JP7003421B2 - Winding equipment for pulse power supply - Google Patents
Winding equipment for pulse power supply Download PDFInfo
- Publication number
- JP7003421B2 JP7003421B2 JP2017042279A JP2017042279A JP7003421B2 JP 7003421 B2 JP7003421 B2 JP 7003421B2 JP 2017042279 A JP2017042279 A JP 2017042279A JP 2017042279 A JP2017042279 A JP 2017042279A JP 7003421 B2 JP7003421 B2 JP 7003421B2
- Authority
- JP
- Japan
- Prior art keywords
- electric wire
- core
- side electric
- primary side
- pulse transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Coils Or Transformers For Communication (AREA)
Description
本発明は、トランスの巻線構造に関し、特に、パルストランスを用いたゲート駆動回路におけるトランスの巻線構造に関する。 The present invention relates to a transformer winding structure, and more particularly to a transformer winding structure in a gate drive circuit using a pulse transformer.
パルス幅変調式パルス電源としては、PFL(ケーブル放電回路)、PEN(パルス整形回路)、ブルームラインを使った回路方式等が考えられる。しかしながら、特に立ち上がり/立ち下がり時間が数十nsecと短く、数百nsecまでの短パルス幅出力が求められ、かつ容易にパルス幅変調できるものとしては、スイッチ等で直接負荷に電力供給する方式が有効である。図5は、スイッチ等で直接負荷に電力供給するパルス幅変調式パルス電源の回路構成例を示す。 As the pulse width modulation type pulse power supply, a circuit method using a PFL (cable discharge circuit), a PEN (pulse shaping circuit), a bloom line, or the like can be considered. However, in particular, a method in which a short pulse width output of up to several hundred nsec is required with a short rise / fall time of several tens of nsec and pulse width modulation can be easily performed is performed by directly supplying power to the load with a switch or the like. It is valid. FIG. 5 shows a circuit configuration example of a pulse width modulation type pulse power supply that directly supplies power to a load with a switch or the like.
図5に示す回路構成例では、外部からの直流電源Vで電力が供給されている。コンデンサCは、直流電源Vの応答性により電圧低下が考えられる場合に挿入されるものである。 In the circuit configuration example shown in FIG. 5, electric power is supplied by the DC power supply V from the outside. The capacitor C is inserted when a voltage drop is considered due to the responsiveness of the DC power supply V.
抵抗R2、スイッチSW2は、負荷loadが抵抗負荷であれば不要であるが、負荷load側にエネルギーが残存し、電圧を立ち下げたい場合には必要となる。 The resistance R2 and the switch SW2 are unnecessary if the load load is a resistance load, but are necessary when energy remains on the load load side and the voltage is to be reduced.
抵抗R1、抵抗R2は、回路浮遊分のインダクタンスや負荷loadが容量性の場合に振動を抑制するため、必要に応じて挿入されるものである。 The resistors R1 and R2 are inserted as necessary in order to suppress vibration when the inductance of the circuit floating component or the load load is capacitive.
図6は、図5の負荷loadにエネルギーを供給した際のタイミングチャートである。負荷loadにエネルギーを供給し、負荷load側の電圧を立ち上げたい時は、スイッチSW1をON、スイッチSW2をOFFとする。その後、負荷load側の電圧を立ち下げたい場合は、スイッチSW1をOFF、スイッチSW2をONとする。 FIG. 6 is a timing chart when energy is supplied to the load load of FIG. When it is desired to supply energy to the load load and raise the voltage on the load load side, the switch SW1 is turned ON and the switch SW2 is turned OFF. After that, when it is desired to lower the voltage on the load load side, the switch SW1 is turned off and the switch SW2 is turned on.
主に、プラズマ発生用途で使用する場合、負荷loadに印加される電圧は高電圧(例えば、数kV~数十kV)となる。スイッチSW1、スイッチSW2は、負荷loadと略同じ電圧が印加されるため、高耐圧なスイッチが必要である。 When used mainly for plasma generation applications, the voltage applied to the load load is a high voltage (for example, several kV to several tens kV). Since the switch SW1 and the switch SW2 are applied with substantially the same voltage as the load load, a switch with a high withstand voltage is required.
スイッチSW1、SW2に使用される半導体スイッチング素子としては、例えばIGBT(絶縁ゲートバイポーラトランジスタ)の適用が考えられる。しかしながら、印加電圧が数十kVクラスで、かつ数十nsecで動作するスイッチは単体ではないため、ディスクリート型半導体デバイスを直列接続して使用するのが一般的である。直列接続してスイッチを動作させる方式は様々あるが、よりシンプルな方式としてパルストランスによるダイレクトに各スイッチを同時にONさせる方式がある。 As the semiconductor switching element used for the switches SW1 and SW2, for example, an IGBT (insulated gate bipolar transistor) may be applied. However, since the switch that operates at an applied voltage of several tens of kV class and several tens of nsec is not a single unit, it is common to use discrete semiconductor devices connected in series. There are various methods of connecting in series to operate the switches, but as a simpler method, there is a method of turning on each switch directly by a pulse transformer at the same time.
図7は、パルストランスによるゲートドライブの回路構成例を示している。この図7は、スイッチSW1、スイッチSW2として3つの素子が直列に接続された例である。 FIG. 7 shows an example of a circuit configuration of a gate drive using a pulse transformer. FIG. 7 is an example in which three elements are connected in series as the switch SW1 and the switch SW2.
パルストランスに漏れインダクタンスが多いと、入力波形が方形波であっても、出力側波形には漏れインダクタンスによる電圧降下が生じ波形が歪む。そのため、パルストランスにおける漏れインダクタンスは、小さいことが望ましい。 If the pulse transformer has a large leakage inductance, even if the input waveform is a square wave, a voltage drop due to the leakage inductance occurs in the output side waveform and the waveform is distorted. Therefore, it is desirable that the leakage inductance in the pulse transformer is small.
図7においては、パルストランス1次側にONしたい時間だけ、各スイッチ(SWn、SWn-1、SW0)に、ゲート電圧を印加する。各段のスイッチ(SWn、SWn-1、SW0)のONタイミング調整が必要となる場合は、各段のトランス2次側とスイッチとの間にON、OFFタイミング用の微調整回路(Cn、Cn-1、C0)を追加する。 In FIG. 7, the gate voltage is applied to each switch (SWn, SWn-1, SW0) only for the time desired to be turned on to the primary side of the pulse transformer. When it is necessary to adjust the ON timing of the switches (SWn, SWn-1, SW0) of each stage, fine adjustment circuits (Cn, Cn) for ON / OFF timing between the transformer secondary side of each stage and the switch. -1, C0) is added.
ここで、絶縁性であるパルストランスの方式では、トランス1次側と2次側の間に、高電圧がそのまま印加される。そのため、トランス1次-2次間巻線の絶縁構造が重要となる。 Here, in the insulating pulse transformer method, a high voltage is applied as it is between the primary side and the secondary side of the transformer. Therefore, the insulation structure of the transformer primary-secondary winding is important.
絶縁距離を稼ぐため、パルストランスの内径が大きいものを使用すると外形が大きくなる。ここでは、リング状のコアを用いることで絶縁(電気的な絶縁)と漏れインダクタンス低減を実現する。パルストランスに使用するコアは、2次側と1次側巻線の絶縁距離を稼ぎつつ、漏れインダクタンスを低減するため内径をなるべく小さくする必要がある。 In order to increase the insulation distance, if a pulse transformer with a large inner diameter is used, the outer shape will be large. Here, insulation (electrical insulation) and reduction of leakage inductance are realized by using a ring-shaped core. The core used for the pulse transformer needs to have an inner diameter as small as possible in order to reduce the leakage inductance while gaining the insulation distance between the secondary winding side and the primary side winding.
本発明の目的は、ゲート回路における信号と信号電力を伝送するパルストランスにおいて、電気的な絶縁能力の確保と漏れインダクタンスを低減する技術を提供することである。 An object of the present invention is to provide a technique for ensuring electrical insulation capacity and reducing leakage inductance in a pulse transformer that transmits a signal and signal power in a gate circuit.
本発明のパルス電源用巻線機器は、リング状のコアと、上記コアの中央の穴部を貫通する第1の電線と、上記コアに巻き付けられた第2の電線と、上記コアの内周側で上記第1の電線と上記第2の電線とが間隙をもって離間するように上記第1の電線を支持する支持部材と、を有することを特徴としている。 The winding device for a pulse power supply of the present invention has a ring-shaped core, a first electric wire penetrating a hole in the center of the core, a second electric wire wound around the core, and an inner circumference of the core. It is characterized by having a support member for supporting the first electric wire so that the first electric wire and the second electric wire are separated from each other with a gap on the side.
上記支持部材は、電気絶縁性を有して上記コアを貫通する管状かつ蛇腹状の部材であって、上記第1の電線が内側を貫通し、蛇腹の山部が上記コアの内周側で支持され、蛇腹の谷部が上記第1の電線を支持するものであってもよい。 The support member is a tubular and bellows-shaped member having electrical insulation and penetrating the core. The first electric wire penetrates the inside, and the mountain portion of the bellows is on the inner peripheral side of the core. It may be supported and the valley portion of the bellows may support the first electric wire.
また、上記支持部材は、電気絶縁性を有し、上記コアの軸方向で当該コアの両側に位置するものであってもよい。 Further, the support member may have electrical insulation and may be located on both sides of the core in the axial direction of the core.
本発明のパルス電源用巻線機器は、支持部材によってリング状のコアの内周側における第1の電線と第2の電線との間隔を安定的に確保できるので、絶縁破壊を抑制できるとともに、漏れインダクタンスを低減できる。 In the pulse power winding device of the present invention, the support member can stably secure the distance between the first electric wire and the second electric wire on the inner peripheral side of the ring-shaped core, so that dielectric breakdown can be suppressed and insulation breakdown can be suppressed. Leakage inductance can be reduced.
以下、本発明の一実施例を図面に基づいて詳細に説明する。なお、本発明に係る各実施例のおけるパルス電源用巻線機器は、上述した図7に示したようなゲートドライブ回路に適用可能なものである。但し、本発明に係る各実施例のおけるパルス電源用巻線機器は、ゲートドライブ回路に適用するものに限定されるものではなく、様々なパルス電源用の巻線機器に適用可能である。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The pulse power winding device according to each embodiment of the present invention is applicable to the gate drive circuit as shown in FIG. 7 described above. However, the winding device for pulse power supply in each embodiment of the present invention is not limited to the one applied to the gate drive circuit, and can be applied to various winding devices for pulse power supply.
図1及び図2を用いて、本発明に係るパルス電源用巻線機器である第1実施例のパルストランス1について説明する。
The
図1は、第1実施例のパルストランス1を模式的に示した説明図である。図2は、図1の矢示A方向からみた第1実施例のパルストランス1を示すものであって、第1実施例におけるパルストランス1を模式的に示した説明図である。
FIG. 1 is an explanatory diagram schematically showing the
パルストランス1は、リング状のコア2と、コア2を貫通する1次側電線3と、コア2に巻き付けられた2次側電線4と、1次側電線3を支持する蛇腹状の支持部材5と、を有している。
The
コア2は、中央に断面円形の穴部6を有し、穴部6の外周面がコア2の内周面7となっている。コア2の外周面8は、コア2の内周面7と同心状の円筒面となっている。つまり、コア2は、いわゆるトロイダルコアである。
The
第1の電線としての1次側電線3は、コア2の穴部6及び支持部材5の内側(内周側)を貫通している。1次側電線3は、コア2の内周側、すなわち穴部6内にあっては、穴部6の略中央に位置するよう、支持部材5によって支持されている。
The primary side
第2の電線としての2次側電線4は、コア2の内周側を通るようにコア2に巻き付けられている。換言すると、2次側電線4は、コア2の軸方向に沿ってコア2に巻き付けられている。
The secondary side
支持部材5は、管状、かつ肉厚略一定の蛇腹状の部材であり、コア2の穴部6を貫通している。
The
支持部材5は、例えばPTFE(ポリテトラフルオロエチレン)等の電気絶縁性を有する材料からなっている。
The
支持部材5の蛇腹は、支持部材軸方向(支持部材長手方向)に沿って、蛇腹の山部9と谷部10が同心状に交互に繰り返し形成されたものである。
The bellows of the
支持部材5の蛇腹は、山部9がコア2の穴部6内に少なくとも一つは必ず存在するように設定される。
The bellows of the
支持部材5の蛇腹は、例えば、全ての山部9が互いに同心かつ同一径となり、全ての谷部10が互いに同心かつ同一径となるよう設定される。つまり、支持部材5は、蛇腹の山部9で外径が最大となり、蛇腹の谷部10で外径が最小となるよう形成される。蛇腹の山部9の外径は、例えば、コア2の穴部6の内径と等しくなるよう設定される。蛇腹の谷部10の内径は、例えば、1次側電線3の外径と等しくなるよう設定される。
The bellows of the
支持部材5は、コア2の内周側では、コア2に巻き付けられた2次側電線4と蛇腹の山部9が圧接している。また、支持部材5は、蛇腹の谷部10で1次側電線3を支持している。換言すると、支持部材5は、1次側電線3と2次側電線4とがコア2の内周側で間隙をもって離間するように1次側電線3を支持している。詳述すると、支持部材5は、コア2の内周側において、1次側電線3と2次側電線4とが空気層等を含む所定の間隔t1をもって支持部材半径方向で全周に亙って離間するように、1次側電線3を支持している。
On the inner peripheral side of the
コア2の内周側における1次側電線3と2次側電線4との間隔t1は、支持部材5の蛇腹による凹凸によって確保される。従って、パルストランス1は、コア2の内周側にあっては、1次側電線半径方向で、1次側電線3と2次側電線4との間に、間隔t1の絶縁距離が設定可能になる。
The distance t1 between the primary side
また、支持部材5は、コア2の穴部6を貫通可能で、かつ蛇腹の最外端部である山部9が2次側電線4と圧接可能となるように、山部9の外径が設定されている。蛇腹の山部9が2次側電線4に圧接することで、1次側電線3及び2次側電線4とコア2が固定され、1次側電線3はコア2の略中央に固定される。
Further, the
外形仕様で小型化が特に要求されているパルス電源において、パルストランスを用いてゲートを駆動する場合、インダクタンスを考慮してなるべくVt積(電圧・時間積)確保を考慮したパルストランス設計が必要となる。特に、パルストランス1次-2次間に挿入される絶縁物・絶縁材料、絶縁距離等によって、パルストランスの電気絶縁性能は決まる。トランス1-2次間電線である1次側電線(第1の電線)には、主回路の高電圧が直接印加されるため、その電気絶縁性能が重要となる。 When driving a gate using a pulse transformer in a pulse power supply that is particularly required to be miniaturized in the external specifications, it is necessary to design a pulse transformer that takes into consideration the inductance and secures the Vt product (voltage / time product) as much as possible. Become. In particular, the electrical insulation performance of the pulse transformer is determined by the insulator / insulating material inserted between the primary and secondary pulse transformers, the insulation distance, and the like. Since the high voltage of the main circuit is directly applied to the primary side electric wire (first electric wire) which is the transformer 1-2 secondary electric wire, its electrical insulation performance is important.
そこで、第1実施例のパルストランス1においては、リング状のコア2の内周側で1次側電線3と2次側電線4とが所定の間隔t1をもって離間するように、1次側電線3を支持部材5で支持する。これによって、パルストランス1は、1次側電線3と2次側電線4との間隔t1を安定的に確保でき、絶縁破壊を抑制できるとともに、漏れインダクタンスを低減できる。
Therefore, in the
そして、パルストランス1は、コア2の内周側では、1次側電線3と2次側電線4とが空気層を介して離間している。そのため、パルストランス1は、1次側電線3と2次側電線4との間に存在する絶縁物・絶縁材料の割合を小さくでき、コストを相対的に低減できる。
In the
さらに、第1実施例のパルストランス1においては、支持部材5の蛇腹の山部9と谷部10により生じる支持部材半径方向の凹凸によって、1次側電線3をコア2の中央に位置するよう支持できる。つまり、パルストランス1は、1次側電線3を固定せずとも、コア2内周側における1次側電線3と2次側電線4との間隔t1を安定的に確保可能となる。
Further, in the
そのため、パルストランス1は、製造時の偏り(ばらつき)等によって、どこかの1次側電線3と2次側電線4が接触して、絶縁破壊するような事例はなくなる。
Therefore, in the
また、パルストランス1は、支持部材5の蛇腹による凹凸によって、コア内周側における1次側電線3と2次側電線4との間隔t1を均一的に確保可能となる。
Further, the
そのため、パルストランス1は、1次側電線3と2次側電線4との間に生じるコロナ放電を抑制できる。
Therefore, the
次に、図3及び図4を用いて、本発明に係るパルス電源用巻線機器である第2実施例のパルストランス21について説明する。
Next, the
図3は、第2実施例のパルストランス21を模式的に示した説明図である。図4は、図3の矢示B方向からみた第2実施例のパルストランス21を示すものであって、第2実施例におけるパルストランス21を模式的に示した説明図である。
FIG. 3 is an explanatory diagram schematically showing the
パルストランス21は、リング状のコア22と、コア22を貫通する1次側電線23と、コア22に巻き付けられた2次側電線24と、1次側電線23を支持する支持部材25と、を有している。
The
コア22は、中央に断面円形の穴部26を有し、穴部26の外周面がコア22の内周面27となっている。コア22の外周面28は、コア22の内周面27と同心状の円筒面となっている。つまり、コア22は、いわゆるトロイダルコアである。コア22は、第1固定部材29を介してプリント基板30に実装されている。第1固定部材29は、例えば、シリコンゲル等の樹脂等の電気絶縁性を有する絶縁材料からなっている。
The
第1の電線としての1次側電線23は、コア22の穴部26を貫通している。また、1次側電線23は、支持部材25を貫通している。1次側電線23は、コア22の内周側、すなわち穴部26内にあっては、穴部26の略中央に位置するよう、支持部材25によって支持されている。
The primary side
第2の電線としての2次側電線24は、コア22の内周側を通るようにコア22に巻き付けられている。換言すると、2次側電線24は、コア22の軸方向に沿ってコア22に巻き付けられている。
The secondary side
支持部材25は、コア軸方向で、コア22の両側に位置している。支持部材25は、電気絶縁性を有する材料からなり、1次側電線23を支持可能な先端部31と、プリント基板30に固定される基端部32と、を有している。
The
先端部31は、例えば円環状を呈し、その内周面の一部または全てが1次側電線23に接触することで、1次側電線23を支持している。基端部32は、例えば棒状を呈し、一端側が先端部31と連続し、他端側がプリント基板30に固定されている。
The
支持部材25は、1次側電線23と2次側電線24とがコア22の内周側で間隙をもって離間するように1次側電線23を支持している。詳述すると、支持部材25は、コア22の内周側で1次側電線23と2次側電線24とが空気層からなる所定の間隔t2をもって離間するように、1次側電線23を支持している。換言すると、支持部材25は、コア22に内周側における1次側電線23と2次側電線24との間の距離が1次側電線周方向の全周に亙って十分な絶縁耐圧となり得る間隔t2となるように、1次側電線23を支持している。
The
従って、パルストランス21は、コア22の内周側に、1次側電線半径方向で、1次側電線23と2次側電線24との間に間隔t2の絶縁距離が設定可能になる。
Therefore, in the
このような第2実施例のパルストランス21においては、リング状のコア22の内周側で1次側電線23と2次側電線24とが所定の間隔t2をもって離間するように、1次側電線23をコア22の両側に位置する一対の支持部材25、25によって支持する。これによって、パルストランス21は、1次側電線23と2次側電線24との間隔t2を安定的に確保でき、絶縁破壊を抑制できるとともに、漏れインダクタンスを低減できる。
In such a
そして、パルストランス21は、コア22の内周側では、1次側電線23と2次側電線24とが空気層を介して離間している。そのため、パルストランス21は、1次側電線23と2次側電線24との間に存在する絶縁物・絶縁材料の割合を小さくでき、コストを相対的に低減できる。
In the
さらに、第2実施例のパルストランス21は、コア22の両側に位置する支持部材25、25によって、コア22内周側における1次側電線23をコア22の穴部26の略中央に位置するよう支持できる。つまり、パルストランス21は、コア22内周側における1次側電線23と2次側電線24との間隔t2を安定的に確保可能となる。
Further, in the
そのため、パルストランス21は、製造時の偏り(ばらつき)等によって、どこかの1次側電線23と2次側電線24が接触して、絶縁破壊するような事例はなくなる。
Therefore, in the
また、パルストランス21は、コア22の両側に位置する支持部材25、25によって、コア内周側における1次側電線23と2次側電線24との間隔t2を均一的に確保可能となる。
Further, the
そのため、パルストランス21は、1次側電線23と2次側電線24との間に生じるコロナ放電を抑制できる。
Therefore, the
1…パルストランス
2…コア
3…1次側電線
4…2次側電線
5…支持部材
6…穴部
7…内周面
8…外周面
9…山部
10…谷部
1 ...
Claims (1)
上記複数のコアの中央の穴部を貫通する第1の電線と、
上記コアに巻き付けられた第2の電線と、
上記コアの内周側で上記第1の電線と上記第2の電線とが間隙をもって離間するように上記第1の電線を支持する複数の支持部材と、を有し、
上記支持部材は、電気絶縁性を有し、上記コアの軸方向で当該コアの両側に位置するとともに、複数ある上記コアの間に位置し、上記第1の電線を支持可能な円環状の先端部と、一端側が上記先端部と連続し、他端側がプリント基板に固定される基端部とを有することを特徴とするパルス電源用巻線機器。 With multiple ring-shaped cores,
The first electric wire penetrating the central hole of the plurality of cores,
The second wire wound around the core and
It has a plurality of support members that support the first electric wire so that the first electric wire and the second electric wire are separated from each other with a gap on the inner peripheral side of the core.
The support member has electrical insulation, is located on both sides of the core in the axial direction of the core, and is located between a plurality of the cores, and has an annular tip capable of supporting the first electric wire. A winding device for a pulse power supply, characterized in that one end side is continuous with the tip portion and the other end side is a base end portion fixed to a printed circuit board .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017042279A JP7003421B2 (en) | 2017-03-07 | 2017-03-07 | Winding equipment for pulse power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017042279A JP7003421B2 (en) | 2017-03-07 | 2017-03-07 | Winding equipment for pulse power supply |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020051901A Division JP6798632B2 (en) | 2020-03-23 | 2020-03-23 | Winding equipment for pulse power supply |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018148057A JP2018148057A (en) | 2018-09-20 |
JP2018148057A5 JP2018148057A5 (en) | 2020-04-30 |
JP7003421B2 true JP7003421B2 (en) | 2022-01-20 |
Family
ID=63591600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017042279A Active JP7003421B2 (en) | 2017-03-07 | 2017-03-07 | Winding equipment for pulse power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7003421B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001267157A (en) | 2000-03-15 | 2001-09-28 | Hokuriku Denki Seizo Kk | Current transformer for high voltage |
JP2002270430A (en) | 2001-03-12 | 2002-09-20 | Toshiba Corp | Pulse transformer |
WO2008026281A1 (en) | 2006-08-31 | 2008-03-06 | Mitsubishi Electric Corporation | Inductive coupling device |
CN101562073A (en) | 2008-04-16 | 2009-10-21 | 三菱电机株式会社 | Current sensor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS519127B1 (en) * | 1970-05-06 | 1976-03-24 |
-
2017
- 2017-03-07 JP JP2017042279A patent/JP7003421B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001267157A (en) | 2000-03-15 | 2001-09-28 | Hokuriku Denki Seizo Kk | Current transformer for high voltage |
JP2002270430A (en) | 2001-03-12 | 2002-09-20 | Toshiba Corp | Pulse transformer |
WO2008026281A1 (en) | 2006-08-31 | 2008-03-06 | Mitsubishi Electric Corporation | Inductive coupling device |
CN101562073A (en) | 2008-04-16 | 2009-10-21 | 三菱电机株式会社 | Current sensor |
US20090261813A1 (en) | 2008-04-16 | 2009-10-22 | Mitsubishi Electric Corporation | Current sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2018148057A (en) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108701532B (en) | High-voltage transformer | |
JP5813320B2 (en) | High frequency transformer for high voltage applications | |
US10050533B2 (en) | High voltage high frequency transformer | |
KR101682780B1 (en) | Shielding device for an electrically conductive connecting element | |
JP7003421B2 (en) | Winding equipment for pulse power supply | |
JP6798632B2 (en) | Winding equipment for pulse power supply | |
JP6888524B2 (en) | coaxial cable | |
SU587885A3 (en) | Voltage transformer | |
US1837413A (en) | Inductive coupling device | |
KR20090114373A (en) | Transformer | |
JP2018022550A (en) | High voltage generator and X-ray high voltage device using the same | |
JP2005086052A (en) | Transformer and power supply device equipped with transformer | |
JP2017107761A (en) | Insulation structure and insulating member | |
CN114730664A (en) | Capacitor core with grounded conductive foil in capacitor layer | |
US1129465A (en) | Transformer. | |
US1039298A (en) | Step-by-step insulation for electric conductors or the like. | |
JP6455368B2 (en) | Active clamp forward type DC-DC converter circuit | |
JP6965714B2 (en) | Gate drive circuit | |
JP6789862B2 (en) | Rest inducer | |
US5973584A (en) | High-voltage transformer for a television receiver | |
JP7021615B2 (en) | Gate drive circuit unit and pulse power supply | |
JP2019220519A (en) | Capacity potentiometer | |
US822332A (en) | Induction-coil. | |
US3084299A (en) | Electric transformer | |
RU2785684C1 (en) | High-voltage transformer, method for manufacturing a high-voltage transformer, test system, and test signal apparatus containing a high-voltage transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201020 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7003421 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |