WO2008026281A1 - Inductive coupling device - Google Patents

Inductive coupling device Download PDF

Info

Publication number
WO2008026281A1
WO2008026281A1 PCT/JP2006/317211 JP2006317211W WO2008026281A1 WO 2008026281 A1 WO2008026281 A1 WO 2008026281A1 JP 2006317211 W JP2006317211 W JP 2006317211W WO 2008026281 A1 WO2008026281 A1 WO 2008026281A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
core element
inductive coupling
coupling device
conductor
Prior art date
Application number
PCT/JP2006/317211
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Isoya
Yuichiro Murata
Takao Tsurimoto
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2008531935A priority Critical patent/JPWO2008026281A1/en
Priority to PCT/JP2006/317211 priority patent/WO2008026281A1/en
Publication of WO2008026281A1 publication Critical patent/WO2008026281A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5483Systems for power line communications using coupling circuits

Definitions

  • the present invention relates to an inductive coupling device in which a second conductor is electromagnetically coupled to a first conductor via a first core element portion and a second core element portion in which a gap is formed between them. It is a thing.
  • An inductive coupling device in which a second conductor is electromagnetically coupled to a first conductor via a first core element portion and a second core element portion in which a gap is formed between the first core element portion, for example, data on a power line
  • An inductive coupling device that superimposes a signal is disclosed in, for example, Japanese Translation of PCT International Publication No. 2005-525021 (Patent Document 1).
  • Patent Document 1 a magnetic core that includes a first core element portion and a second core element portion that are formed with a gap therebetween and surrounds a power line, and an excitation coil that surrounds the magnetic core.
  • a signal is transmitted to the excitation coil through a communication modem power signal line, and the signal is superimposed on the power line via the magnetic core.
  • Patent Document 1 Japanese Translation of Special Publication 2005-525021 (Fig. 4 and its explanation)
  • the product quality Stabilization and improvement of coupling efficiency which is one of the technical issues, is one of the technical issues. Therefore, the gap formed between the first core element part and the second core element part extends over the entire area. For this reason, it is desirable to have a uniform gap length. For this reason, it is preferable to cut and polish the gap surface with high accuracy.
  • This is not limited to the inductive coupling device used for power line carrier communication as described in Patent Document 1, but via the first core element portion and the second core element portion in which a gap is formed between them.
  • the first core element portion and the second core element portion in which a gap is formed between them are half If the shape is circular, the outer peripheral surface of the element that becomes the supported surface of the first core element part and the second core element part during cutting and polishing is arc-shaped, so the first core during processing Since the first core element part and the second core element part are rotated along the arc-shaped outer peripheral surface by the force acting on the element part and the second core element part, the gap after the cutting process is performed.
  • the surface may be a flat surface or may be inclined with respect to the ideal gap surface. As a result, the gap formed between the first core element portion and the second core element portion must have a uniform gap length over the entire area.
  • the first core element portion 1 or the second core element portion 2 rotates in the direction of arrow A or B along its arcuate outer peripheral surface 21oss.
  • the force acting on the gap face gsa due to machining causes the first core element part 1 or the second core element part 2 to be Rotate in the direction of arrow A along the arc-shaped outer peripheral surface 21 oss, which is the supported surface of.
  • the gap surface gsb is cut or polished, the first core element portion 1 or the second core element portion 2 is processed by the force WFB acting on the gap surface gsb by the processing.
  • the gap surfaces gsa and gsb after cutting and polishing become flat surfaces. It is not or is inclined with respect to the ideal gap surface. In other words, the gap surfaces gsa and gsb are not processed with high accuracy, and the stability and improvement of coupling efficiency, which is one of the product qualities of individual products (inductive coupling devices), cannot always be fully expected.
  • the present invention has been made in view of the above-described circumstances, and it is expected that the coupling efficiency, which is one of the product qualities of individual products (inductive coupling devices), is stable and improved.
  • the purpose is to allow the gap surface of the gap between the core element part and the second core element part to be processed with high accuracy.
  • the first conductor passes through one side of two parallel sides.
  • a trapezoidal first core element portion having a first recess, and one of the two parallel sides parallel to the parallel two sides of the first core element portion on the first core element portion side.
  • a gap is formed between the side having the second recess facing the first recess on the side and the side having the second recess and the side having the first recess of the first core element portion.
  • the trapezoidal second core element part, and the first core element part and the second core element part through the second recess of the second core element part and the first core element part
  • a second conductor that is electromagnetically coupled to the conductor is provided.
  • the first core element portion and the second core element portion are trapezoidal, when the gap surface is cut or polished, the force acting on the gap surface due to the processing is
  • the element part or the second core element part is supported by one straight side of two parallel sides and Z or a straight side connected to the one side. Therefore, the gap surface is cut and polished.
  • the first core element part and the second core element part do not rotate like the conventional inductive coupling device described above due to the force acting on the gap surface due to the machining.
  • the gap surface of the gap between the first core element part and the second core element part can be fully expected to stabilize and improve the coupling efficiency, which is one of the product quality of our products (inductive coupling devices). It becomes possible to process with high accuracy, The workability of the machining and the workability of measuring the machining accuracy of the gap surface are also improved.
  • the inductive coupling device includes a trapezoidal first core element portion having a first recess through which a first conductor passes on one side of two parallel sides, and the parallel of the first core element portion.
  • the side on the first core element portion side has a second recess facing the first recess and the side having the second recess and the first
  • a second conductor that is electromagnetically coupled to the first conductor via the first core element portion and the second core element portion! Gap in the gap between the first core element part and the second core element part can be expected to stabilize and improve the coupling efficiency, which is one of the product quality
  • The-up surface is precisely machined can be effectively.
  • Embodiment 1 BEST MODE FOR CARRYING OUT THE INVENTION [0010] Embodiment 1.
  • FIG. 1 is a front view showing an example of the overall structure of the inductive coupling device, as seen from the left side of Fig. 2.
  • Fig. 2 is a vertical left side view showing a partial cross-section as viewed in the direction of the arrow II II in Fig. 1.
  • the gap length between the first core element and the second core element is determined by the core translation mechanism. It is a vertical left side view in a state close to a state where a predetermined gap length is obtained.
  • FIG. 3 is an enlarged view showing the core element portion, where (a) is a side view, (b) is a plan view, and (c) is a front view corresponding to FIG.
  • an inductive coupling device 100 includes an upper first core element portion (hereinafter abbreviated as “upper core”) 1, Lower second core element portion (hereinafter abbreviated as “lower core”) 2, predetermined gap length regulating member 3, clamp mechanism 4, and elastic member (hereinafter referred to as “upper core pressing panel”) 5, positioning pin 7, bolt (hereinafter referred to as “core drive bolt”) 8, coupler body insulator 9, positioning member (hereinafter referred to as “power line presser”) 10, core case 11, Secondary winding 12 (hereinafter referred to as “secondary winding 12”) as the second conductor, external lead-out conductor 1002 for leading the secondary winding 12 to the outside, support plate 14, nut 18 And a bolt 19, and is attached to a power line 13 (hereinafter referred to as “power line 13”) which is a first conductor serving as a communication medium.
  • the power line 13 is a first conductor that is electromagnetically coupled to the secondary winding (second conductor)
  • the upper core 1 on the upper side is fixed to the core case 11, and the lower core 2 on the lower side is inductively coupled when the coupler main body 9 is molded. Molded integrally with the device body 9.
  • the secondary core 12 that is a part of a signal line is wound around the lower core 2.
  • One end of the upper core pressing panel 5 is fixed to the core case 11, and the upper core pressing panel 5 is further fixed to one end of the support plate 14.
  • the support plate 14 is formed in a substantially L shape as shown in the figure, and the core drive bolt 8 is screwed into the nut 18 fixed to the other end of the support plate 14. Match. Further, the positioning pin 7 implanted in the coupler main body insulator 9 is inserted into a substantially long hole 141 formed in an intermediate portion of the support plate 14.
  • the core case 11, the upper core pressing panel 5, and the support plate 14 constitute a core holding mechanism 1145 that holds the upper core 1.
  • the support plate 14 having the substantially elongated hole 141 and the positioning pin 7 prevent the core holding mechanism 1145 from rotating around the bolt as the core driving bolt 8 rotates.
  • a positioning mechanism 147 that holds the core holding mechanism 1145 at a predetermined position is configured.
  • the core holding mechanism 1145, the positioning mechanism 147, the nut 18, and the core driving bolt 8 are used to move the upper core 1 in parallel with the lower core (in the illustrated example, in the vertical direction).
  • the translation mechanism 1478 is configured.
  • a predetermined gap length regulating member 3 is interposed between each of the pair of legs of the upper core 1 and the pair of legs of the lower core 2.
  • the clamp mechanism 4 is disposed at symmetrical positions on both sides of the power line 13 in the extending direction (left and right sides in FIG. 1) around the coupler main body insulator 9.
  • the power line 13 is arranged under the clamp arm 41 of the clamp mechanism 4.
  • the power line presser 10 is provided between the power line 13 and the coupler main body insulator 9, and the power line presser 10 is fixed to the coupler main body insulator 9 with the bolt 19. Has been.
  • Each of the upper core 1 and the lower core 2 is formed of a magnetic material such as ferrite, and contacts the predetermined gap length regulating member 3 together with the predetermined gap length regulating member 3 of each leg portion of both.
  • the leg end surface is finished with high accuracy.
  • the predetermined gap length restriction member 3 is sandwiched between the left and right leg portions of the upper core 1 and the lower core 2 so that the predetermined gap length restriction member 3 and the upper core 1 and the lower core 2 are in close contact with each other.
  • the predetermined gap length regulating member 3, the upper core 1 and the lower core 2 are integrally combined to form a magnetic core 123 having a gap core force.
  • a combination of the secondary winding 12, the magnetic core 123, and the power line 13 transmitting a signal constitutes an inductive coupling device.
  • the predetermined gap length regulating member 3 Since the magnetic flux passes through the predetermined gap length restricting member 3 in the gap length direction (vertical direction in FIGS. 1 and 2), the predetermined gap length regulating member 3 is non-shielded so as not to be shielded by eddy currents. It is made of a conductive material. Further, in the present embodiment, the predetermined gap length regulating member 3 is fixed to the lower core 2 by adhesion, and is attached to the lower core 2 side as shown.
  • the core case 11 that holds and holds the upper core 1 is formed of a rustic material such as stainless steel and has a bowl shape with an opening on the lower side, and a pair of members fixed to the inside thereof.
  • the upper core 1 is fixed to the core case 11 by inertially engaging the retaining pins 111 with the recesses 1G on both shoulders of the upper core 1. Even if the upper core 1 is disposed below the core case 11, the upper core 1 is firmly fixed to the core case 11 by the locking pins 111.
  • the upper core holding spring 5 is a leaf spring, and at one end thereof, the upper core holding spring 5 extends downward in the figure (in other words, in the gap length direction of the predetermined gap length regulating member 3) via the core case 11. It works to press the upper core 1.
  • One end of the support plate 14 is welded to the other end of the upper core pressing spring 5.
  • the nut 18 is fixed to the other end of the support plate 14, and the nut 18 is screwed to the tip of the core drive bolt 8.
  • the core drive bolt 8 is attached to the first arm 91 of the coupler main body insulator 9 so as to be rotatable and immovable in the axial direction of the rotation.
  • the support plate 14 and the core drive bolt 8 are any force that holds the upper core 1, the solid binding material 111, the core case 11, and the upper core pressing spring 5 so as not to be deformed at this time. Has sufficient rigidity.
  • the rotation operation portion 81 of the core drive bolt 8 is located below the first arm portion 91.
  • the core drive bolt 8 rotates. If the core drive bolt 8 rotates, the support plate 14 also tries to rotate, but this follow-up rotation is blocked by the positioning pin 7 inserted through the substantially long hole 141 of the support plate 14. . Therefore, if the core drive bolt 8 is rotated by the rotation operation of the rotation operation portion 81, the core drive bolt 8 does not move in the axial direction of the rotation, so that the nut 18 is moved in the axial direction of the rotation. Moving.
  • a positioning mechanism 147 that blocks and holds the core holding mechanism in a predetermined position is configured.
  • An axial direction of the rotation of the core driving bolt 8 (in other words, an extending direction of the core driving bolt 8) is parallel to an extending direction of the positioning pin 7, and the predetermined gap length regulating member 3
  • the upper core 1 moves in parallel with the lower core 2 when the core drive bolt 8 rotates and the upper core 1 moves up and down as the core drive bolt 8 rotates. And then it will be.
  • the clamp mechanism 4 has a clamp arm 41 whose side surface shape is tapered as shown in FIG. 2, and the power line 13 is connected to the base portion of the narrow projecting portion of the clamp arm 41.
  • a recess 42 is provided along the outer shape of the power line 13, and this recess 42 prevents the power line 13 from coming off when the clamp arm 41 is lowered.
  • the clamp arm 41 is fixed to the coupler main body insulator portion 9 with a clamp bolt 16, and the clamp arm 41 is moved up and down by rotating the clamp bolt 16.
  • the power line retainer 10 is made of a metal material, and sandwiches the power line 3 together with the clamp arm 41 to hold the power line 3
  • Second and third arms extending from the coupler body insulator 9 to symmetrical positions on both sides of the power line 13 in the extending direction (left and right sides in FIG. 1) around the coupler body insulator 9
  • the clamp bolt 16 is attached to each of the portions 92 and 93 so as to be rotatable and immovable in the axial direction of the rotation.
  • the clamp arm 41 is screwed to the tip screw portion of each clamp bolt 16.
  • the rotation operation portion 161 of each of the clamping bolts 16 is located below the corresponding second and third arm portions 92 and 93.
  • the respective rotation operation parts 161 and 161 are arranged on the lower side which is the same side of the rotation operation part 81 of the core driving bolt 8 and the coupler main body insulator part 9.
  • the power line retainer 10 includes the power line 13 of the second and third arm portions 92, 93. Are attached to the respective mounting surfaces on the other side with screws 19 corresponding to the respective clamp arms 41, 41.
  • the clamp bolt 16 When the rotation operation unit 161 is rotated, the clamp bolt 16 is rotated. When the clamp bolt 16 rotates, the corresponding clamp arm 41 also tries to rotate, and the following rotation is prevented by the power line presser 10. Therefore, if the clamp bolt 16 is rotated by the rotation operation of the rotation operation portion 161, the clamp bolt 16 does not move in the axial direction of the rotation, so that the corresponding clamp arm 41 is rotated. Move in the direction of the axis. That is, if the rotation operation portion 81 is rotated in one direction, the corresponding clamp bolt 16 is raised, and if the rotation operation portion 81 is rotated in the other direction, the corresponding clamp bolt 16 is lowered.
  • the inductive coupling device is configured to fix the inductive coupling device to the power line by sandwiching the power line 13 by the clamp mechanism 4, so that the inductive coupling device is wind and rain, etc. There is no effect of disconnection of the communication line due to the movement of the inductive coupling device caused by wind or the like that does not cause a positional shift with respect to the power line 13 even if it is exposed to
  • the gap distance of the core is determined by the thickness of the predetermined gap length regulating member 3, the gap distance can be made highly accurate. Even when the core driving bolt 8 is strongly tightened at the time of installation of the apparatus, the predetermined gap length regulating member 3 is not subjected to a force greater than the elastic force of the upper core pressing panel 5, so the predetermined gap length regulating member 3 However, there is no problem that the accuracy of the gap interval is lowered due to plastic deformation.
  • S is the cross-sectional area of the core
  • g gap interval
  • ⁇ 0 vacuum permeability
  • I power line current
  • core flux density
  • La gap core magnetic path length
  • ⁇ ′ core Relative permeability
  • the gap interval g can be made highly accurate, so that the value of the inductance L can be made highly accurate.
  • the inductance of the core is an important circuit constant for inductive coupling circuits. As a result of improving the accuracy, the signal strength that can be transmitted on the power line is stabilized, and the information transmission is stable. Then, there is an effect. [0038]
  • the core driving bolt 8 and the clamping bolt 16 are provided at the same angle on the same side of the coupler main body insulator 9 at the same angle, and the same angle with respect to the support rod for installation on the overhead wire each time.
  • the operability has been improved, for example, when the inductive coupling device is lifted up to the overhead wire and hooked onto the overhead wire, and when the two cores are brought into close contact with each other and the core can be fixed with a single bolt. It is effective.
  • the mechanism 1478 can be realized by, for example, one support plate 14, one core drive bolt 8, and one positioning pin 7, as described above, and has stable and good inductive coupling efficiency, high !, and reliability. In addition to ensuring, it can be realized at low cost.
  • the magnetic cores 1 and 2 are configured to be in a non-contact state with the power line 13 while the clamp mechanism 4 sandwiches the power line 13 on both sides of the magnetic core in the power line extending direction.
  • the collision between the power line 13 and the magnetic cores 1 and 2 due to the vibration or vibration of the overhead power line is avoided, and the coupling accuracy of the inductive coupling device can be improved, the coupling accuracy can be stabilized, and the reliability can be improved.
  • the side surface of the lower core 2 is such that the inner side surface 21iss is arcuate (see Fig. 3 (a)) and the outer side surface 21oss is trapezoidal (Fig. 3). (See (a)).
  • the linear surface 21SL1 can be brought into contact with the fixed surface 21SL11 so that the lower core 2 can be positioned, so that the processing accuracy of the core gap surfaces gsa and gsb can be ensured. It becomes easy to secure the accuracy of the attachment position to the coupler main body insulator 9 and the accuracy of the gap surface position of the core.
  • the upper core 1 is also configured in the same manner as the lower core 2, and the linear surface 21SL1 abuts on the fixed surface 21SL11 so that the upper core 1 can be positioned. Therefore, it is easy to secure the processing accuracy of gsb.
  • the inductive coupling device 100 has a first conductor 13 on one side of two parallel straight sides sdl, sd2 as illustrated in FIGS.
  • a trapezoidal first core element portion 1 having a first recess r csl passing therethrough, and two parallel straight sides sdl parallel to the parallel two sides sdl and sd2 of the first core element portion 1
  • sd2 has a second recess rcs2 facing the first recess rcsl on the side of the first core element portion 1 side
  • the second recess rcs2 A gap g having a substantially uniform gap length is formed over the entire area between the linear side having the first side and the linear side having the first recess res 1 of the first core element portion 1.
  • the trapezoidal second core element part 2 and the second recess rcs2 of the second core element part 2 pass through the first core element part 1 and the second core element part 2
  • the second conductor 12 is electromagnetically coupled to the first conductor
  • the trapezoidal first core element part 1 and the second core element part 2 both have the side sdl as the lower base side in the trapezoid,
  • the case where the side sd2 is the side of the upper base in the trapezoid is illustrated.
  • the trapezoidal first core element part 1 is provided with a first recess rcsl in the lower base side sdl
  • the trapezoidal second core element part 2 is provided in the lower base side sdl.
  • two recesses rcs2 are provided is illustrated. With such a structure, the inductive coupling device 100 becomes smaller and lighter than when the recess rcsl or rcs2 is provided in the upper base side sd2.
  • the core element part 2 (or 1) does not move due to the force WFB acting on the gap surface gsb during machining, and the linear surface of the straight side sd2 on the bearing surface 21SL11 on the work table. 21 is fixed via SL1, and therefore the cutting process of the gap surface gsb is performed precisely, and as a result of the cutting process, the gap surface gsb is processed to the desired flatness and is ideal. It is precisely machined to the desired position (the desired level in the gap length direction) without tilting with respect to the (desired) machining surface. As a result, the stability and improvement of coupling efficiency, which is one of the product qualities of individual products (inductive coupling devices), can be fully expected as shown in Fig. 1 and Fig. 2. In the assembled state, the gap g between the first core element portion 1 and the second core element portion 2 has a substantially uniform gap length over the entire gap surfaces gsa and gsb.
  • the gap surfaces gsa and gsb are precisely cut and polished, and as a result of the cutting and polishing process, the gap surfaces gsa and gsb are processed to the desired flatness. It is accurately added to the intended position (the desired level in the gap length direction) without inclining with respect to the surface, and the machining work becomes easy.
  • the corner 21 of the outer surface forming the trapezoid of the core element part 2 (or 1) is rounded 21R. That is, the arc-shaped connecting portion 21R is formed. (See Figure 3 (a) (c)).
  • the arc-shaped connecting portion 21R which is a corner portion having the roundness 21R, is the corner portion of the connecting portion between the straight side sd2 of the upper base of the trapezoid and the connecting sides sd3 and sd4 at both ends thereof, and the angle ⁇ In both cases, by setting the angle to 180 degrees and ⁇ to 90 degrees, the lower core 2 is jointed with the round 21R after casting of the coupler main body 9 (the lower core 2 is made of an insulating mold material).
  • the internal distortion generated in the coupler main body insulator 9 and the lower core 2 in accordance with the thermal contraction of the insulating mold material of the coupler main body insulator 9 after molding) is reduced. 9 prevents the occurrence of peeling and cracking at the joint with the lower core 2.
  • the lower core 2 is formed when the coupler main body insulator 9 is formed. Is integrally formed in the coupler main body insulator 9, the coupler main body insulator 9 and the coupler main body insulator 9 and the coupler main body insulator 9 after heat shrinkage after casting. Internal strain generated in the lower core 2 can be reduced, and peeling of the joint portion of the coupler main body insulator portion 9 with the lower core 2 and generation of cracks can be prevented.
  • the secondary winding 12 is integrated with the secondary winding 12 as shown in Figs.
  • the outer lead-out conductor 1002 is led out to the outside through the insulating molding material of the coupler main body insulator 9.
  • straight surfaces 21SL2 and 21SL3 are connected to ends opposite to the straight surfaces 21SL1 and extend substantially perpendicular to the straight surfaces 21SL1 to the gap surfaces gsa and gsb.
  • Existing linear surfaces 21SL2E and 21SL3E are formed.
  • the first conductor 13 and the second conductor 12 are also used as a signal transmission medium.
  • the first core element portion 1 and the second core element portion 2 are used.
  • the signal is transmitted across the first conductor 13 and the second conductor 12 via the first conductor 13, and the current flowing through the first conductor 13 is used for current measurement via the second conductor 12. Also used when extracting signals.
  • the first core element portion 1 and the second core element portion 2 are formed of a flight, as the size increases, manufacturing variation (characteristic becomes more stable as the size increases).
  • the first core element portion 1 and the force of increasing the problem of magnetic property degradation and large cracks are likely to occur.
  • the second core element part 2 is laminated and bonded to a plurality of layers to form a laminated core, thereby suppressing the manufacturing variation (the characteristic becomes unstable as the size increases, and the magnetic characteristics are likely to deteriorate and large cracks are likely to occur). Thus, a stable coupling efficiency is obtained.
  • the stacking direction is the extending direction of the power line 13, and the thickness of the first core element part 1 and the second core element part 2 in the extending direction of the power line 13 is adjusted by adjusting the number of stacks. It is also possible to adjust the length arbitrarily.
  • the gap surfaces gsa and gsb are polished lj and polished after the first core element portion 1 and the second core element portion 2 are laminated in a plurality of layers and bonded to form a laminated core. Done.
  • the gap surfaces gsa and gsb are polished 1 after polishing and laminated to a plurality of layers to form a laminated core, the gap surfaces gsa and gsb are polished and polished and then laminated and bonded to multiple layers.
  • the flatness of the gap surfaces gsa and gsb is improved, and a stable coupling efficiency can be obtained.
  • Embodiment 3 In Embodiment 3, the straight surfaces 21SL2E and 21SL3E of the lower core 2 in FIG. 3 are omitted, and the straight surfaces 21SL2 and 21SL3 extend to the gap surfaces gsa and gsb as shown in FIG. Thus, the step of forming the straight surfaces 21SL2E and 21SL3E can be omitted.
  • the lower core 2 is integrally molded directly in the coupler main body insulator 9 when the coupler main body insulator 9 is formed.
  • a shock absorbing material 29 such as rubber is interposed between the coupler main body insulator 9 and the lower core 2. Due to the interposition of the cushioning material 29, the inner portion generated in the coupler main body insulator 9 and the lower core 2 due to the thermal contraction of the coupler main body insulator 9 after casting of the coupler main body insulator 9 Strain can be reduced, and peeling of the joint portion of the coupler main body insulator portion 9 with the lower core 2 and generation of cracks can be prevented.
  • the core element portion 2 (or 1) has a trapezoidal shape, but in the fifth embodiment, the core element portion 2 (or 1) is rectangular as shown in FIG. This is an example.
  • the core element part 2 (or 1) is square is illustrated.
  • the square core element part 2 (or 1) is This is an example in which the corner was removed.
  • FIG. 1 is a diagram showing a first embodiment of the present invention, a front view showing an example of the structure of the entire inductive coupling device, and a diagram seen from the left side of FIG. 2.
  • FIG. 2 is a view showing the first embodiment of the present invention, and is a longitudinal left side view showing a partial cross section of the ⁇ -II line force of FIG. 1 as seen in the direction of the arrow;
  • FIG. 6 is a longitudinal left side view of the element part and the second core element part in a state where the gap length is close to a state where the gap length becomes a predetermined gap length.
  • FIG. 3 is a diagram showing the first embodiment of the present invention and is an enlarged view of a core element portion; (a) Is a side view, (b) is a plan view, and (c) is a front view corresponding to FIG.
  • FIG. 4 is a diagram showing a second embodiment of the present invention, and is an enlarged view of a core element part, (a) is a side view, (b) is a plan view, and (c) corresponds to FIG. FIG.
  • FIG. 5 is a diagram showing a third embodiment of the present invention, and is an enlarged view of a core element part, (a) is a side view, (b) is a plan view, and (c) corresponds to FIG. FIG.
  • FIG. 6 is a diagram showing a fourth embodiment of the present invention, and is a longitudinal left side view showing another example corresponding to FIG.
  • FIG. 7 is a diagram showing the fifth embodiment of the present invention, and is an enlarged view of the core element portion.
  • (A) is a side view
  • (b) is a plan view
  • (c) corresponds to FIG. FIG.
  • FIG. 8 is a diagram showing the sixth embodiment of the present invention, and is an enlarged view of the core element part.
  • (A) is a side view
  • (b) is a plan view
  • (c) corresponds to FIG. FIG.
  • FIG. 9 is an enlarged view showing a core element part in a conventional inductive coupling device, (a) is a side view, (b) is a plan view, and (c) is a front view corresponding to FIG.
  • Elastic member upper core pressing panel
  • position adjustment screw
  • Positioning member power line retainer
  • core case
  • Secondary winding (second conductor), power line (first conductor),
  • the first arm The first arm,
  • sdl One of the two parallel sides, sd2 The other side of the two parallel sides, sd3 One side connected to the parallel side, sd4 The other side connected to the parallel side.

Abstract

An inductive coupling device comprising a first trapezoidal core element having a first recess, for passing a first conductor therethrough, in one of two parallel sides, a second trapezoidal core element having a second recess, opposing the first recess, in a side on the first core element side out of two parallel sides which are parallel with the above-mentioned two parallel sides of the first core element and having a gap formed between the side having the second recess and the side, having the first recess, of the first core element, and a second conductor penetrating the second recess in the second core element and coupled electromagnetically with the first conductor through the first and second core elements, wherein the surface of a gap between the first and second core elements can be machined precisely so that stabilization and enhancement of one quality of individual products (inductive coupling device), i.e. the coupling efficiency, can be expected.

Description

明 細 書  Specification
誘導結合装置  Inductive coupling device
技術分野  Technical field
[0001] この発明は、相互間にギャップが形成された第一のコア要素部と第二のコア要素部 とを介して第 2の導体が第 1の導体に電磁結合される誘導結合装置に関するものであ る。  The present invention relates to an inductive coupling device in which a second conductor is electromagnetically coupled to a first conductor via a first core element portion and a second core element portion in which a gap is formed between them. It is a thing.
背景技術  Background art
[0002] 相互間にギャップが形成された第 1のコア要素部と第 2のコア要素部とを介して第 2 の導体が第 1の導体に電磁結合される誘導結合装置、例えば電力線にデータ信号 を重畳させる誘導結合装置は、例えば特表 2005— 525021号公報 (特許文献 1)に 示されている。この特許文献 1に記載の誘導結合装置では、相互間にギャップが形 成された第 1のコア要素部と第 2のコア要素部とから構成され電力線を囲む磁性コア と磁性コアを囲む励磁コイルとを使用して励磁コイルに信号電流を通電することによ り、例えば、通信モデム力 信号線を通じて前記励磁コイルに信号が送信され、当該 信号が前記磁性コアを介して電力線に重畳される。  [0002] An inductive coupling device in which a second conductor is electromagnetically coupled to a first conductor via a first core element portion and a second core element portion in which a gap is formed between the first core element portion, for example, data on a power line An inductive coupling device that superimposes a signal is disclosed in, for example, Japanese Translation of PCT International Publication No. 2005-525021 (Patent Document 1). In the inductive coupling device described in Patent Document 1, a magnetic core that includes a first core element portion and a second core element portion that are formed with a gap therebetween and surrounds a power line, and an excitation coil that surrounds the magnetic core. Is used to transmit a signal current to the excitation coil, for example, a signal is transmitted to the excitation coil through a communication modem power signal line, and the signal is superimposed on the power line via the magnetic core.
[0003] 特許文献 1 :特表 2005— 525021号公報(図 4およびその説明) [0003] Patent Document 1: Japanese Translation of Special Publication 2005-525021 (Fig. 4 and its explanation)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 相互間にギャップが形成された第 1のコア要素部と第 2のコア要素部とを介して第 2 の導体が第 1の導体に電磁結合される誘導結合装置においては、製品品質の一つ である結合効率の安定、向上が技術的課題の一つであり、そのため、第 1のコア要素 部と第 2のコア要素部との間に形成されたギャップがその全域に亘つて均一のギヤッ プ長であることが望ましぐそのためにギャップ面を精度良く切削加工'研磨加工する ことが好ましい。このことは、特許文献 1に記載のような電力線搬送通信に使用される 誘導結合装置に限らず相互間にギャップが形成された第 1のコア要素部と第 2のコア 要素部とを介して第 2の導体が第 1の導体に電磁結合される誘導結合装置について 言える。 [0005] ギャップ面を切削加工'研磨加工する場合、特許文献 1に記載の誘導結合装置の ように、相互間にギャップが形成された第 1のコア要素部および第 2のコア要素部が 半円形形状であれば、切削加工'研磨加工時の第 1のコア要素部、第 2のコア要素 部の被支持面となる当該要素の外周面は円弧状であるため、加工時に第 1のコア要 素部、第 2のコア要素部に作用する力によって第 1のコア要素部、第 2のコア要素部 が前記円弧状外周面に沿って回動するため、切削加工'研磨加工後のギャップ面が 、扁平な面となっていな力つたり、理想ギャップ面に対して傾斜していたりする。その 結果、第 1のコア要素部と第 2のコア要素部との間に形成されたギャップがその全域 に亘つて均一のギャップ長とならな 、。 [0004] In an inductive coupling device in which a second conductor is electromagnetically coupled to a first conductor via a first core element portion and a second core element portion in which a gap is formed between them, the product quality Stabilization and improvement of coupling efficiency, which is one of the technical issues, is one of the technical issues. Therefore, the gap formed between the first core element part and the second core element part extends over the entire area. For this reason, it is desirable to have a uniform gap length. For this reason, it is preferable to cut and polish the gap surface with high accuracy. This is not limited to the inductive coupling device used for power line carrier communication as described in Patent Document 1, but via the first core element portion and the second core element portion in which a gap is formed between them. This is true for inductive coupling devices in which the second conductor is electromagnetically coupled to the first conductor. [0005] When the gap surface is cut and polished, as in the inductive coupling device described in Patent Document 1, the first core element portion and the second core element portion in which a gap is formed between them are half If the shape is circular, the outer peripheral surface of the element that becomes the supported surface of the first core element part and the second core element part during cutting and polishing is arc-shaped, so the first core during processing Since the first core element part and the second core element part are rotated along the arc-shaped outer peripheral surface by the force acting on the element part and the second core element part, the gap after the cutting process is performed. The surface may be a flat surface or may be inclined with respect to the ideal gap surface. As a result, the gap formed between the first core element portion and the second core element portion must have a uniform gap length over the entire area.
[0006] つまり、本願の図 9に示してあるように、第 1のコア要素部 1あるいは第 2のコア要素 部 2は、その円弧状外周面 21ossに沿って矢印 A方向あるいは B方向に回動する。例 えば、ギャップ面 gsaを切削加工 ·研磨加工している場合、加工によりギャップ面 gsaに 作用する力 WFAによって、第 1のコア要素部 1あるいは第 2のコア要素部 2は、その加 ェ時の被支持面となる円弧状外周面 21 ossに沿って矢印 A方向に回動する。同様に 、ギャップ面 gsbを切削加工'研磨カ卩ェしている場合、加工によりギャップ面 gsbに作用 する力 WFBによって、第 1のコア要素部 1あるいは第 2のコア要素部 2は、その加工時 の被支持面となる円弧状外周面 21ossに沿って矢印 B方向に回動する。これら第 1の コア要素部 1あるいは第 2のコア要素部 2の加工時の矢印 A, B方向の回動の結果、 切削加工 ·研磨加工後のギャップ面 gsa, gsbが、扁平な面となっていなかったり、理想 ギャップ面に対して傾斜していたりする。つまりギャップ面 gsa, gsbが精度良く加工さ れず、個々の製品 (誘導結合装置)の製品品質の一つである結合効率の安定、向上 を必ずしも十分には期待できないことになる。  That is, as shown in FIG. 9 of the present application, the first core element portion 1 or the second core element portion 2 rotates in the direction of arrow A or B along its arcuate outer peripheral surface 21oss. Move. For example, when the gap face gsa is machined or polished, the force acting on the gap face gsa due to machining causes the first core element part 1 or the second core element part 2 to be Rotate in the direction of arrow A along the arc-shaped outer peripheral surface 21 oss, which is the supported surface of. Similarly, when the gap surface gsb is cut or polished, the first core element portion 1 or the second core element portion 2 is processed by the force WFB acting on the gap surface gsb by the processing. It rotates in the direction of arrow B along the arc-shaped outer peripheral surface 21oss that becomes the supported surface at the time. As a result of turning in the direction of arrows A and B when machining the first core element part 1 or the second core element part 2, the gap surfaces gsa and gsb after cutting and polishing become flat surfaces. It is not or is inclined with respect to the ideal gap surface. In other words, the gap surfaces gsa and gsb are not processed with high accuracy, and the stability and improvement of coupling efficiency, which is one of the product qualities of individual products (inductive coupling devices), cannot always be fully expected.
[0007] この発明は、前述のような実情に鑑みてなされたもので、個々の製品 (誘導結合装 置)の製品品質の一つである結合効率の安定、向上を期待できょうに第 1のコア要素 部と第 2のコア要素部との相互間のギャップのギャップ面を精度良く加工できるように することを目的とするものである。  [0007] The present invention has been made in view of the above-described circumstances, and it is expected that the coupling efficiency, which is one of the product qualities of individual products (inductive coupling devices), is stable and improved. The purpose is to allow the gap surface of the gap between the core element part and the second core element part to be processed with high accuracy.
課題を解決するための手段  Means for solving the problem
[0008] この発明に係る誘導結合装置は、平行な二辺のうちの一辺に第 1の導体が貫通す る第 1の凹部を有する台形状の第 1のコア要素部、前記第 1のコア要素部の前記平 行な二辺と平行を成す平行な二辺のうち前記第 1のコア要素部側の辺に前記第 1の 凹部に対向する第 2の凹部を有しこの第 2の凹部を有する辺と前記第 1のコア要素部 の前記第 1の凹部を有する辺との間にギャップが形成される台形状の第 2のコア要素 部、および前記第 2のコア要素部の前記第 2の凹部を貫通し前記第 1のコア要素部 および前記第 2のコア要素部を介して前記第 1の導体と電磁結合される第 2の導体を 備えている。第 1のコア要素部および第 2のコア要素部が台形形状であるので、ギヤ ップ面を切削加工'研磨加工している場合に当該加工によりギャップ面に作用する力 を、第 1のコア要素部あるいは第 2のコア要素部の平行な二辺のうちの直線状の一辺 および Zあるいは当該一辺と連接する直線状の辺で支承することになり、従って、ギ ヤップ面を切削加工'研磨加工している場合に当該加工によりギャップ面に作用する 力によって第 1のコア要素部および第 2のコア要素部が前述の従来の誘導結合装置 のように回動するようなことがなくなり、個々の製品 (誘導結合装置)の製品品質の一 である結合効率の安定、向上を十分に期待できょうに第 1のコア要素部と第 2のコア 要素部との相互間のギャップのギャップ面を精度良く加工できるようになり、また、当 該加工の作業性、ギャップ面の加工精度の測定の作業性も向上する。 [0008] In the inductive coupling device according to the present invention, the first conductor passes through one side of two parallel sides. A trapezoidal first core element portion having a first recess, and one of the two parallel sides parallel to the parallel two sides of the first core element portion on the first core element portion side. A gap is formed between the side having the second recess facing the first recess on the side and the side having the second recess and the side having the first recess of the first core element portion. The trapezoidal second core element part, and the first core element part and the second core element part through the second recess of the second core element part and the first core element part A second conductor that is electromagnetically coupled to the conductor is provided. Since the first core element portion and the second core element portion are trapezoidal, when the gap surface is cut or polished, the force acting on the gap surface due to the processing is The element part or the second core element part is supported by one straight side of two parallel sides and Z or a straight side connected to the one side. Therefore, the gap surface is cut and polished. When machining, the first core element part and the second core element part do not rotate like the conventional inductive coupling device described above due to the force acting on the gap surface due to the machining. The gap surface of the gap between the first core element part and the second core element part can be fully expected to stabilize and improve the coupling efficiency, which is one of the product quality of our products (inductive coupling devices). It becomes possible to process with high accuracy, The workability of the machining and the workability of measuring the machining accuracy of the gap surface are also improved.
発明の効果 The invention's effect
この発明の誘導結合装置は、平行な二辺のうちの一辺に第 1の導体が貫通する第 1の凹部を有する台形状の第 1のコア要素部、前記第 1のコア要素部の前記平行な 二辺と平行を成す平行な二辺のうち前記第 1のコア要素部側の辺に前記第 1の凹部 に対向する第 2の凹部を有しこの第 2の凹部を有する辺と前記第 1のコア要素部の前 記第 1の凹部を有する辺との間にギャップが形成される台形状の第 2のコア要素部、 および前記第 2のコア要素部の前記第 2の凹部を貫通し前記第 1のコア要素部およ び前記第 2のコア要素部を介して前記第 1の導体と電磁結合される第 2の導体を備え て!、るので、個々の製品 (誘導結合装置)の製品品質の一である結合効率の安定、 向上を期待できょうに第 1のコア要素部と第 2のコア要素部との相互間のギャップの ギャップ面を精度良く加工できる効果がある。  The inductive coupling device according to the present invention includes a trapezoidal first core element portion having a first recess through which a first conductor passes on one side of two parallel sides, and the parallel of the first core element portion. Of the two parallel sides that are parallel to the two sides, the side on the first core element portion side has a second recess facing the first recess and the side having the second recess and the first A trapezoidal second core element part in which a gap is formed between the first core element part and the side having the first concave part, and the second concave part of the second core element part passes through the second concave part. And a second conductor that is electromagnetically coupled to the first conductor via the first core element portion and the second core element portion! Gap in the gap between the first core element part and the second core element part can be expected to stabilize and improve the coupling efficiency, which is one of the product quality The-up surface is precisely machined can be effectively.
発明を実施するための最良の形態 [0010] 実施の形態 1. BEST MODE FOR CARRYING OUT THE INVENTION [0010] Embodiment 1.
以下、この発明の実施の形態 1を図 1〜図 3により説明する。図 1は誘導結合装置 全体の構造の一事例を示す正面図であり、図 2の左側から見た図である。図 2は図 1 の II II線力 矢印方向に見た一部断面で示す縦断左側面図であり、コア平行移動 機構により第 1のコア要素部と第 2のコア要素部とをギャップ長が所定ギャップ長とな る状態に近づけた状態での縦断左側面図である。図 3はコア要素部を拡大して示す 図であり、(a)は側面図、(b)は平面図、(c)は図 1に対応する正面図である。  Embodiment 1 of the present invention will be described below with reference to FIGS. Fig. 1 is a front view showing an example of the overall structure of the inductive coupling device, as seen from the left side of Fig. 2. Fig. 2 is a vertical left side view showing a partial cross-section as viewed in the direction of the arrow II II in Fig. 1. The gap length between the first core element and the second core element is determined by the core translation mechanism. It is a vertical left side view in a state close to a state where a predetermined gap length is obtained. FIG. 3 is an enlarged view showing the core element portion, where (a) is a side view, (b) is a plan view, and (c) is a front view corresponding to FIG.
[0011] 図 1に例示してあるように、この発明の実施の形態 1による誘導結合装置 100は、上 側の第 1のコア要素部(以下、「上コア」と略記する) 1と、下側の第 2のコア要素部(以 下、「下コア」と略記する) 2と、所定ギャップ長規制部材 3と、クランプ機構 4と、弾性 部材 (以下「上コア押さえパネ」と記す) 5と、位置決めピン 7と、ボルト(以下「コア駆動 ボルト」と記す) 8と、結合器本体碍子部 9と、位置決め部材 (以下「電力線押さえ具」 と記す) 10と、コアケース 11と、第 2の導体である 2次巻き線 12 (以下「2次巻き線 12」 と記す)と、 2次巻き線 12を外部に導出する外部導出導体 1002と、支持板 14と、ナツ ト 18と、ボルト 19とを備えており、通信媒体となる第 1の導体である電力線 13 (以下「 電力線 13」と記す)に取り付けられる。前記電力線 13は、前記誘導結合装置 100に おける前記 2次巻き線 (第 2の導体) 12に前記上コア 1と前記下コア 2とを介して電磁 結合される第 1の導体である。  As illustrated in FIG. 1, an inductive coupling device 100 according to Embodiment 1 of the present invention includes an upper first core element portion (hereinafter abbreviated as “upper core”) 1, Lower second core element portion (hereinafter abbreviated as “lower core”) 2, predetermined gap length regulating member 3, clamp mechanism 4, and elastic member (hereinafter referred to as “upper core pressing panel”) 5, positioning pin 7, bolt (hereinafter referred to as “core drive bolt”) 8, coupler body insulator 9, positioning member (hereinafter referred to as “power line presser”) 10, core case 11, Secondary winding 12 (hereinafter referred to as “secondary winding 12”) as the second conductor, external lead-out conductor 1002 for leading the secondary winding 12 to the outside, support plate 14, nut 18 And a bolt 19, and is attached to a power line 13 (hereinafter referred to as “power line 13”) which is a first conductor serving as a communication medium. The power line 13 is a first conductor that is electromagnetically coupled to the secondary winding (second conductor) 12 in the inductive coupling device 100 via the upper core 1 and the lower core 2.
[0012] 図 2に明示してあるように、上側の前記上コア 1は前記コアケース 11に固定され、下 側の前記下コア 2は前記結合器本体碍子部 9のモールド成型時に当該誘導結合装 置本体 9に一体にモールドされる。前記下コア 2には信号線の一部である前記 2次卷 線 12が巻き付けてある。  As clearly shown in FIG. 2, the upper core 1 on the upper side is fixed to the core case 11, and the lower core 2 on the lower side is inductively coupled when the coupler main body 9 is molded. Molded integrally with the device body 9. The secondary core 12 that is a part of a signal line is wound around the lower core 2.
[0013] 前記コアケース 11には、前記上コア押さえパネ 5の一端が固定され、この上コア押 さえパネ 5は、さらに前記支持板 14の一端に固定されている。  [0013] One end of the upper core pressing panel 5 is fixed to the core case 11, and the upper core pressing panel 5 is further fixed to one end of the support plate 14.
[0014] 前記支持板 14は、一枚の板を図示のような概略 L字状に形成されており、この支持 板 14の他端に固着された前記ナット 18に前記コア駆動ボルト 8が螺合している。さら に前記支持板 14の中間部に穿設された概略長孔 141に、前記結合器本体碍子部 9 に植設された前記位置決めピン 7が貫挿されて 、る。 [0015] 前記コアケース 11と前記上コア押さえパネ 5と前記支持板 14とにより、上コア 1を保 持するコア保持機構部 1145を構成している。 [0014] The support plate 14 is formed in a substantially L shape as shown in the figure, and the core drive bolt 8 is screwed into the nut 18 fixed to the other end of the support plate 14. Match. Further, the positioning pin 7 implanted in the coupler main body insulator 9 is inserted into a substantially long hole 141 formed in an intermediate portion of the support plate 14. The core case 11, the upper core pressing panel 5, and the support plate 14 constitute a core holding mechanism 1145 that holds the upper core 1.
[0016] 前記概略長孔 141を有する前記支持板 14と前記位置決めピン 7とにより、前記コア 駆動ボルト 8の回転に伴う前記コア保持機構部 1145の前記ボルトを中心とする回転を 阻止して前記コア保持機構部 1145を所定位置に保持する位置決め機構 147を構成 している。 [0016] The support plate 14 having the substantially elongated hole 141 and the positioning pin 7 prevent the core holding mechanism 1145 from rotating around the bolt as the core driving bolt 8 rotates. A positioning mechanism 147 that holds the core holding mechanism 1145 at a predetermined position is configured.
[0017] 前記コア保持機構部 1145と前記位置決め機構 147と前記ナット 18と前記コア駆動 ボルト 8とにより、前記上コア 1を前記下コアに対して平行移動(図示の事例では上下 方向)させるコア平行移動機構 1478を構成して 、る。  [0017] The core holding mechanism 1145, the positioning mechanism 147, the nut 18, and the core driving bolt 8 are used to move the upper core 1 in parallel with the lower core (in the illustrated example, in the vertical direction). The translation mechanism 1478 is configured.
[0018] 前記上コア 1の一対の脚部と前記下コア 2の一対の脚部との各間には所定ギャップ 長規制部材 3が介在して ヽる。 A predetermined gap length regulating member 3 is interposed between each of the pair of legs of the upper core 1 and the pair of legs of the lower core 2.
[0019] 図 1に明示してあるように、前記クランプ機構 4が前記結合器本体碍子部 9を中心に 前記電力線 13の延在方向両側(図 1における左右両側)に対称位置に配置され、当 該クランプ機構 4のクランプアーム 41の下に前記電力線 13が来る構造にしてある。 [0019] As clearly shown in FIG. 1, the clamp mechanism 4 is disposed at symmetrical positions on both sides of the power line 13 in the extending direction (left and right sides in FIG. 1) around the coupler main body insulator 9. The power line 13 is arranged under the clamp arm 41 of the clamp mechanism 4.
[0020] 前記電力線 13と前記結合器本体碍子部 9との間には前記電力線押さえ具 10が設 けられ、当該電力線押さえ具 10は、前記結合器本体碍子部 9に前記ボルト 19で固 定されている。 The power line presser 10 is provided between the power line 13 and the coupler main body insulator 9, and the power line presser 10 is fixed to the coupler main body insulator 9 with the bolt 19. Has been.
[0021] 前記上コア 1と前記下コア 2は、何れもフェライト等の磁性材料で形成され、両者の 各脚部の前記所定ギャップ長規制部材 3と合わさって当該所定ギャップ長規制部材 3と接触する脚部先端面は精度よく仕上げてある。  [0021] Each of the upper core 1 and the lower core 2 is formed of a magnetic material such as ferrite, and contacts the predetermined gap length regulating member 3 together with the predetermined gap length regulating member 3 of each leg portion of both. The leg end surface is finished with high accuracy.
前記上コア 1および前記下コア 2の左右両脚部間に前記所定ギャップ長規制部材 3 を挟んで、当該所定ギャップ長規制部材 3と前記上コア 1および前記下コア 2とが密 着するようになっており、当該所定ギャップ長規制部材 3と前記上コア 1と前記下コア 2とが一体的に合体してギャップコア力もなる磁性コア 123を構成している。  The predetermined gap length restriction member 3 is sandwiched between the left and right leg portions of the upper core 1 and the lower core 2 so that the predetermined gap length restriction member 3 and the upper core 1 and the lower core 2 are in close contact with each other. The predetermined gap length regulating member 3, the upper core 1 and the lower core 2 are integrally combined to form a magnetic core 123 having a gap core force.
[0022] 信号を伝送してくる前記 2次卷線 12と前記磁性コア 123と前記電力線 13との組み 合わせで誘導結合装置を構成する。  [0022] A combination of the secondary winding 12, the magnetic core 123, and the power line 13 transmitting a signal constitutes an inductive coupling device.
[0023] 前記所定ギャップ長規制部材 3は、それ自体を磁束がギャップ長方向(図 1および 図 2における垂直方向)に通過するので、渦電流による磁気遮蔽が生じないように非 導電材料で形成されている。また、前記所定ギャップ長規制部材 3は、本実施の形態 では、下コア 2に接着により固定され、図示のように下コア 2側に取り付けられている。 [0023] Since the magnetic flux passes through the predetermined gap length restricting member 3 in the gap length direction (vertical direction in FIGS. 1 and 2), the predetermined gap length regulating member 3 is non-shielded so as not to be shielded by eddy currents. It is made of a conductive material. Further, in the present embodiment, the predetermined gap length regulating member 3 is fixed to the lower core 2 by adhesion, and is attached to the lower core 2 side as shown.
[0024] 前記上コア 1を保持して ヽる前記コアケース 11はステンレス等の鲭びな!/ヽ材料で形 成され、下側が開口となる器形状とし、その内側に固着された一対の係止ピン 111を 前記上コア 1の両肩部の凹み 1Gに弹性的に係合することにより前記上コア 1の前記 コアケース 11への固定を行っている。前記コアケース 11の下側に前記上コア 1を配 設しても、前記上コア 1は前記コアケース 11に前記係止ピン 111により強固に固定さ れた状態となる。 [0024] The core case 11 that holds and holds the upper core 1 is formed of a rustic material such as stainless steel and has a bowl shape with an opening on the lower side, and a pair of members fixed to the inside thereof. The upper core 1 is fixed to the core case 11 by inertially engaging the retaining pins 111 with the recesses 1G on both shoulders of the upper core 1. Even if the upper core 1 is disposed below the core case 11, the upper core 1 is firmly fixed to the core case 11 by the locking pins 111.
[0025] 前記上コア押さえばね 5は板ばねであり、その一端で、図における下方向(換言す れば前記所定ギャップ長規制部材 3のギャップ長方向)に、前記コアケース 11を介し て前記上コア 1を押し付ける働きをする。  [0025] The upper core holding spring 5 is a leaf spring, and at one end thereof, the upper core holding spring 5 extends downward in the figure (in other words, in the gap length direction of the predetermined gap length regulating member 3) via the core case 11. It works to press the upper core 1.
[0026] 前記支持板 14の一端は前記上コア押さえばね 5の他端に溶接されている。前記支 持板 14の他端には前記ナット 18が固着されており、当該ナット 18は前記コア駆動ボ ルト 8の先端に螺着されている。前記コア駆動ボルト 8は、前記結合器本体碍子部 9 の第一の腕部 91に、回転可能に且つ当該回転の軸線方向には不可動に、取り付け られている。前記支持板 14および前記コア駆動ボルト 8は、前記上コア 1、前記固ま つた結合材 111、前記コアケース 11、前記上コア押さえばね 5を保持している力 こ のときに変形しないよう何れにも充分な剛性を持たせてある。  [0026] One end of the support plate 14 is welded to the other end of the upper core pressing spring 5. The nut 18 is fixed to the other end of the support plate 14, and the nut 18 is screwed to the tip of the core drive bolt 8. The core drive bolt 8 is attached to the first arm 91 of the coupler main body insulator 9 so as to be rotatable and immovable in the axial direction of the rotation. The support plate 14 and the core drive bolt 8 are any force that holds the upper core 1, the solid binding material 111, the core case 11, and the upper core pressing spring 5 so as not to be deformed at this time. Has sufficient rigidity.
[0027] 前記コア駆動ボルト 8の回転操作部 81は、前記第一の腕部 91の下側に位置して いる。前記回転操作部 81を回転操作すれば前記コア駆動ボルト 8が回転する。前記 コア駆動ボルト 8が回転すれば前記支持板 14も追随して回転しょうとするが、この追 随回転は、前記支持板 14の概略長孔 141に挿通された位置決めピン 7によって阻 止される。従って、前記回転操作部 81の回転操作により前記コア駆動ボルト 8が回転 すれば、前記コア駆動ボルト 8は当該回転の軸線方向には移動しないので、前記ナ ット 18が前記回転の軸線方向に移動する。即ち、前記回転操作部 81を、一方の方 向に回転すれば前記ナット 18は上昇し、他方の方向に回転すれば前記ナツト 18は 下降する。このナット 18の上昇 '下降に伴って、前記支持板 14、前記上コア押さえバ ネ 5、前記コアケース 11、および前記上コア 1も上昇'下降する。 [0028] このように、前記概略長孔 141を有する前記支持板 14と前記位置決めピン 7とで、 前記コア駆動ボルト 8の回転に伴う前記コア保持機構部の前記ボルトを中心とする回 転を阻止して前記コア保持機構部を所定位置に保持する位置決め機構 147を構成 している。 The rotation operation portion 81 of the core drive bolt 8 is located below the first arm portion 91. When the rotation operation unit 81 is rotated, the core drive bolt 8 rotates. If the core drive bolt 8 rotates, the support plate 14 also tries to rotate, but this follow-up rotation is blocked by the positioning pin 7 inserted through the substantially long hole 141 of the support plate 14. . Therefore, if the core drive bolt 8 is rotated by the rotation operation of the rotation operation portion 81, the core drive bolt 8 does not move in the axial direction of the rotation, so that the nut 18 is moved in the axial direction of the rotation. Moving. That is, if the rotation operation portion 81 is rotated in one direction, the nut 18 is raised, and if it is rotated in the other direction, the nut 18 is lowered. As the nut 18 rises and falls, the support plate 14, the upper core holding plate 5, the core case 11, and the upper core 1 also rise and fall. In this way, the support plate 14 having the substantially elongated hole 141 and the positioning pin 7 rotate around the bolt of the core holding mechanism portion accompanying the rotation of the core drive bolt 8. A positioning mechanism 147 that blocks and holds the core holding mechanism in a predetermined position is configured.
[0029] 前記コア駆動ボルト 8の前記回転の軸線方向(換言すれば前記コア駆動ボルト 8の 延在方向)は前記位置決めピン 7の延在方向と平行をなし、前記所定ギャップ長規 制部材 3のギャップ長方向と平行をなして ヽるので、前記コア駆動ボルト 8の前記回 転に伴う前記上コア 1の上昇'下降の移動は、前記下コア 2に対して前記上コア 1が 平行移動して 、ることになる。  [0029] An axial direction of the rotation of the core driving bolt 8 (in other words, an extending direction of the core driving bolt 8) is parallel to an extending direction of the positioning pin 7, and the predetermined gap length regulating member 3 The upper core 1 moves in parallel with the lower core 2 when the core drive bolt 8 rotates and the upper core 1 moves up and down as the core drive bolt 8 rotates. And then it will be.
[0030] 前記クランプ機構 4は、側面形状が図 2に示すように先細になっているクランプア一 ム 41を有しており、前記クランプアーム 41の細く突き出した部分の根元部分で前記 電力線 13を掴みやすいように、前記電力線 13の外形に沿った形の窪み 42を設けて あり、この窪み 42は、前記クランプアーム 41を下げたときに前記電力線 13の抜け止 めとしている。前記クランプアーム 41の固定は、前記結合器本体碍子部 9に対してク ランプ用ボルト 16で行い、このクランプ用ボルト 16を回転させることで前記クランプア ーム 41が上下するようになっている。前記電力線押さえ具 10は金属材料で形成され 前記電力線 3を前記クランプアーム 41とともに挟み込み、該電力線 3を保持している  The clamp mechanism 4 has a clamp arm 41 whose side surface shape is tapered as shown in FIG. 2, and the power line 13 is connected to the base portion of the narrow projecting portion of the clamp arm 41. To facilitate gripping, a recess 42 is provided along the outer shape of the power line 13, and this recess 42 prevents the power line 13 from coming off when the clamp arm 41 is lowered. The clamp arm 41 is fixed to the coupler main body insulator portion 9 with a clamp bolt 16, and the clamp arm 41 is moved up and down by rotating the clamp bolt 16. The power line retainer 10 is made of a metal material, and sandwiches the power line 3 together with the clamp arm 41 to hold the power line 3
[0031] 前記結合器本体碍子部 9から当該結合器本体碍子部 9を中心に前記電力線 13の 延在方向両側(図 1における左右両側)に対称位置に延在する第二および第三の腕 部 92, 93の各々に、前記クランプ用ボルト 16が、回転可能に且つ当該回転の軸線 方向には不可動に、取り付けられている。前記各クランプ用ボルト 16の各々の先端 ネジ部に、前記クランプアーム 41が螺合されている。 [0031] Second and third arms extending from the coupler body insulator 9 to symmetrical positions on both sides of the power line 13 in the extending direction (left and right sides in FIG. 1) around the coupler body insulator 9 The clamp bolt 16 is attached to each of the portions 92 and 93 so as to be rotatable and immovable in the axial direction of the rotation. The clamp arm 41 is screwed to the tip screw portion of each clamp bolt 16.
前記各クランプ用ボルト 16の回転操作部 161は、対応する前記第二および第三の 腕部 92, 93の下側に位置している。前記各回転操作部 161, 161は、前記コア駆動 ボルト 8の前記回転操作部 81と、前記結合器本体碍子部 9の同じ側である下側に配 設されている。  The rotation operation portion 161 of each of the clamping bolts 16 is located below the corresponding second and third arm portions 92 and 93. The respective rotation operation parts 161 and 161 are arranged on the lower side which is the same side of the rotation operation part 81 of the core driving bolt 8 and the coupler main body insulator part 9.
[0032] 前記電力線押さえ具 10は、前記第二および第三の腕部 92, 93の前記電力線 13 の側の各取付面に、前記各クランプアーム 41 , 41の各々に対応して前記ボルト 19 で螺着されている。 [0032] The power line retainer 10 includes the power line 13 of the second and third arm portions 92, 93. Are attached to the respective mounting surfaces on the other side with screws 19 corresponding to the respective clamp arms 41, 41.
[0033] 前記回転操作部 161を回転操作すれば前記クランプ用ボルト 16が回転する。前記 クランプ用ボルト 16が回転すれば対応する前記クランプアーム 41も追随して回転し ようとするが、この追随回転は、前記電力線押さえ具 10によって阻止される。従って、 前記回転操作部 161の回転操作により前記前記クランプ用ボルト 16が回転すれば、 前記クランプ用ボルト 16は当該回転の軸線方向には移動しな 、ので、対応する前記 クランプアーム 41が前記回転の軸線方向に移動する。即ち、前記回転操作部 81を、 一方の方向に回転すれば、対応する前記クランプ用ボルト 16は上昇し、他方の方向 に回転すれば、対応する前記クランプ用ボルト 16は下降する。  [0033] When the rotation operation unit 161 is rotated, the clamp bolt 16 is rotated. When the clamp bolt 16 rotates, the corresponding clamp arm 41 also tries to rotate, and the following rotation is prevented by the power line presser 10. Therefore, if the clamp bolt 16 is rotated by the rotation operation of the rotation operation portion 161, the clamp bolt 16 does not move in the axial direction of the rotation, so that the corresponding clamp arm 41 is rotated. Move in the direction of the axis. That is, if the rotation operation portion 81 is rotated in one direction, the corresponding clamp bolt 16 is raised, and if the rotation operation portion 81 is rotated in the other direction, the corresponding clamp bolt 16 is lowered.
[0034] 本実施の形態 1による誘導結合装置は、前述のように、電力線 13をクランプ機構 4 により挟持して誘導結合装置を電力線に固定する構成となっているので、誘導結合 装置は風雨等にさらされても電力線 13に対して位置ずれを起こすことが無ぐ風など が起因する誘導結合装置の移動による通信線の断線が発生しないという効果がある  [0034] As described above, the inductive coupling device according to the first embodiment is configured to fix the inductive coupling device to the power line by sandwiching the power line 13 by the clamp mechanism 4, so that the inductive coupling device is wind and rain, etc. There is no effect of disconnection of the communication line due to the movement of the inductive coupling device caused by wind or the like that does not cause a positional shift with respect to the power line 13 even if it is exposed to
[0035] また、コアのギャップ間隔は所定ギャップ長規制部材 3の厚みで決まるので、ギヤッ プ間隔が高精度化できる。また、装置設置時にコア駆動用ボルト 8を強力に締めた場 合でも、所定ギャップ長規制部材 3には上コア押さえパネ 5の弾性力以上の力がかか らないので所定ギャップ長規制部材 3が塑性変形してギャップ間隔の精度が低下す るという問題も発生しない。 Further, since the gap distance of the core is determined by the thickness of the predetermined gap length regulating member 3, the gap distance can be made highly accurate. Even when the core driving bolt 8 is strongly tightened at the time of installation of the apparatus, the predetermined gap length regulating member 3 is not subjected to a force greater than the elastic force of the upper core pressing panel 5, so the predetermined gap length regulating member 3 However, there is no problem that the accuracy of the gap interval is lowered due to plastic deformation.
[0036] ギャップコアにおけるインダクタンス Lは次式で与えられ、  [0036] The inductance L in the gap core is given by the following equation:
L= μ O X S/(La/ μ,+g)、  L = μ O X S / (La / μ, + g),
ここで、 Sはコアの断面積、 g:ギャップ間隔、 μ 0:真空の透磁率、 I:電力線電流、 Β:コ ァの使用磁束密度、 La:ギャップコアの磁路長、 μ ':コアの比透磁率である。  Where S is the cross-sectional area of the core, g: gap interval, μ 0: vacuum permeability, I: power line current, Β: core flux density, La: gap core magnetic path length, μ ′: core Relative permeability.
[0037] この式から明らかなように、本発明ではギャップ間隔 gが高精度化できるので、イン ダクタンス Lの値を高精度化できる。コアのインダクタンスは誘導結合回路にぉ 、ては 重要な回路定数であって、これを高精度化できた結果、電力線で伝送できる信号強 度が安定し、ひ 、ては情報伝送が安定ィ匕すると 、う効果がある。 [0038] コア駆動用ボルト 8とクランプ用ボルト 16は 、ずれも同一角度で結合器本体碍子部 9にその同じ側に設けられており、架線への設置用の支持棒に対して毎回同じ角度 で作業ができ、また、誘導結合装置を架線まで持ち上げて架線に引っ掛けるときと、 二つのコアを密着させる操作時とコアの固定とがボルト 1本の操作で可能であるなど 、操作性が改善されるという、効果がある。 As is clear from this equation, in the present invention, the gap interval g can be made highly accurate, so that the value of the inductance L can be made highly accurate. The inductance of the core is an important circuit constant for inductive coupling circuits. As a result of improving the accuracy, the signal strength that can be transmitted on the power line is stabilized, and the information transmission is stable. Then, there is an effect. [0038] The core driving bolt 8 and the clamping bolt 16 are provided at the same angle on the same side of the coupler main body insulator 9 at the same angle, and the same angle with respect to the support rod for installation on the overhead wire each time. In addition, the operability has been improved, for example, when the inductive coupling device is lifted up to the overhead wire and hooked onto the overhead wire, and when the two cores are brought into close contact with each other and the core can be fixed with a single bolt. It is effective.
[0039] また、前記ギャップ長が変わる方向に前記第一のコア要素部と前記第二のコア要 素部とをコア平行移動機構 1478で相対的に平行移動させるようにすれば、コア平行 移動機構 1478は、例えば前述のように、 1個の支持板 14と 1本のコア駆動ボルト 8と、 1本の位置決めピン 7で実現でき、安定した良好な誘導結合効率および高!、信頼性 を確保できることに加え、低コストで実現できる。  [0039] Further, if the first core element portion and the second core element portion are relatively translated by the core translation mechanism 1478 in the direction in which the gap length is changed, the core translation is performed. The mechanism 1478 can be realized by, for example, one support plate 14, one core drive bolt 8, and one positioning pin 7, as described above, and has stable and good inductive coupling efficiency, high !, and reliability. In addition to ensuring, it can be realized at low cost.
[0040] また、クランプ機構 4が磁性コアの電力線延在方向の両側で電力線 13を挟持した 状態下で、磁性コア 1, 2が電力線 13と非接触状態になるように構成してあるので、 架空電力線の揺れや振動による電力線 13と磁性コア 1, 2との衝突が回避され、誘 導結合装置の結合精度の向上、結合精度の安定化、信頼性の向上を図れる。  [0040] In addition, the magnetic cores 1 and 2 are configured to be in a non-contact state with the power line 13 while the clamp mechanism 4 sandwiches the power line 13 on both sides of the magnetic core in the power line extending direction. The collision between the power line 13 and the magnetic cores 1 and 2 due to the vibration or vibration of the overhead power line is avoided, and the coupling accuracy of the inductive coupling device can be improved, the coupling accuracy can be stabilized, and the reliability can be improved.
[0041] 前記下コア 2は、図 3に例示してあるように、その側面形状は、内側面 21issが円弧 状(図 3 (a)参照)であり、外側面 21ossが台形状(図 3 (a)参照)である。  [0041] As illustrated in Fig. 3, the side surface of the lower core 2 is such that the inner side surface 21iss is arcuate (see Fig. 3 (a)) and the outer side surface 21oss is trapezoidal (Fig. 3). (See (a)).
前記下コア 2を台形状にすることにより、その直線状の面 21SL1を固定面 21SL11に 当接して下コア 2の位置決めを行うことができるのでコアのギャップ面 gsa, gsbの加工 精度の確保が容易となると共に前記結合器本体碍子部 9への取り付け位置の精度、 コアのギャップ面位置の精度の確保が容易となる。前記上コア 1も前記下コア 2と同 様に構成され、その直線状の面 21SL1を固定面 21SL11に当接して上コア 1の位置決 めを行うことができるので上コア 1のギャップ面 gsa, gsbの加工精度の確保も容易とな る。  By making the lower core 2 trapezoidal, the linear surface 21SL1 can be brought into contact with the fixed surface 21SL11 so that the lower core 2 can be positioned, so that the processing accuracy of the core gap surfaces gsa and gsb can be ensured. It becomes easy to secure the accuracy of the attachment position to the coupler main body insulator 9 and the accuracy of the gap surface position of the core. The upper core 1 is also configured in the same manner as the lower core 2, and the linear surface 21SL1 abuts on the fixed surface 21SL11 so that the upper core 1 can be positioned. Therefore, it is easy to secure the processing accuracy of gsb.
[0042] 観点を変えて説明すると、前記誘導結合装置 100は、図 1〜3に例示してあるように 、平行な直線状の二辺 sdl, sd2のうちの一辺に第 1の導体 13が貫通する第 1の凹部 r cslを有する台形状の第 1のコア要素部 1、前記第 1のコア要素部 1の前記平行な二 辺 sdl, sd2と平行を成す平行な直線状の二辺 sdl, sd2のうち前記第 1のコア要素部 1 側の辺に前記第 1の凹部 rcslに対向する第 2の凹部 rcs2を有しこの第 2の凹部 rcs2を 有する直線状の辺と前記第 1のコア要素部 1の前記第 1の凹部 res 1を有する直線状 の辺との間にその全域に亘つてギャップ長が実質的に均一なギャップ gが形成される 台形状の第 2のコア要素部 2、および前記第 2のコア要素部 2の前記第 2の凹部 rcs2 を貫通し前記第 1のコア要素部 1および前記第 2のコア要素部 2を介して前記第 1の 導体 13と電磁結合される第 2の導体 12を備えたものである。 [0042] In other words, the inductive coupling device 100 has a first conductor 13 on one side of two parallel straight sides sdl, sd2 as illustrated in FIGS. A trapezoidal first core element portion 1 having a first recess r csl passing therethrough, and two parallel straight sides sdl parallel to the parallel two sides sdl and sd2 of the first core element portion 1 , sd2 has a second recess rcs2 facing the first recess rcsl on the side of the first core element portion 1 side, and the second recess rcs2 A gap g having a substantially uniform gap length is formed over the entire area between the linear side having the first side and the linear side having the first recess res 1 of the first core element portion 1. The trapezoidal second core element part 2 and the second recess rcs2 of the second core element part 2 pass through the first core element part 1 and the second core element part 2 The second conductor 12 is electromagnetically coupled to the first conductor 13.
[0043] なお、本実施の形態 1においては、台形状の前記第 1のコア要素部 1および前記第 2のコア要素部 2の何れも、前記辺 sdlが台形における下底の辺であり、前記辺 sd2が 台形における上底の辺である場合を例示してある。換言すれば、台形状の第 1のコア 要素部 1はその下底の辺 sdlに第 1の凹部 rcslが設けられ、台形状の第 2のコア要素 部 2はその下底の辺 sdlに第 2の凹部 rcs2が設けられて 、る場合が例示されて 、る。 このような構造とすれば、上底の辺 sd2に凹部 rcslあるいは rcs2を設ける場合に比べ 誘導結合装置 100が小型軽量になる。  [0043] In the first embodiment, the trapezoidal first core element part 1 and the second core element part 2 both have the side sdl as the lower base side in the trapezoid, The case where the side sd2 is the side of the upper base in the trapezoid is illustrated. In other words, the trapezoidal first core element part 1 is provided with a first recess rcsl in the lower base side sdl, and the trapezoidal second core element part 2 is provided in the lower base side sdl. The case where two recesses rcs2 are provided is illustrated. With such a structure, the inductive coupling device 100 becomes smaller and lighter than when the recess rcsl or rcs2 is provided in the upper base side sd2.
[0044] 本実施の形態 1において、第 2のコア要素部 2あるいは第 1のコア要素部 1のギヤッ プ面 gsaを切削加工'研磨カ卩ェする場合、加工によりギャップ面 gsaに作用する力 WF Aは、図 3 (a)に示すように、コア要素部 2 (あるいは 1)の直線状の辺 sd2の直線状の 面 21SL1を受ける直線状の支承面 21SL11が受けるので、コア要素部 2 (あるいは 1)は 加工時にギャップ面 gsaに作用する力 WFAによって移動することなく支承面 21SL11上 に直線状の辺 sd2の直線状の面 21SL1を介して固定され、従って、ギャップ面 gsaの切 削加工'研磨加工は精密に行われ、切削加工'研磨加工の結果、ギャップ面 gsaは所 期の扁平度に加工され、理想の(所期の)加工面に対して傾斜することなぐ所期の 位置(ギャップ長方向のレベル)に正確に加工される。  [0044] In the first embodiment, when the gear surface gsa of the second core element portion 2 or the first core element portion 1 is cut and polished, the force acting on the gap surface gsa by the processing As shown in Fig. 3 (a), WF A is received by the linear bearing surface 21SL11 that receives the linear surface 21SL1 of the linear side sd2 of the core element portion 2 (or 1). (Or 1) is fixed on the bearing surface 21SL11 via the linear surface 21SL1 of the straight side sd2 without moving by the force WFA acting on the gap surface gsa during machining, so the gap surface gsa is cut Machining 'Polishing is performed precisely, and as a result of machining' polishing ', the gap surface gsa is machined to the desired flatness and is not tilted with respect to the ideal (desired) machining surface. It is processed accurately at the position (level in the gap length direction).
[0045] 同様にコア要素部 2 (あるいは 1)は加工時にギャップ面 gsbに作用する力 WFBによ つて移動することなく加工台上の支承面 21SL11上に直線状の辺 sd2の直線状の面 21 SL1を介して固定され、従って、ギャップ面 gsbの切削加工'研磨力卩ェは精密に行わ れ、切削加工'研磨加工の結果、ギャップ面 gsbは所期の扁平度に加工され、理想の (所期の)加工面に対して傾斜することなぐ所期の位置 (ギャップ長方向の所期のレ ベル)に正確に加工される。その結果、個々の製品 (誘導結合装置)の製品品質の一 である結合効率の安定、向上を十分に期待できょうに、図 1および図 2に示されるよう に組み立てた状態における第 1のコア要素部 1と第 2のコア要素部 2との間のギャップ gはそのギャップ長がギャップ面 gsa, gsbの全域に亘つて実質的に均一となる。 [0045] Similarly, the core element part 2 (or 1) does not move due to the force WFB acting on the gap surface gsb during machining, and the linear surface of the straight side sd2 on the bearing surface 21SL11 on the work table. 21 is fixed via SL1, and therefore the cutting process of the gap surface gsb is performed precisely, and as a result of the cutting process, the gap surface gsb is processed to the desired flatness and is ideal. It is precisely machined to the desired position (the desired level in the gap length direction) without tilting with respect to the (desired) machining surface. As a result, the stability and improvement of coupling efficiency, which is one of the product qualities of individual products (inductive coupling devices), can be fully expected as shown in Fig. 1 and Fig. 2. In the assembled state, the gap g between the first core element portion 1 and the second core element portion 2 has a substantially uniform gap length over the entire gap surfaces gsa and gsb.
[0046] なお、直線状の辺 sd2の両端に連接する辺 sd3, sd4の直線状の面 21SL2, 21SL3を 受ける支承面 21SL21, 21SL31を力卩ェ台上に設ければ、前記ギャップ面 gsa, gsbの加 ェ時に当該ギャップ面 gsa, gsbに作用する力として、ギャップ長の方向と直角を成す 方向の力 WFAL, WFBL, WFAR, WFBR等が作用するような場合であっても、コア要 素部 2 (あるいは 1)は加工時に加工台上の支承面 21SL11, 21SL21, 21SL31上に直 線状の辺 sd2, sd3, sd4の直線状の面 21SL1, 21SL2, 21SL3を介して固定され、従つ て、ギャップ面 gsa, gsbの切削加工'研磨加工は精密に行われ、切削加工'研磨カロェ の結果、ギャップ面 gsa, gsbは所期の扁平度に加工され、理想の(所期の)加工面に 対して傾斜することなぐ所期の位置 (ギャップ長方向の所期のレベル)に正確に加 ェされ、加工作業も容易となる。  [0046] Note that if the bearing surfaces 21SL21, 21SL31 for receiving the linear surfaces 21SL2, 21SL3 of the sides sd3, sd4 connected to both ends of the linear side sd2 are provided on the force platform, the gap surface gsa, Even when gsb is applied with force WFAL, WFBL, WFAR, WFBR, etc. acting in the direction perpendicular to the gap length as the force acting on the gap surfaces gsa, gsb, the core element Part 2 (or 1) is fixed on the bearing surface 21SL11, 21SL21, 21SL31 on the work table via the linear surfaces sd2, sd3, sd4 and 21SL1, 21SL2, 21SL3. The gap surfaces gsa and gsb are precisely cut and polished, and as a result of the cutting and polishing process, the gap surfaces gsa and gsb are processed to the desired flatness. It is accurately added to the intended position (the desired level in the gap length direction) without inclining with respect to the surface, and the machining work becomes easy.
[0047] また、コア要素部 2 (あるいは 1)の台形を成す外側面の角部に丸み 21Rを持たせて ある。つまり、弧状の連接部 21Rが形成されている。(図 3 (a) (c)参照)。この丸み 21R を有する角部である弧状の連接部 21Rは、台形の上底の直線状辺 sd2とその両端の 連接辺 sd3, sd4との連接部の角部であり、それらの角度 αを、何れも 180度く αく 9 0度とすることにより、下コア 2については、前記丸み 21Rと共同して、前記結合器本 体碍子部 9の注型後(絶縁モールド材による下コア 2のモールド後)の前記結合器本 体碍子部 9の絶縁モールド材の熱収縮に伴って前記結合器本体碍子部 9および前 記下コア 2に発生する内部歪みを低減し、前記結合器本体碍子部 9の前記下コア 2と の接合部の剥離、クラックの発生を防止する。  [0047] Further, the corner 21 of the outer surface forming the trapezoid of the core element part 2 (or 1) is rounded 21R. That is, the arc-shaped connecting portion 21R is formed. (See Figure 3 (a) (c)). The arc-shaped connecting portion 21R, which is a corner portion having the roundness 21R, is the corner portion of the connecting portion between the straight side sd2 of the upper base of the trapezoid and the connecting sides sd3 and sd4 at both ends thereof, and the angle α In both cases, by setting the angle to 180 degrees and α to 90 degrees, the lower core 2 is jointed with the round 21R after casting of the coupler main body 9 (the lower core 2 is made of an insulating mold material). The internal distortion generated in the coupler main body insulator 9 and the lower core 2 in accordance with the thermal contraction of the insulating mold material of the coupler main body insulator 9 after molding) is reduced. 9 prevents the occurrence of peeling and cracking at the joint with the lower core 2.
[0048] このように台形を成す外側面 21ossの角部に丸み 21Rを持たせることにより(弧状の 連接部 21Rを形成することにより)、前記結合器本体碍子部 9の成形時に前記下コア 2を前記結合器本体碍子部 9内に一体成形する場合、前記結合器本体碍子部 9の 注型後の前記結合器本体碍子部 9の熱収縮に伴って前記結合器本体碍子部 9およ び前記下コア 2に発生する内部歪みの低減が可能となり、前記結合器本体碍子部 9 の前記下コア 2との接合部の剥離、クラックの発生を防止することが出来る。  [0048] By providing roundness 21R at the corners of the trapezoidal outer surface 21oss (by forming the arc-shaped connecting portion 21R), the lower core 2 is formed when the coupler main body insulator 9 is formed. Is integrally formed in the coupler main body insulator 9, the coupler main body insulator 9 and the coupler main body insulator 9 and the coupler main body insulator 9 after heat shrinkage after casting. Internal strain generated in the lower core 2 can be reduced, and peeling of the joint portion of the coupler main body insulator portion 9 with the lower core 2 and generation of cracks can be prevented.
[0049] 前記 2次巻き線 12は、図 1および図 2に示してあるように当該 2次巻き線 12と一体を 成す外部導出導体 1002により前記結合器本体碍子部 9の前記絶縁モールド材を通 して外部に導出されている。 [0049] The secondary winding 12 is integrated with the secondary winding 12 as shown in Figs. The outer lead-out conductor 1002 is led out to the outside through the insulating molding material of the coupler main body insulator 9.
[0050] なお、前記直線状の面 21SL2, 21SL3の前記直線状の面 21SL1と反対側の端部に 連接して前記直線状の面 21SL1と略直角を成してギャップ面 gsa, gsbまで延在する直 線状の面 21SL2E, 21SL3Eが形成されている。  [0050] It should be noted that the straight surfaces 21SL2 and 21SL3 are connected to ends opposite to the straight surfaces 21SL1 and extend substantially perpendicular to the straight surfaces 21SL1 to the gap surfaces gsa and gsb. Existing linear surfaces 21SL2E and 21SL3E are formed.
[0051] なお、前記第 1の導体 13および前記第 2の導体 12は、信号の伝送媒体としても使 用され、その場合は前記第 1のコア要素部 1および前記第 2のコア要素部 2を介して 前記第 1の導体 13と前記第 2の導体 12とに跨って前記信号が伝送され、また、前記 第 1の導体 13を流れる電流を前記第 2の導体 12を介して電流計測用信号を抽出す る場合にも使用される。  [0051] The first conductor 13 and the second conductor 12 are also used as a signal transmission medium. In this case, the first core element portion 1 and the second core element portion 2 are used. The signal is transmitted across the first conductor 13 and the second conductor 12 via the first conductor 13, and the current flowing through the first conductor 13 is used for current measurement via the second conductor 12. Also used when extracting signals.
[0052] 実施の形態 2.  [0052] Embodiment 2.
前述の実施の形態 1において、前記第 1のコア要素部 1および前記第 2のコア要素 部 2は、フ ライトで形成される場合は、大きさが大きくなると製造ばらつき(大きくなる ほど特性が安定せず、磁気特性の低下や大きなクラックが発生しやすい)の問題が 大きくなつてくる力 本実施の形態 2においては、図 4に例示してあるように、前記第 1 のコア要素部 1および前記第 2のコア要素部 2を複数層に積層し接着して積層コアと することにより、前記製造ばらつき(大きくなるほど特性が安定せず、磁気特性の低下 や大きなクラックが発生しやすい)を抑制し、安定した結合効率を得るようにしたもの である。前記積層方向は、前記電力線 13の延在方向であり、積層数を調整すること により、前記第 1のコア要素部 1および前記第 2のコア要素部 2の前記電力線 13の延 在方向の厚さを任意に調整することもできる。  In the first embodiment described above, when the first core element portion 1 and the second core element portion 2 are formed of a flight, as the size increases, manufacturing variation (characteristic becomes more stable as the size increases). In the second embodiment, as illustrated in FIG. 4, the first core element portion 1 and the force of increasing the problem of magnetic property degradation and large cracks are likely to occur. The second core element part 2 is laminated and bonded to a plurality of layers to form a laminated core, thereby suppressing the manufacturing variation (the characteristic becomes unstable as the size increases, and the magnetic characteristics are likely to deteriorate and large cracks are likely to occur). Thus, a stable coupling efficiency is obtained. The stacking direction is the extending direction of the power line 13, and the thickness of the first core element part 1 and the second core element part 2 in the extending direction of the power line 13 is adjusted by adjusting the number of stacks. It is also possible to adjust the length arbitrarily.
[0053] なお、前記ギャップ面 gsa, gsbの研肖 lj ·研磨は、前記第 1のコア要素部 1および前記 第 2のコア要素部 2を複数層に積層し接着して積層コアとした後に行われる。複数層 に積層し接着して積層コアとした後に前記ギャップ面 gsa, gsbの研肖 1 研磨を行うと、 前記ギャップ面 gsa, gsbの研肖 1 研磨を行った後に複数層に積層し接着して積層コア ととする場合に比べ、前記ギャップ面 gsa, gsbの扁平度が向上し、安定した結合効率 を得ることができる。  [0053] The gap surfaces gsa and gsb are polished lj and polished after the first core element portion 1 and the second core element portion 2 are laminated in a plurality of layers and bonded to form a laminated core. Done. When the gap surfaces gsa and gsb are polished 1 after polishing and laminated to a plurality of layers to form a laminated core, the gap surfaces gsa and gsb are polished and polished and then laminated and bonded to multiple layers. Compared with the case of using a laminated core, the flatness of the gap surfaces gsa and gsb is improved, and a stable coupling efficiency can be obtained.
[0054] 実施の形態 3. 本実施の形態 3は、図 3における下コア 2の直線状の面 21SL2E, 21SL3Eを省略し、 図 5に示すように、直線状の面 21SL2, 21SL3がギャップ面 gsa, gsbまで延在した事例 であり、直線状の面 21SL2E, 21SL3Eの形成工程を省略できる。 [0054] Embodiment 3. In Embodiment 3, the straight surfaces 21SL2E and 21SL3E of the lower core 2 in FIG. 3 are omitted, and the straight surfaces 21SL2 and 21SL3 extend to the gap surfaces gsa and gsb as shown in FIG. Thus, the step of forming the straight surfaces 21SL2E and 21SL3E can be omitted.
[0055] 実施の形態 4. [0055] Embodiment 4.
前述の図 2に示す事例では、前記結合器本体碍子部 9の成形時に前記下コア 2を 直接前記結合器本体碍子部 9内に一体成形したものを例示したが、本実施の形態 2 では、図 6に示すように前記結合器本体碍子部 9と前記下コア 2との間にゴム等の緩 衝材 29を介在してある。前記緩衝材 29の前記介在により、前記結合器本体碍子部 9の注型後の前記結合器本体碍子部 9の熱収縮に伴って前記結合器本体碍子部 9 および前記下コア 2に発生する内部歪みの低減が可能となり、前記結合器本体碍子 部 9の前記下コア 2との接合部の剥離、クラックの発生を防止することが出来る。  In the example shown in FIG. 2 described above, the lower core 2 is integrally molded directly in the coupler main body insulator 9 when the coupler main body insulator 9 is formed. As shown in FIG. 6, a shock absorbing material 29 such as rubber is interposed between the coupler main body insulator 9 and the lower core 2. Due to the interposition of the cushioning material 29, the inner portion generated in the coupler main body insulator 9 and the lower core 2 due to the thermal contraction of the coupler main body insulator 9 after casting of the coupler main body insulator 9 Strain can be reduced, and peeling of the joint portion of the coupler main body insulator portion 9 with the lower core 2 and generation of cracks can be prevented.
[0056] 実施の形態 5. [0056] Embodiment 5.
前述の実施の形態 1〜3においては、コア要素部 2 (あるいは 1)は台形状であるが、 本実施の形態 5は、図 7に示すように、コア要素部 2 (あるいは 1)を方形とした事例で ある。  In the first to third embodiments described above, the core element portion 2 (or 1) has a trapezoidal shape, but in the fifth embodiment, the core element portion 2 (or 1) is rectangular as shown in FIG. This is an example.
[0057] 実施の形態 6.  [0057] Embodiment 6.
前述の実施の形態 5では、コア要素部 2 (あるいは 1)を方形とした事例を例示した 力 本実施の形態 6は、図 8に示すように、方形のコア要素部 2 (あるいは 1)の角部を 切除した事例である。  In the fifth embodiment described above, a force exemplifying a case where the core element part 2 (or 1) is square is illustrated. In the sixth embodiment, the square core element part 2 (or 1) is This is an example in which the corner was removed.
[0058] なお、前述の図 1〜図 9の各図において、同一符号は同一又は相当部分を示す。  Note that, in each of the above-described FIGS. 1 to 9, the same reference numerals indicate the same or corresponding parts.
図面の簡単な説明  Brief Description of Drawings
[0059] [図 1]この発明の実施の形態 1を示す図で、誘導型結合装置全体の構造の一事例を 示す正面図であり、図 2の左側から見た図である。  FIG. 1 is a diagram showing a first embodiment of the present invention, a front view showing an example of the structure of the entire inductive coupling device, and a diagram seen from the left side of FIG. 2.
[図 2]この発明の実施の形態 1を示す図で、図 1の Π— II線力も矢印方向に見た一部 断面で示す縦断左側面図であり、コア平行移動機構により第一のコア要素部と第二 のコア要素部とをギャップ長が所定ギャップ長となる状態に近づけた状態での縦断左 側面図である。  FIG. 2 is a view showing the first embodiment of the present invention, and is a longitudinal left side view showing a partial cross section of the Π-II line force of FIG. 1 as seen in the direction of the arrow; FIG. 6 is a longitudinal left side view of the element part and the second core element part in a state where the gap length is close to a state where the gap length becomes a predetermined gap length.
[図 3]この発明の実施の形態 1を示す図で、コア要素部を拡大して示す図であり、 (a) は側面図、(b)は平面図、(c)は図 1に対応する正面図である。 FIG. 3 is a diagram showing the first embodiment of the present invention and is an enlarged view of a core element portion; (a) Is a side view, (b) is a plan view, and (c) is a front view corresponding to FIG.
[図 4]この発明の実施の形態 2を示す図で、コア要素部を拡大して示す図であり、 (a) は側面図、(b)は平面図、(c)は図 1に対応する正面図である。  FIG. 4 is a diagram showing a second embodiment of the present invention, and is an enlarged view of a core element part, (a) is a side view, (b) is a plan view, and (c) corresponds to FIG. FIG.
[図 5]この発明の実施の形態 3を示す図で、コア要素部を拡大して示す図であり、 (a) は側面図、(b)は平面図、(c)は図 1に対応する正面図である。  FIG. 5 is a diagram showing a third embodiment of the present invention, and is an enlarged view of a core element part, (a) is a side view, (b) is a plan view, and (c) corresponds to FIG. FIG.
[図 6]この発明の実施の形態 4を示す図で、図 2に対応する他の事例を示す縦断左 側面図である。  FIG. 6 is a diagram showing a fourth embodiment of the present invention, and is a longitudinal left side view showing another example corresponding to FIG.
[図 7]この発明の実施の形態 5を示す図で、コア要素部を拡大して示す図であり、 (a) は側面図、(b)は平面図、(c)は図 1に対応する正面図である。  FIG. 7 is a diagram showing the fifth embodiment of the present invention, and is an enlarged view of the core element portion. (A) is a side view, (b) is a plan view, and (c) corresponds to FIG. FIG.
[図 8]この発明の実施の形態 6を示す図で、コア要素部を拡大して示す図であり、 (a) は側面図、(b)は平面図、(c)は図 1に対応する正面図である。  FIG. 8 is a diagram showing the sixth embodiment of the present invention, and is an enlarged view of the core element part. (A) is a side view, (b) is a plan view, and (c) corresponds to FIG. FIG.
[図 9]従来の誘導結合装置におけるコア要素部を拡大して示す図であり、 (a)は側面 図、(b)は平面図、(c)は図 1に対応する正面図である。  FIG. 9 is an enlarged view showing a core element part in a conventional inductive coupling device, (a) is a side view, (b) is a plan view, and (c) is a front view corresponding to FIG.
符号の説明 Explanation of symbols
1 第 1のコア要素部(上コア)、  1 First core element (upper core),
2 第 2のコア要素部(下コア)、  2 Second core element (lower core),
21iss 内側面、  21iss inner surface,
21oss 外側面、  21oss outer side,
21R 丸み、  21R roundness,
21SL1 直線状の面、  21SL1 straight surface,
21SL11 直線状の支承面、  21SL11 Linear bearing surface,
21SL2 直線状の面、  21SL2 straight surface,
21SL2E 直線状の面、  21SL2E straight surface,
21SL21 直線状の支承面、  21SL21 Linear bearing surface,
21SL3 直線状の面、  21SL3 linear surface,
21SL3E 直線状の面、  21SL3E Straight surface,
21SL31 直線状の支承面、  21SL31 Linear bearing surface,
3 所定ギャップ長規制部材、 クランプ機構、 3 Predetermined gap length regulating member, Clamping mechanism,
弾性部材 (上コア押さえパネ)、 位置調整ネシ、 Elastic member (upper core pressing panel), position adjustment screw,
位置決めピン、 Positioning pin,
ボルト(コア駆動ボルト)、 誘導結合装置本体部、 Bolt (core drive bolt), inductive coupling device body,
位置決め部材 (電力線押さえ具)、 コアケース、  Positioning member (power line retainer), core case,
2次巻き線 (第 2の導体)、 電力線 (第 1の導体)、  Secondary winding (second conductor), power line (first conductor),
支持板、  Support plate,
位置決めピン押さえパネ、 クランプ用ボルト、  Positioning pin holding panel, clamping bolt,
クランプスぺーサ、  Clamp spacer,
ナット、  Nuts,
ボルト、  Bolt,
緩衝材、  Cushioning material,
クランプアーム、  Clamp arm,
窪み、  Hollow,
回転操作部、  Rotation operation part,
第一の腕部、  The first arm,
第二の腕部、  The second arm,
第三の腕部、  The third arm,
結合器、  Combiner,
固まった結合材、  Hardened binder,
磁性コア、  Magnetic core,
概略長孔、  Roughly long hole,
貫通孔、 146 位置調整機構、 Through hole, 146 Position adjustment mechanism,
147 位置決め機構、  147 positioning mechanism,
161 回転操作部、  161 Rotation operation part,
1002 外部導出導体、  1002 Outer conductor,
1145 コア保持機構部、  1145 core holding mechanism,
1478 コア平行移動機構、  1478 Core translation mechanism,
g ギャップ、 g gap,
ib 電流復路の電流、 ib current return current,
if 電流往路の電流、 if current forward current,
rcsl 第 1の凹部、 rcsl first recess,
rcs2 第 2の凹部、 rcs2 second recess,
sdl 平行な二辺のうちの一辺、 sd2 平行な二辺のうちの他の辺、 sd3 平行な辺に連接する一方の辺、 sd4 平行な辺に連接する他方の辺。 sdl One of the two parallel sides, sd2 The other side of the two parallel sides, sd3 One side connected to the parallel side, sd4 The other side connected to the parallel side.

Claims

請求の範囲 The scope of the claims
[1] 平行な二辺のうちの一辺に第 1の導体が貫通する第一の凹部を有する台形状の第 1のコア要素部、前記第 1のコア要素部の前記平行な二辺と平行を成す平行な二辺 のうち前記第 1のコア要素部側の辺に前記第 1の凹部に対向する第 2の凹部を有しこ の第 2の凹部を有する辺と前記第 1のコア要素部の前記第 1の凹部を有する辺との間 にギャップが形成される台形状の第 2のコア要素部、および前記第 2のコア要素部の 前記第 2の凹部を貫通し前記第 1のコア要素部および前記第 2のコア要素部を介し て前記第 1の導体と電磁結合される第 2の導体を備えた誘導結合装置。  [1] A trapezoidal first core element portion having a first recess through which the first conductor penetrates in one of two parallel sides, parallel to the two parallel sides of the first core element portion Of the two parallel sides forming the first core element portion side, the second concave portion facing the first concave portion, and the side having the second concave portion and the first core element A trapezoidal second core element part in which a gap is formed between the first concave part and the side having the first concave part, and the second concave part of the second core element part passes through the second concave part. An inductive coupling device including a second conductor that is electromagnetically coupled to the first conductor via a core element portion and the second core element portion.
[2] 請求項 1に記載の誘導結合装置にお!、て、前記第 1の導体および前記第 2の導体 が信号の伝送媒体であり、前記第 1のコア要素部および前記第 2のコア要素部を介し て前記第 1の導体と前記第 2の導体とに跨って前記信号が伝送されることを特徴とす る誘導結合装置。  [2] In the inductive coupling device according to claim 1, the first conductor and the second conductor are signal transmission media, and the first core element portion and the second core An inductive coupling device characterized in that the signal is transmitted across the first conductor and the second conductor via an element part.
[3] 請求項 1または請求項 2に記載の誘導結合装置において、前記第 1のコア要素部 および前記第 2のコア要素部の少なくとも一方が積層コアであることを特徴とする誘 導結合装置。  [3] The inductive coupling device according to claim 1 or 2, wherein at least one of the first core element portion and the second core element portion is a laminated core. .
[4] 請求項 1に記載の誘導結合装置において、前記第 2のコア要素部の前記第 1のコ ァ要素部と反対側の底部が絶縁モールド材でモールドされ、前記第 2の導体が前記 絶縁モールド材を通して外部に導出されていることを特徴とする誘導結合装置。  [4] The inductive coupling device according to claim 1, wherein a bottom portion of the second core element portion opposite to the first core element portion is molded with an insulating molding material, and the second conductor is An inductive coupling device, wherein the inductive coupling device is led out through an insulating mold material.
[5] 請求項 4に記載の誘導結合装置において、前記絶縁モールド材でモールドされた 前記第 2のコア要素部の前記底部と当該底部の両側の辺とが弧状の連接部で連接 されて ヽることを特徴とする誘導結合装置。  [5] The inductive coupling device according to claim 4, wherein the bottom portion of the second core element portion molded by the insulating mold material and both sides of the bottom portion are connected by an arc-shaped connecting portion. An inductive coupling device.
[6] 請求項 4または請求項 5に記載の誘導結合装置において、前記第 2のコア要素部と 前記絶縁モールド材との間に前記絶縁モールド材の歪を吸収する緩衝材が介在し て!ヽることを特徴とする誘導結合装置。  [6] In the inductive coupling device according to claim 4 or claim 5, a buffer material that absorbs strain of the insulating mold material is interposed between the second core element portion and the insulating mold material! An inductive coupling device characterized by being beaten.
PCT/JP2006/317211 2006-08-31 2006-08-31 Inductive coupling device WO2008026281A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008531935A JPWO2008026281A1 (en) 2006-08-31 2006-08-31 Inductive coupling device
PCT/JP2006/317211 WO2008026281A1 (en) 2006-08-31 2006-08-31 Inductive coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/317211 WO2008026281A1 (en) 2006-08-31 2006-08-31 Inductive coupling device

Publications (1)

Publication Number Publication Date
WO2008026281A1 true WO2008026281A1 (en) 2008-03-06

Family

ID=39135573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317211 WO2008026281A1 (en) 2006-08-31 2006-08-31 Inductive coupling device

Country Status (2)

Country Link
JP (1) JPWO2008026281A1 (en)
WO (1) WO2008026281A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123927A (en) * 2008-10-23 2010-06-03 Tamura Seisakusho Co Ltd Inductor
JP2018148057A (en) * 2017-03-07 2018-09-20 株式会社明電舎 Winding equipment for pulse power supply

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116711A (en) * 1981-12-29 1983-07-12 Takamatsu Electric Works Ltd Sealing structure of cut core contact area
JPS58106922U (en) * 1982-01-18 1983-07-21 日新電機株式会社 molded transformer
JPH01153620U (en) * 1988-04-04 1989-10-23
JPH09148146A (en) * 1995-11-17 1997-06-06 Matsushita Electric Ind Co Ltd Inductance component
JP2005209708A (en) * 2004-01-20 2005-08-04 Tdk Corp Transformer, ferrite core and manufacturing method therefor
JP2005525021A (en) * 2002-05-03 2005-08-18 アンビエント・コーポレイション Intermediate voltage power line data combiner structure.
JP2006514790A (en) * 2002-06-12 2006-05-11 ディセニョ・デ・システマス・エン・シリシオ・ソシエダッド・アノニマ Apparatus and method for compensating for low frequency magnetic fields in an inductive signal coupling unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737105Y2 (en) * 1977-08-29 1982-08-16
JP2514075Y2 (en) * 1989-09-22 1996-10-16 ミドリ安全工業株式会社 High voltage split current transformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116711A (en) * 1981-12-29 1983-07-12 Takamatsu Electric Works Ltd Sealing structure of cut core contact area
JPS58106922U (en) * 1982-01-18 1983-07-21 日新電機株式会社 molded transformer
JPH01153620U (en) * 1988-04-04 1989-10-23
JPH09148146A (en) * 1995-11-17 1997-06-06 Matsushita Electric Ind Co Ltd Inductance component
JP2005525021A (en) * 2002-05-03 2005-08-18 アンビエント・コーポレイション Intermediate voltage power line data combiner structure.
JP2006514790A (en) * 2002-06-12 2006-05-11 ディセニョ・デ・システマス・エン・シリシオ・ソシエダッド・アノニマ Apparatus and method for compensating for low frequency magnetic fields in an inductive signal coupling unit
JP2005209708A (en) * 2004-01-20 2005-08-04 Tdk Corp Transformer, ferrite core and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123927A (en) * 2008-10-23 2010-06-03 Tamura Seisakusho Co Ltd Inductor
JP2018148057A (en) * 2017-03-07 2018-09-20 株式会社明電舎 Winding equipment for pulse power supply
JP7003421B2 (en) 2017-03-07 2022-01-20 株式会社明電舎 Winding equipment for pulse power supply

Also Published As

Publication number Publication date
JPWO2008026281A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
US7737708B2 (en) Contact for use in testing integrated circuits
EP1471358A2 (en) Coaxial probe interface
US20170113296A1 (en) Bond head assembly and system
JP2007288337A (en) Inductive coupling device
US6070317A (en) Quiet magnetic structures
KR19980032618A (en) Magnetic head unit
WO2008026281A1 (en) Inductive coupling device
KR20140042921A (en) Manufacturing device for magnet body for field pole and manufacturing method for same
JPWO2003087854A1 (en) Conductive contact
JP2010103307A (en) Reactor
US3417465A (en) Method of making laminated magnetic head
JP2009257871A (en) Current sensor
USRE37785E1 (en) Recording/reproducing separation type magnetic head
US7724475B2 (en) Conductive member, disk drive using same, and conductive member fabricating method
US20210272736A1 (en) Coil device
TWI784156B (en) Magnetic wiring circuit board
JP3859075B2 (en) Ceramic electronic components
JP2775795B2 (en) Permanent magnet rotor
JP5050709B2 (en) Reactor device
JP3052049B2 (en) Electromagnetic ultrasonic transducer for deflection shear wave
US6995951B2 (en) Method of planarizing substrate, magnetic head and manufacturing method of the same
JP2597545B2 (en) Reactor
JP2009238825A (en) Electronic component and mounting structure of electronic component
JPH02203507A (en) Three-phase shunt reactor core
JP2685367B2 (en) Superconducting conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06797171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008531935

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06797171

Country of ref document: EP

Kind code of ref document: A1