JP6490993B2 - Multi-channel rotary joint - Google Patents

Multi-channel rotary joint Download PDF

Info

Publication number
JP6490993B2
JP6490993B2 JP2015045523A JP2015045523A JP6490993B2 JP 6490993 B2 JP6490993 B2 JP 6490993B2 JP 2015045523 A JP2015045523 A JP 2015045523A JP 2015045523 A JP2015045523 A JP 2015045523A JP 6490993 B2 JP6490993 B2 JP 6490993B2
Authority
JP
Japan
Prior art keywords
rotary
seal ring
cooling fluid
sealing
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015045523A
Other languages
Japanese (ja)
Other versions
JP2016166619A (en
Inventor
博之 坂倉
博之 坂倉
光治 大賀
光治 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2015045523A priority Critical patent/JP6490993B2/en
Priority to US15/307,655 priority patent/US20170051857A1/en
Priority to KR1020167010373A priority patent/KR102394592B1/en
Priority to PCT/JP2016/054784 priority patent/WO2016143480A1/en
Priority to TW105105422A priority patent/TWI701402B/en
Publication of JP2016166619A publication Critical patent/JP2016166619A/en
Application granted granted Critical
Publication of JP6490993B2 publication Critical patent/JP6490993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体分野等で使用される回転機器(例えば、CMP装置(CMP(Chemical Mechanical Polishing)法による半導体ウエハの表面研摩装置)等)における相対回転部材間で2種以上の流体を流動させる多流路形ロータリジョイントに関するものである。   The present invention allows two or more fluids to flow between relative rotating members in a rotating device (for example, a CMP apparatus (a semiconductor wafer surface polishing apparatus using a CMP (Chemical Mechanical Polishing) method)) used in the semiconductor field or the like. The present invention relates to a multi-channel rotary joint.

従来のこの種のロータリジョイントとして、特許文献1に開示されるように、筒状のケース体とこれに同心をなして相対回転自在に連結した回転軸体との対向周面間に、ケース体に設けた静止密封環と回転軸体に設けた回転密封環との対向端面である密封端面の相対回転摺接作用によりシールするように構成された4個以上のメカニカルシールを両体の回転軸線方向に縦列状に配設して、隣接するメカニカルシールでシールされた複数個の通路接続空間を形成すると共に、両体に各通路接続空間を介して連通する流体通路を形成して、両体間において両流体通路を通路接続空間で接続してなる一連の複数個の流路により2種以上の流体を流動させるように構成された多流路形ロータリジョイントが周知である。   As a conventional rotary joint of this type, as disclosed in Patent Document 1, a case body is provided between opposing circumferential surfaces of a cylindrical case body and a rotating shaft body concentrically connected to the rotary shaft body. 4 or more mechanical seals configured to seal by a relative rotational sliding contact action of a sealing end surface which is an opposing end surface of a stationary sealing ring provided on the rotating shaft and a rotating sealing ring provided on the rotating shaft body. A plurality of passage connection spaces arranged in tandem in the direction and sealed by adjacent mechanical seals, and fluid passages communicating with each other through the passage connection spaces are formed on both bodies. A multi-channel rotary joint that is configured to cause two or more fluids to flow through a series of a plurality of channels formed by connecting both fluid channels in a channel connection space between them is well known.

而して、かかる多流路形ロータリジョイント(以下「従来ロータリジョイント」という)にあっては、少なくとも1個のメカニカルシールの回転密封環とこれに隣接するメカニカルシールの回転密封環とを両端面を密封端面とする1個の回転密封環で兼用していることから、特許文献2に開示されるように、全メカニカルシールの回転密封環が一方の端面のみを密封端面とする独立部材とされた多流路形ロータリジョイントに比して、ロータリジョイントの軸長(両体の回転軸線方向における長さ)を短縮し得て小型化を図ることができ、また部品点数の削減によりメカニカルシールの構成つまりロータリジョイントの構成を簡素化できる。   Thus, in such a multi-channel rotary joint (hereinafter referred to as “conventional rotary joint”), at least one rotary seal ring of a mechanical seal and a rotary seal ring of a mechanical seal adjacent thereto are provided at both end faces. Since this is also used as a single rotary sealing ring having a sealing end face, as disclosed in Patent Document 2, the rotary sealing ring of all mechanical seals is an independent member having only one end face as a sealing end face. Compared to the multi-channel rotary joint, the axial length of the rotary joint (the length of both bodies in the direction of the rotational axis) can be shortened, and the size of the mechanical seal can be reduced by reducing the number of parts. The structure, that is, the structure of the rotary joint can be simplified.

特開2002−174379公報JP 2002-174379 A 特開2002−005380公報JP 2002-005380 A

しかし、従来ロータリジョイントにあって、上記兼用された回転密封環については、その両端面である密封端面が夫々静止密封環との相対回転摺接により発熱することから、一方の端面のみを密封端面とする場合に比して当該回転密封環に熱歪が生じ易い。   However, in the conventional rotary joint, the above-mentioned rotary sealing ring that is also used as the above-mentioned both ends of the sealing end face generates heat due to relative rotational sliding contact with the stationary sealing ring, so only one end face is sealed end face. As compared with the case, the thermal seal is likely to occur in the rotary seal ring.

また、回転密封環の一方の密封端面と静止密封環の密封端面との相対回転摺接部分と当該回転密封環の他方の密封端面と静止密封環の密封端面との相対回転摺接部分とで発熱量が異なることがある。例えば、回転密封環を兼用する2個のメカニカルシールによってシールされる夫々の通路接続空間を流動する流体に圧力差があったり或いは各流体の圧力が変動することにより、一方のメカニカルシールにおける両密封端面の接触圧と他方のメカニカルシールにおける両密封端面の接触圧とが異なると、両メカニカルシールにおける両密封環の相対回転摺接部分での発熱量が異なる。かかる場合、当該回転密封環の両密封端面に大きな温度差が生じて、当該密封端面にメカニカルシールのシール機能(以下「メカニカルシール機能」という)に悪影響を及ぼすような大きな熱歪が生じる虞れがある。   Further, a relative rotational sliding contact portion between one sealing end surface of the rotary sealing ring and a sealing end surface of the stationary sealing ring, and a relative rotational sliding contact portion between the other sealing end surface of the rotational sealing ring and the sealing end surface of the stationary sealing ring. The calorific value may be different. For example, if there is a pressure difference in the fluid flowing in each passage connection space sealed by two mechanical seals that also serve as a rotary seal ring, or if the pressure of each fluid fluctuates, both seals in one mechanical seal When the contact pressure at the end face is different from the contact pressure at the both sealed end faces of the other mechanical seal, the amount of heat generated at the relative rotational sliding contact portions of the two sealed rings in both mechanical seals is different. In such a case, a large temperature difference may occur between the two sealing end faces of the rotary sealing ring, and a large thermal strain may occur on the sealing end face that adversely affects the sealing function of the mechanical seal (hereinafter referred to as “mechanical sealing function”). There is.

このように、従来ロータリジョイントでは、隣接するメカニカルシールの回転密封環を兼用しているために、その密封端面に熱歪が生じて静止密封環との相対回転摺接作用が適正に行われず、メカニカルシール機能が良好に発揮されず、通路接続空間から流体が漏れる虞れがある。   As described above, in the conventional rotary joint, since the rotary seal ring of the adjacent mechanical seal is also used, the relative rotation sliding contact with the stationary seal ring is not properly performed due to thermal strain generated in the sealed end face, The mechanical seal function is not exhibited well, and there is a possibility that fluid leaks from the passage connection space.

本発明は、隣接するメカニカルシールの回転密封環を兼用していることにより生じる上記問題を解決して、2種以上の流体を漏れを生じることなく良好に流動させることができる多流路形ロータリジョイントを提供することを目的とするものである。   The present invention solves the above-mentioned problem caused by sharing a rotating seal ring of adjacent mechanical seals, and can cause two or more fluids to flow well without causing leakage. The purpose is to provide a joint.

本発明は、筒状のケース体とこれに相対回転自在に連結した回転軸体との対向周面間に、ケース体に設けた静止密封環と回転軸体に設けた回転密封環との対向端面である密封端面の相対回転摺接作用によりシールするように構成された4個以上のメカニカルシールを両体の回転軸線方向に縦列状に配設して、隣接するメカニカルシールでシールされた複数個の通路接続空間を形成し、両体に各通路接続空間を介して連通する流体通路を形成し、少なくとも1個のメカニカルシールの回転密封環とこれに隣接するメカニカルシールの回転密封環とを両端面を密封端面とする1個の回転密封環で兼用してある多流路形ロータリジョイントにおいて、上記の目的を達成すべく、特に、前記兼用された回転密封環の両端面及び内外周面の一方に、当該回転密封環の構成材に比して熱伝導係数及び硬度が大きい材料からなるコーティング層を一連に形成しておくことを提案する。   In the present invention, a stationary seal ring provided on the case body and a rotary seal ring provided on the rotary shaft body are opposed to each other between the opposed peripheral surfaces of the cylindrical case body and the rotary shaft body connected to the rotary shaft body. A plurality of four or more mechanical seals configured to be sealed by the relative rotational sliding contact action of the sealing end surface, which is an end surface, are arranged in tandem in the rotation axis direction of both bodies and sealed by adjacent mechanical seals. A plurality of passage connection spaces, fluid passages communicating with each other through the passage connection spaces, and at least one rotary seal ring of the mechanical seal and a rotary seal ring of the mechanical seal adjacent thereto are formed. In order to achieve the above object, in a multi-channel rotary joint that is shared by a single rotary seal ring having both end faces as sealed end faces, in particular, both end faces and inner and outer peripheral faces of the double rotary seal ring that are also used One of the Rolling than the constituting material of the seal ring suggest to be formed into a series of coating layers consisting of thermal conductivity and hardness greater material.

本発明の多流路形ロータリジョイントにあっては、前記両体の回転軸線方向に縦列状に配置されたメカニカルシール群の両側に一対のオイルシールを配設して、前記両体の対向周面間に両オイルシールでシールされた空間であって冷却流体が循環供給される冷却流体空間を形成しておくことが好ましく、或いは前記両体の回転軸線方向に縦列状に配置されたメカニカルシール群の両側に当該メカニカルシールと同様構造をなす一対の冷却流体空間用メカニカルシールを配設して、前記両体の対向周面間に両冷却流体空間用メカニカルシールでシールされた空間であって冷却流体が循環供給される冷却流体空間を形成しておくことが好ましい。また、前記各冷却流体空間用メカニカルシールの回転密封環とこれに隣接するメカニカルシールの回転密封環とを両端面を密封端面とする1個の回転密封環で兼用し、当該回転密封環の両端面及び内外周面の一方に、当該回転密封環の構成材に比して熱伝導係数及び硬度が大きい材料からなるコーティング層を一連に形成しておくことが好ましい。さらに、前記兼用された回転密封環に相対回転摺接する各静止密封環の密封端面の径方向面幅は、当該回転密封環の密封端面の径方向面幅より小さく設定しておくことが好ましい。また、前記兼用された回転密封環を除く各回転密封環の密封端面及び/又は各静止密封環の密封端面に当該密封環の構成材に比して熱伝導係数及び硬度が大きい材料からなるコーティング層を形成しておくことが好ましい。何れの場合においても、前記コーティング層はダイヤモンドで構成しておくことが好ましい。   In the multi-channel rotary joint of the present invention, a pair of oil seals are disposed on both sides of the mechanical seal group arranged in a column in the direction of the rotation axis of the two bodies, It is preferable to form a cooling fluid space in which cooling fluid is circulated and supplied between both surfaces with oil seals, or mechanical seals arranged in tandem in the rotational axis direction of the two bodies A pair of cooling fluid space mechanical seals having the same structure as the mechanical seals on both sides of the group, and a space sealed between the opposing peripheral surfaces of the two bodies by the cooling fluid space mechanical seals. It is preferable to form a cooling fluid space in which the cooling fluid is circulated and supplied. Further, the rotary sealing ring of each of the cooling fluid space mechanical seals and the rotary sealing ring of the mechanical seal adjacent thereto are used as one rotary sealing ring having both end faces as sealing end faces, It is preferable to form a series of coating layers made of a material having a higher thermal conductivity coefficient and hardness than the constituent material of the rotary seal ring on one of the surface and the inner and outer peripheral surfaces. Furthermore, it is preferable that the radial width of the sealing end face of each stationary sealing ring that is in relative rotational sliding contact with the combined rotary sealing ring is set smaller than the radial width of the sealing end face of the rotary sealing ring. Also, a coating made of a material having a higher thermal conductivity coefficient and hardness than the constituent material of the sealing ring on the sealing end face of each rotary sealing ring and / or the sealing end face of each stationary sealing ring excluding the combined rotary sealing ring It is preferable to form a layer. In any case, the coating layer is preferably made of diamond.

本発明のロータリジョイントにあっては、隣接するメカニカルシールに兼用された回転密封環(以下「兼用回転密封環」という)の両端面である密封端面に当該回転密封環の構成材に比して硬度が大きい材料からなるコーティング層を形成しているから、兼用回転密封環の両密封端面における相手密封環(静止密封環)との相対回転摺接部分での摩耗量及び発熱量を可及的に減少させることができる。しかも、当該コーティング層が兼用回転密封環の構成材に比して熱伝導係数の大きな材料で構成されており、これが兼用回転密封環の外周面及び/又は内周面にも一連に形成されていることから、兼用回転密封環の両密封端面に形成されたコーティング層での発生熱は、当該外周面及び/又は内周面に形成されたコーティング層を介して相互に伝熱されて、当該兼用回転密封環の両密封端面が均一温度となる。その結果、兼用回転密封環の両密封端面に大きな温度差が生じず、当該両密封端面にメカニカルシール機能に悪影響を与えるような大きな熱歪が生じることがない。かかる効果は、特に、コーティング層をダイヤモンドで構成しておくことによって顕著に発揮される。   In the rotary joint of the present invention, the sealing end face which is the both end faces of the rotating seal ring also used as an adjacent mechanical seal (hereinafter referred to as “combined rotation seal ring”) is compared with the constituent material of the rotary seal ring. Since the coating layer made of a material with high hardness is formed, the amount of wear and heat generated at the relative rotational sliding contact part with the mating sealing ring (stationary sealing ring) on both sealing end faces of the dual-purpose rotating sealing ring is as much as possible. Can be reduced. Moreover, the coating layer is made of a material having a large thermal conductivity coefficient compared to the constituent material of the dual-use rotary seal ring, and this coating layer is also formed in series on the outer peripheral surface and / or inner peripheral surface of the dual-use rotary seal ring. Therefore, the heat generated in the coating layers formed on both sealing end faces of the dual-purpose rotary sealing ring is transferred to each other via the coating layer formed on the outer peripheral surface and / or the inner peripheral surface, and the Both sealed end faces of the dual-purpose rotary seal ring have a uniform temperature. As a result, a large temperature difference does not occur on both sealed end faces of the dual-use rotary seal ring, and a large thermal strain that adversely affects the mechanical seal function does not occur on the both sealed end faces. Such an effect is particularly prominent when the coating layer is made of diamond.

したがって、本発明によれば、兼用回転密封環と各静止密封環との相対回転摺接部分における摩耗、発熱及び兼用回転密封環の両密封端面における熱歪の発生を可及的に防止してメカニカルシール機能を長期に亘って良好に発揮させることができ、従来ロータリジョイントに比して耐久性、信頼性に優れた極めて実用的な多流路形ロータリジョイントを提供することができる。   Therefore, according to the present invention, it is possible to prevent, as much as possible, wear, heat generation at the relative rotational sliding contact portion between the dual-use rotary seal ring and each stationary seal ring, and generation of thermal strain at both sealed end faces of the dual-use rotary seal ring. A mechanical seal function can be satisfactorily exhibited over a long period of time, and an extremely practical multi-channel rotary joint that is superior in durability and reliability compared to conventional rotary joints can be provided.

図1は本発明に係る多流路形ロータリジョイントの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a multi-channel rotary joint according to the present invention. 図2は図1と異なる位置で断面した当該多流路形ロータリジョイントの断面図である。FIG. 2 is a cross-sectional view of the multi-channel rotary joint taken along a position different from that in FIG. 図3は図1の要部を拡大して示す詳細断面図である。FIG. 3 is an enlarged detailed cross-sectional view showing the main part of FIG. 図4は図3と異なる図1の要部を拡大して示す詳細断面図である。4 is an enlarged detailed cross-sectional view showing the main part of FIG. 1 different from FIG. 図5は本発明に係る多流路形ロータリジョイントの変形例を示す図3相当の要部の断面図である。FIG. 5 is a cross-sectional view of the main part corresponding to FIG. 3 showing a modification of the multi-channel rotary joint according to the present invention. 図6は本発明に係る多流路形ロータリジョイントの他の変形例を示す図3相当の要部の断面図である。FIG. 6 is a cross-sectional view of the main part corresponding to FIG. 3 showing another modification of the multi-channel rotary joint according to the present invention. 図7は本発明に係る多流路形ロータリジョイントの更に他の変形例を示す図3相当の要部の断面図である。FIG. 7 is a cross-sectional view of the main part corresponding to FIG. 3 showing still another modification of the multi-channel rotary joint according to the present invention. 図8は本発明に係る多流路形ロータリジョイントの更に他の変形例を示す図3相当の要部の断面図である。FIG. 8 is a cross-sectional view of a main part corresponding to FIG. 3 showing still another modification of the multi-channel rotary joint according to the present invention. 図9は本発明に係る多流路形ロータリジョイントの更に他の変形例を示す図1対応の断面図である。FIG. 9 is a cross-sectional view corresponding to FIG. 1 showing still another modification of the multi-channel rotary joint according to the present invention. 図10は図9と異なる位置で断面した当該多流路形ロータリジョイントの断面図である。10 is a cross-sectional view of the multi-channel rotary joint taken along a position different from that in FIG. 図11は図10の要部を拡大して示す詳細断面図である。FIG. 11 is a detailed cross-sectional view showing an enlarged main part of FIG.

図1は本発明に係る多流路形ロータリジョイントの一例を示す断面図であり、図2は図1と異なる位置で断面した当該多流路形ロータリジョイントの断面図であり、図3は図1の要部を拡大して示す詳細断面図であり、図4は図3と異なる図1の要部を拡大して示す詳細断面図である。なお、以下の説明において、上下とは図1〜図4における上下をいうものとする。   FIG. 1 is a cross-sectional view showing an example of a multi-channel rotary joint according to the present invention, FIG. 2 is a cross-sectional view of the multi-channel rotary joint taken along a position different from FIG. 1, and FIG. FIG. 4 is an enlarged detailed cross-sectional view showing an essential part of FIG. 1, and FIG. 4 is an enlarged detailed cross-sectional view showing an essential part of FIG. 1 different from FIG. In the following description, “upper and lower” refers to the upper and lower sides in FIGS.

図1及び図2に示す多流路形ロータリジョイントは、筒状のケース体1とこれに同心をなして相対回転自在に連結した回転軸体2とを具備し、両体1,2の対向周面間に、4個以上のメカニカルシール3…を両体1,2の回転軸線方向(以下、単に「軸線方向」という)つまり上下方向に縦列させて配置して、隣接するメカニカルシール3,3でシールされた複数個の通路接続空間4…を形成すると共に、当該通路接続空間4とメカニカルシール3で区画された空間であって一対のオイルシール5,5でシールされた冷却流体空間6を形成し、両体1,2間に流体通路7,8を通路接続空間4を介して連通してなる一連の複数個の流路R…(図2参照)を形成した竪型のものであり、CMP装置等の回転機器の相対回転部材間で2種以上の流体Fを各流路Rにより各別に流動させるものである。   1 and 2 includes a cylindrical case body 1 and a rotating shaft body 2 concentrically connected to the rotary shaft body 2 so as to be relatively rotatable. Between the peripheral surfaces, four or more mechanical seals 3 are arranged in a row in the direction of the rotation axis of both bodies 1 and 2 (hereinafter simply referred to as “axial direction”), that is, in the vertical direction, and adjacent mechanical seals 3 and 3 are arranged. A plurality of passage connection spaces 4 sealed by 3 and a space defined by the passage connection space 4 and the mechanical seal 3, and a cooling fluid space 6 sealed by a pair of oil seals 5, 5. And a series of a plurality of flow paths R (see FIG. 2) formed by communicating the fluid passages 7 and 8 through the passage connection space 4 between the two bodies 1 and 2. Yes, two or more types of flow between relative rotating members of rotating equipment such as CMP equipment It is intended to flow to each other by each channel R to F.

ケース体1は、図1及び図2に示す如く、中心線が上下方向に延びる円形内周部を有するもので、上下方向に複数個の環状部分に分割された筒状構造をなす。ケース本体1は、回転機器の固定側部材(例えば、CMP装置の装置本体)に取り付けられる。   As shown in FIGS. 1 and 2, the case body 1 has a circular inner peripheral portion whose center line extends in the vertical direction, and forms a cylindrical structure that is divided into a plurality of annular portions in the vertical direction. The case main body 1 is attached to a fixed side member (for example, an apparatus main body of a CMP apparatus) of a rotating device.

回転軸体2は、図1及び図2に示す如く、軸線が上下方向に延びる円柱状の軸本体21と、これに上下方向に所定間隔を隔てて縦列状に嵌合固定された複数個のスリーブ22…と軸本体21の上端部に嵌合固定された有底筒状のベアリング受体23とで構成されており、ベアリング受体23とケース体1の上端部との間及び軸本体21の下端部に形成された大径のベアリング受部21aとケース体1の下端部との間に夫々装填した上下一対のベアリング9a,9bによりケース体1の内周部に同心状をなして相対回転自在に支持されている。回転軸体2は、軸本体21の下端部において回転機器の回転側部材(例えば、CMP装置のトップリング又はターンテーブル)に取り付けられる。   As shown in FIGS. 1 and 2, the rotary shaft body 2 includes a columnar shaft body 21 having an axial line extending in the vertical direction, and a plurality of shafts fitted and fixed in a vertical row at a predetermined interval in the vertical direction. It comprises a sleeve 22... And a bottomed cylindrical bearing receiver 23 fitted and fixed to the upper end of the shaft main body 21, and between the bearing receiver 23 and the upper end of the case body 1 and the shaft main body 21. A pair of upper and lower bearings 9a and 9b loaded between a large-diameter bearing receiving portion 21a formed at the lower end of the case and the lower end of the case body 1 are concentrically opposed to the inner periphery of the case body 1. It is supported rotatably. The rotating shaft body 2 is attached to a rotating side member (for example, a top ring or a turntable of a CMP apparatus) at a lower end portion of the shaft main body 21.

各メカニカルシール3は、図1に示す如く、回転軸体2に固定した回転密封環31とこれに対向してケース体1に軸線方向に移動可能に保持された静止密封環32とこれを回転密封環31に押圧接触させるスプリング33とを具備して、両密封環31,32の対向端面である密封端面31a,32aの相対回転摺接作用によりその相対回転摺接部分の内周側領域である通路接続空間4とその外周側領域である冷却流体空間6とをシールするように構成された端面接触形のメカニカルシールである。この例では、図1及び図2に示す如く、4個のメカニカルシール3…を全密封環31…,32…が回転軸線方向に縦列し且つその密封環群31…,32…の両端部に回転密封環31,31が位置する状態で配置されている。すなわち、両回転密封環31,31間に静止密封環32,32が位置するダブルシール配置の一対のメカニカルシール3,3からなる2組のメカニカルシールユニットを軸線方向に縦列配置してある。   As shown in FIG. 1, each mechanical seal 3 includes a rotary seal ring 31 fixed to the rotary shaft body 2, a stationary seal ring 32 held opposite to the rotary seal ring 31 and movable in the axial direction on the case body 1. And a spring 33 that presses and contacts the sealing ring 31, and a relative rotational sliding contact action of the sealing end surfaces 31 a and 32 a that are opposite end surfaces of the sealing rings 31 and 32, in an inner peripheral side region of the relative rotational sliding contact portion. It is an end surface contact type mechanical seal configured to seal a certain passage connection space 4 and a cooling fluid space 6 that is an outer peripheral side region thereof. In this example, as shown in FIG. 1 and FIG. 2, the four mechanical seals 3 are arranged in such a manner that all the sealing rings 31... 32 are arranged in the direction of the rotation axis and at both ends of the sealing ring groups 31. It arrange | positions in the state in which the rotation sealing rings 31 and 31 are located. That is, two sets of mechanical seal units composed of a pair of mechanical seals 3 and 3 in a double seal arrangement in which the stationary seal rings 32 and 32 are located between the rotary seal rings 31 and 31 are arranged in tandem in the axial direction.

各回転密封環31は、両体1,2の回転軸線(以下、単に「軸線」という)と同心をなす断面方形の円環状体であり、図3及び図4に示す如く、静止密封環32が接触する端面を軸線に直交する平滑な円環状平面である密封端面31aに構成してある。この例では、1個のメカニカルシール3の回転密封環31とこれに隣接するメカニカルシール3の回転密封環31とを、図3に示す如く、両端面を密封端面31a,31aとする1個の回転密封環31(以下「兼用回転密封環31A」という)で兼用している。すなわち、上下方向に縦列する回転密封環群31…のうち両端部(上下端部)に位置する回転密封環31,31を除いて、回転密封環(兼用回転密封環)31Aの両端面を密封端面31a,31aに構成してある。   Each rotary seal ring 31 is an annular body having a square cross section that is concentric with the rotation axes (hereinafter simply referred to as “axis lines”) of both bodies 1 and 2, and as shown in FIGS. 3 and 4, the stationary seal ring 32. The end face which contacts is configured as a sealed end face 31a which is a smooth annular plane perpendicular to the axis. In this example, one rotary seal ring 31 of one mechanical seal 3 and a rotary seal ring 31 of a mechanical seal 3 adjacent thereto are provided as a single end with sealed end faces 31a and 31a as shown in FIG. The rotary seal ring 31 (hereinafter referred to as “combined rotary seal ring 31A”) is also used. That is, both end faces of the rotary seal ring (combined rotary seal ring) 31A are sealed except for the rotary seal rings 31 and 31 positioned at both ends (upper and lower ends) of the rotary seal ring group 31 vertically aligned. It is comprised in the end surfaces 31a and 31a.

各回転密封環31,31Aは、図1及び図2に示す如く、隣接する回転密封環31との相互間隔をスリーブ22によって規制された状態で回転軸体2の軸本体21に嵌合固定されている。すなわち、各回転密封環31,31Aは、図1に示す如く、ベアリング受体23をボルト24により軸本体21に締め付けることにより、スリーブ22を介してベアリング受部21aとベアリング受体23との間に挟圧固定されており、軸線方向に等間隔を隔てた縦列状態で回転軸体2に固定されている。なお、各スリーブ22の両端内周部と軸本体21との間には、図3に示す如く、軸本体21と回転密封環31,31Aとの嵌合部分をシールするOリング25が装填されている。   As shown in FIGS. 1 and 2, each rotary seal ring 31, 31 </ b> A is fitted and fixed to the shaft main body 21 of the rotary shaft body 2 in a state where the interval between the adjacent rotary seal rings 31 is regulated by the sleeve 22. ing. That is, as shown in FIG. 1, each rotary seal ring 31, 31 </ b> A is provided between the bearing receiver 21 a and the bearing receiver 23 via the sleeve 22 by fastening the bearing receiver 23 to the shaft body 21 with the bolt 24. Are fixed to the rotary shaft body 2 in a tandem state at equal intervals in the axial direction. As shown in FIG. 3, an O-ring 25 that seals the fitting portion between the shaft main body 21 and the rotary seal rings 31 and 31A is loaded between the inner peripheral portions of both ends of each sleeve 22 and the shaft main body 21. ing.

各静止密封環32は、図3に示す如く、軸線と同心をなす断面略L字状の円環状体であり、先端突出部の端面を軸線に直交する平滑な円環状平面である密封端面32aに構成してある。静止密封環32の密封端面32aは、径方向面幅(シール面幅)を回転密封環31,31Aの密封端面31aの径方向面幅より小さくしたものであり、当該密封端面31aの内外周部分が食み出す状態で当該密封端面31aに接触している。すなわち、静止密封環32の密封端面32aの内径は回転密封環31,31Aの密封端面31aの内径より大きく且つその外径は回転密封環31,31Aの密封端面31aの外径より小さく設定されている。各静止密封環32は、図1及び図3に示す如く、ケース体1の内周部に突出する環状壁11にOリング32bを介して軸線方向に移動可能に内嵌保持されており、さらに図1に示す如く、その外周部に形成した係合凹部に環状壁11から軸線方向に突出するドライブピン32cを係合させることにより、軸線方向への相対移動を所定範囲で許容された状態でケース体1に相対回転不能に保持されている。なお、この例では、図1に示す如く、全ドライブピン32cが環状壁11,11に軸線方向に貫通支持されたドライブバーで兼用されている。   As shown in FIG. 3, each stationary sealing ring 32 is an annular body having a substantially L-shaped cross section concentric with the axis, and a sealing end face 32a which is a smooth annular plane whose end face is perpendicular to the axis. It is configured. The sealing end surface 32a of the stationary sealing ring 32 has a radial surface width (sealing surface width) smaller than the radial surface width of the sealing end surface 31a of the rotary sealing rings 31 and 31A, and the inner and outer peripheral portions of the sealing end surface 31a. In contact with the sealed end face 31a. That is, the inner diameter of the sealing end face 32a of the stationary sealing ring 32 is set larger than the inner diameter of the sealing end face 31a of the rotary sealing rings 31 and 31A and the outer diameter thereof is set smaller than the outer diameter of the sealing end face 31a of the rotary sealing rings 31 and 31A. Yes. As shown in FIGS. 1 and 3, each stationary sealing ring 32 is fitted and held in an annular wall 11 protruding from the inner peripheral portion of the case body 1 so as to be movable in the axial direction via an O-ring 32b. As shown in FIG. 1, by engaging a drive pin 32c protruding in the axial direction from the annular wall 11 with an engaging recess formed in the outer peripheral portion thereof, relative movement in the axial direction is allowed within a predetermined range. The case body 1 is held in a relatively non-rotatable manner. In this example, as shown in FIG. 1, all the drive pins 32c are also used as drive bars that are supported by the annular walls 11 and 11 in the axial direction.

スプリング33は、図1に示す如く、各メカニカルシールユニットにおいて、環状壁11を軸線方向に貫通する連通孔11aに装填されていて、環状壁11の両側に位置する両静止密封環32,32を各回転密封環31,31Aへと押圧附勢する共通部材とされている。   As shown in FIG. 1, the spring 33 is loaded in a communication hole 11 a penetrating the annular wall 11 in the axial direction in each mechanical seal unit, and the stationary seal rings 32, 32 located on both sides of the annular wall 11 are mounted on the spring 33. It is a common member that presses and urges the rotary seal rings 31 and 31A.

両体1,2には、図2に示す如く、各通路接続空間4に連通する流体通路7,8が形成されており、この例では、両体1,2間に両流体通路7,8と通路接続空間4とにより両体1,2間で流体Fを矢印方向(実線又は破線で示す矢印方向)に各別に流動させる2個の流路R,Rが形成されている。ケース体1の各流体通路7はケース体1を径方向に貫通して形成されており、その一端部が環状壁11の内周面において通路接続空間4に開口すると共にその他端部が回転機器の固定側部材に形成された流体通路に接続される。回転軸体2に形成された各流体通路8は、軸本体21とスリーブ22との対向周面間に形成された環状のヘッダ空間8aと、スリーブ22を径方向に貫通してヘッダ空間8aと通路接続空間4とを連通する複数個の連通孔8b…と、軸本体21をその下端部から軸線方向に貫通してヘッダ空間8aに開口する流体通路本体8cとで構成されており、流体通路本体8cの下端部は回転機器の回転側部材に形成された流体通路に接続される。なお、各密封環31,31A,32の構成材は流路Rを流動する流体Fの性状等のロータリジョイント使用条件に応じて選択され、一般に炭化ケイ素等のセラミックスや超硬合金(タングステンカーバイド)等で構成される。   As shown in FIG. 2, fluid passages 7 and 8 communicating with the passage connection spaces 4 are formed in both bodies 1 and 2. In this example, both fluid passages 7 and 8 are disposed between the bodies 1 and 2. And the passage connection space 4 form two flow paths R and R for allowing the fluid F to flow separately in the direction of the arrow (solid or broken line) between the bodies 1 and 2. Each fluid passage 7 of the case body 1 is formed so as to penetrate the case body 1 in the radial direction. One end of the fluid passage 7 opens into the passage connection space 4 on the inner peripheral surface of the annular wall 11 and the other end is a rotating device. Connected to a fluid passage formed in the stationary side member. Each fluid passage 8 formed in the rotary shaft body 2 includes an annular header space 8a formed between opposed peripheral surfaces of the shaft body 21 and the sleeve 22, and a header space 8a penetrating the sleeve 22 in the radial direction. A plurality of communication holes 8b that communicate with the passage connection space 4, and a fluid passage body 8c that penetrates the shaft body 21 in the axial direction from the lower end thereof and opens into the header space 8a. The lower end portion of the main body 8c is connected to a fluid passage formed in the rotation side member of the rotating device. In addition, the constituent material of each sealing ring 31, 31A, 32 is selected according to rotary joint use conditions, such as the property of the fluid F which flows through the flow path R, and generally ceramics, such as silicon carbide, or a cemented carbide (tungsten carbide). Etc.

両オイルシール5,5は、図1及び図2に示す如く、両ベアリング9a,9b間においてメカニカルシール群3…の両端部に配置されており、軸線方向に並列する密封環群31…,32…の両端部(上下端部)に位置する回転密封環31,31とケース体1の内周部に固定されて回転密封環31,31の外周面に圧接するゴム等の弾性材製の環状シール部材51とからなる。環状シール部材51は周知のものであり、図4に示す如く、金属材(SUS304等)製の補強金具51aが埋設されてケース体1の内周部に内嵌固定された本体部と、回転密封環31の外周面にガータスプリング51bで緊縛、圧接されてシール機能(オイルシール機能)を発揮するリップシール部とからなる。   As shown in FIGS. 1 and 2, the oil seals 5 and 5 are disposed at both ends of the mechanical seal group 3 between the bearings 9a and 9b, and the seal ring groups 31 and 32 arranged in parallel in the axial direction. Rings made of an elastic material such as rubber that are fixed to the inner peripheral part of the rotary seal rings 31 and 31 and the outer peripheral surfaces of the rotary seal rings 31 and 31 positioned at both ends (upper and lower ends) of And a seal member 51. The annular seal member 51 is a well-known member, and as shown in FIG. 4, a main body portion in which a reinforcing metal fitting 51 a made of a metal material (SUS304 or the like) is embedded and fixed to the inner peripheral portion of the case body 1 is rotated. The lip seal portion is tightly bound to and pressed against the outer peripheral surface of the seal ring 31 by a garter spring 51b and exhibits a seal function (oil seal function).

両体1,2の対向周面間には、各メカニカルシール3における両密封端面31a,32aの相対回転摺接部分の外周側領域及び当該外周側領域間を仕切る環状壁11に形成された連通孔11aで構成される空間であって両オイルシール5,5でシールされた冷却流体空間6が形成されており、冷却流体空間6に適宜の冷却流体Cが循環供給されるようになっている。この例では、冷却流体Cとして常温水等の液体が使用されている。すなわち、ケース体1には、図1に示す如く、冷却流体空間6の上下端部に開口して冷却流体Cを給排する冷却流体供給通路6a及び冷却流体排出通路6bが形成されていて、冷却流体Cを冷却流体空間6に循環供給するようになっている。なお、ケース体1には、図1に示す如く、各オイルシール5とベアリング9a,9bとの間において両体1,2の対向周面間に開口するドレン13a,13bが形成されている。   Between the opposing peripheral surfaces of both bodies 1 and 2, communication is formed on the outer peripheral side region of the relative rotational sliding contact portion of both sealed end surfaces 31 a and 32 a of each mechanical seal 3 and the annular wall 11 that partitions the outer peripheral side region. A cooling fluid space 6 which is a space constituted by the holes 11a and is sealed by both oil seals 5 and 5 is formed, and an appropriate cooling fluid C is circulated and supplied to the cooling fluid space 6. . In this example, a liquid such as room temperature water is used as the cooling fluid C. That is, as shown in FIG. 1, the case body 1 is formed with a cooling fluid supply passage 6 a and a cooling fluid discharge passage 6 b that are opened at the upper and lower ends of the cooling fluid space 6 to supply and discharge the cooling fluid C, The cooling fluid C is circulated and supplied to the cooling fluid space 6. As shown in FIG. 1, the case body 1 is formed with drains 13a and 13b that are opened between the opposing peripheral surfaces of the bodies 1 and 2 between the oil seals 5 and the bearings 9a and 9b.

而して、兼用回転密封環31Aの両密封端面31a,31a及び内外周面の一方には、本発明に従って、兼用回転密封環31Aの構成材に比して熱伝導係数及び硬度が大きく且つ摩擦係数が小さな材料からなるコーティング層10a,10a,10bが一連に形成されている。この例では、図1〜図3に示す如く、兼用回転密封環31Aの両密封端面31a,31a及び外周面に一連のコーティング層10a,10a,10bが形成されている。すなわち、コーティング層は、兼用回転密封環31Aの両端面31a,31aを全面的に被覆する密封端面コーティング層10a,10aとこれに連なって当該回転密封環31Aの外周面を全面的に被覆する外周面コーティング層10bとからなる。なお、以下の説明において、密封環とこれに被覆形成されたコーティング層とを区別する必要があるときは、前者を密封環母材という。   Thus, according to the present invention, one of the sealed end faces 31a, 31a and the inner and outer peripheral surfaces of the dual-use rotary seal ring 31A has a large thermal conductivity coefficient and hardness as compared with the constituent material of the dual-use rotary seal ring 31A, and friction. Coating layers 10a, 10a, 10b made of a material having a small coefficient are formed in series. In this example, as shown in FIGS. 1 to 3, a series of coating layers 10 a, 10 a, and 10 b are formed on both sealed end faces 31 a and 31 a and the outer peripheral surface of the combined rotary seal ring 31 </ b> A. That is, the coating layer has a sealing end face coating layer 10a, 10a that covers the entire end faces 31a, 31a of the dual-purpose rotary seal ring 31A and an outer periphery that covers the outer peripheral face of the rotary seal ring 31A. And a surface coating layer 10b. In the following description, when it is necessary to distinguish between a sealing ring and a coating layer formed thereon, the former is referred to as a sealing ring base material.

コーティング層10a,10a,10bの構成材としては、兼用回転密封環31Aの構成材(密封環母材の構成材)がセラミックス、超硬合金等の如何なる密封環構成材であっても、これより熱伝導係数及び硬度が大きく且つ摩擦係数が小さなダイヤモンドが使用されている。なお、ダイヤモンドコーティング層10a,10bの形成は、熱フィラメント化学蒸着法、マイクロ波プラズマ化学蒸着法、高周波プラズマ法、直流放電プラズマ法、アーク放電プラズマジェット法、燃焼炎法等のコーティング方法によって行われる。   As a constituent material of the coating layers 10a, 10a, and 10b, no matter what the constituent material of the dual-purpose rotary seal ring 31A (the constituent material of the seal ring base material) is any seal ring constituent material such as ceramics or cemented carbide. Diamonds having a high thermal conductivity coefficient and hardness and a small friction coefficient are used. The diamond coating layers 10a and 10b are formed by a coating method such as a hot filament chemical vapor deposition method, a microwave plasma chemical vapor deposition method, a high frequency plasma method, a direct current discharge plasma method, an arc discharge plasma jet method, or a combustion flame method. .

以上のように構成されたロータリジョイントにあっては、兼用回転密封環31Aの両密封端面31a,31aにその構成材(密封環母材の構成材)より硬度が大きく且つ摩擦係数が小さい材料の密封端面コーティング層10a,10aを形成してあることから、従来ロータリジョイントのように回転密封環の密封端面と静止密封環の密封端面とが直接に相対回転する場合つまり密封環母材同士が直接に相対回転摺接する場合に比して、各密封端面31aと相手密封端面(静止密封環32の密封端面)32aとの相対回転摺接部分で発生する摩耗量や発熱量が少なくなる。特に、各コーティング層10aが上記した如くダイヤモンドで構成される場合には、ダイヤモンドが自然界に存在する固体物質で最も硬質のものであり、摩擦係数が炭化ケイ素等のあらゆる密封環構成材に比して極めて低い(一般に、ダイヤモンドの摩擦係数は0.03(μ)であり、あらゆる密封環構成材に比して遥かに低摩擦係数のPTFE(ポリテトラフルオロエチレン)よりも更に10%以上低い)ものであることから、兼用回転密封環31Aにおける密封端面コーティング層10aで被覆された各密封端面31aと相手密封環(静止密封環)32の密封端面32aとの相対回転摺接によって生じる摩耗や発熱は極めて少ない。   In the rotary joint configured as described above, both the sealing end faces 31a and 31a of the dual-use rotary seal ring 31A are made of a material having a hardness higher than that of the constituent material (the constituent material of the seal ring base material) and a small friction coefficient. Since the sealing end face coating layers 10a and 10a are formed, when the sealing end face of the rotary sealing ring and the sealing end face of the stationary sealing ring directly rotate relative to each other like a conventional rotary joint, the sealing ring base materials are directly The amount of wear and heat generated at the relative rotational sliding contact portion between each sealing end surface 31a and the mating sealing end surface (sealing end surface of the stationary sealing ring 32) 32a is smaller than in the case of relative rotational sliding contact. In particular, when each coating layer 10a is made of diamond as described above, diamond is the hardest solid substance existing in nature, and the friction coefficient is higher than that of any sealing ring constituent material such as silicon carbide. (In general, the coefficient of friction of diamond is 0.03 (μ), which is 10% or more lower than PTFE (polytetrafluoroethylene) having a much lower coefficient of friction than all seal ring components). Therefore, wear and heat generated by relative rotational sliding contact between each sealed end face 31a covered with the sealed end face coating layer 10a in the dual-use rotary seal ring 31A and the sealed end face 32a of the counterpart seal ring (stationary seal ring) 32. Are very few.

また、兼用回転密封環31Aに形成された両密封端面コーティング層10a,10aが当該密封環31Aの外周面に形成された外周面コーティング層10bによって連結されており、コーティング層10a,10a,10bが兼用回転密封環31Aの構成材料より熱伝導率の高い材料で構成されていることから、冒頭で述べた如く兼用回転密封環31Aの一方の密封端面31aと静止密封環32の密封端面32aとの相対回転摺接部分と当該兼用回転密封環31Aの他方の密封端面31aと静止密封環32の密封端面32aとの相対回転摺接部分とで発生する熱量が異なる場合にも、両密封端面コーティング層10a,10aで発生する熱が外周面コーティング層10bを介して相互に伝熱されて均一化されることになる。したがって、両密封端面コーティング層10a,10aが均一温度となり、つまり兼用回転密封環31Aにおける密封環母材の両端面31a,31aが同一温度となり、相手密封端面32a,32aとの相対回転摺接により発生する熱量が異なる場合にも、兼用回転密封環31Aでの熱歪発生が効果的に防止されて、兼用回転密封環31Aの両密封端面31a,31aにメカニカルシール機能に悪影響を与えるような大きな熱歪が生じることがない。   Further, both sealed end face coating layers 10a, 10a formed on the dual-use rotary seal ring 31A are connected by an outer peripheral surface coating layer 10b formed on the outer peripheral surface of the seal ring 31A, and the coating layers 10a, 10a, 10b are connected. Since it is made of a material having a higher thermal conductivity than the constituent material of the dual-use rotary seal ring 31A, as described at the beginning, one sealed end face 31a of the dual-use rotary seal ring 31A and the sealed end face 32a of the stationary seal ring 32 Even when the amount of heat generated between the relative rotational sliding contact portion and the relative rotational sliding contact portion between the other sealing end surface 31a of the combined rotary sealing ring 31A and the sealing end surface 32a of the stationary sealing ring 32 is different, both sealed end surface coating layers are used. The heat generated in 10a and 10a is transferred to and uniformed through the outer peripheral surface coating layer 10b. Therefore, both the sealing end face coating layers 10a, 10a have a uniform temperature, that is, both end faces 31a, 31a of the sealing ring base material in the dual-purpose rotary sealing ring 31A have the same temperature, and are caused by relative rotational sliding contact with the mating sealing end faces 32a, 32a. Even when the amount of generated heat is different, generation of thermal strain in the dual-use rotary seal ring 31A is effectively prevented, and the two sealing end faces 31a and 31a of the dual-use rotary seal ring 31A have a large adverse effect on the mechanical seal function. Thermal strain does not occur.

しかも、兼用回転密封環31Aの各密封端面31aの径方向面幅に比してこれに接触する静止密封環32の密封端面32aの径方向面幅が小さいことから、静止密封環32の密封端面32aに発生する熱が相手密封端面31aに被覆形成された高熱伝導率の密封端面コーティング層10aに移行、吸収されて、当該密封端面32aの温度が低下する。一方、兼用回転密封環31Aに形成された各密封端面コーティング層10aにおいては、静止密封環32の密封端面32aとの接触部分から内外周側に食み出した部分が流路Rを通過する流体F及び冷却流体空間6に循環供給される冷却流体Cと接触していることから、当該密封端面32aとの相対回転摺接により発生した熱は当該食み出した部分から流体F及び冷却流体Cへと放熱され、流体F及び冷却流体Cによって冷却される。かかる放熱、冷却は、両密封端面コーティング層10a,10aが外周面コーティング層10bで連結されていて、冷却流体Cとの接触面積が増大することによって、より効果的に行われる。   Moreover, since the radial end face width of the sealed end face 32a of the stationary seal ring 32 that contacts the radial end face width of each sealed end face 31a of the combined rotary seal ring 31A is small, the sealed end face of the stationary seal ring 32 The heat generated in 32a is transferred to and absorbed by the sealed end surface coating layer 10a having a high thermal conductivity formed on the mating sealed end surface 31a, and the temperature of the sealed end surface 32a decreases. On the other hand, in each sealed end face coating layer 10a formed on the dual-use rotary seal ring 31A, a portion of the stationary seal ring 32 that protrudes from the contact portion with the seal end face 32a toward the inner and outer peripheral sides passes through the flow path R. F and the cooling fluid C that is circulated and supplied to the cooling fluid space 6 are in contact with each other, so that the heat generated by the relative rotational sliding contact with the sealed end surface 32a is caused by the fluid F and the cooling fluid C from the protruding portion. The heat is dissipated and cooled by the fluid F and the cooling fluid C. Such heat radiation and cooling are performed more effectively by the fact that both sealed end surface coating layers 10a and 10a are connected by the outer peripheral surface coating layer 10b and the contact area with the cooling fluid C is increased.

このような兼用回転密封環31Aの両端面31a,31aの均一温度化並びに流体F及び冷却流体Cとの接触による放熱、冷却は、コーティング層10a,10a,10bを上記の如くダイヤモンドで構成しておくことにより、ダイヤモンドが全ての固体物質で最も熱伝導率が高く、セラミックスや超硬合金等の密封環構成材に比して熱伝導率が極めて高いものである(例えば、炭化ケイ素の熱伝導率が70〜120W/mKであるのに対し、ダイヤモンドの熱伝導率は1000〜2000W/mKである)から、より効果的に行われる。   The coating layer 10a, 10a, 10b is made of diamond as described above in order to make the both end faces 31a, 31a of the dual-use rotary seal ring 31A uniform temperature, and to dissipate and cool by contact with the fluid F and the cooling fluid C. As a result, diamond has the highest thermal conductivity among all solid materials, and has extremely high thermal conductivity compared to sealing ring components such as ceramics and cemented carbide (for example, thermal conductivity of silicon carbide). The rate is 70 to 120 W / mK, whereas the thermal conductivity of diamond is 1000 to 2000 W / mK).

したがって、兼用回転密封環31Aは、その両端面31a,31aが相手密封環32,32との相対回転摺接によって発熱するにも拘らず、両端面31a,31aにおける発熱量が異なる場合にも、各密封端面31a,31aにおける摩耗、発熱及び熱歪を可及的に防止して、長期に亘って良好なメカニカルシール機能を発揮させることができる。   Therefore, the dual-purpose rotary seal ring 31A has both end surfaces 31a and 31a that generate heat due to relative rotational sliding contact with the mating seal rings 32 and 32, but the heat generation amounts at the both end surfaces 31a and 31a are different. It is possible to prevent wear, heat generation and thermal distortion as much as possible in each of the sealed end faces 31a, 31a, and to exhibit a good mechanical seal function over a long period of time.

なお、本発明の構成は、上記した実施の形態に限定されるものではなく、本発明の基本原理を逸脱しない範囲で適宜に改良、変更することができる。   The configuration of the present invention is not limited to the above-described embodiment, and can be appropriately improved and changed without departing from the basic principle of the present invention.

例えば、兼用回転密封環31Aにおいては、密封環母材の構成材に比して熱伝導係数及び硬度が大きく且つ摩擦係数が小さな材料(ダイヤモンドが最適する)からなるコーティング層を図5のように形成しておくことができる。すなわち、図5に示すものでは、兼用回転密封環31Aの両端面31a,31a及び内周面にコーティング層10a,10a,10cを一連に形成してある。この場合にも、図3に示す如く両密封端面コーティング層10a,10aを外周面コーティング層10bで連結した場合と同様に、両密封端面31a,31aが均一温度となり、両密封端面31a,31aの熱歪が可及的に防止される。   For example, in the dual-use rotary seal ring 31A, a coating layer made of a material (diamond is optimal) having a large thermal conductivity coefficient and hardness and a small friction coefficient as compared with the constituent material of the seal ring base material is as shown in FIG. Can be formed. That is, in the one shown in FIG. 5, the coating layers 10a, 10a, and 10c are formed in series on both end surfaces 31a and 31a and the inner peripheral surface of the dual-purpose rotary seal ring 31A. Also in this case, as shown in FIG. 3, both the sealing end surfaces 31a and 31a are at a uniform temperature, as in the case where the both sealing end surface coating layers 10a and 10a are connected by the outer peripheral surface coating layer 10b. Thermal distortion is prevented as much as possible.

また、兼用回転密封環31Aの表面を図3又は図5のようにコーティング層10a,10b又は10a,10cで被覆する場合において、兼用回転密封環31A以外の各回転密封環31の密封端面31aに、図6に示す如く、当該回転密封環31の密封環母材の構成材に比して熱伝導係数及び硬度が大きく且つ摩擦係数が小さな材料(ダイヤモンドが最適する)からなるコーティング層10dを形成しておくことができる。このようにすれば、当該回転密封環31と相手密封環32との相対回転摺接による摩耗、発熱及び熱歪を可及的に防止して、多流路形ロータリジョイントを構成するすべてのメカニカルシール3によるメカニカルシール機能を良好に発揮させることができ、流路Rによる流体Fの流動を長期に亘って良好に行うことができる。なお、このように兼用回転密封環31Aを含む全ての回転密封環31の密封端面31aにコーティング層10a,10dを形成しておく場合において、全ての静止密封環32の密封端面32aに、当該静止密封環32の構成材に比して熱伝導係数及び硬度が大きく且つ摩擦係数が小さな材料(ダイヤモンドが最適する)からなるコーティング層を構成しておけば、上記効果が更に顕著に発揮される。   Further, when the surface of the dual-use rotary seal ring 31A is coated with the coating layers 10a, 10b or 10a, 10c as shown in FIG. 3 or 5, the seal end face 31a of each rotary seal ring 31 other than the dual-use rotary seal ring 31A is provided. As shown in FIG. 6, the coating layer 10d is formed of a material (diamond is optimal) having a large thermal conductivity coefficient and hardness and a small friction coefficient as compared with the constituent material of the seal ring base material of the rotary seal ring 31. Can be kept. In this way, wear, heat generation, and thermal distortion due to the relative rotational sliding contact between the rotary sealing ring 31 and the mating sealing ring 32 are prevented as much as possible, and all the mechanical elements constituting the multi-channel rotary joint are configured. The mechanical seal function by the seal 3 can be exhibited well, and the flow of the fluid F through the flow path R can be performed well over a long period of time. When the coating layers 10a and 10d are formed on the sealing end surfaces 31a of all the rotary sealing rings 31 including the dual-purpose rotary sealing ring 31A in this way, the stationary end surfaces 32a of all the stationary sealing rings 32 have the stationary If a coating layer made of a material (diamond is most suitable) having a large thermal conductivity coefficient and hardness and a small friction coefficient as compared with the constituent material of the sealing ring 32, the above-described effect can be exhibited more remarkably.

また、各静止密封環32の表面であって密封端面32aを含む冷却流体Cと接触する部分に、図7に示す如く、当該静止密封環32の密封環母材の構成材に比して熱伝導係数及び硬度が大きく且つ摩擦係数が小さな材料(ダイヤモンドが最適する)からなるコーティング層10eを形成しておくことができる。このようにしておくと、各静止密封環32が冷却流体Cにより効果的に冷却されることになり、相手密封環31,31Aとの相対回転摺接部分における摩耗、発熱がより効果的に防止される。したがって、図3又は図5に示す如く兼用回転密封環31A以外の回転密封環31にはコーティング層を形成しない場合や図6に示す如く当該回転密封環31の密封端面31aにコーティング層10dを形成する場合の何れにおいても、各メカニカルシール3における密封端面31a,32aの相対回転摺接による摩耗、発熱や熱歪が可及的に防止されて、長期に亘って良好なメカニカルシール機能を発揮させることができる。勿論、相手密封端面31aとの摩耗、発熱は、兼用回転密封環31A以外の回転密封環31にコーティング層を形成しない場合において、上記した如く静止密封環32の密封端面32aのみを当該コーティング層で被覆しておくことによっても、効果的に防止することができる。   Further, as shown in FIG. 7, the surface of each stationary seal ring 32 that is in contact with the cooling fluid C including the sealed end face 32 a is heated as compared with the constituent material of the seal ring base material of the stationary seal ring 32. The coating layer 10e made of a material having a large conduction coefficient and hardness and a small friction coefficient (optimized by diamond) can be formed. If it does in this way, each stationary sealing ring 32 will be cooled effectively by the cooling fluid C, and the wear and heat generation | occurrence | production in a relative rotation sliding contact part with the other party sealing rings 31 and 31A will be prevented more effectively. Is done. Therefore, as shown in FIG. 3 or FIG. 5, the coating layer 10d is formed on the sealing end face 31a of the rotary sealing ring 31 as shown in FIG. In any case, wear, heat generation and thermal distortion due to relative rotational sliding contact between the sealing end faces 31a and 32a of each mechanical seal 3 are prevented as much as possible, and a good mechanical seal function is exhibited over a long period of time. be able to. Of course, when the coating layer is not formed on the rotating sealing ring 31 other than the dual-purpose rotating sealing ring 31A, the wear and heat generation with the mating sealing end surface 31a is limited to the sealing end surface 32a of the stationary sealing ring 32 as described above. It can prevent effectively also by covering.

ところで、CMP装置等の半導体分野で使用される回転機器にあっては、超純水若しくは純水又は金属イオンの溶出を嫌う流体が使用され、これらの流体をロータリジョイントによりコンタミネーションを生じることなく流動させる必要があるため、ロータリジョイントの流路を流動する流体と接触するメカニカルシール構成部材をパーティクルや金属イオンが発生し難い炭化ケイ素やプラスチックで構成しておくことが提案されている。例えば、特開2003−200344公報に開示される如く、各密封環を炭化ケイ素で構成すると共に密封環以外のロータリジョイント構成部材であって流路を流動する流体と接触する部材をエンジニアリング・プラスチック等のプラスチックで構成しておくのである。しかし、このようなロータリジョイントでは、密封環を金属イオンを溶出する虞れのある超硬合金等で構成しておくことができず、密封環の構成材選択範囲が大幅に制限されることになる。また、密封環が炭化ケイ素で構成されている場合にあって、ロータリジョイントの流路を流動する流体が超純水や純水であるときには、これとの接触により当該密封環にエロージョン・コロージョンが発生する虞れがある。このような場合には、図8に示す如く、流路Rを流動する流体Fと接触する各密封環31,31A,32の表面部分に密封端面31a,32aを含めて電気絶縁性を有し且つ化学的、物理的に安定なダイヤモンドによるコーティング層10a,10d,10fを一連に形成しておくことが好ましい。なお、図8に示す例では、各回転密封環31,31Aにおける流体Fと接触する表面部分は端面(密封端面)31aのみである。このようにしておけば、密封環31,31A,32を金属イオンが溶出する虞れのある超硬合金等や超純水、純水との接触によりエロージョン・コロージョンを発生する虞れのある炭化ケイ素等で構成することができ、密封環31,31A,32の構成材選択範囲が制限されることがない。この場合、当該密封環31,31A,32以外のロータリジョイント部材であって流路Rを構成する部材における流体Fと接触する面又は部分はプラスチック(例えば、フッ素樹脂やポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルファイド(PPS)等のエンジニアリング・プラスチック)でコーティング又は構成しておく。このように構成しておけば、流路Rを流動する流体Fが超純水若しくは純水である場合又は金属イオンの溶出を嫌う流体である場合にも、上記した問題は生じない。   By the way, in a rotating device used in the semiconductor field such as a CMP apparatus, ultrapure water, pure water, or a fluid that dislikes elution of metal ions is used, and these fluids are not contaminated by a rotary joint. Since it is necessary to make it flow, it has been proposed that the mechanical seal constituent member that comes into contact with the fluid flowing in the flow path of the rotary joint is made of silicon carbide or plastic that hardly generates particles or metal ions. For example, as disclosed in Japanese Patent Application Laid-Open No. 2003-200344, each sealing ring is made of silicon carbide, and a rotary joint constituent member other than the sealing ring that is in contact with the fluid flowing in the flow path is made of engineering plastic or the like. It is made of plastic. However, in such a rotary joint, the sealing ring cannot be made of a cemented carbide or the like that may elute metal ions, and the constituent material selection range of the sealing ring is greatly limited. Become. Further, when the sealing ring is made of silicon carbide, and the fluid flowing through the flow path of the rotary joint is ultrapure water or pure water, erosion / corrosion occurs in the sealing ring due to contact with the fluid. May occur. In such a case, as shown in FIG. 8, the surface portions of the respective sealing rings 31, 31A, 32 that come into contact with the fluid F flowing in the flow path R include the sealing end surfaces 31a, 32a to have electrical insulation. In addition, it is preferable to form a series of chemically and physically stable diamond coating layers 10a, 10d, and 10f. In the example shown in FIG. 8, the surface portion in contact with the fluid F in each of the rotary sealing rings 31 and 31A is only the end surface (sealed end surface) 31a. By doing so, carbonization that may cause erosion / corrosion due to contact with cemented carbide or the like that may cause metal ions to elute from the sealing rings 31, 31A, 32, ultrapure water, or pure water. It can be made of silicon or the like, and the constituent material selection range of the sealing rings 31, 31A, 32 is not limited. In this case, the surface or part of the rotary joint member other than the sealing rings 31, 31A, 32 that contacts the fluid F in the member constituting the flow path R is made of plastic (for example, fluororesin or polyether ether ketone (PEEK)). Or an engineering plastic such as polyphenylene sulfide (PPS). With such a configuration, the above-described problem does not occur even when the fluid F flowing in the flow path R is ultrapure water or pure water, or when the fluid F dislikes elution of metal ions.

また、流路Rを流動する流体Fが超純水若しくは純水又は金属イオンの溶出を嫌う流体でない場合にも、当該流体Fが冷却流体Cより冷却機能に優れているとき(例えば、当該流体Fが冷却流体Cより低温の液体であるとき)には、当該流体Fによる冷却効果がより期待できるため、各静止密封環32における当該流体Fと接触する表面部分に、図8に示す如く、密封端面32aも含めてコーティング層10fを被覆形成しておくことが好ましい。なお、静止密封環32に接触する2種の流体が異相流体である場合(流路Rの流体F及び冷却流体Cの一方が液体であり、他方が気体である場合)においては、両流体の温度が同一又は略同一である場合を含めて冷却機能は液体が気体より優れているため、静止密封環32の表面であって液体である流体と接触する部分に、密封端面32aを含めて、図8に示すコーティング層10e又は図8に示すコーティング層10fを被覆形成しておくことが好ましい。   In addition, even when the fluid F flowing through the flow path R is not a fluid that dislikes elution of ultrapure water or pure water or metal ions, the fluid F has a cooling function superior to the cooling fluid C (for example, the fluid F When F is a liquid having a temperature lower than that of the cooling fluid C), the cooling effect by the fluid F can be further expected. Therefore, the surface portion of each stationary sealing ring 32 that contacts the fluid F as shown in FIG. It is preferable to coat the coating layer 10f including the sealing end face 32a. When the two types of fluids that contact the stationary seal ring 32 are different-phase fluids (one of the fluid F and the cooling fluid C in the flow path R is a liquid and the other is a gas), The cooling function includes the case where the temperature is the same or substantially the same, and the liquid is superior to the gas. Therefore, the sealing end face 32a is included in the surface of the stationary sealing ring 32 and in contact with the fluid which is a liquid. It is preferable to coat the coating layer 10e shown in FIG. 8 or the coating layer 10f shown in FIG.

また、本発明は、上記した如く両体1,2の回転軸線が上下方向に延びる竪型の多流路形ロータリジョイントに限定されず、当該回転軸線が水平方向に延びる横型の多流路形ロータリジョイントにも好適に適用することができる。また、本発明は、上記した如く2個の流路R,Rを有する多流路形ロータリジョイントに限定されず、3個以上の流路R…を有する多流路形ロータリジョイントにも好適に適用することができる。さらに、本発明の多流路形ロータリジョイントにあっては、兼用回転密封環31Aの数は限定されず任意である。例えば、両回転密封環31,31間に静止密封環32,32が位置するダブルシール配置の一対のメカニカルシール3,3からなるメカニカルシールユニットを3組以上軸線方向に縦列配置して、3個以上の流路R…を形成する場合において、メカニカルシール群3…の両端部に位置するメカニカルシール3,3を除いて、各メカニカルシール3の回転密封環31とこれに隣接するメカニカルシール3の回転密封環31とを兼用回転密封環31Aで兼用させておくことができる。すなわち、メカニカルシール群3…の両端部に位置するメカニカルシール3,3を除く全てのメカニカルシール3の回転密封環31を兼用回転密封環31Aとすることができる。   Further, the present invention is not limited to the vertical multi-channel rotary joint in which the rotation axes of both bodies 1 and 2 extend in the vertical direction as described above, but a horizontal multi-channel type in which the rotation axis extends in the horizontal direction. It can be suitably applied to a rotary joint. Further, the present invention is not limited to the multi-channel rotary joint having two channels R and R as described above, and is also suitable for a multi-channel rotary joint having three or more channels R. Can be applied. Furthermore, in the multi-channel rotary joint of the present invention, the number of the combined rotary seal rings 31A is not limited and is arbitrary. For example, three or more sets of mechanical seal units each including a pair of mechanical seals 3 and 3 having a double seal arrangement in which stationary seal rings 32 and 32 are positioned between the rotary seal rings 31 and 31 are arranged in tandem in the axial direction. In the case of forming the above flow paths R ..., the rotary seal ring 31 of each mechanical seal 3 and the mechanical seal 3 adjacent thereto are removed except for the mechanical seals 3, 3 located at both ends of the mechanical seal group 3 .... The rotary seal ring 31 can be shared by the dual-use rotary seal ring 31A. That is, the rotational seal ring 31 of all the mechanical seals 3 except the mechanical seals 3 and 3 located at both ends of the mechanical seal group 3.

また、本発明の多流路形ロータリジョイントにあっては、各オイルシール5をメカニカルシールで代替させることができる。例えば、図9及び図10に示す如く、流路Rを構成するメカニカルシール群3…の両側に一対の冷却流体空間用メカニカルシール5a,5aを配設して、両体1,2の対向周面間に両冷却流体空間用メカニカルシール5a,5aでシールされた空間であって冷却流体Cが循環供給される冷却流体空間6を形成する。この例では、冷却流体Cとしては、上記したと同様に、常温水等の液体が使用されている。   In the multi-channel rotary joint of the present invention, each oil seal 5 can be replaced with a mechanical seal. For example, as shown in FIG. 9 and FIG. 10, a pair of cooling fluid space mechanical seals 5a, 5a are arranged on both sides of the mechanical seal group 3 constituting the flow path R so that the opposing circumferences of both bodies 1, 2 are opposed to each other. A cooling fluid space 6 in which the cooling fluid C is circulated and supplied is formed between the two surfaces, which is a space sealed by both cooling fluid space mechanical seals 5a and 5a. In this example, as the cooling fluid C, a liquid such as room temperature water is used as described above.

各冷却用流体空間用メカニカルシール5aは、図11に示す如く、上記メカニカルシール3と同様構造をなすものであって、上記メカニカルシール群3…の端部に位置する流路形成用のメカニカルシール3の回転密封環31を回転密封端面31aと反対側の端面を密封端面31bに構成して、これを回転密封環として兼用したものに構成している。すなわち、各流体空間用メカニカルシール5aは、図9に示す如く、回転軸体2に固定した当該回転密封環31とこれに対向してケース体1に軸線方向に移動可能に保持された静止密封環52とこれを回転密封環31に押圧接触させるスプリング53とを具備して、両密封環31,52の対向端面である密封端面31b,52aの相対回転摺接作用によりその相対回転摺接部分の外周側領域である冷却流体空間6とその内周側領域であるベアリング配設空間とをシールするように構成している。この場合において、図11に示す如く、各冷却流体空間用メカニカルシール5aの回転密封環31の両端面31a,31b及び内外周面の一方に、当該回転密封環31の密封環母材の構成材に比して熱伝導係数及び硬度が大きく且つ摩擦係数が小さな材料(ダイヤモンドが最適する)からなるコーティング層10hを一連に形成しておくことが好ましい。すなわち、多流路形ロータリジョイントを構成するすべてのメカニカルシール(通路接続空間用のメカニカルシール3及び冷却流体用空間用メカニカルシール5a)の回転密封環31…を兼用回転密封環31Aとして、その両端面及び内外周面の少なくとも一方の周面に前記したコーティング層を形成しておくことが好ましい。さらに、この場合においても、当該すべてのメカニカルシールの静止密封環32,52に前述した如くコーティング層を形成しておくことが好ましい。例えば、冷却流体用空間用メカニカルシール5aの静止密封環52の表面であって冷却流体空間6に供給される冷却流体Cに接触する部分には密封端面52aを含めて、図7に示すコーティング層10eと同様に、当該静止密封環52の密封環母材の構成材に比して熱伝導係数及び硬度が大きく且つ摩擦係数が小さな材料(ダイヤモンドが最適する)からなるコーティング層を形成しておくことが好ましい。このようにオイルシール5に代えて冷却流体用メカニカルシール5aを使用した場合には、冷却流体空間6がオイルシール5を使用する場合に比してより確実にシールされ、冷却流体空間6に供給する冷却流体Cをより高圧のものとすることが可能となる。なお、図9〜図11に示す多流路形ロータリジョイントは、上記した点を除いて図1及び図2に示す多流路形ロータリジョイントと同一構造をなすものであるから、同一の構成部材については図1及び図2に使用した符号と同一符号を付することによってその詳細な説明は省略する。   As shown in FIG. 11, each cooling fluid space mechanical seal 5a has the same structure as the mechanical seal 3, and is a flow path forming mechanical seal located at the end of the mechanical seal group 3. The rotary sealing ring 31 of No. 3 is configured such that the end surface opposite to the rotary sealing end surface 31a is formed as a sealing end surface 31b, and this is also used as a rotary sealing ring. That is, as shown in FIG. 9, each of the fluid space mechanical seals 5a is a stationary seal that is held by the case body 1 so as to be movable in the axial direction opposite to the rotary seal ring 31 fixed to the rotary shaft body 2. A ring 52 and a spring 53 that presses the ring 52 against the rotary sealing ring 31 are provided, and the relative rotational sliding contact portions of the sealing end surfaces 31b and 52a, which are the opposed end surfaces of the sealing rings 31 and 52, are provided. The cooling fluid space 6, which is the outer peripheral side region, and the bearing arrangement space, which is the inner peripheral side region, are sealed. In this case, as shown in FIG. 11, the constituent material of the seal ring base material of the rotary seal ring 31 on one of the both end faces 31a and 31b and the inner and outer peripheral surfaces of the rotary seal ring 31 of each cooling fluid space mechanical seal 5a. It is preferable to form a series of coating layers 10h made of a material (diamond is most suitable) having a large thermal conductivity coefficient and hardness and a small friction coefficient compared to the above. That is, the rotary seal rings 31 of all the mechanical seals (the mechanical seal 3 for the passage connection space and the mechanical seal 5a for the cooling fluid space) constituting the multi-channel rotary joint are used as the rotary seal rings 31A. It is preferable to form the coating layer described above on at least one of the surface and the inner and outer peripheral surfaces. Further, even in this case, it is preferable to form a coating layer on the stationary sealing rings 32 and 52 of all the mechanical seals as described above. For example, the coating layer shown in FIG. 7 includes a sealing end face 52a in a portion of the surface of the stationary sealing ring 52 of the mechanical seal 5a for cooling fluid space that contacts the cooling fluid C supplied to the cooling fluid space 6. Similarly to 10e, a coating layer made of a material (diamond is optimal) having a high thermal conductivity coefficient and hardness and a small friction coefficient as compared with the constituent material of the seal ring base material of the stationary seal ring 52 is formed. It is preferable. As described above, when the cooling fluid mechanical seal 5 a is used instead of the oil seal 5, the cooling fluid space 6 is more reliably sealed and supplied to the cooling fluid space 6 than when the oil seal 5 is used. It is possible to make the cooling fluid C to be of higher pressure. The multi-channel rotary joint shown in FIGS. 9 to 11 has the same structure as the multi-channel rotary joint shown in FIGS. 1 and 2 except for the above points. The same reference numerals as those used in FIG. 1 and FIG.

1 ケース体
2 回転軸体
3 メカニカルシール
4 通路接続空間
5 オイルシール
5a 冷却流体空間用メカニカルシール
6 冷却流体空間
6a 冷却流体供給通路
6b 冷却流体排出通路
7 流体通路
8 流体通路
8a ヘッダ空間
8b 連通孔
8c 流体通路本体
9a ベアリング
9b ベアリング
10a コーティング層
10b コーティング層
10c コーティング層
10d コーティング層
10e コーティング層
10f コーティング層
10g コーティング層
10h コーティング層
11 環状壁
11a 連通孔
13a ドレン
13b ドレン
21 軸本体
21a ベアリング受部
22 スリーブ
23 ベアリング受体
24 ボルト
25 Oリング
31 回転密封環
31A 兼用回転密封環(両端面を密封端面とする回転密封環)
31a 回転密封環の密封端面
31b 回転密封環の密封端面
32 静止密封環
32a 静止密封環の密封端面
32b Oリング
32c ドライブピン
33 スプリング
51 環状シール部材
51a 補強金具
51b ガータスプリング
52 静止密封環
52a 静止密封環の密封端面
C 冷却流体
F 流体
R 流路
DESCRIPTION OF SYMBOLS 1 Case body 2 Rotating shaft body 3 Mechanical seal 4 Passage connection space 5 Oil seal 5a Mechanical seal for cooling fluid space 6 Cooling fluid space 6a Cooling fluid supply passage 6b Cooling fluid discharge passage 7 Fluid passage 8 Fluid passage 8a Header space 8b Communication hole 8c Fluid passage body 9a Bearing 9b Bearing 10a Coating layer 10b Coating layer 10c Coating layer 10d Coating layer 10e Coating layer 10f Coating layer 10g Coating layer 10h Coating layer 11 Annular wall 11a Communication hole 13a Drain 13b Drain 21 Shaft body 21a Bearing Sleeve 23 Bearing receiver 24 Bolt 25 O-ring 31 Rotating seal ring 31A Rotating seal ring for dual use (Rotating seal ring with both end faces as sealing end faces)
31a Sealing end face of the rotating sealing ring 31b Sealing end face of the rotating sealing ring 32 Stationary sealing ring 32a Sealing end face of the stationary sealing ring 32b O-ring 32c Drive pin 33 Spring 51 Ring seal member 51a Reinforcing metal fitting 51b Gutter spring 52 Stationary sealing ring 52a Stationary sealing Sealed end face of ring C Cooling fluid F Fluid R Channel

Claims (2)

筒状のケース体とこれに相対回転自在に連結した回転軸体との対向周面間に、ケース体に設けた静止密封環と回転軸体に設けた回転密封環との対向端面である密封端面の相対回転摺接作用によりシールするように構成された4個以上のメカニカルシールを両体の回転軸線方向に全密封環が縦列し且つその密封環群の両端部に回転密封環が位置する態で配設して、隣接するメカニカルシールでシールされた複数個の通路接続空間を形成すると共に、当該メカニカルシール群の両側に一対のオイルシールを配設して、両オイルシールでシールされた空間であって冷却流体が循環供給される冷却流体空間を形成し、
両体に当該通路接続空間を介して連通する流体通路を形成し、
前記密封環群の両端に位置する回転密封環を除く各回転密封環とこれに隣接する回転密封環とを両端面を密封端面とする1個の回転密封環で兼用してあ
前記通路接続空間が前記両密封環の密封端面の相対回転摺接部分の内周側領域であり、
前記冷却流体空間が当該相対回転摺接部分の外周側領域であり、
前記冷却流体が常温水であり、
前記兼用された回転密封環の表面であって両端面及び前記冷却流体に接触する外周面にのみ、当該回転密封環の構成材に比して熱伝導係数及び硬度が大きいダイヤモンドからなるコーティング層を一連に形成すると共に、前記各静止密封環の表面であって密封端面及び前記冷却流体に接触する部分にのみ、当該静止密封環の構成材に比して熱伝導係数及び硬度が大きいダイヤモンドからなるコーティング層を一連に形成してあることを特徴とする多流路形ロータリジョイント。
A seal which is an opposing end face between a stationary seal ring provided on the case body and a rotary seal ring provided on the rotary shaft body, between opposed circumferential surfaces of the cylindrical case body and the rotary shaft body connected to the rotary shaft body in a relatively rotatable manner. Four or more mechanical seals configured to be sealed by the relative rotational sliding contact of the end faces are arranged in such a manner that all the sealing rings are arranged in the direction of the rotation axis of both bodies, and the rotating sealing rings are located at both ends of the sealing ring group. and disposed in state, thereby forming a plurality of passages connecting the space which is sealed by a mechanical seal adjacent, by disposing the pair of oil seals on both sides of the mechanical seal unit is sealed in both the oil seal A cooling fluid space in which cooling fluid is circulated and supplied ,
Forming a fluid passage communicating with both bodies via the passage connecting space;
Ri Thea also used in one rotary seal ring to the rotary seal ring and the seal end face both end faces of the rotary seal ring you adjacent thereto except rotary seal ring located at both ends of the seal ring group,
The passage connection space is an inner peripheral region of a relative rotational sliding contact portion of the sealing end faces of the two sealing rings;
The cooling fluid space is an outer peripheral side region of the relative rotational sliding contact portion,
The cooling fluid is room temperature water;
A coating layer made of diamond having a large thermal conductivity coefficient and hardness as compared with the constituent material of the rotary seal ring only on the both end faces and the outer peripheral surface in contact with the cooling fluid on the surface of each rotary seal ring that is also used. Are formed on the surface of each stationary sealing ring, and only on the sealing end face and the portion in contact with the cooling fluid, the diamond has a higher thermal conductivity coefficient and hardness than the constituent material of the stationary sealing ring. A multi-channel rotary joint characterized in that a series of coating layers are formed .
筒状のケース体とこれに相対回転自在に連結した回転軸体との対向周面間に、ケース体に設けた静止密封環と回転軸体に設けた回転密封環との対向端面である密封端面の相対回転摺接作用によりシールするように構成された4個以上のメカニカルシールを両体の回転軸線方向に全密封環が縦列し且つその密封環群の両端部に回転密封環が位置する状態で配設して、隣接するメカニカルシールでシールされた複数個の通路接続空間を形成すると共に、当該メカニカルシール群の両側に当該メカニカルシールと同一構造をなす一対の冷却流体空間用メカニカルシールを配設して、両冷却流体空間用メカニカルシールでシールされた空間であって冷却流体が循環供給される冷却流体空間を形成し、
両体に当該通路接続空間を介して連通する流体通路を形成し、
前記冷却流体空間用メカニカルシールを含む各メカニカルシールの回転密封環とこれに隣接する回転密封環とを両端面を密封端面とする1個の回転密封環で兼用してあり、
前記通路接続空間が前記両密封環の密封端面の相対回転摺接部分の内周側領域であり、
前記冷却流体空間が当該相対回転摺接部分の外周側領域であり、
前記冷却流体が常温水であり、
前記兼用された各回転密封環の表面であって両端面及び前記冷却流体に接触する外周面にのみ、当該回転密封環の構成材に比して熱伝導係数及び硬度が大きいダイヤモンドからなるコーティング層を一連に形成すると共に、前記各静止密封環の表面であって密封端面及び前記冷却流体に接触する部分にのみ、当該静止密封環の構成材に比して熱伝導係数及び硬度が大きいダイヤモンドからなるコーティング層を一連に形成してあることを特徴とする多流路形ロータリジョイント。
A seal which is an opposing end face between a stationary seal ring provided on the case body and a rotary seal ring provided on the rotary shaft body, between opposed circumferential surfaces of the cylindrical case body and the rotary shaft body connected to the rotary shaft body in a relatively rotatable manner. Four or more mechanical seals configured to be sealed by the relative rotational sliding contact of the end faces are arranged in such a manner that all the sealing rings are arranged in the direction of the rotation axis of both bodies, and the rotating sealing rings are located at both ends of the sealing ring group. A plurality of passage connection spaces sealed with adjacent mechanical seals, and a pair of cooling fluid space mechanical seals having the same structure as the mechanical seals on both sides of the mechanical seal group. A cooling fluid space in which the cooling fluid is circulated and supplied, and is a space sealed by mechanical seals for both cooling fluid spaces,
Forming a fluid passage communicating with both bodies via the passage connecting space;
The rotary seal ring of each mechanical seal including the mechanical seal for the cooling fluid space and the rotary seal ring adjacent thereto are combined with one rotary seal ring having both end faces as sealed end faces,
The passage connection space is an inner peripheral region of a relative rotational sliding contact portion of the sealing end faces of the two sealing rings;
The cooling fluid space is an outer peripheral side region of the relative rotational sliding contact portion,
The cooling fluid is room temperature water;
A coating layer made of diamond having a large thermal conductivity coefficient and hardness as compared with the constituent material of the rotary seal ring only on the both end faces and the outer peripheral surface in contact with the cooling fluid on the surface of each rotary seal ring that is also used. Are formed on the surface of each stationary sealing ring, and only on the sealing end face and the portion in contact with the cooling fluid, the diamond has a higher thermal conductivity coefficient and hardness than the constituent material of the stationary sealing ring. multi passage shaped rotary joint you characterized in that the coating layer is formed into a series made.
JP2015045523A 2015-03-09 2015-03-09 Multi-channel rotary joint Active JP6490993B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015045523A JP6490993B2 (en) 2015-03-09 2015-03-09 Multi-channel rotary joint
US15/307,655 US20170051857A1 (en) 2015-03-09 2016-02-19 Multi-channel rotary joint
KR1020167010373A KR102394592B1 (en) 2015-03-09 2016-02-19 Multiple flow passage type rotary joint
PCT/JP2016/054784 WO2016143480A1 (en) 2015-03-09 2016-02-19 Multiple flow path rotary joint
TW105105422A TWI701402B (en) 2015-03-09 2016-02-24 Multi-flow type rotary joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045523A JP6490993B2 (en) 2015-03-09 2015-03-09 Multi-channel rotary joint

Publications (2)

Publication Number Publication Date
JP2016166619A JP2016166619A (en) 2016-09-15
JP6490993B2 true JP6490993B2 (en) 2019-03-27

Family

ID=56897528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045523A Active JP6490993B2 (en) 2015-03-09 2015-03-09 Multi-channel rotary joint

Country Status (1)

Country Link
JP (1) JP6490993B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003009B2 (en) * 2018-07-10 2022-01-20 日本ピラー工業株式会社 Rotary joint

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3442723B2 (en) * 2000-06-19 2003-09-02 日本ピラー工業株式会社 Multi-channel rotary joint
JP3580774B2 (en) * 2000-12-05 2004-10-27 日本ピラー工業株式会社 Multi-channel rotary joint
JP4009090B2 (en) * 2001-11-08 2007-11-14 株式会社神戸製鋼所 Method for producing diamond-coated non-diamond carbon member
JP2004225725A (en) * 2003-01-20 2004-08-12 Eagle Ind Co Ltd Slide part
JP2006275286A (en) * 2005-03-02 2006-10-12 Ebara Corp Diamond coated bearing or seal structure, and fluid machine with the same
DE202006009762U1 (en) * 2006-06-20 2006-08-24 Burgmann Industries Gmbh & Co. Kg Slip ring seal for e.g. pump shaft has diamond sealed surface interface
JP2009030665A (en) * 2007-07-25 2009-02-12 Nippon Pillar Packing Co Ltd Rotary joint
US9388905B2 (en) * 2009-09-24 2016-07-12 Eagle Industry Co., Ltd. Mechanical seal
JP2014185691A (en) * 2013-03-22 2014-10-02 Jtekt Corp Mechanical seal
DE102013005926B4 (en) * 2013-04-04 2015-12-03 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal assembly with different hard sliding surfaces

Also Published As

Publication number Publication date
JP2016166619A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
KR102394592B1 (en) Multiple flow passage type rotary joint
KR102181395B1 (en) Multi-port rotary joint
JP4250585B2 (en) Mechanical seal device
JP3580774B2 (en) Multi-channel rotary joint
JP2009030665A (en) Rotary joint
US20170370475A1 (en) End surface-contact mechanical seal
JP5622258B2 (en) Multi-channel rotary joint
JP6490993B2 (en) Multi-channel rotary joint
JP6490994B2 (en) Multi-channel rotary joint
JP6490992B2 (en) Rotary joint
JP6426401B2 (en) Mechanical seal for slurry fluid and rotary joint for slurry fluid using the same
JP2014114848A (en) Rotary joint
JP6593863B2 (en) Rotary joint
JP4555878B2 (en) Mechanical seal device
JP6878103B2 (en) mechanical seal
JP6452503B2 (en) Dry contact seal
JP7003009B2 (en) Rotary joint
JP3105195B2 (en) Rotary joint
JP6470596B2 (en) Mechanical seal for slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R150 Certificate of patent or registration of utility model

Ref document number: 6490993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150