した。室温まで放冷後、トルエンを減圧留去して得られた褐色溶液に酢酸エチル510gを加え、イオン交換水250gで4回洗浄、飽和食塩水250gで1回洗浄した。硫酸マグネシウムを加えて乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮した後、80℃で10時間真空乾燥を行うことで、黄色固体のアリル基含有マレイミド化合物105.29g(収率:64%)を合成した。
なお、製造したアリル基含有マレイミド化合物について、電界脱離質量分析法(FD-MS)にて分子量の測定を行った。具体的には、装置にJMS-T100GC AccuTOF(日本電子株式会社製)を用いた。測定範囲(m/z)は50.00~2000.00であり、変化率は25.6mA/minであり、最終電流値は40mAであり、カソード電圧は-10kVである。その結果、FD-MSスペクトルにてM+=498のピークが確認された。
上記(1)~(4)にて得られる生成物の構造は以下の通りである。
Figure 0007003540000022
(組成物の製造)
ポリフェニレンエーテルSA120(2,6-ジメチルフェノールのポリフェニレンエーテル(m-PPE)、SABICイノベーティブプラスチックス社製)50gと、上記で合成したアリル基含有マレイミド化合物100gと、を配合した。次いで、不揮発分が50質量%となるようにメチルエチルケトンを添加することで組成物を製造した。なお、組成物は褐色透明の液体であった。
<比較例1>
アリル基含有マレイミド化合物に代えて、下記式で表される市販のマレイミド化合物BMI-1000(4,4’-ジフェニルメタンビスマレイミド、大和化成工業株式会社製)を用いたことを除いては実施例1と同様の方法で組成物を製造した。なお、組成打つはBMI-1000が溶解せず、沈降する状態であった。
Figure 0007003540000023
<評価>
実施例1および比較例1で製造した組成物を用いて、各種評価を行った。
[プリプレグの外観評価]
プリント配線基板用ガラスクロス「2116」(210×280mm、日東紡績株式会社製)に組成物を含浸させた後、組成物が含浸したガラスクロスを160℃で乾燥することでプリプレグを得た。得られたプリプレグを裁断し、裁断したプリプレグを6枚積層することで(プライ数:6)、積層プリプレグを製造した。
得られた積層プリプレグの外観を目視で観察し、以下の基準によって評価した。
○:結晶、擦れがともに観察されなかった
△:結晶は観察されないが、擦れが観察された
×:結晶、擦れがともに観察された
得られた結果を下記表1に示す。
[積層板の外観評価]
上記で製造した積層プリプレグを40kg/cmの荷重をかけながら200℃で1.5時間加熱することで、積層板を製造した。なお、積層板の板厚は0.8mmであった。得られた積層板を目視で観察し、以下の基準によって評価した。
○:結晶、擦れがともに観察されなかった
△:結晶は観察されないが、擦れが観察された
×:結晶、擦れがともに観察された
[硬化物のガラス転移温度の評価]
組成物を注型し、170℃で2時間、200℃で2時間、250℃で2時間加熱することで硬化物を製造した。なお、硬化物の厚さは2.4mmであった。
硬化物(厚さ:2.4mm)を幅5mm、長さ54mmのサイズに切り出し、これを試験片とした。この試験片を粘弾性測定装置(DMA:日立ハイテクサイエンス社製固体粘弾性測定装置「DMS7100」、変形モード:両持ち曲げ、測定モード:正弦波振動、周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。得られた結果を下記表1に示す。
[硬化物の誘電正接の評価]
上記硬化物のガラス転移温度の評価と同様の方法で硬化物を製造した。
製造した硬化物(厚さ:2.0mm)を、幅1mm、長さ100mmのサイズに切り出し、これを試験片として誘電正接を測定した。
具体的には、装置としてネットワークアナライザE8362C(アジレント・テクノロジー株式会社製)を用いた。測定は、JIS C 6481:1996に準拠して空洞共振法にて行った。より詳細には、絶乾後23℃、湿度50%の室内に24時間保管した後の試験片を1GHzで誘電正接を測定した。得られた結果を下記表1に示す。
Figure 0007003540000024
表1の結果から、実施例1の組成物より得られる硬化物は電気特性および耐熱性に優れることが分かる。

Claims (17)

  1. 置換または非置換アリル基含有マレイミド化合物と、ポリフェニレンエーテルと、を含む、組成物であって、
    前記置換または非置換アリル基含有マレイミド化合物が、下記式(1):
    Figure 0007003540000025
    (式(1)中、
    nおよびmは、であり、
    Alyは、下記式(2):
    Figure 0007003540000026
    で表される置換または非置換アリル基を含有する基であり、この際、式(2)中、Zは直接結合であり、R、RおよびRは、それぞれ独立して、水素原子またはメチル基を表し、
    MIは、下記式(3):
    Figure 0007003540000027
    で表されるマレイミド基であり、この際、式(3)中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表し、
    Aは、下記式(4-1)または(4-2):
    Figure 0007003540000028
    で表されるベンゼン環を2個有する構造であり、この際、ベンゼン環は置換基を有していてもよく、Xは直接結合または2価の連結基を表す。)
    で表される、組成物。

  2. 前記Aが、下記式(5-1)~(5-9):
    Figure 0007003540000029
    で表される構造のうちのいずれかであり、この際、前記式(5-1)~(5-9)で表される構造のベンゼン環は置換基を有していてもよい、請求項1に記載の組成物。
  3. 更に反応性化合物を含有する、請求項1または2に記載の組成物。
  4. 前記反応性化合物が、エポキシ基、シアナト基、マレイミド基、フェノール性水酸基、オキサジン環、アミノ基、炭素―炭素間二重結合を有する基の中から選ばれる少なくとも1つを有する化合物である、請求項3に記載の組成物。
  5. 更にフィラーを含有する、請求項1~4のいずれか1項に記載の組成物。
  6. 更に繊維質基質を含有する、請求項1~5のいずれか1項に記載の組成物。
  7. 請求項1~6のいずれか1項に記載の組成物を硬化してなる、硬化物。
  8. 基材と、請求項7に記載の硬化物を含む層と、を有することを特徴とする、積層体。
  9. 請求項1~6のいずれか1項に記載の組成物を含有することを特徴とする、耐熱材料用組成物。
  10. 請求項7に記載の硬化物を含有することを特徴とする、耐熱部材。
  11. 請求項1~6のいずれか1項に記載の組成物を含有することを特徴とする、電子材料用組成物。
  12. 請求項7に記載の硬化物を含有することを特徴とする、電子部材。
  13. 請求項1~6のいずれか1項に記載の組成物を含有することを特徴とする、半導体封止材。
  14. 請求項6に記載の組成物を含有することを特徴とする、プリプレグ。
  15. 請求項14に記載のプリプレグと、銅箔層と、を有することを特徴とする、回路基板。
  16. ビルドアップフィルムである、請求項8に記載の積層体。
  17. 請求項16に記載のビルドアップフィルムを有することを特徴とする、ビルドアップ基板。
JP2017188186A 2017-09-28 2017-09-28 組成物および硬化物 Active JP7003540B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017188186A JP7003540B2 (ja) 2017-09-28 2017-09-28 組成物および硬化物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017188186A JP7003540B2 (ja) 2017-09-28 2017-09-28 組成物および硬化物

Publications (2)

Publication Number Publication Date
JP2019065063A JP2019065063A (ja) 2019-04-25
JP7003540B2 true JP7003540B2 (ja) 2022-02-10

Family

ID=66337604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017188186A Active JP7003540B2 (ja) 2017-09-28 2017-09-28 組成物および硬化物

Country Status (1)

Country Link
JP (1) JP7003540B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6919076B1 (ja) * 2019-09-03 2021-08-11 昭和電工株式会社 複合積層体及び金属−樹脂接合体
JP2021076643A (ja) * 2019-11-06 2021-05-20 昭和電工マテリアルズ株式会社 感光性樹脂組成物、及びそれを用いた配線層と半導体装置
JP7433607B2 (ja) * 2019-12-18 2024-02-20 Dic株式会社 ガラス繊維含有樹脂組成物、及び、硬化物
TWI840624B (zh) 2020-02-19 2024-05-01 日商拓自達電線股份有限公司 導電性接著劑、電磁波屏蔽膜及導電性接合膜
JP7552037B2 (ja) * 2020-03-05 2024-09-18 株式会社レゾナック 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板、半導体パッケージ及び樹脂組成物の製造方法
CN112094480B (zh) * 2020-09-22 2023-04-11 苏州生益科技有限公司 一种树脂组合物及使用其制作的半固化片及层压板
CN112062914B (zh) * 2020-09-22 2023-06-06 常熟生益科技有限公司 树脂组合物及使用其制作的半固化片及层压板
CN112679951B (zh) * 2020-12-24 2023-03-10 广东盈骅新材料科技有限公司 改性树脂组合物及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002124A (ja) 2015-06-05 2017-01-05 日立化成株式会社 熱硬化性樹脂組成物、並びにそれを用いたプリプレグ、積層板及びプリント配線板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136792B2 (ja) * 1972-02-05 1976-10-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002124A (ja) 2015-06-05 2017-01-05 日立化成株式会社 熱硬化性樹脂組成物、並びにそれを用いたプリプレグ、積層板及びプリント配線板

Also Published As

Publication number Publication date
JP2019065063A (ja) 2019-04-25

Similar Documents

Publication Publication Date Title
JP7003540B2 (ja) 組成物および硬化物
JP7010217B2 (ja) 置換または非置換アリル基含有マレイミド化合物およびその製造方法、並びに前記化合物を用いた組成物および硬化物
JP6939780B2 (ja) アリル基含有マレイミド化合物およびその製造方法、並びに前記化合物を用いた組成物および硬化物
JP6547913B2 (ja) 組成物、硬化物および積層体
JP6350890B2 (ja) オキサジン化合物、組成物及び硬化物
CN108473642B (zh) 恶嗪化合物、组合物及固化物
JP6697183B2 (ja) オキサジン化合物、組成物及び硬化物
JP7069618B2 (ja) マレイミド化合物、並びにこれを用いた組成物および硬化物
JP6977257B2 (ja) 水酸基含有マレイミド化合物
JP6886593B2 (ja) 水酸基含有マレイミド化合物

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R151 Written notification of patent or utility model registration

Ref document number: 7003540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151