JP7003009B2 - Rotary joint - Google Patents

Rotary joint Download PDF

Info

Publication number
JP7003009B2
JP7003009B2 JP2018130426A JP2018130426A JP7003009B2 JP 7003009 B2 JP7003009 B2 JP 7003009B2 JP 2018130426 A JP2018130426 A JP 2018130426A JP 2018130426 A JP2018130426 A JP 2018130426A JP 7003009 B2 JP7003009 B2 JP 7003009B2
Authority
JP
Japan
Prior art keywords
sealing ring
fixed sealing
rotary joint
movable
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018130426A
Other languages
Japanese (ja)
Other versions
JP2020008100A (en
Inventor
光治 大賀
勇気 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2018130426A priority Critical patent/JP7003009B2/en
Publication of JP2020008100A publication Critical patent/JP2020008100A/en
Application granted granted Critical
Publication of JP7003009B2 publication Critical patent/JP7003009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Sealing (AREA)
  • Joints Allowing Movement (AREA)

Description

本発明は、半導体分野等で使用される回転機器(例えば、CMP装置(CMP(Chemical Mechanical Polishing)法による半導体ウエハの表面研摩装置)等)における相対回転部材間で流体を流動させるロータリジョイントに関するものである。 The present invention relates to a rotary joint for flowing a fluid between relative rotating members in a rotating device used in the semiconductor field or the like (for example, a CMP device (for example, a surface polishing device for a semiconductor wafer by a CMP (Chemical Mechanical Polishing) method)). Is.

従来のこの種のロータリジョイントとして、特許文献1の図6に開示されるように、筒状のケース体とこれに同心をなして相対回転自在に連結した回転軸体との対向周面間に、ケース体に固定した固定密封環と回転軸体に軸線方向移動可能に保持した可動密封環との対向端面を接触状態で相対回転させることによりシール機能を発揮するように構成された6個のメカニカルシールを軸線方向に縦列状に配設して、隣接するメカニカルシールでシールされた通路接続空間を形成し、当該両体に通路接続空間を介して連通する一連の流路を形成したもの(以下「従来ロータリジョイント」という)が周知である。 As a conventional rotary joint of this type, as disclosed in FIG. 6 of Patent Document 1, between the facing peripheral surfaces of the tubular case body and the rotating shaft body concentrically connected to the tubular case body so as to be relatively rotatable. , 6 pieces configured to exert the sealing function by relatively rotating the opposite end faces of the fixed sealing ring fixed to the case body and the movable sealing ring held on the rotating shaft body so as to be movable in the axial direction in a contact state. Mechanical seals are arranged in tandem in the axial direction to form a passage connection space sealed by adjacent mechanical seals, and a series of flow paths communicating with both bodies via the passage connection space are formed ( Hereinafter referred to as "conventional rotary joint") is well known.

而して、かかる従来ロータリジョイントにあっては、特許文献1の図6に示される如く、メカニカルシール群の両端部に位置するメカニカルシールを除く2組の隣接するメカニカルシールの固定密封環を両端面が可動密封環と接触する1個の固定密封環(以下「兼用固定密封環」という)で兼用していることから、特許文献1の図1に開示されたもののように、全メカニカルシールの固定密封環が一方の端面のみを可動密封環との接触面とする独立部材としたロータリジョイントに比して、ロータリジョイントの軸長(両体の相対回転軸線方向における長さ)を短縮し得て小型化を図ることができ、また部品点数の削減によりメカニカルシールの構成つまりロータリジョイントの構成を簡素化できる。 Thus, in such a conventional rotary joint, as shown in FIG. 6 of Patent Document 1, both ends of a fixed sealing ring of two sets of adjacent mechanical seals excluding the mechanical seals located at both ends of the mechanical seal group. Since one fixed sealing ring whose surface is in contact with the movable sealing ring (hereinafter referred to as "combined fixed sealing ring") is also used, as disclosed in FIG. 1 of Patent Document 1, all mechanical seals are used. The axial length of the rotary joint (the length in the relative rotation axis direction of both bodies) can be shortened as compared with the rotary joint in which the fixed sealing ring has only one end surface as the contact surface with the movable sealing ring as an independent member. The size can be reduced, and the mechanical seal configuration, that is, the rotary joint configuration can be simplified by reducing the number of parts.

特開2003-42374号公報Japanese Patent Application Laid-Open No. 2003-42374

しかし、従来ロータリジョイントにあって、上記兼用固定密封環については、その両端面が夫々可動密封環との接触により発熱することから、一方の端面のみが可動密封環と接触する場合に比して当該兼用固定密封環に熱膨張による大きな熱歪が生じ易い。しかも、兼用固定密封環を使用する2個のメカニカルシールによってシールされた夫々の通路接続空間を流動する流体に圧力差があったり或いは当該流体の圧力が変動することにより、当該兼用固定密封環の両端面における可動密封環との接触圧が異なると、当該兼用固定密封環の両端面における接触部での発熱量つまり熱歪が異なることになり、兼用固定密封環に生じる熱歪が周方向に不均一となり易い。 However, in the conventional rotary joint, since both end faces of the above-mentioned combined fixed sealing ring generate heat due to contact with the movable sealing ring, compared to the case where only one end face comes into contact with the movable sealing ring. Large thermal strain is likely to occur in the combined fixed sealing ring due to thermal expansion. Moreover, due to a pressure difference between the fluids flowing in the respective passage connection spaces sealed by the two mechanical seals using the combined fixed sealing ring, or the pressure of the fluid fluctuating, the combined fixed sealing ring If the contact pressure with the movable sealing ring on both end faces is different, the calorific value, that is, the thermal strain at the contact portion on both end faces of the combined fixed sealing ring is different, and the thermal strain generated in the combined fixed sealing ring is in the circumferential direction. It tends to be non-uniform.

したがって、従来ロータリジョイントでは、兼用固定密封環にこのような周方向に不均一で大きな熱歪が生じ易いため、兼用固定密封環と可動密封環との接触が適正に行われず、兼用固定密封環を使用するメカニカルシールによる通路接続空間のシール機能が良好に発揮されない虞れがあった。 Therefore, in the conventional rotary joint, such non-uniform and large thermal strain is likely to occur in the circumferential direction of the combined fixed sealing ring, so that the combined fixed sealing ring and the movable sealing ring are not properly contacted with each other, and the combined fixed sealing ring is not properly contacted. There was a risk that the sealing function of the passage connection space by the mechanical seal using the above would not be exhibited well.

本発明は、このような兼用固定密封環を使用するメカニカルシールにおける上記した問題を解決して、通路接続空間を良好にシールすることができるロータリジョイントを提供することを目的とするものである。 An object of the present invention is to solve the above-mentioned problems in mechanical sealing using such a combined fixed sealing ring, and to provide a rotary joint capable of satisfactorily sealing a passage connection space.

本発明は、上記の目的を達成すべく、筒状のケース体とこれに同心をなして相対回転自在に連結した回転軸体との間に、当該両体の一方に固定した固定密封環と当該両体の他方に軸線方向移動可能に保持した可動密封環との対向端面が接触状態で相対回転することによりシール機能を発揮する4個以上のメカニカルシールを軸線方向に縦列状に配置して、隣接するメカニカルシールでシールされた通路接続空間を形成し、前記両体に当該通路接続空間を介して連通する一連の流路を形成し、前記両体間に形成された空間であって当該メカニカルシールによって通路接続空間と区画されたクエンチング空間に、クエンチング液を供給するように構成されており、少なくとも1組の隣接するメカニカルシールの固定密封環を両端面が可動密封環と接触する1個の固定密封環(以下「兼用固定密封環」という)で兼用し、当該兼用固定密封環の両端面に、可動密封環の端面との接触部を前記クエンチング空間に開口する複数個の潤滑溝を形成し、当該兼用固定密封環の両端面の一方に形成された各潤滑溝とその他方に形成された各潤滑溝とが当該兼用固定密封環の周方向において重ならないように配置されていることを特徴とするロータリジョイントを提案する。 In the present invention, in order to achieve the above object, a fixed sealing ring fixed to one of the two bodies is provided between a tubular case body and a rotating shaft body concentrically connected to the tubular case body so as to be relatively rotatable. Four or more mechanical seals that exert a sealing function by relative rotation in contact with the movable sealing ring held so as to be movable in the axial direction on the other side of both bodies are arranged in a vertical row in the axial direction. , A passage connection space sealed with an adjacent mechanical seal is formed, and a series of flow paths communicating with each other via the passage connection space are formed in the two bodies, and the space formed between the two bodies. It is configured to supply the quenching liquid to the quenching space partitioned from the passage connection space by the mechanical seal, and both ends of the fixed sealing ring of at least one set of adjacent mechanical seals come into contact with the movable sealing ring. A plurality of fixed sealing rings (hereinafter referred to as "combined fixed sealing rings") are also used, and a contact portion with an end surface of the movable sealing ring is opened in the quenching space on both end faces of the combined fixed sealing ring. A lubrication groove is formed, and each lubrication groove formed on one end surface of the combined fixed sealing ring and each lubricating groove formed on the other side are arranged so as not to overlap in the circumferential direction of the combined fixed sealing ring. We propose a rotary joint that is characterized by its lubrication.

本発明のロータリジョイントにあっては、前記兼用固定密封環の両端面の一方に形成された複数個の潤滑溝とその他方に形成された複数個の潤滑溝とが、夫々、当該兼用固定密封環の周方向に等間隔を隔てて形成されたものであることが好ましい。更には、前記兼用固定密封環の両端面の一方に形成された各潤滑溝が、当該兼用固定密封環の周方向において、当該兼用固定密封環の両端面の他方に形成された隣接する潤滑溝間の中間に位置していることが好ましい。 In the rotary joint of the present invention, the plurality of lubricating grooves formed on one of both end faces of the combined fixed sealing ring and the plurality of lubricating grooves formed on the other side are respectively the combined fixed sealing. It is preferably formed at equal intervals in the circumferential direction of the ring. Further, each lubrication groove formed on one of both end faces of the combined fixed sealing ring is an adjacent lubricating groove formed on the other end surface of the combined fixed sealing ring in the circumferential direction of the combined fixed sealing ring. It is preferably located in the middle of the space.

また、前記4個以上のメカニカルシールを軸線方向に縦列状に配置してなるメカニカルシール群の両端部に位置するメカニカルシールを除くすべてのメカニカルシールにおいて、或は当該メカニカルシール群のすべてのメカニカルシールにおいて、隣接するメカニカルシールの固定密封環が前記1個の兼用固定密封環で兼用されていることが好ましい。 Further, in all the mechanical seals except the mechanical seals located at both ends of the mechanical seal group in which the four or more mechanical seals are arranged in parallel in the axial direction, or in all the mechanical seals of the mechanical seal group. In the above, it is preferable that the fixed sealing ring of the adjacent mechanical seal is also used by the one combined fixed sealing ring.

また、本発明のロータリジョイントにあっては、前記各メカニカルシールにおいては、固定密封環が回転軸体に固定されると共に可動密封環がケース体に軸線方向移動可能に保持されているか、或は固定密封環がケース体に固定されると共に可動密封環が回転軸体に軸線方向移動可能に保持されているか、何れも可能である。 Further, in the rotary joint of the present invention, in each of the mechanical seals, the fixed sealing ring is fixed to the rotating shaft body and the movable sealing ring is held by the case body so as to be movable in the axial direction. It is possible that the fixed sealing ring is fixed to the case body and the movable sealing ring is held by the rotating shaft body so as to be movable in the axial direction.

本発明のロータリジョイントにあっては、兼用固定密封環の両端面に複数個の潤滑溝が形成されているから、潤滑溝に侵入したクエンチング液により冷却されて当該兼用固定密封環に大きな熱歪が生じることがない。しかも、兼用固定密封環の各端面においては、クエンチング液が直接に接触する潤滑溝が形成された部分では冷却効果が高く熱歪が小さくなり、逆にクエンチング液が直接に接触しない潤滑溝が形成されていない部分では冷却効果が低く熱歪が大きくなるが、兼用固定密封環の一方の端面に形成された各潤滑溝と当該兼用固定密封環の他方の端面に形成された各潤滑溝とが当該兼用固定密封環の周方向において重ならないように配置されていることから、当該兼用固定密封環の周方向においては、前記一方の端面における冷却効果が高く熱歪が小さくなる部分(潤滑溝が形成された部分)と前記他方の端面における冷却効果が低く熱歪が大きくなる部分(潤滑溝が形成されていない部分)とが当該兼用固定密封環の周方向において同一位置又は略同一位置となる。その結果、当該兼用固定密封環に生じる熱歪が周方向において均一となり、当該兼用固定密封環の各端面と可動密封環の端面との接触が適正に行われることになる。 In the rotary joint of the present invention, since a plurality of lubricating grooves are formed on both end faces of the combined fixed sealing ring, the rotary joint is cooled by the quenching liquid that has entered the lubricating groove, and a large amount of heat is generated in the combined fixed sealing ring. No distortion occurs. Moreover, on each end surface of the dual-purpose fixed sealing ring, the cooling effect is high and the thermal strain is small at the portion where the lubricating groove that the quenching liquid comes into direct contact with is formed, and conversely, the lubricating groove that the quenching liquid does not come into direct contact with. The cooling effect is low and the thermal strain is large in the portion where In the circumferential direction of the dual-purpose fixed sealing ring, the cooling effect is high and the thermal strain is small (lubrication). The portion where the groove is formed) and the portion where the cooling effect is low and the thermal strain is large (the portion where the lubrication groove is not formed) on the other end surface are at the same position or substantially the same position in the circumferential direction of the combined fixed sealing ring. It becomes. As a result, the thermal strain generated in the combined fixed sealing ring becomes uniform in the circumferential direction, and the contact between each end surface of the combined fixed sealing ring and the end surface of the movable sealing ring is properly performed.

このように、本発明のロータリジョイントにあっては、兼用固定密封環に生じる熱歪が小さく且つその熱歪が当該兼用固定密封環の周方向に均一となるから、当該兼用固定密封環と可動密封環との接触が適正に行われて、兼用固定密封環を使用するメカニカルシールによる通路接続空間のシール機能が良好に発揮され、流体を、その性状に拘わらず、相対回転するケース体と回転軸体との間に形成された流路において漏れを生じることなく良好に流動させることができる。 As described above, in the rotary joint of the present invention, since the thermal strain generated in the combined fixed sealing ring is small and the thermal strain becomes uniform in the circumferential direction of the combined fixed sealing ring, it is movable with the combined fixed sealing ring. Proper contact with the sealing ring is performed, and the sealing function of the passage connection space by the mechanical seal using the combined fixed sealing ring is well exhibited, and the fluid rotates with the case body that rotates relative to each other regardless of its properties. It can flow well without causing leakage in the flow path formed between the shaft and the shaft.

図1は本発明に係るロータリジョイントの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a rotary joint according to the present invention. 図2は図1と異なる位置で断面した当該ロータリジョイントの断面図である。FIG. 2 is a cross-sectional view of the rotary joint crossed at a position different from that of FIG. 図3は図1の要部を拡大して示す詳細断面図である。FIG. 3 is a detailed cross-sectional view showing an enlarged main part of FIG. 図4は図3のIV-IV線に沿う要部の断面図である。FIG. 4 is a cross-sectional view of a main part along the line IV-IV of FIG. 図5は図3のV-V線に沿う要部の断面図である。FIG. 5 is a cross-sectional view of a main part along the VV line of FIG. 図6は本発明に係るロータリジョイントの変形例を示す図3相当の要部の断面図である。FIG. 6 is a cross-sectional view of a main part corresponding to FIG. 3 showing a modified example of the rotary joint according to the present invention. 図7は本発明に係るロータリジョイントの他の変形例を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing another modified example of the rotary joint according to the present invention. 図8は図7のVIII-VIII線に沿う要部の断面図である。FIG. 8 is a cross-sectional view of a main part along the line VIII-VIII of FIG. 図9は本発明に係るロータリジョイントの更に他の変形例を示す図7対応の概略断面図である。FIG. 9 is a schematic cross-sectional view corresponding to FIG. 7 showing still another modification of the rotary joint according to the present invention. 図10は図9のX-X線に沿う要部の断面図である。FIG. 10 is a cross-sectional view of a main part along the XX line of FIG. 図11は本発明に係るロータリジョイントの更に他の変形例を示す図7対応の概略断面図である。FIG. 11 is a schematic cross-sectional view corresponding to FIG. 7 showing still another modification of the rotary joint according to the present invention. 図12は図11のXII-XII線に沿う要部の断面図である。FIG. 12 is a cross-sectional view of a main part along the line XII-XII of FIG.

以下、本発明を実施するための形態を図面に基づいて具体的に説明する。 Hereinafter, embodiments for carrying out the present invention will be specifically described with reference to the drawings.

図1は本発明に係るロータリジョイントの一例を示す断面図であり、図2は図1と異なる位置で断面した当該ロータリジョイントの断面図であり、図3は図1の要部を拡大して示す詳細断面図であり、図4は図3のIV-IV線に沿う要部の断面図であり、図5は図3のV-V線に沿う要部の断面図である。なお、以下の説明において、上下とは図1~図3における上下をいうものとする。 FIG. 1 is a cross-sectional view showing an example of a rotary joint according to the present invention, FIG. 2 is a cross-sectional view of the rotary joint crossed at a position different from that of FIG. 1, and FIG. 3 is an enlarged view of a main part of FIG. It is a detailed cross-sectional view shown, FIG. 4 is a cross-sectional view of a main part along the line IV-IV of FIG. 3, and FIG. 5 is a cross-sectional view of the main part along the line VV of FIG. In the following description, the top and bottom refer to the top and bottom in FIGS. 1 to 3.

図1及び図2に示すロータリジョイント(以下「第1ロータリジョイントR1」という)は、筒状のケース体1とこれに同心をなして相対回転自在に連結された回転軸体2とを具備し、両体1,2の対向周面間に、4個以上のメカニカルシール3を軸線方向(両体1,2の相対回転軸線方向)つまり上下方向に縦列させて配置して、隣接するメカニカルシール3,3でシールされた複数個の通路接続空間4を形成すると共に、当該通路接続空間4とメカニカルシール3により区画されたクエンチング空間5を形成したものであり、両体1,2間に通路接続空間4を介して連通してなる複数個の一連の流路6(図2参照)を形成した竪型のものであって、CMP装置等の回転機器の相対回転部材間で適宜の流体(例えば、液体、気体又はスラリ流体)Fを各流路6により各別に流動させるものである。 The rotary joint shown in FIGS. 1 and 2 (hereinafter referred to as “first rotary joint R1”) includes a tubular case body 1 and a rotating shaft body 2 concentrically connected thereto and connected so as to be relatively rotatable. , Four or more mechanical seals 3 are arranged vertically between the facing peripheral surfaces of both bodies 1 and 2 in the axial direction (relative rotation axis direction of both bodies 1 and 2), that is, in the vertical direction, and adjacent mechanical seals are arranged. A plurality of passage connection spaces 4 sealed by 3 and 3 are formed, and a quenching space 5 partitioned by the passage connection space 4 and the mechanical seal 3 is formed, and between the two bodies 1 and 2. It is a vertical type in which a plurality of series of flow paths 6 (see FIG. 2) communicated with each other through the passage connection space 4 are formed, and an appropriate fluid is used between relative rotating members of a rotating device such as a CMP device. (For example, a liquid, a gas, or a slurry fluid) F is flown separately by each flow path 6.

ケース体1は、図1及び図2に示す如く、上下方向に延びる円形内周部を有するもので、上下方向に複数個の環状部分に分割された筒状構造をなす。ケース本体1は、回転機器の固定側部材(例えば、CMP装置の装置本体)に取り付けられる。 As shown in FIGS. 1 and 2, the case body 1 has a circular inner peripheral portion extending in the vertical direction, and has a tubular structure divided into a plurality of annular portions in the vertical direction. The case body 1 is attached to a fixed side member of a rotating device (for example, a device body of a CMP device).

回転軸体2は、図1及び図2に示す如く、上下方向に延びる円柱状の軸本体21と、これに上下方向に所定間隔を隔てて縦列状に嵌合された複数個のスリーブ22と、軸本体21の上端部に嵌合された有底筒状のベアリング受体23とで構成されており、ベアリング受体23とケース体1の上端部との間及び軸本体21の下端部に形成した大径のベアリング受部21aとケース体1の下端部との間に夫々装填したベアリング24,25によりケース体1の内周部に同心をなして相対回転自在に支持されている。回転軸体2は、軸本体21の下端部において回転機器の回転側部材(例えば、CMP装置のトップリング又はターンテーブル)に取り付けられる。 As shown in FIGS. 1 and 2, the rotary shaft body 2 includes a columnar shaft body 21 extending in the vertical direction and a plurality of sleeves 22 fitted therein in a vertical row at predetermined intervals. It is composed of a bottomed tubular bearing receiver 23 fitted to the upper end portion of the shaft main body 21, and is located between the bearing receiver 23 and the upper end portion of the case body 1 and at the lower end portion of the shaft main body 21. Bearings 24 and 25 loaded between the formed large-diameter bearing receiving portion 21a and the lower end portion of the case body 1 form concentric bearings on the inner peripheral portion of the case body 1 and are supported so as to be relatively rotatable. The rotating shaft body 2 is attached to a rotating side member of a rotating device (for example, a top ring or a turntable of a CMP device) at the lower end of the shaft main body 21.

各メカニカルシール3は、図1及び図3に示す如く、両体1,2の一方(この例では回転軸体2)に固定した固定密封環31とこれに対向して両体1,2の他方(この例ではケース体1)に軸線方向移動可能に保持された可動密封環32とこれを固定密封環31に押圧接触させるスプリング33とを具備して、両密封環31,32の対向端面である密封端面31a,32aを接触状態で相対回転させることにより、密封端面31a,32aの接触部S(図3参照)の内周側領域である通路接続空間4とその外周側領域であるクエンチング空間5とをシールするように構成された端面接触形のメカニカルシールである。 As shown in FIGS. 1 and 3, each mechanical seal 3 has a fixed sealing ring 31 fixed to one of both bodies 1 and 2 (rotating shaft body 2 in this example) and both bodies 1 and 2 facing the fixed sealing ring 31. On the other hand (in this example, the case body 1) is provided with a movable sealing ring 32 held so as to be movable in the axial direction and a spring 33 for pressing and contacting the movable sealing ring 32 with the fixed sealing ring 31, and facing end faces of both sealing rings 31 and 32. By relatively rotating the sealed end faces 31a and 32a in a contact state, the passage connection space 4 which is the inner peripheral side region of the contact portion S (see FIG. 3) of the sealed end faces 31a and 32a and the quench which is the outer peripheral side region thereof. It is an end face contact type mechanical seal configured to seal the ching space 5.

各固定密封環31は、図1及び図2に示す如く、両体1,2の軸線(相対回転軸線)と同心をなす断面方形の円環状体であり、隣接する固定密封環31,31の相互間隔をスリーブ22によって規制された状態で回転軸体2の軸本体21に嵌合固定されている。すなわち、固定密封環31は、図1に示す如く、ベアリング受体23をボルト26により軸本体21に締め付けて、スリーブ22を介してベアリング受体23と軸本体21のベアリング受体23との間に挟圧させることにより、軸線方向に等間隔を隔てた縦列状態で回転軸体2に固定されている。なお、各スリーブ22の上端部(最下位のスリーブ22については上下端部)と軸本体21との間には、図1~図3に示す如く、軸本体21と各固定密封環31との嵌合部分をシールするOリング27が装填されている。 As shown in FIGS. 1 and 2, each fixed sealing ring 31 is an annular body having a rectangular cross section concentric with the axes (relative rotation axes) of both bodies 1 and 2, and the fixed sealing rings 31 and 31 adjacent to each other. It is fitted and fixed to the shaft body 21 of the rotating shaft body 2 with the mutual spacing regulated by the sleeve 22. That is, as shown in FIG. 1, the fixed sealing ring 31 tightens the bearing receiver 23 to the shaft body 21 by the bolt 26, and between the bearing receiver 23 and the bearing receiver 23 of the shaft body 21 via the sleeve 22. The bearings are fixed to the rotating shaft body 2 in a columnar state at equal intervals in the axial direction. As shown in FIGS. 1 to 3, between the upper end portion of each sleeve 22 (upper and lower end portions of the lowermost sleeve 22) and the shaft main body 21, the shaft main body 21 and each fixed sealing ring 31 are provided. An O-ring 27 that seals the fitting portion is loaded.

各可動密封環32は、図3に示す如く、回転軸体2と同心をなす断面略L字状の円環状体であり、端面を固定密封環31の密封端面31aに全面的に接触する密封端面32aに構成してある。すなわち、可動密封環32の密封端面32aの内径は固定密封環31の密封端面31aの内径より大きく設定されており、その外径は当該密封端面31aの外径より小さくしてある。各可動密封環32は、図1及び図3に示す如く、ケース体1の内周部に突出形成した環状の保持壁11にOリング34を介して軸線方向移動可能に保持されている。なお、各可動密封環32は、図1及び図3に示す如く、その外周部に形成した係合凹部を、保持壁11に貫通支持されたドライブバー35に係合させることにより、軸線方向への相対移動を所定範囲で許容された状態でケース体1に相対回転不能に保持されている。 As shown in FIG. 3, each movable sealing ring 32 is an annular body having a substantially L-shaped cross section concentric with the rotating shaft body 2, and the end face is completely in contact with the sealing end surface 31a of the fixed sealing ring 31. It is configured on the end face 32a. That is, the inner diameter of the sealed end face 32a of the movable sealed ring 32 is set to be larger than the inner diameter of the sealed end face 31a of the fixed sealed ring 31, and the outer diameter thereof is smaller than the outer diameter of the sealed end face 31a. As shown in FIGS. 1 and 3, each movable sealing ring 32 is held by an annular holding wall 11 projecting from the inner peripheral portion of the case body 1 so as to be movable in the axial direction via an O-ring 34. As shown in FIGS. 1 and 3, each movable sealing ring 32 has an engaging recess formed in the outer peripheral portion thereof engaged with a drive bar 35 penetratingly supported by the holding wall 11 in the axial direction. The case body 1 is held so as to be non-rotatable in a state where the relative movement of the above is permitted within a predetermined range.

スプリング33は、図1及び図3に示す如く、隣接するメカニカルシール3,3において、保持壁11に形成された軸線方向の貫通孔51に保持されていて、保持壁11の上下両側に位置する両可動密封環32,32を各固定密封環31へと押圧附勢する共通部材とされている。 As shown in FIGS. 1 and 3, the spring 33 is held in the axial through hole 51 formed in the holding wall 11 in the adjacent mechanical seals 3 and 3, and is located on both the upper and lower sides of the holding wall 11. Both movable sealing rings 32 and 32 are used as a common member for pressing and biasing each fixed sealing ring 31.

両体1,2の対向周面間には、図1~図3に示す如く、固定密封環群31の両端に位置する固定密封環31,31とケース体1との対向周面間に装填された環状シール部材(公知のオイルシール等)52,53でシールされた空間であって、通路接続空間4とメカニカルシール3によって区画されたクエンチング空間5が形成されている。クエンチング空間5は、各両密封環31,32の接触部Sの外周側領域を各保持壁11の貫通孔51を介して連通させることにより形成されたもので、ケース体1に形成された給排液通路54,55により適宜のクエンチング液(冷却液)Qが循環供給される。すなわち、図1に示す如く、給液通路54をクエンチング空間5の下部(最下端の保持壁11の貫通孔51)に連通させると共に排液通路55をクエンチング空間5の上部(上位の環状シール部材52と最上位の可動密封環32との間の空間部)に連通させて、給液通路54からクエンチング空間5に供給されたクエンチング液Qがクエンチング空間5を通過し(各両密封環31,32の接触部Sの外周側領域を順次通過し)排液通路55から排出されるようになっている。クエンチング空間5に供給されるクエンチング液Qの圧力は各流路6を流動する流体Fの圧力より低圧であり、クエンチング液Qとしては常温の清浄水、純水等が使用されている。なお、ケース体1には、図1に示す如く、下位の環状シール部材53とベアリング25との間の空間部に連通するドレン56が形成されている。 As shown in FIGS. 1 to 3, between the facing peripheral surfaces of both bodies 1 and 2, loading is performed between the facing peripheral surfaces of the fixed sealing rings 31 and 31 located at both ends of the fixed sealing ring group 31 and the case body 1. It is a space sealed by the annular seal member (known oil seal or the like) 52, 53, and a quenching space 5 partitioned by a passage connection space 4 and a mechanical seal 3 is formed. The quenching space 5 is formed by communicating the outer peripheral side region of the contact portion S of each of the two sealing rings 31 and 32 through the through hole 51 of each holding wall 11, and is formed in the case body 1. An appropriate quenching liquid (cooling liquid) Q is circulated and supplied through the water supply / drainage passages 54 and 55. That is, as shown in FIG. 1, the liquid supply passage 54 is communicated with the lower part of the quenching space 5 (the through hole 51 of the holding wall 11 at the lowermost end), and the drainage passage 55 is connected to the upper part of the quenching space 5 (upper ring). The quenching liquid Q supplied from the liquid supply passage 54 to the quenching space 5 by communicating with the space portion between the seal member 52 and the uppermost movable sealing ring 32 passes through the quenching space 5 (each). It passes through the outer peripheral side region of the contact portion S of both the sealing rings 31 and 32 in sequence) and is discharged from the drainage passage 55. The pressure of the quenching liquid Q supplied to the quenching space 5 is lower than the pressure of the fluid F flowing in each flow path 6, and clean water, pure water, or the like at room temperature is used as the quenching liquid Q. .. As shown in FIG. 1, the case body 1 is formed with a drain 56 that communicates with the space between the lower annular seal member 53 and the bearing 25.

而して、メカニカルシール群3のうち少なくとも1組の隣接するメカニカルシール3,3の固定密封環31,31は、図3に示す如く、両端面を可動密封環32,32の密封端面32a,32aが接触する密封端面31a,31aとする1個の固定密封環31(以下「兼用固定密封環31A」という)で兼用されている。この例では、上下方向に縦列するメカニカルシール群3の両端部(上下端部)に位置するメカニカルシール3,3を除くすべてのメカニカルシール3において、隣接するメカニカルシール3,3の固定密封環31,31を1個の兼用固定密封環31Aで兼用している。すなわち、上下方向に縦列する固定密封環群31のうち両端部(上下端部)に位置する固定密封環31,31を除いて、すべての固定密封環31を兼用固定密封環31Aとしている。 Thus, as shown in FIG. 3, the fixed sealing rings 31, 31 of at least one set of adjacent mechanical seals 3, 3 in the mechanical seal group 3 have both end faces of the movable sealing rings 32, 32, and the sealing end faces 32a, It is also used as one fixed sealing ring 31 (hereinafter referred to as "combined fixed sealing ring 31A") having the sealing end faces 31a and 31a with which 32a is in contact. In this example, in all the mechanical seals 3 except the mechanical seals 3 and 3 located at both ends (upper and lower end portions) of the mechanical seal group 3 parallel to each other in the vertical direction, the fixed sealing rings 31 of the adjacent mechanical seals 3 and 3 are 31. , 31 are also used by one dual-purpose fixed sealing ring 31A. That is, all the fixed sealing rings 31 are used as the combined fixed sealing ring 31A except for the fixed sealing rings 31 and 31 located at both ends (upper and lower end portions) of the fixed sealing ring group 31 parallel to each other in the vertical direction.

各流路6は、図2に示す如く、ケース体1に形成したケース側通路61と回転軸体2に形成した軸側通路62,63,64とを通路接続空間4を介して連通させてなる一連のものである。各ケース側通路61は、保持壁11の貫通孔51と交差しない状態でケース体1を径方向に貫通して形成されており、その一端部は保持壁11の内周面において通路接続空間4に開口すると共にその他端部は回転機器の固定側部材に形成された流路に接続される。各軸側通路62,63,64は、スリーブ22の内周面に形成した環状凹部を軸本体21で閉塞してなる環状空間であって、スリーブ22と軸本体21との対向周面間に形成されたヘッダ空間62と、スリーブ22を径方向に貫通してヘッダ空間62と通路接続空間4とを連通する複数個の連通孔63と、軸本体21をその下端部から軸線方向に貫通してヘッダ空間62に連通する接続通路64とで構成されており、接続通路64の下端部は回転機器の回転側部材に形成された流路に接続される。 As shown in FIG. 2, each flow path 6 communicates the case-side passage 61 formed in the case body 1 and the shaft-side passages 62, 63, 64 formed in the rotary shaft body 2 via the passage connection space 4. It is a series of things. Each case-side passage 61 is formed so as to penetrate the case body 1 in the radial direction without intersecting the through hole 51 of the holding wall 11, and one end thereof is formed as a passage connecting space 4 on the inner peripheral surface of the holding wall 11. The other end is connected to the flow path formed in the fixed side member of the rotating device. Each of the shaft-side passages 62, 63, 64 is an annular space formed by closing the annular recess formed on the inner peripheral surface of the sleeve 22 with the shaft main body 21, and is between the facing peripheral surfaces of the sleeve 22 and the shaft main body 21. The formed header space 62, a plurality of communication holes 63 that penetrate the sleeve 22 in the radial direction and communicate the header space 62 and the passage connection space 4, and the shaft body 21 penetrate in the axial direction from the lower end thereof. It is composed of a connection passage 64 communicating with the header space 62, and the lower end portion of the connection passage 64 is connected to a flow path formed in a rotation side member of the rotating device.

各軸側通路における複数個の連通孔63は、スリーブ22の軸線方向中央部にスリーブ22の周方向に等間隔を隔てて形成されており、各スリーブ22と兼用固定密封環31を挟んで隣接するスリーブ22とは、一方のスリーブ22に形成された連通孔63と他方のスリーブ22に形成された連通孔63とがスリーブ22の周方向において齟齬する状態(重ならない状態)で、軸本体21に嵌合されている。この例では、図5に示す如く、各スリーブ22に5個の連通孔63が形成されており、隣接するスリーブ22,22が、一方のスリーブ22に形成された各連通孔(同図に実線で示す連通孔)63が他方のスリーブ22に形成された隣接する連通孔(同図に破線で示す連通孔)63,63の周方向中間に位置する状態で、軸本体21に嵌合されている。 A plurality of communication holes 63 in each shaft-side passage are formed at the central portion of the sleeve 22 in the axial direction at equal intervals in the circumferential direction of the sleeve 22, and are adjacent to each sleeve 22 with the combined fixed sealing ring 31 interposed therebetween. The sleeve 22 is a state in which the communication hole 63 formed in one sleeve 22 and the communication hole 63 formed in the other sleeve 22 are inconsistent (non-overlapping state) in the circumferential direction of the sleeve 22. It is fitted to. In this example, as shown in FIG. 5, five communication holes 63 are formed in each sleeve 22, and the adjacent sleeves 22 and 22 are each communication hole formed in one sleeve 22 (solid line in the figure). (Communication hole) 63 is fitted to the shaft body 21 in a state where the communication hole 63 is located in the middle of the circumferential direction of the adjacent communication holes (communication holes shown by the broken lines in the figure) 63 and 63 formed in the other sleeve 22. There is.

各兼用固定密封環31Aの各端面(密封端面)31aには、図3に示す如く、可動密封環32の密封端面32aとの接触部Sの一部分(外周側部分)をクエンチング空間5に開口する複数個の潤滑溝31bが形成されている。各潤滑溝31bは一般にハイドロカットと呼ばれる凹溝であり、この例では、図4に示す如く、兼用固定密封環31Aの各密封端面31aに3個の潤滑溝31bが当該密封端面31aの周方向に等間隔を隔てて形成されており、当該密封端面31aにおける接触部Sの外周側部分(可動密封環32の密封端面32aの外周部分と重なる部分)を通過する直線と当該密封端面31aの外周縁とで囲繞された扇形状部分を所定深さに切り欠いてなる断面矩形状のものである。 As shown in FIG. 3, a part (outer peripheral side portion) of the contact portion S of the movable sealed ring 32 with the sealed end surface 32a is opened in the quenching space 5 in each end surface (sealed end surface) 31a of each combined fixed sealing ring 31A. A plurality of lubrication grooves 31b are formed. Each lubrication groove 31b is a concave groove generally called a hydrocut, and in this example, as shown in FIG. 4, three lubrication grooves 31b are provided on each sealed end surface 31a of the combined fixed sealing ring 31A in the circumferential direction of the sealed end surface 31a. A straight line passing through the outer peripheral side portion of the contact portion S on the sealed end surface 31a (the portion overlapping the outer peripheral portion of the sealed end surface 32a of the movable sealing ring 32) and the outside of the sealed end surface 31a. It has a rectangular cross section formed by cutting out a fan-shaped portion surrounded by a peripheral edge to a predetermined depth.

而して、各兼用固定密封環31Aの一方の密封端面31aに形成された複数個の潤滑溝31bと他方の密封端面31aに形成された同数の潤滑溝31bとは当該兼用固定密封環31の周方向において齟齬する(重ならない)ように形成されている。この例では、各兼用固定密封環31Aの両密封端面31a,31aにおける各潤滑溝31bの形成位置を、図4に示す如く、一方の密封端面31aに形成された各潤滑溝(同図に実線で示す潤滑溝)31bが他方の密封端面31aに形成された隣接する潤滑溝(同図に破線で示す潤滑溝)31b,31bとの周方向中間に位置するように設定してある。すなわち、各兼用固定密封環31Aの両密封端面31a,31aにおいて、一方の密封端面31aに形成された潤滑溝31bと他方の密封端面31aに形成された潤滑溝31bとが周方向に等間隔を隔てて交互に位置するように設定してある。 Thus, the plurality of lubrication grooves 31b formed on one of the sealed end faces 31a of each combined fixed sealing ring 31A and the same number of lubricating grooves 31b formed on the other sealed end face 31a are the same number of lubricating grooves 31b of the combined fixed sealing ring 31. It is formed so as to be inconsistent (do not overlap) in the circumferential direction. In this example, as shown in FIG. 4, the formation position of each lubrication groove 31b on both sealed end faces 31a and 31a of each combined fixed sealing ring 31A is set to each lubrication groove formed on one of the sealed end faces 31a (solid line in the figure). (Lubrication groove) 31b is set to be located in the middle of the circumferential direction with the adjacent lubrication grooves (lubrication grooves shown by the broken line in the figure) 31b and 31b formed on the other sealed end surface 31a. That is, in both the sealed end faces 31a and 31a of each dual-purpose fixed sealing ring 31A, the lubrication grooves 31b formed on one of the sealed end faces 31a and the lubrication grooves 31b formed on the other sealed end face 31a are equally spaced in the circumferential direction. It is set to be located alternately at a distance.

ところで、ロータリジョイントを構成する構成部材の構成材は、当該構成部材に要求される機能、機械的強度等に応じて選択される他、流路6を流動する流体Fの性状や使用目的に応じて選択しておくことが必要であり、一般に、当該流体Fに対して不活性なものを選択しておくことが好ましい。流体Fに対して不活性な構成材は、当該流体Fの性状や使用条件(金属汚染の回避等)との関係において決定されるものであり、例えば、当該流体Fが半導体ウエハの処理に使用する研磨液や洗浄液等のように金属汚染を回避すべきものである場合には、流体との接触により金属成分を溶出したり金属粉を発生したりすることがないセラミックスやプラスチック(例えば、PEEK,PES,PC等)が使用される。すなわち、各密封環31,31A,32は一般に炭化ケイ素等のセラミックスや超硬合金(タングステンカーバイド)等で構成されるが、この例では、各密封環31,31A,32を炭化珪素で構成すると共に、ケース体1及び回転軸体2の構成部材(軸本体21及び各スリーブ22等)をPEEKで構成してある。 By the way, the constituent materials of the constituent members constituting the rotary joint are selected according to the functions required for the constituent members, the mechanical strength and the like, and also according to the properties of the fluid F flowing in the flow path 6 and the purpose of use. In general, it is preferable to select a fluid that is inert to the fluid F. The constituent material that is inert to the fluid F is determined in relation to the properties of the fluid F and the conditions of use (avoidance of metal contamination, etc.). For example, the fluid F is used for processing a semiconductor wafer. When metal contamination should be avoided, such as polishing liquids and cleaning liquids, ceramics and plastics (for example, PEEK, which do not elute metal components or generate metal powder due to contact with fluids). PES, PC, etc.) is used. That is, each sealed ring 31, 31A, 32 is generally composed of ceramics such as silicon carbide, cemented carbide (tungsten carbide), etc., but in this example, each sealed ring 31, 31A, 32 is composed of silicon carbide. At the same time, the constituent members (shaft body 21, each sleeve 22, etc.) of the case body 1 and the rotating shaft body 2 are made of PEEK.

以上のように構成された第1ロータリジョイントR1にあっては、兼用固定密封環31Aの両密封端面31a,31aに上記したような潤滑溝31b,31bを形成しているから、冒頭で述べたような問題は生じない。 In the first rotary joint R1 configured as described above, the lubrication grooves 31b and 31b as described above are formed on both the sealing end faces 31a and 31a of the dual-purpose fixed sealing ring 31A. Such a problem does not occur.

すなわち、兼用固定密封環31の各密封端面31aは、各潤滑溝31bに侵入したクエンチング液Qにより冷却されることから、兼用固定密封環に潤滑溝を形成していない従来ロータリジョイントに比して、兼用固定密封環31に大きな熱膨張による大きな熱歪が生じることがない。 That is, since each sealed end surface 31a of the combined fixed sealing ring 31 is cooled by the quenching liquid Q that has entered each of the lubricating grooves 31b, it is compared with the conventional rotary joint in which the lubricating groove is not formed in the combined fixed sealing ring 31. Therefore, a large thermal strain due to a large thermal expansion does not occur in the combined fixed sealing ring 31.

ところで、兼用固定密封環31Aの各密封端面31aにおける潤滑溝31bが形成された部分では、クエンチング液Qが直接に接触することから、クエンチング液Qによる冷却効果が高くなり、熱膨張により発生する熱歪量が小さくなる。一方、当該各密封端面31aにおける潤滑溝31bが形成されていない部分では、クエンチング液Qが直接接触しないことから、クエンチング液Qによる冷却効果が小さく、熱膨張により発生する熱歪量が大きくなる。したがって、当該各密封端面31aには、周方向において、熱歪が小さな部分(潤滑溝31bが形成された部分)と熱歪が大きな部分(潤滑溝31bが形成されていない部分)とが交互に存在することになり、当該各密封端面31aが周方向にうねり状の熱歪が生じることになる。 By the way, since the quenching liquid Q comes into direct contact with the portion of each sealed end surface 31a of the combined fixed sealing ring 31A where the lubricating groove 31b is formed, the cooling effect of the quenching liquid Q is enhanced, which is generated by thermal expansion. The amount of thermal strain to be applied becomes smaller. On the other hand, in the portion of each sealed end surface 31a where the lubricating groove 31b is not formed, the quenching liquid Q does not come into direct contact, so that the cooling effect of the quenching liquid Q is small and the amount of thermal strain generated by thermal expansion is large. Become. Therefore, in each of the sealed end faces 31a, a portion having a small thermal strain (a portion in which the lubrication groove 31b is formed) and a portion having a large thermal strain (a portion in which the lubrication groove 31b is not formed) alternate in the circumferential direction. It will be present, and each of the sealed end faces 31a will have a swell-like thermal strain in the circumferential direction.

しかし、兼用固定密封環31Aにおいては、図4に示す如く、一方の密封端面31aに形成された潤滑溝31bと他方の密封端面31aに形成された潤滑溝31bとが周方向に重ならないように配置されており、周方向においては、一方の密封端面31aにおける潤滑溝31bが形成された部分は他方の密封端面31aにおいては潤滑溝31bが形成されていない部分となり、逆に当該一方の密封端面31aにおける潤滑溝31bが形成されていない部分は当該他方の密封端面31aにおいては潤滑溝31bが形成されている部分となることから、両密封端面31a,31aにおいてはうねり状熱歪の山部(熱歪の大きな部分)とうねり状熱歪の谷部(熱歪の小さな部分)とが重なることになる。その結果、兼用固定密封環31Aに生じる熱歪が周方向に均一となり、その熱歪量も小さくなる。かかる効果は、図4に示す如く、兼用固定密封環31Aの両密封端面31a,31aにおいて一方の密封端面31aに形成された潤滑溝31bと他方の密封端面31aに形成された潤滑溝31bとが周方向に等間隔を隔てて交互に位置するように工夫しておくことにより、より顕著に発揮される。 However, in the combined fixed sealing ring 31A, as shown in FIG. 4, the lubricating groove 31b formed on one sealed end surface 31a and the lubricating groove 31b formed on the other sealed end surface 31a do not overlap in the circumferential direction. In the circumferential direction, the portion where the lubrication groove 31b is formed on one of the sealed end faces 31a becomes the portion where the lubrication groove 31b is not formed on the other sealed end face 31a, and conversely, the one of the sealed end faces is not formed. Since the portion of the 31a where the lubrication groove 31b is not formed is the portion where the lubrication groove 31b is formed on the other sealed end face 31a, the ridges of the waviness-like thermal strain are formed on both the sealed end faces 31a and 31a. The part where the thermal strain is large) and the valley part of the waviness-like thermal strain (the part where the thermal strain is small) overlap. As a result, the thermal strain generated in the combined fixed sealing ring 31A becomes uniform in the circumferential direction, and the amount of the thermal strain becomes small. As shown in FIG. 4, the effect is that the lubrication groove 31b formed on one of the sealed end faces 31a and the lubrication groove 31b formed on the other sealed end face 31a on both sealed end faces 31a and 31a of the combined fixed sealing ring 31A are formed. It is more prominently exhibited by devising so that the positions are alternately arranged at equal intervals in the circumferential direction.

したがって、第1ロータリジョイントR1によれば、兼用固定密封環31Aが、熱歪が周方向に不均一となる従来ロータリジョイントに比して、兼用固定密封環31aの各密封端面31aと可動密封環32の密封端面32aとの接触が適正に行われ、兼用固定密封環31Aを使用するメカニカルシール3によるシール機能が良好に発揮される。 Therefore, according to the first rotary joint R1, the combined fixed sealing ring 31A has each sealing end surface 31a and the movable sealing ring of the combined fixed sealing ring 31a as compared with the conventional rotary joint in which the thermal strain is non-uniform in the circumferential direction. The 32a is properly contacted with the sealed end surface 32a, and the sealing function of the mechanical seal 3 using the combined fixed sealing ring 31A is satisfactorily exhibited.

また、第1ロータリジョイントR1にあっては、兼用固定密封環31Aの各密封端面31aと可動密封環32の密封端面32aとの接触部Sが複数個の潤滑溝31bから侵入したクエンチング液Qにより潤滑されるから、兼用固定密封環31とその両側の可動密封環32,32との接触が円滑に行われる。その結果、通路接続空間4を流動する流体Fが液体である場合には勿論、当該流体Fが気体である場合にも、当該接触部Sにおける摩耗が可及的に防止され、流体Fが摩耗粉によって汚染される虞れがない。しかも、クエンチング液Qの圧力は通路接続空間4を流動する流体Fの圧力より低いため、前記接続部Sからの流体Fの漏れが可及的に防止される。なお、第1ロータリジョイントR1においては、メカニカルシール群3の両端部に位置するメカニカルシール3,3においても、各固定密封環31の密封端面31aに前記した潤滑溝31bと同様の潤滑溝を形成しておくことができ、このようにすれば、当該メカニカルシール3,3においても各固定密封環31と可動密封環32との接触部でのシールをより良好に行うことができる。 Further, in the first rotary joint R1, the quenching liquid Q in which the contact portion S between each sealed end surface 31a of the combined fixed sealing ring 31A and the sealing end surface 32a of the movable sealing ring 32 has entered from the plurality of lubricating grooves 31b. Since it is lubricated by the above, the combined fixed sealing ring 31 and the movable sealing rings 32 and 32 on both sides thereof are smoothly brought into contact with each other. As a result, when the fluid F flowing in the passage connection space 4 is a liquid, of course, when the fluid F is a gas, wear in the contact portion S is prevented as much as possible, and the fluid F wears. There is no risk of being contaminated by powder. Moreover, since the pressure of the quenching liquid Q is lower than the pressure of the fluid F flowing in the passage connection space 4, leakage of the fluid F from the connection portion S is prevented as much as possible. In the first rotary joint R1, the mechanical seals 3 and 3 located at both ends of the mechanical seal group 3 also form a lubrication groove similar to the lubrication groove 31b on the sealed end surface 31a of each fixed sealing ring 31. In this way, even in the mechanical seals 3 and 3, the sealing at the contact portion between each fixed sealing ring 31 and the movable sealing ring 32 can be performed better.

ところで、第1ロータリジョイントR1においては、兼用固定密封環31A,31A間をプラスチック製(PEEK製)のスリーブ22で規制すると共に、スリーブ22にボルト26の締め付けによる軸方向押圧力が作用することにより、兼用固定密封環31Aをスリーブ22との摩擦係合力により固定するようにしているが、スリーブ22がプラスチック製(上記の例ではPEEK製)のものであり剛体ではないため、スリーブ22による兼用固定密封環31Aへの押圧力が当該スリーブ22の周方向において均一とならず、兼用固定密封環31,31Aに大きな歪が生じる虞れがある。かかる歪は兼用固定密封環31Aの数が多くなるに従い兼用固定密封環群31,31A全体として極めて大きくなり、メカニカルシール群3によるシール機能に悪影響を及ぼす虞れがある。 By the way, in the first rotary joint R1, the space between the combined fixed sealing rings 31A and 31A is regulated by the sleeve 22 made of plastic (made of PEEK), and the sleeve 22 is subjected to the axial pressing force by tightening the bolt 26. , The combined fixing sealing ring 31A is fixed by the frictional engagement force with the sleeve 22, but since the sleeve 22 is made of plastic (made of PEEK in the above example) and is not a rigid body, it is also fixed by the sleeve 22. The pressing force on the sealing ring 31A may not be uniform in the circumferential direction of the sleeve 22, and the combined fixed sealing rings 31, 31A may be greatly distorted. As the number of the combined fixed sealing rings 31A increases, the strain becomes extremely large as a whole of the combined fixed sealing ring groups 31 and 31A, and there is a possibility that the sealing function of the mechanical sealing group 3 is adversely affected.

しかし、第1ロータリジョイントR1にあっては、各スリーブ22にその周方向に並列する複数個の連通孔63が形成されていて、連通孔63が形成されたスリーブ部分による兼用固定密封環31Aへの押圧力が連通孔63が形成されていないスリーブ部分による兼用固定密封環31Aへの押圧力より小さくなる。そして、隣接するスリーブ22,22に形成した複数個の連通孔63,63が、図5に示す如く、周方向に重ならないように配置してあるから、周方向において、兼用固定密封環31Aの一方の端面31aにおいて大きな押圧力が作用する部分では他方の端面31aにおいて小さな押圧力が作用し、兼用固定密封環31の両端面31a,31aにおいては、大小の押圧力が同時に作用する部分が周方向に交互に存在することになる。 However, in the first rotary joint R1, a plurality of communication holes 63 parallel to each sleeve 22 are formed in the circumferential direction thereof, and the sleeve portion formed with the communication holes 63 forms a combined fixed sealing ring 31A. The pressing force is smaller than the pressing force on the dual-purpose fixed sealing ring 31A by the sleeve portion where the communication hole 63 is not formed. Further, since the plurality of communication holes 63, 63 formed in the adjacent sleeves 22, 22 are arranged so as not to overlap in the circumferential direction as shown in FIG. 5, the combined fixed sealing ring 31A is arranged in the circumferential direction. At the portion where a large pressing force acts on one end surface 31a, a small pressing force acts on the other end surface 31a, and on both end faces 31a and 31a of the combined fixed sealing ring 31, the portion where a large and small pressing force acts at the same time is peripheral. It will exist alternately in the direction.

したがって、兼用固定密封環31Aにはスリーブ22の周方向において上記押圧力による歪が均一となり、兼用固定密封環31Aに大きな歪が生じることが可及的に防止され、上記した潤滑溝31bによる効果と相俟って、メカニカルシール3によるシール機能を良好に発揮させることができる。 Therefore, the strain due to the pressing force becomes uniform in the dual-purpose fixed sealing ring 31A in the circumferential direction of the sleeve 22, and it is possible to prevent large strain from occurring in the dual-purpose fixed sealing ring 31A. In combination with this, the sealing function of the mechanical seal 3 can be satisfactorily exhibited.

ところで、本発明は上記した実施の形態に限定されるものではなく、本発明の基本原理を逸脱しない範囲において、適宜に改良,変更することができる。 By the way, the present invention is not limited to the above-described embodiment, and can be appropriately improved or modified without departing from the basic principle of the present invention.

例えば、潤滑溝31bの形状及び数は任意であり、潤滑溝31bの断面形状は、図6に示す如く、潤滑溝31aの深さが兼用固定密封環31Aの密封端面31aの内周方向に漸次浅くなる三角形状としておくことができる。潤滑溝31bの断面形状が図4に示す如き矩形状である場合には、一般に、潤滑溝31bを切削工程により形成する必要があり、兼用固定密封環31Aの成形工程後に潤滑溝31bの形成工程(切削工程)を行う必要があるが、潤滑溝31bの断面形状を上記した如き三角形状とすると、兼用固定密封環31Aの成形と潤滑溝31bの形成とを兼用固定密封環31Aの成形工程により同時に行うことができ、潤滑溝31bを有する兼用固定密封環31Aの製造、更には大量生産が容易となる。 For example, the shape and number of the lubrication grooves 31b are arbitrary, and the cross-sectional shape of the lubrication grooves 31b is such that the depth of the lubrication grooves 31a is gradually increased in the inner peripheral direction of the sealed end surface 31a of the fixed sealing ring 31A. It can be made into a shallow triangular shape. When the cross-sectional shape of the lubrication groove 31b is a rectangular shape as shown in FIG. 4, it is generally necessary to form the lubrication groove 31b by a cutting step, and the step of forming the lubrication groove 31b after the molding step of the combined fixed sealing ring 31A. Although it is necessary to perform (cutting step), if the cross-sectional shape of the lubricating groove 31b is triangular as described above, the forming of the fixed sealing ring 31A and the forming of the lubricating groove 31b can be performed by the forming step of the fixed sealing ring 31A. This can be performed at the same time, facilitating the production of the dual-purpose fixed sealing ring 31A having the lubrication groove 31b, and further the mass production.

また、メカニカルシール3及び兼用固定密封環31Aを含む固定密封環31の数並びに各密封環31,31A,32をケース体1及び回転軸体2の何れに設けるかは、流動させる流体Fの種類、性状やロータリジョイントを装備する回転機器に応じて任意に設定することができる。例えば、本発明に係るロータリジョイントは、図7、図9又は図11に示す如く構成することができる。 Further, the number of the fixed sealing rings 31 including the mechanical seal 3 and the combined fixed sealing ring 31A, and whether the sealing rings 31, 31A, 32 are provided in the case body 1 or the rotary shaft body 2 depends on the type of the fluid F to be flowed. , It can be set arbitrarily according to the properties and the rotating equipment equipped with the rotary joint. For example, the rotary joint according to the present invention can be configured as shown in FIG. 7, FIG. 9 or FIG.

すなわち、図7に示すロータリジョイント(以下「第2ロータリジョイントR2」という)は、回転軸体2が軸本体21の外周部に複数個の密封環保持体28を取り付けてなる点、固定密封環31,31Aをケース体1に固定すると共に可動密封環32を密封環保持体28に軸線方向移動可能に保持した点、通路接続空間4が固定密封環31,31Aと可動密封環32との接触部Sの外周側領域であり、クエンチング空間5が密封環保持体28に形成した貫通孔57を介して連通する当該接触部Sの内周側領域である点、軸側通路が軸本体21に形成された接続通路64と密封環保持体28に形成されて当該接続通路64を通路接続空間4に接続する連通孔65とからなる点、及び図8に示す如く、兼用固定密封環31Aの各密封端面31aの内周側部分に前記接触部Sをクエンチング空間5に開口する複数個の潤滑溝31bを形成した点を除いて、第1ロータリジョイントR1と同様構造をなすものである。 That is, in the rotary joint shown in FIG. 7 (hereinafter referred to as “second rotary joint R2”), the rotary shaft body 2 is formed by attaching a plurality of sealed ring holders 28 to the outer peripheral portion of the shaft main body 21, and the fixed sealed ring. The point where the movable sealing ring 32 is fixed to the case body 1 and the movable sealing ring 32 is held by the sealing ring holding body 28 so as to be movable in the axial direction, and the passage connection space 4 is the contact between the fixed sealing ring 31, 31A and the movable sealing ring 32. The outer peripheral side region of the portion S, the point where the quenching space 5 is the inner peripheral side region of the contact portion S communicating through the through hole 57 formed in the sealed ring holder 28, and the shaft side passage is the shaft main body 21. A point consisting of a connection passage 64 formed in the above and a communication hole 65 formed in the sealing ring holder 28 to connect the connection passage 64 to the passage connection space 4, and as shown in FIG. 8, of the combined fixed sealing ring 31A. It has the same structure as the first rotary joint R1 except that a plurality of lubricating grooves 31b that open the contact portion S in the quenching space 5 are formed on the inner peripheral side portion of each sealed end surface 31a.

また、図9に示すロータリジョイント(以下「第3ロータリジョイントR3」という)は、すべてのメカニカルシール3における固定密封環31を兼用固定密封環31Aとした点、通路接続空間4が兼用固定密封環31Aと可動密封環32との接触部Sの内周側領域であり、クエンチング空間5が兼用固定密封環31Aに形成した貫通孔58を介して連通する当該接触部Sの外周側領域である点、兼用固定密封環31Aにケース側通路61と通路接続空間4とを連通する連通孔66を形成した点、軸側通路が軸本体21に形成した接続通路64を通路接続空間4に接続させてなる点、及び図10に示す如く、兼用固定密封環31Aの各密封端面31aの外周側部分に前記接触部Sをクエンチング空間5に開口する複数個の潤滑溝31bを形成した点を除いて、第2ロータリジョイントR2と同様構造をなすものである。 Further, in the rotary joint shown in FIG. 9 (hereinafter referred to as “third rotary joint R3”), the fixed sealing ring 31 in all the mechanical seals 3 is also used as the fixed sealing ring 31A, and the passage connecting space 4 is also used as the fixed sealing ring. It is an inner peripheral side region of the contact portion S between the 31A and the movable sealing ring 32, and is an outer peripheral side region of the contact portion S in which the quenching space 5 communicates through the through hole 58 formed in the combined fixed sealing ring 31A. Point, a point where a communication hole 66 for communicating the case side passage 61 and the passage connection space 4 is formed in the combined fixed sealing ring 31A, and a connection passage 64 formed in the shaft body 21 for the shaft side passage is connected to the passage connection space 4. And, as shown in FIG. 10, a plurality of lubrication grooves 31b for opening the contact portion S into the quenching space 5 are formed on the outer peripheral side portion of each sealed end surface 31a of the combined fixed sealing ring 31A. Therefore, it has the same structure as the second rotary joint R2.

また、図11に示すロータリジョイント(以下「第4ロータリジョイントR4」という)は、すべてのメカニカルシール3における固定密封環31を兼用固定密封環31Aとした点、通路接続空間4が兼用固定密封環31Aと可動密封環32との接触部Sの外周側領域であり、クエンチング空間5が兼用固定密封環31Aに形成した貫通孔59を介して連通する当該接触部Sの内周側領域である点、軸側通路が軸本体21に形成された接続通路64と兼用固定密封環31Aに形成されて当該接続通路64を通路接続空間4に接続する連通孔67とからなる点、及び図12に示す如く、兼用固定密封環31Aの各密封端面31aの内周側部分に前記接触部Sをクエンチング空間5に開口する複数個の潤滑溝31bを形成した点を除いて、第1ロータリジョイントR1と同様構造をなすものである。 Further, in the rotary joint shown in FIG. 11 (hereinafter referred to as “fourth rotary joint R4”), the fixed sealing ring 31 in all the mechanical seals 3 is also used as the fixed sealing ring 31A, and the passage connecting space 4 is also used as the fixed sealing ring. It is an outer peripheral side region of the contact portion S between the 31A and the movable sealing ring 32, and is an inner peripheral side region of the contact portion S in which the quenching space 5 communicates through the through hole 59 formed in the combined fixed sealing ring 31A. A point, a point in which the shaft-side passage is formed in the connection passage 64 formed in the shaft main body 21 and a communication hole 67 formed in the fixed sealing ring 31A and connecting the connection passage 64 to the passage connection space 4, and FIG. As shown, the first rotary joint R1 is formed except that a plurality of lubricating grooves 31b for opening the contact portion S into the quenching space 5 are formed on the inner peripheral side portion of each sealed end surface 31a of the combined fixed sealing ring 31A. It has the same structure as.

以上のように構成された第2~第4ロータリジョイントR2,R3,R4においても、第1ロータリジョイントR1と同様に、潤滑溝31bに侵入したクエンチング液Qにより接触部Sの潤滑、冷却が良好に行われることは勿論、兼用固定密封環31Aに生じる熱歪が周方向に均一となって、可動密封環32との接触が適正に行われ、通路接続空間4を良好にシールすることができる。 In the second to fourth rotary joints R2, R3, and R4 configured as described above, the contact portion S is lubricated and cooled by the quenching liquid Q that has penetrated into the lubricating groove 31b, similarly to the first rotary joint R1. Not to mention that it is performed well, the thermal strain generated in the combined fixed sealing ring 31A becomes uniform in the circumferential direction, the contact with the movable sealing ring 32 is properly performed, and the passage connection space 4 is well sealed. can.

1 ケース体
2 回転軸体
3 メカニカルシール
4 通路接続空間
5 クエンチング空間
6 流路
31 固定密封環
31A 兼用固定密封環(固定密封環)
31a 固定密封環の端面(密封端面)
31b 潤滑溝
32 可動密封環
32a 可動密封環の端面(密封端面)
F 流体
Q クエンチング液
S 接触部
1 Case body 2 Rotating shaft body 3 Mechanical seal 4 Passage connection space 5 Quenching space 6 Flow path 31 Fixed sealing ring 31A Combined fixed sealing ring (fixed sealing ring)
31a End face of fixed sealed ring (sealed end face)
31b Lubrication groove 32 Movable sealed ring 32a End face of movable sealed ring (sealed end face)
F Fluid Q Quenching liquid S Contact part

Claims (7)

筒状のケース体とこれに同心をなして相対回転自在に連結した回転軸体との間に、当該両体の一方に固定した固定密封環と当該両体の他方に軸線方向移動可能に保持した可動密封環との対向端面が接触状態で相対回転することによりシール機能を発揮する4個以上のメカニカルシールを軸線方向に縦列状に配置して、隣接するメカニカルシールでシールされた通路接続空間を形成し、
前記両体に当該通路接続空間を介して連通する一連の流路を形成し、
前記両体間に形成された空間であって当該メカニカルシールによって通路接続空間と区画されたクエンチング空間に、クエンチング液を供給するように構成されており、
少なくとも1組の隣接するメカニカルシールの固定密封環を両端面が可動密封環と接触する1個の固定密封環で兼用し、
当該兼用された固定密封環の両端面に、可動密封環の端面との接触部を前記クエンチング空間に開口する複数個の潤滑溝を形成し、
当該固定密封環の両端面の一方に形成された各潤滑溝とその他方に形成された各潤滑溝とが固定密封環の周方向において重ならないように配置されていることを特徴とするロータリジョイント。
Between the tubular case body and the rotating shaft body concentrically connected to the rotating shaft body, a fixed sealing ring fixed to one of the two bodies and an axially movable holding to the other of the two bodies. A passage connection space sealed by adjacent mechanical seals by arranging four or more mechanical seals that exhibit a sealing function by rotating relative to each other in a contact state with the movable sealing ring. Form and
A series of flow paths communicating with each other via the passage connection space are formed in both bodies.
It is configured to supply the quenching liquid to the quenching space formed between the two bodies and partitioned from the passage connection space by the mechanical seal.
The fixed sealing ring of at least one set of adjacent mechanical seals is also used as one fixed sealing ring whose both end surfaces are in contact with the movable sealing ring.
A plurality of lubrication grooves are formed on both end faces of the fixed sealing ring that is also used to open a contact portion with the end face of the movable sealing ring in the quenching space.
A rotary joint characterized in that each lubrication groove formed on one end surface of the fixed sealing ring and each lubrication groove formed on the other side are arranged so as not to overlap in the circumferential direction of the fixed sealing ring. ..
前記固定密封環の両端面の一方に形成された複数個の潤滑溝とその他方に形成された複数個の潤滑溝とが、夫々、当該固定密封環の周方向に等間隔を隔てて形成されたものであることを特徴とする、請求項1に記載するロータリジョイント。 A plurality of lubrication grooves formed on one end surface of the fixed sealing ring and a plurality of lubricating grooves formed on the other side are formed at equal intervals in the circumferential direction of the fixed sealing ring, respectively. The rotary joint according to claim 1, wherein the rotary joint is characterized by being 前記固定密封環の両端面の一方に形成された各潤滑溝が、当該固定密封環の周方向において、当該固定密封環の両端面の他方に形成された隣接する潤滑溝間の中間に位置していることを特徴とする、請求項2に記載するロータリジョイント。 Each lubrication groove formed on one of both end faces of the fixed sealing ring is located in the middle of the adjacent lubrication grooves formed on the other end face of the fixed sealing ring in the circumferential direction of the fixed sealing ring. The rotary joint according to claim 2, wherein the rotary joint is characterized in that. 前記4個以上のメカニカルシールを軸線方向に縦列状に配置してなるメカニカルシール群の両端部に位置するメカニカルシールを除くすべてのメカニカルシールにおいて、隣接するメカニカルシールの固定密封環が前記1個の固定密封環で兼用されていることを特徴とする、請求項1~3の何れかに記載するロータリジョイント。 In all mechanical seals except the mechanical seals located at both ends of the mechanical seal group in which the four or more mechanical seals are arranged in parallel in the axial direction, the fixed sealing ring of the adjacent mechanical seal is one. The rotary joint according to any one of claims 1 to 3, wherein the rotary joint is also used as a fixed sealing ring. 前記4個以上のメカニカルシールを軸線方向に縦列状に配置してなるメカニカルシール群のすべてのメカニカルシールにおいて、隣接するメカニカルシールの固定密封環が前記1個の固定密封環で兼用されていることを特徴とする、請求項1~3の何れかに記載するロータリジョイント。 In all the mechanical seals of the mechanical seal group in which the four or more mechanical seals are arranged in parallel in the axial direction, the fixed sealing ring of the adjacent mechanical seal is also used as the one fixed sealing ring. The rotary joint according to any one of claims 1 to 3, wherein the rotary joint is characterized in that. 前記各メカニカルシールにおいて、固定密封環が回転軸体に固定されると共に、可動密封環がケース体に軸線方向移動可能に保持されていることを特徴とする、請求項1~5の何れかに記載するロータリジョイント。 According to any one of claims 1 to 5, in each of the mechanical seals, the fixed sealing ring is fixed to the rotating shaft body and the movable sealing ring is held by the case body so as to be movable in the axial direction. Rotary joint to describe. 前記各メカニカルシールにおいて、固定密封環がケース体に固定されると共に、可動密封環が回転軸体に軸線方向移動可能に保持されていることを特徴とする、請求項1~5の何れかに記載するロータリジョイント。 According to any one of claims 1 to 5, in each of the mechanical seals, the fixed sealing ring is fixed to the case body and the movable sealing ring is held by the rotating shaft body so as to be movable in the axial direction. Rotary joint to describe.
JP2018130426A 2018-07-10 2018-07-10 Rotary joint Active JP7003009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018130426A JP7003009B2 (en) 2018-07-10 2018-07-10 Rotary joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018130426A JP7003009B2 (en) 2018-07-10 2018-07-10 Rotary joint

Publications (2)

Publication Number Publication Date
JP2020008100A JP2020008100A (en) 2020-01-16
JP7003009B2 true JP7003009B2 (en) 2022-01-20

Family

ID=69151272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018130426A Active JP7003009B2 (en) 2018-07-10 2018-07-10 Rotary joint

Country Status (1)

Country Link
JP (1) JP7003009B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109617A (en) 1998-03-04 2000-08-29 Power Packing Co., Inc. Gas seal assembly and method of sealing
JP2001141150A (en) 1999-11-18 2001-05-25 Nippon Pillar Packing Co Ltd Multiple flow passage type rotary joint
JP2008121891A (en) 2006-11-09 2008-05-29 Carl Freudenberg Kg Slide ring seal, slide ring seal device and usage for it
JP4145267B2 (en) 2004-05-28 2008-09-03 株式会社大和証券グループ本社 Information distribution system and information distribution method
JP2009030665A (en) 2007-07-25 2009-02-12 Nippon Pillar Packing Co Ltd Rotary joint
JP2014219020A (en) 2013-05-01 2014-11-20 日本ピラー工業株式会社 Multi-port rotary joint
JP2016166619A (en) 2015-03-09 2016-09-15 日本ピラー工業株式会社 Multiple flow passage type rotary joint
WO2017002691A1 (en) 2015-06-27 2017-01-05 イーグル工業株式会社 Sliding component
JP6087439B2 (en) 2013-07-24 2017-03-01 東京電力ホールディングス株式会社 Tandem double seal for nuclear power plant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145267A (en) * 1990-10-08 1992-05-19 Ebara Corp Noncontact end-face seal
JP5712067B2 (en) * 2011-06-27 2015-05-07 株式会社日立製作所 High temperature fluid shaft seal device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109617A (en) 1998-03-04 2000-08-29 Power Packing Co., Inc. Gas seal assembly and method of sealing
JP2001141150A (en) 1999-11-18 2001-05-25 Nippon Pillar Packing Co Ltd Multiple flow passage type rotary joint
JP4145267B2 (en) 2004-05-28 2008-09-03 株式会社大和証券グループ本社 Information distribution system and information distribution method
JP2008121891A (en) 2006-11-09 2008-05-29 Carl Freudenberg Kg Slide ring seal, slide ring seal device and usage for it
JP2009030665A (en) 2007-07-25 2009-02-12 Nippon Pillar Packing Co Ltd Rotary joint
JP2014219020A (en) 2013-05-01 2014-11-20 日本ピラー工業株式会社 Multi-port rotary joint
JP6087439B2 (en) 2013-07-24 2017-03-01 東京電力ホールディングス株式会社 Tandem double seal for nuclear power plant
JP2016166619A (en) 2015-03-09 2016-09-15 日本ピラー工業株式会社 Multiple flow passage type rotary joint
WO2017002691A1 (en) 2015-06-27 2017-01-05 イーグル工業株式会社 Sliding component

Also Published As

Publication number Publication date
JP2020008100A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
KR102181395B1 (en) Multi-port rotary joint
KR102394592B1 (en) Multiple flow passage type rotary joint
JP4250585B2 (en) Mechanical seal device
JP6629550B2 (en) Rotary joint
JP5622258B2 (en) Multi-channel rotary joint
JP2002174379A (en) Multiple passage type rotary joint
JP3560144B2 (en) Multi-channel rotary joint
US10655741B2 (en) Rotary joint
JP7003009B2 (en) Rotary joint
JP4929314B2 (en) Multi-channel rotary joint
JP6490994B2 (en) Multi-channel rotary joint
JP6593863B2 (en) Rotary joint
JP7191677B2 (en) rotary joint
JP7451056B2 (en) Rotary joint
JP6490993B2 (en) Multi-channel rotary joint
JP4555878B2 (en) Mechanical seal device
JP6490992B2 (en) Rotary joint
JP7229096B2 (en) rotary joint
JP3145977B2 (en) Rotary joint
JP4083690B2 (en) Multi-channel rotary joint
JP4030307B2 (en) Mechanical seal device
JP2015172379A (en) Rotary joint for clean fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R150 Certificate of patent or registration of utility model

Ref document number: 7003009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150