JP7002963B2 - Vehicle lighting - Google Patents

Vehicle lighting Download PDF

Info

Publication number
JP7002963B2
JP7002963B2 JP2018029822A JP2018029822A JP7002963B2 JP 7002963 B2 JP7002963 B2 JP 7002963B2 JP 2018029822 A JP2018029822 A JP 2018029822A JP 2018029822 A JP2018029822 A JP 2018029822A JP 7002963 B2 JP7002963 B2 JP 7002963B2
Authority
JP
Japan
Prior art keywords
luminous intensity
vehicle
distribution pattern
light distribution
vertical line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018029822A
Other languages
Japanese (ja)
Other versions
JP2019142403A (en
Inventor
直樹 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2018029822A priority Critical patent/JP7002963B2/en
Publication of JP2019142403A publication Critical patent/JP2019142403A/en
Application granted granted Critical
Publication of JP7002963B2 publication Critical patent/JP7002963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Description

本発明は、車両用灯具に関し、特に、カーブ走行から直線走行に復帰する過程で自車前方(正面方向)の遠方視認性が低下するのを抑制することができる車両用灯具に関する。 The present invention relates to a vehicle lighting device, and more particularly to a vehicle lighting device capable of suppressing a decrease in distant visibility in front of the own vehicle (front direction) in the process of returning from a curve running to a straight running.

従来、車両用灯具の分野においては、カーブ走行時の遠方視認性を向上させる観点から、カーブ走行時、高光度帯を自車の前方(正面方向)から自車の進行方向(運転者の視線方向)に移動させるように構成された車両用灯具が知られている(例えば、特許文献1参照)。 Conventionally, in the field of vehicle lighting equipment, from the viewpoint of improving distant visibility when driving on a curve, when driving on a curve, the high luminous intensity zone is changed from the front (front direction) of the vehicle to the traveling direction of the vehicle (driver's line of sight). Vehicle lighting fixtures configured to move in a direction) are known (see, for example, Patent Document 1).

特開2015-039993号公報JP-A-2015-03993

しかしながら、上記車両用灯具においては、カーブ走行時、高光度帯が自車の前方から自車の進行方向に移動することで、自車の進行方向を相対的に明るくすることができるものの、自車の前方が相対的に暗くなってしまうため、カーブ走行から直線走行に復帰する過程で、運転者が視線を自車の前方に向けた場合、自車の前方が相対的に暗いままとなり、自車の前方(正面方向)の遠方視認性が低下するという課題がある。 However, in the above-mentioned vehicle lighting equipment, although the high-intensity zone moves from the front of the own vehicle to the traveling direction of the own vehicle when traveling on a curve, the traveling direction of the own vehicle can be relatively brightened. Since the front of the vehicle becomes relatively dark, if the driver turns his or her line of sight to the front of the vehicle in the process of returning from curve driving to straight driving, the front of the vehicle remains relatively dark. There is a problem that the distant visibility in front of the own vehicle (front direction) is reduced.

本発明は、上記事情に鑑みてなされたものであり、カーブ走行から直線走行に復帰する過程で、運転者が視線を自車の前方に向けた場合、自車の前方が相対的に暗いままとなり、自車の前方(正面方向)の遠方視認性が低下するのを抑制することができる車両用灯具を提供することを目的とする。 The present invention has been made in view of the above circumstances, and when the driver turns his / her line of sight to the front of the own vehicle in the process of returning from the curve running to the straight running, the front of the own vehicle remains relatively dark. It is an object of the present invention to provide a vehicle lighting device capable of suppressing a decrease in distant visibility in front of the own vehicle (front direction).

上記目的を達成するために、本発明の一つの側面は、自車が走行中の道路がカーブか否かを判定する走行状態判定手段と、所定領域に各角度方向の光度を可変可能な配光パターンを形成可能な灯具ユニットと、前記灯具ユニットを制御する灯具ユニット制御手段と、を備え、前記灯具ユニット制御手段は、前記走行状態判定手段によって自車が走行中の道路がカーブと判定されない場合、前記所定領域に鉛直線上の光度が最も高く、鉛直線から左右両側に向かうに従って光度が低下する光度分布を有する第1配光パターンが形成されるように、前記灯具ユニットを制御し、前記走行状態判定手段によって自車が走行中の道路がカーブと判定された場合、前記所定領域に鉛直線上の光度が最も高く、かつ、自車のカーブでの進行方向を表す狙い角方向の光度が前記第1配光パターン中の前記狙い角方向の光度より高い光度分布を有する第2配光パターンが形成されるように、前記灯具ユニットを制御することを特徴とする。 In order to achieve the above object, one aspect of the present invention is a traveling state determining means for determining whether or not the road on which the own vehicle is traveling is a curve, and an arrangement in which the luminous intensity in each angular direction can be changed in a predetermined region. A lighting unit capable of forming a light pattern and a lighting unit controlling means for controlling the lighting unit are provided, and the lighting unit controlling means does not determine that the road on which the own vehicle is traveling is a curve by the traveling state determining means. In this case, the lamp unit is controlled so that a first light distribution pattern having a luminous intensity distribution having the highest luminous intensity on the vertical line and decreasing the luminous intensity toward the left and right sides from the vertical line is formed in the predetermined region. When the road on which the own vehicle is traveling is determined to be a curve by the traveling state determination means, the luminous intensity on the vertical line is the highest in the predetermined area, and the luminous intensity in the target angle direction indicating the traveling direction on the curve of the own vehicle is the highest. It is characterized in that the lamp unit is controlled so that a second light distribution pattern having a light intensity distribution higher than the light intensity in the target angle direction in the first light distribution pattern is formed.

この側面によれば、カーブ走行から直線走行に復帰する過程で、運転者が視線を自車の前方に向けた場合、自車の前方が相対的に暗いままとなり、自車の前方(正面方向)の遠方視認性が低下するのを抑制することができる。 According to this aspect, when the driver turns his / her line of sight to the front of the vehicle in the process of returning from the curve driving to the straight driving, the front of the vehicle remains relatively dark and the front of the vehicle (front direction). ) Can be suppressed from deteriorating the distant visibility.

これは、自車が走行中の道路がカーブと判定された場合、高光度帯が自車の前方(正面方向)から自車の進行方向(運転者の視線方向)に移動するのではなく、所定領域に第2配光パターン、すなわち、鉛直線上の光度(つまり、自車の前方(正面方向)の光度)が最も高く、かつ、狙い角方向の光度が第1配光パターン中の狙い角方向の光度より高い光度分布を有する第2配光パターンが形成されることによるものである。 This is because when the road on which the vehicle is traveling is determined to be a curve, the high-intensity zone does not move from the front (front direction) of the vehicle to the traveling direction of the vehicle (direction of the driver's line of sight). The second light distribution pattern in a predetermined area, that is, the luminous intensity on the vertical line (that is, the luminous intensity in the front (front direction) of the own vehicle) is the highest, and the luminous intensity in the target angle direction is the target angle in the first light distribution pattern. This is due to the formation of a second light distribution pattern having a luminous intensity distribution higher than the luminous intensity in the direction.

また、上記発明において、好ましい態様は、前記第2配光パターンは、鉛直線上の光度が前記第1配光パターン中の鉛直線上の光度より低いことを特徴とする。 Further, in the above invention, a preferred embodiment is characterized in that the luminous intensity on the vertical line is lower than the luminous intensity on the vertical line in the first light distribution pattern.

また、上記発明において、好ましい態様は、前記第2配光パターンは、鉛直線上の光度と前記狙い角方向の光度との差、前記狙い角方向の光度と最外側の光度との差、及び、鉛直線上の光度と最外側の光度との差が、それぞれ、対数値10%以上であることを特徴とする。 Further, in the above invention, in a preferred embodiment, in the second light distribution pattern, the difference between the luminous intensity on the vertical line and the luminous intensity in the target angle direction, the difference between the luminous intensity in the target angle direction and the outermost luminous intensity, and The difference between the luminous intensity on the vertical line and the outermost luminous intensity is 10% or more, respectively.

また、上記発明において、好ましい態様は、前記第2配光パターンは、前記狙い角方向の光度と最外側の光度との差が、鉛直線上の光度と前記狙い角方向の光度との差より大きいことを特徴とする。 Further, in the above invention, in a preferred embodiment, in the second light distribution pattern, the difference between the luminous intensity in the target angle direction and the outermost luminous intensity is larger than the difference between the luminous intensity on the vertical line and the luminous intensity in the target angle direction. It is characterized by that.

また、上記発明において、好ましい態様は、前記所定領域は、ハイビーム領域であることを特徴とする。 Further, in the above invention, a preferred embodiment is characterized in that the predetermined region is a high beam region.

(a)自車V0が直線走行時に車両用灯具10によって形成される配光パターンP1の一例、(b)自車V0が左カーブ走行時に車両用灯具10によって形成される配光パターンP2の一例である。(A) An example of the light distribution pattern P1 formed by the vehicle lighting tool 10 when the own vehicle V0 travels in a straight line, (b) An example of the light distribution pattern P2 formed by the vehicle lighting equipment 10 when the own vehicle V0 travels on a left curve. Is. 路面に形成される配光パターンP1、P2の一例である。This is an example of the light distribution patterns P1 and P2 formed on the road surface. (a)左カーブ走行時に左灯具ユニット40Lによってハイビーム領域に形成される配光パターンP2Lの一例、(b)左カーブ走行時に右灯具ユニット40Rによってハイビーム領域に形成される配光パターンP2Rの一例である。(A) An example of a light distribution pattern P2L formed in a high beam region by the left lamp unit 40L when traveling on a left curve, and (b) an example of a light distribution pattern P2R formed in a high beam region by a right lamp unit 40R when traveling on a left curve. be. 自車V0が右カーブ走行時に車両用灯具10によってハイビーム領域に形成される配光パターンP3の一例である。This is an example of the light distribution pattern P3 formed in the high beam region by the vehicle lamp 10 when the own vehicle V0 travels on a right curve. 車両用灯具10の概略構成図である。It is a schematic block diagram of a vehicle lamp 10. 車両用灯具10の動作例を説明するためのフローチャートである。It is a flowchart for demonstrating the operation example of the vehicle lamp 10.

以下、本発明の一実施形態である車両用灯具10について添付図面を参照しながら説明する。各図において対応する構成要素には同一の符号が付され、重複する説明は省略される。 Hereinafter, the vehicle lamp 10 according to the embodiment of the present invention will be described with reference to the accompanying drawings. The corresponding components in each figure are designated by the same reference numerals, and duplicate explanations are omitted.

本実施形態の車両用灯具10は、ハイビーム領域に各角度方向の光度を可変可能な配光パターンを形成可能な車両用前照灯であり、例えば、自動車等の車両の前端部の左右両側にそれぞれ搭載される左灯具ユニット40L及び右灯具ユニット40R(例えば、図2参照)を備える。ハイビーム領域が本発明の所定領域に相当する。車両用灯具10は、図示しないが、アウターレンズとハウジングとによって構成される灯室内に配置され、ハウジング等に取り付けられる。以下、車両用灯具10が搭載された車両のことを自車V0という。 The vehicle lighting fixture 10 of the present embodiment is a vehicle headlight capable of forming a light distribution pattern capable of varying the light intensity in each angular direction in a high beam region, and is, for example, on both left and right sides of a front end portion of a vehicle such as an automobile. Each of them includes a left lamp unit 40L and a right lamp unit 40R (see, for example, FIG. 2) to be mounted. The high beam region corresponds to a predetermined region of the present invention. Although not shown, the vehicle lighting fixture 10 is arranged in a lighting chamber composed of an outer lens and a housing, and is attached to the housing or the like. Hereinafter, the vehicle equipped with the vehicle lamp 10 is referred to as the own vehicle V0.

まず、車両用灯具10によって形成される配光パターンについて説明する。 First, the light distribution pattern formed by the vehicle lamp 10 will be described.

図1(a)、図2は、自車V0が直線走行時に車両用灯具10によって形成される配光パターンP1の一例である。図1(a)には、自車V0前面に正対した仮想鉛直スクリーン(自車V0前面から約25m前方に配置されている)上のハイビーム領域に形成される配光パターンP1(水平断面での光度分布)の一例が示されている。図2には、路面に形成される配光パターンP1の一例が示されている。図2中の符号AXは、自車V0の前後方向に延びる基準軸を表す。 1 (a) and 2 are an example of a light distribution pattern P1 formed by a vehicle lamp 10 when the own vehicle V0 travels in a straight line. FIG. 1A shows a light distribution pattern P1 (horizontal cross section) formed in a high beam region on a virtual vertical screen (located about 25 m ahead of the front of the vehicle V0) facing the front of the vehicle V0. An example of the luminous intensity distribution) is shown. FIG. 2 shows an example of the light distribution pattern P1 formed on the road surface. Reference numeral AX in FIG. 2 represents a reference axis extending in the front-rear direction of the own vehicle V0.

図1(a)に示すように、配光パターンP1は、鉛直線V上の光度A1が最も高く、鉛直線Vから左右両側に向かうに従って光度が低下する光度分布を有する。配光パターンP1は、例えば、左右対称である。配光パターンP1が本発明の第1配光パターンに相当する。 As shown in FIG. 1A, the light distribution pattern P1 has a luminous intensity distribution in which the luminous intensity A1 on the vertical line V is the highest and the luminous intensity decreases from the vertical line V toward both the left and right sides. The light distribution pattern P1 is, for example, symmetrical. The light distribution pattern P1 corresponds to the first light distribution pattern of the present invention.

配光パターンP1は、左灯具ユニット40Lからの光によって形成される配光パターンと右灯具ユニット40Rからの光によって形成される配光パターン(いずれも図示せず)とが合成されることで形成される。 The light distribution pattern P1 is formed by synthesizing a light distribution pattern formed by light from the left lamp unit 40L and a light distribution pattern formed by light from the right lamp unit 40R (neither is shown). Will be done.

図1(b)、図2は、自車V0が左カーブ走行時に車両用灯具10によって形成される配光パターンP2の一例である。図1(b)には、仮想鉛直スクリーン上のハイビーム領域に形成される配光パターンP2(水平断面での光度分布)の一例が示されている。図2には、路面に形成される配光パターンP2の一例が示されている。図2中の符号θは、左カーブでの自車V0の進行方向(運転者の視線方向)を表す角度(以下、狙い角θともいう)の一例を表す。 1 (b) and 2 are an example of a light distribution pattern P2 formed by the vehicle lamp 10 when the own vehicle V0 travels on a left curve. FIG. 1B shows an example of a light distribution pattern P2 (luminosity distribution in a horizontal cross section) formed in a high beam region on a virtual vertical screen. FIG. 2 shows an example of the light distribution pattern P2 formed on the road surface. The reference numeral θ in FIG. 2 represents an example of an angle (hereinafter, also referred to as a target angle θ) representing the traveling direction (driver's line of sight direction) of the own vehicle V0 on the left curve.

図1(b)に示すように、配光パターンP2は、鉛直線V上の光度B1が最も高く、かつ、狙い角θ方向の光度B2が配光パターンP1中の狙い角θ方向の光度A2(図1(a)参照)より高い光度分布を有する。つまり、直線走行時とカーブ走行時のいずれにおいても、鉛直線V上の光度が最も高い。配光パターンP2が本発明の第2配光パターンに相当する。 As shown in FIG. 1B, in the light distribution pattern P2, the luminous intensity B1 on the vertical line V is the highest, and the luminous intensity B2 in the target angle θ direction is the luminous intensity A2 in the light distribution pattern P1 in the target angle θ direction. It has a higher luminous intensity distribution than (see FIG. 1 (a)). That is, the luminosity on the vertical line V is the highest in both the straight line running and the curved running. The light distribution pattern P2 corresponds to the second light distribution pattern of the present invention.

このように、カーブ走行時、狙い角θ方向の光度B2を配光パターンP1中の狙い角θ方向の光度A2(図1(a)参照)より高くする(光度B2>光度A2)ことで、自車V0の進行方向を相対的に明るくすることができる。これとともに、鉛直線V上の光度B1を最も高くすることで、自車V0の前方を相対的に明るくすることができる。 In this way, when traveling on a curve, the luminous intensity B2 in the target angle θ direction is made higher than the luminous intensity A2 in the target angle θ direction in the light distribution pattern P1 (see FIG. 1A) (luminous intensity B2> luminous intensity A2). The traveling direction of the own vehicle V0 can be made relatively bright. At the same time, by making the luminosity B1 on the vertical line V the highest, the front of the own vehicle V0 can be made relatively bright.

配光パターンP2は、例えば、左右非対称である。例えば、配光パターンP2は、曲がる方向と反対方向(例えば、左カーブ走行時の場合、鉛直線Vに対して右方向)の光度がどの角度においても直線走行時よりやや低い。また、配光パターンP2は、中心(0度)から曲がる方向(例えば、左カーブ走行時の場合、鉛直線Vに対して左方向)の狙い角θまでの光度が相対的に緩やかに減少するが、中心から曲がる方向と反対側(例えば、左カーブ走行時の場合、鉛直線Vに対して右方向)での狙い角θと対称な位置(-θ)までの光度が相対的に急激に減少する。また、配光パターンP2は、曲がる方向(例えば、左カーブ走行時の場合、鉛直線Vに対して左方向)では中心から狙い角θまでの光度の減少に比べ、狙い角から外側に向かっての光度の減少は急激である。 The light distribution pattern P2 is, for example, left-right asymmetric. For example, in the light distribution pattern P2, the luminous intensity in the direction opposite to the bending direction (for example, in the case of traveling on a left curve, to the right with respect to the vertical line V) is slightly lower than that in straight line traveling. Further, in the light distribution pattern P2, the luminous intensity up to the aim angle θ in the direction of bending from the center (0 degree) (for example, in the case of traveling on a left curve, to the left with respect to the vertical line V) decreases relatively gently. However, the luminous intensity to a position (-θ) symmetric with the aim angle θ on the opposite side of the turning direction from the center (for example, to the right with respect to the vertical line V when traveling on a left curve) is relatively sharp. Decrease. Further, in the light distribution pattern P2, in the bending direction (for example, in the case of traveling on a left curve, the direction to the left with respect to the vertical line V), the luminous intensity decreases from the center to the aiming angle θ, and the light distribution pattern P2 is directed toward the outside from the aiming angle. The decrease in luminosity is rapid.

これにより、カーブ走行から直線走行に復帰する過程で、運転者が視線を自車V0の前方に向けた場合、自車V0の前方が相対的に暗いままとなり、自車V0の前方(正面方向)の遠方視認性が低下するのを抑制することができる。 As a result, when the driver turns his / her line of sight to the front of the own vehicle V0 in the process of returning from the curved driving to the straight driving, the front of the own vehicle V0 remains relatively dark and the front of the own vehicle V0 (front direction). ) Can be suppressed from deteriorating the distant visibility.

また、配光パターンP2は、鉛直線V上の光度B1が配光パターンP1中の鉛直線V上の光度A1(図1(a)参照)より低い(光度B1<光度A1)。 Further, in the light distribution pattern P2, the luminous intensity B1 on the vertical line V is lower than the luminous intensity A1 (see FIG. 1A) on the vertical line V in the light distribution pattern P1 (luminous intensity B1 <luminous intensity A1).

これにより、カーブ走行時、鉛直線V上の光度B1を配光パターンP1中の鉛直線V上の光度A1(図1(a)参照)から変化させない場合(光度B1=光度A1の場合)と比べ、狙い角θ方向を運転者に明るく見せることができる。 As a result, when traveling on a curve, the luminosity B1 on the vertical line V is not changed from the luminosity A1 on the vertical line V in the light distribution pattern P1 (see FIG. 1A) (when the luminosity B1 = luminosity A1). In comparison, the target angle θ direction can be made to appear brighter to the driver.

また、配光パターンP2は、鉛直線V上の光度B1と狙い角θ方向の光度B2との差W1、狙い角θ方向の光度B2と最外側(図1(b)中最左側)の光度B3との差W2、及び、鉛直線V上の光度B1と最外側(図1(b)中最右側)の光度B3との差W3が、それぞれ、対数値10%以上である(例えば、logW2/logB2≧0.1として表す)。尚、図1において最右側と最左側は中心から±20度であるが、図1(b)中最左側と最右側は、光度B3=0でほぼ等しい。 Further, the light distribution pattern P2 has a difference W1 between the luminous intensity B1 on the vertical straight line V and the luminous intensity B2 in the target angle θ direction, and the luminous intensity B2 in the target angle θ direction and the outermost (leftmost side in FIG. 1 (b)). The difference W2 from B3 and the difference W3 between the luminosity B1 on the vertical line V and the luminosity B3 on the outermost side (the rightmost side in FIG. 1B) are 10% or more of logarithmic values (for example, logW2). (Represented as / logB2 ≧ 0.1). In FIG. 1, the rightmost and the leftmost are ± 20 degrees from the center, but the leftmost and the rightmost in FIG. 1 (b) have a luminous intensity B3 = 0 and are almost equal.

人間は対数値10%以上の場合に明るさの違いを認識することができるため、上記のように各差W1~W3をそれぞれ対数値10%以上とすることで、カーブ走行時、狙い角θ方向及び自車V0の前方(正面方向)を運転者に明るく見せることができる。 Since humans can recognize the difference in brightness when the logarithmic value is 10% or more, by setting each difference W1 to W3 to the logarithmic value of 10% or more as described above, the aim angle θ when driving a curve. The direction and the front (front direction) of the own vehicle V0 can be made to appear bright to the driver.

また、配光パターンP2は、狙い角θ方向の光度B2と最外側(図1(b)中最左側)の光度B3との差W2が、鉛直線V上の光度B1と狙い角θ方向の光度B2との差W1より大きい(W2>W1)。これにより、カーブ走行時、狙い角θ方向を運転者に明るく見せることができる。 Further, in the light distribution pattern P2, the difference W2 between the luminous intensity B2 in the target angle θ direction and the outermost (leftmost in FIG. 1B) luminous intensity B3 is the luminous intensity B1 on the vertical line V and the target angle θ direction. The difference from the luminous intensity B2 is larger than W1 (W2> W1). As a result, the driver can be made to see the aim angle θ direction brightly when traveling on a curve.

配光パターンP2は、左灯具ユニット40Lからの光によって形成される配光パターンP2L(図3(a)参照)と右灯具ユニット40Rからの光によって形成される配光パターンP2R(図3(b)参照)とが合成されることで形成される。 The light distribution pattern P2 is a light distribution pattern P2L formed by light from the left lamp unit 40L (see FIG. 3A) and a light distribution pattern P2R formed by light from the right lamp unit 40R (FIG. 3 (b)). ) And) are combined to form.

図3(a)は、左カーブ走行時に左灯具ユニット40Lによってハイビーム領域に形成される配光パターンP2L(水平断面での光度分布)の一例である。 FIG. 3A is an example of a light distribution pattern P2L (luminous intensity distribution in a horizontal cross section) formed in a high beam region by the left lamp unit 40L when traveling on a left curve.

図3(a)に示すように、配光パターンP2Lは、鉛直線V上の光度BL1が最も高く、鉛直線V上の光度BL1が配光パターンP1中の鉛直線V上の光度A1(図1(a)参照)より低く、かつ、狙い角θ方向の光度BL2が配光パターンP1中の狙い角θ方向の光度A2(図1(a)参照)より高い光度分布を有する。 As shown in FIG. 3A, in the light distribution pattern P2L, the luminous intensity BL1 on the vertical line V is the highest, and the luminous intensity BL1 on the vertical line V is the luminous intensity A1 on the vertical line V in the light distribution pattern P1 (FIG. 3). It has a luminous intensity lower than 1 (a)) and a luminous intensity BL2 in the target angle θ direction has a higher luminous intensity distribution than the luminous intensity A2 in the target angle θ direction in the light distribution pattern P1 (see FIG. 1 (a)).

また、配光パターンP2Lは、鉛直線V上の光度BL1と狙い角θ方向の光度BL2との差W4、狙い角θ方向の光度BL2と最外側(図3(a)中最左側)の光度BL4との差W5、及び、鉛直線V上の光度BL1と最外側(図3(a)中最右側)の光度BL3との差W6が、それぞれ、対数値10%以上である(例えば、logW6/logBL1≧0.1として表す)。また、配光パターンP2Lは、狙い角θ方向の光度BL2と最外側(図3(a)中最左側)の光度BL4との差W5が、鉛直線V上の光度BL1と狙い角θ方向の光度BL2との差W4より大きい。尚、図3において最右側と最左側は中心からの±20度で表している。また、光度BL4=0と近似してある。 Further, the light distribution pattern P2L has a difference W4 between the luminous intensity BL1 on the vertical line V and the luminous intensity BL2 in the target angle θ direction, and the luminous intensity BL2 in the target angle θ direction and the outermost (leftmost side in FIG. 3A). The difference W5 from BL4 and the difference W6 between the luminosity BL1 on the vertical line V and the luminosity BL3 on the outermost side (the rightmost side in FIG. 3A) are each a logarithmic value of 10% or more (for example, logW6). (Represented as / logBL1 ≧ 0.1). Further, in the light distribution pattern P2L, the difference W5 between the luminous intensity BL2 in the target angle θ direction and the outermost (leftmost in FIG. 3A) luminous intensity BL4 is the luminous intensity BL1 on the vertical line V and the target angle θ direction. The difference from the luminous intensity BL2 is larger than W4. In FIG. 3, the rightmost and leftmost sides are represented by ± 20 degrees from the center. Further, the luminous intensity is close to BL4 = 0.

図3(b)は、左カーブ走行時に右灯具ユニット40Rによってハイビーム領域に形成される配光パターンP2R(水平断面での光度分布)の一例である。 FIG. 3B is an example of a light distribution pattern P2R (luminous intensity distribution in a horizontal cross section) formed in a high beam region by the right lamp unit 40R when traveling on a left curve.

図3(b)に示すように、配光パターンP2Rは、鉛直線V上の光度BR1が最も高く、鉛直線Vから左右両側に向かうに従って光度が低下する光度分布を有する。 As shown in FIG. 3B, the light distribution pattern P2R has a luminous intensity distribution in which the luminous intensity BR1 on the vertical line V is the highest and the luminous intensity decreases from the vertical line V toward both the left and right sides.

また、配光パターンP2Rは、鉛直線V上の光度BR1と最外側(図3(b)中最左側)の光度BR2との差W7が対数値10%以上である。 Further, in the light distribution pattern P2R, the difference W7 between the luminosity BR1 on the vertical line V and the luminosity BR2 on the outermost side (the leftmost side in FIG. 3B) is a logarithmic value of 10% or more.

図4は、自車V0が右カーブ走行時に車両用灯具10によってハイビーム領域に形成される配光パターンP3(水平断面での光度分布)の一例である。 FIG. 4 is an example of a light distribution pattern P3 (luminous intensity distribution in a horizontal cross section) formed in a high beam region by a vehicle lighting tool 10 when the own vehicle V0 travels on a right curve.

配光パターンP3は、左灯具ユニット40Lからの光によって形成される配光パターン(図3(a)に示す配光パターンP2Lの左右を反転させたもの)と右灯具ユニット40Rからの光によって形成される配光パターン(図3(b)に示す配光パターンP2Rの左右を反転させたもの)とが合成されることで形成される。配光パターンP3が本発明の第2配光パターンに相当する。 The light distribution pattern P3 is formed by a light distribution pattern formed by light from the left lighting unit 40L (the left and right sides of the light distribution pattern P2L shown in FIG. 3A are inverted) and light from the right lighting unit 40R. It is formed by synthesizing the light distribution pattern (the left and right sides of the light distribution pattern P2R shown in FIG. 3 (b) are inverted). The light distribution pattern P3 corresponds to the second light distribution pattern of the present invention.

配光パターンP3は、左右が反転している点以外、配光パターンP2と同様であるため、これ以上の説明は省略する。 Since the light distribution pattern P3 is the same as the light distribution pattern P2 except that the left and right sides are inverted, further description thereof will be omitted.

次に、上記配光パターンP1~P3を形成する車両用灯具10の構成例について説明する。 Next, a configuration example of the vehicle lamp 10 forming the light distribution patterns P1 to P3 will be described.

図5は、車両用灯具10の概略構成図である。 FIG. 5 is a schematic configuration diagram of the vehicle lamp 10.

図5に示すように、車両用灯具10は、蛇角センサ20、制御部30、右灯具ユニット40R、左灯具ユニット40L等を備えている。以下、右灯具ユニット40Rと左灯具ユニット40Lを特に区別しない場合、灯具ユニット40と記載する。 As shown in FIG. 5, the vehicle lamp 10 includes a serpentine angle sensor 20, a control unit 30, a right lamp unit 40R, a left lamp unit 40L, and the like. Hereinafter, when the right lamp unit 40R and the left lamp unit 40L are not particularly distinguished, they are referred to as a lamp unit 40.

蛇角センサ20及び灯具ユニット40は、車載ネットワークNWを介して制御部30に接続されている。制御部30は、蛇角センサ20及び灯具ユニット40との間で車載ネットワークNWを介して所定プロトコルに従った通信を行う。所定プロトコルは、例えば、CAN(Controller Area Network)である。 The serpentine angle sensor 20 and the lamp unit 40 are connected to the control unit 30 via the vehicle-mounted network NW. The control unit 30 communicates with the serpentine angle sensor 20 and the lamp unit 40 via the vehicle-mounted network NW according to a predetermined protocol. The predetermined protocol is, for example, CAN (Controller Area Network).

制御部30は、例えば、図示しないが、CPU、RAM、ROMを備えるECUである。制御部30は、CPUがROMからRAMに読み込まれた所定プログラムを実行することで、図5に示すように、走行状態判定部31、狙い角算出部32、光照射範囲設定部33、灯具ユニット制御部34として機能する。 The control unit 30 is, for example, an ECU (not shown) including a CPU, RAM, and ROM. As shown in FIG. 5, the control unit 30 executes a predetermined program read from the ROM into the RAM by the CPU to execute a running state determination unit 31, a target angle calculation unit 32, a light irradiation range setting unit 33, and a lamp unit. It functions as a control unit 34.

走行状態判定部31は、自車V0が走行中の道路がカーブ(曲路)か否かを判定する。具体的には、走行状態判定部31は、蛇角センサ20によって検出された蛇角等に基づき、自車V0が走行中の道路がカーブか否かを判定する。例えば、走行状態判定部31は、蛇角センサ20によって検出された蛇角が予め定められた閾値を超えた場合、自車V0が走行中の道路がカーブと判定する。 The traveling state determination unit 31 determines whether or not the road on which the own vehicle V0 is traveling is a curve (curved road). Specifically, the traveling state determination unit 31 determines whether or not the road on which the own vehicle V0 is traveling is a curve, based on the serpentine angle or the like detected by the serpentine angle sensor 20. For example, when the serpentine angle detected by the serpentine angle sensor 20 exceeds a predetermined threshold value, the traveling state determination unit 31 determines that the road on which the own vehicle V0 is traveling is a curve.

狙い角算出部32は、カーブでの自車V0の進行方向(運転者の視線方向)を表す狙い角θを算出する。例えば、狙い角算出部32は、蛇角センサ20によって検出された蛇角等に基づき、狙い角θを算出する。 The aim angle calculation unit 32 calculates the aim angle θ that represents the traveling direction (the driver's line of sight direction) of the own vehicle V0 on the curve. For example, the aiming angle calculation unit 32 calculates the aiming angle θ based on the serpentine angle or the like detected by the serpentine angle sensor 20.

光照射範囲設定部33は、灯具ユニット40から照射される光の各角度方向の光度を設定する。 The light irradiation range setting unit 33 sets the luminous intensity in each angle direction of the light emitted from the lamp unit 40.

例えば、光照射範囲設定部33は、自車V0が走行中の道路が直線で、自車V0が走行中の道路がカーブと判定されない場合、図1(a)に示す光度分布の配光パターンP1が形成されるように、左灯具ユニット40Lから照射される光の各角度方向の光度、及び、右灯具ユニット40Rから照射される光の各角度方向の光度をそれぞれ設定する。 For example, in the light irradiation range setting unit 33, when the road on which the own vehicle V0 is traveling is straight and the road on which the own vehicle V0 is traveling is not determined to be a curve, the light distribution pattern of the luminous intensity distribution shown in FIG. The luminous intensity of the light emitted from the left lamp unit 40L in each angular direction and the luminous intensity of the light emitted from the right lamp unit 40R in each angular direction are set so that P1 is formed.

また例えば、光照射範囲設定部33は、自車V0が走行中の道路が左カーブと判定された場合、図1(b)に示す光度分布の配光パターンP2が形成されるように、左灯具ユニット40Lから照射される光の各角度方向の光度及び右灯具ユニット40Rから照射される光の各角度方向の光度をそれぞれ、図3(a)及び図3(b)に示すように設定する。 Further, for example, when the road on which the own vehicle V0 is traveling is determined to be a left curve, the light irradiation range setting unit 33 is left so as to form the light distribution pattern P2 of the luminous intensity distribution shown in FIG. 1 (b). The luminous intensity of the light emitted from the lamp unit 40L in each angular direction and the luminous intensity of the light emitted from the right lamp unit 40R in each angular direction are set as shown in FIGS. 3 (a) and 3 (b), respectively. ..

また例えば、光照射範囲設定部33は、自車V0が走行中の道路が右カーブと判定された場合、図4に示す光度分布の配光パターンP3が形成されるように、左灯具ユニット40Lから照射される光の各角度方向の光度、及び、右灯具ユニット40Rから照射される光の各角度方向の光度をそれぞれ設定する。 Further, for example, in the light irradiation range setting unit 33, when the road on which the own vehicle V0 is traveling is determined to be a right curve, the left lamp unit 40L is formed so that the light distribution pattern P3 of the luminous intensity distribution shown in FIG. 4 is formed. The luminous intensity of the light emitted from the lamp in each angular direction and the luminous intensity of the light emitted from the right lamp unit 40R in each angular direction are set.

灯具ユニット制御部34は、灯具ユニット40を制御する。具体的には、灯具ユニット制御部34は、灯具ユニット40から照射される光の各角度方向の光度が光照射範囲設定部33によって設定された光度となるように灯具ユニット40を制御する。 The lamp unit control unit 34 controls the lamp unit 40. Specifically, the lamp unit control unit 34 controls the lamp unit 40 so that the luminous intensity of the light emitted from the lamp unit 40 in each angle direction becomes the luminous intensity set by the light irradiation range setting unit 33.

灯具ユニット40は、制御部30(灯具ユニット制御部34)からの制御に従って、ハイビーム領域に各角度方向の光度を可変可能な配光パターンP1~P3を形成可能な灯具ユニットであればよく、その構成は、どのようなものであってもよい。 The lamp unit 40 may be any lamp unit that can form light distribution patterns P1 to P3 that can change the luminous intensity in each angular direction in the high beam region according to the control from the control unit 30 (lamp unit control unit 34). The configuration may be anything.

例えば、灯具ユニット40は、図示しないが、水平方向又はマトリックス状に配置された複数光源(例えばLED)、及び、複数の光源の光源像を投影する投影レンズと、を備えたダイレクトプロジェクション型(直射型ともいう)の灯具ユニットであってもよい。 For example, although not shown, the lamp unit 40 is a direct projection type (direct projection) including a plurality of light sources (for example, LEDs) arranged in a horizontal direction or in a matrix, and a projection lens for projecting a light source image of the plurality of light sources. It may be a lamp unit (also referred to as a mold).

この灯具ユニットにおいては、各々の光源に各角度方向が割り当てられており、各々の光源から出て投影レンズを透過した光は、各々の光源に割り当てられた角度方向に照射される。各角度方向の光度は、例えば、各々の光源に印加される電力を調整することで可変可能である。 In this lamp unit, each light source is assigned each angle direction, and the light emitted from each light source and transmitted through the projection lens is irradiated in the angle direction assigned to each light source. The luminosity in each angular direction can be varied, for example, by adjusting the power applied to each light source.

また、灯具ユニット40は、例えば、MEMS(Micro Electro Mechanical Systems)を備えた灯具ユニットであってもよいし、DMD(Digital Mirror Device)を備えた灯具ユニットであってもよいし、その他の構成の灯具ユニットであってもよい。 Further, the lamp unit 40 may be, for example, a lamp unit provided with a MEMS (Micro Electro Mechanical Systems), a lamp unit provided with a DMD (Digital Mirror Device), or other configurations. It may be a lamp unit.

水平方向に配置された複数光源を備えたダイレクトプロジェクション型(直射型ともいう)の灯具ユニットとしては、例えば、特開2009-218155号公報に記載のものを用いることができる。マトリックス状に配置された複数光源を備えたダイレクトプロジェクション型(直射型ともいう)の灯具ユニットとしては、例えば、特開2009-218211号公報、特開2015-39993号公報に記載のものを用いることができる。MEMSを備えた灯具ユニット、DMDを備えた灯具ユニットとしては、例えば、特開2017-206094号公報に記載のものを用いることができる。 As a direct projection type (also referred to as a direct irradiation type) lamp unit having a plurality of light sources arranged in the horizontal direction, for example, the one described in JP-A-2009-218155 can be used. As the direct projection type (also referred to as direct irradiation type) lamp unit having a plurality of light sources arranged in a matrix, for example, those described in JP-A-2009-218211 and JP-A-2015-39993 shall be used. Can be done. As the lamp unit provided with MEMS and the lamp unit provided with DMD, for example, those described in JP-A-2017-206094 can be used.

次に、上記構成の車両用灯具10の動作例について説明する。 Next, an operation example of the vehicle lamp 10 having the above configuration will be described.

図6は、車両用灯具10の動作例を説明するためのフローチャートである。 FIG. 6 is a flowchart for explaining an operation example of the vehicle lamp 10.

まず、走行状態判定部31が、自車V0が走行中の道路がカーブか否かを判定する(ステップS10)。 First, the traveling state determination unit 31 determines whether or not the road on which the own vehicle V0 is traveling is a curve (step S10).

その結果、自車V0が走行中の道路が直線で、自車V0が走行中の道路がカーブと判定されない場合(ステップS10:NO)、光照射範囲設定部33は、図1(a)に示す光度分布の配光パターンP1が形成されるように、左灯具ユニット40Lから照射される光の各角度方向の光度、及び、右灯具ユニット40Rから照射される光の各角度方向の光度をそれぞれ設定する(ステップS12)。 As a result, when the road on which the own vehicle V0 is traveling is straight and the road on which the own vehicle V0 is traveling is not determined to be a curve (step S10: NO), the light irradiation range setting unit 33 is shown in FIG. 1A. The luminous intensity of the light emitted from the left lamp unit 40L in each angular direction and the luminous intensity of the light emitted from the right lamp unit 40R in each angular direction are set so that the light distribution pattern P1 of the indicated luminous intensity distribution is formed. Set (step S12).

次に、灯具ユニット制御部34が、灯具ユニット40から照射される光の各角度方向の光度がステップS12で設定された光度となるように灯具ユニット40を制御する(ステップS20)。 Next, the lamp unit control unit 34 controls the lamp unit 40 so that the luminous intensity of the light emitted from the lamp unit 40 in each angle direction becomes the luminous intensity set in step S12 (step S20).

灯具ユニット40は、制御部30(灯具ユニット制御部34)からの制御に従って、各角度方向にステップS12で設定された光度の光を照射する。これにより、ハイビーム領域に図1(a)に示す光度分布の配光パターンP1が形成される。 The lamp unit 40 irradiates light of the luminous intensity set in step S12 in each angle direction according to the control from the control unit 30 (lamp unit control unit 34). As a result, the light distribution pattern P1 having the luminous intensity distribution shown in FIG. 1A is formed in the high beam region.

次に、ステップS10での判定の結果、自車V0が走行中の道路が左カーブであると判定された場合(ステップS10:YES)の処理(ステップS14~S20)について説明する。なお、ステップS10での判定の結果、自車V0が走行中の道路が右カーブであると判定された場合(ステップS10:YES)の処理については、ステップS14~S20と同様であるため、説明を省略する。 Next, the process (steps S14 to S20) when it is determined that the road on which the own vehicle V0 is traveling is a left curve as a result of the determination in step S10 (step S10: YES) will be described. As a result of the determination in step S10, the processing when it is determined that the road on which the own vehicle V0 is traveling is a right curve (step S10: YES) is the same as in steps S14 to S20. Is omitted.

ステップS10での判定の結果、自車V0が走行中の道路が左カーブであると判定された場合(ステップS10:YES)、狙い角算出部32が、左カーブでの自車V0の進行方向(運転者の視線方向)を表す狙い角θを算出する(ステップS14)。 As a result of the determination in step S10, when it is determined that the road on which the own vehicle V0 is traveling is a left curve (step S10: YES), the aim angle calculation unit 32 determines the traveling direction of the own vehicle V0 on the left curve. The aim angle θ representing (the direction of the driver's line of sight) is calculated (step S14).

次に、光照射範囲設定部33が、図1(b)に示す光度分布の配光パターンP2が形成されるように、左灯具ユニット40Lから照射される光の各角度方向の光度及び右灯具ユニット40Rから照射される光の各角度方向の光度をそれぞれ、図3(a)及び図3(b)に示すように設定する(ステップS18)。 Next, the light irradiation range setting unit 33 has the luminous intensity in each angular direction of the light emitted from the left lamp unit 40L and the right lamp so that the light distribution pattern P2 of the luminous intensity distribution shown in FIG. 1B is formed. The luminous intensity of the light emitted from the unit 40R in each angular direction is set as shown in FIGS. 3 (a) and 3 (b), respectively (step S18).

次に、灯具ユニット制御部34が、左灯具ユニット40L及び右灯具ユニット40Rから照射される光の各角度方向の光度がステップS14で設定された光度となるように左灯具ユニット40L及び右灯具ユニット40Rを制御する(ステップS20)。 Next, the lamp unit control unit 34 sets the left lamp unit 40L and the right lamp unit so that the luminous intensity of the light emitted from the left lamp unit 40L and the right lamp unit 40R in each angular direction becomes the luminous intensity set in step S14. 40R is controlled (step S20).

左灯具ユニット40L及び右灯具ユニット40Rは、それぞれ、制御部30(灯具ユニット制御部34)からの制御に従って、各角度方向にステップS18で設定された光度の光を照射する。これにより、ハイビーム領域に左灯具ユニット40Lからの光によって形成される配光パターンP2L(図3(a)参照)と右灯具ユニット40Rからの光によって形成される配光パターンP2R(図3(b)参照)とが合成された図1(b)に示す光度分布の配光パターンP2が形成される。 The left lamp unit 40L and the right lamp unit 40R each irradiate the light of the luminous intensity set in step S18 in each angle direction according to the control from the control unit 30 (lamp unit control unit 34). As a result, the light distribution pattern P2L (see FIG. 3A) formed by the light from the left lamp unit 40L and the light distribution pattern P2R formed by the light from the right lamp unit 40R in the high beam region (FIG. 3 (b)). ) Is combined to form the light distribution pattern P2 of the luminous intensity distribution shown in FIG. 1 (b).

以上説明したように、本実施形態によれば、カーブ走行から直線走行に復帰する過程で、運転者が視線を自車V0の前方に向けた場合、自車V0の前方が相対的に暗いままとなり、自車V0の前方(正面方向)の遠方視認性が低下するのを抑制することができる。 As described above, according to the present embodiment, when the driver directs his / her line of sight to the front of the own vehicle V0 in the process of returning from the curved running to the straight running, the front of the own vehicle V0 remains relatively dark. Therefore, it is possible to suppress a decrease in distant visibility in front (front direction) of the own vehicle V0.

これは、自車V0が走行中の道路がカーブと判定された場合、高光度帯が自車V0の前方(正面方向)から自車V0の進行方向(運転者の視線方向)に移動するのではなく、ハイビーム領域に図1(b)に示す光度分布の配光パターンP2、すなわち、鉛直線V上の光度B1(つまり、自車V0の前方(正面方向)の光度)が最も高く、かつ、狙い角θ方向の光度B2が配光パターンP1中の狙い角θ方向の光度A2(図1(a)参照)より高い光度分布を有する配光パターンP2が形成されることによるものである。 This is because when the road on which the own vehicle V0 is traveling is determined to be a curve, the high-intensity zone moves from the front (front direction) of the own vehicle V0 to the traveling direction of the own vehicle V0 (the direction of the driver's line of sight). Instead, the light distribution pattern P2 of the luminous intensity distribution shown in FIG. 1 (b) in the high beam region, that is, the luminous intensity B1 on the vertical line V (that is, the luminous intensity in front (in the front direction) of the own vehicle V0) is the highest and This is due to the formation of a light distribution pattern P2 having a luminous intensity B2 in the target angle θ direction higher than that in the light distribution pattern P1 in the light intensity A2 in the target angle θ direction (see FIG. 1A).

また、本実施形態によれば、直線走行時とカーブ走行時のいずれにおいても、鉛直線V上の光度が最も高いため(直線走行時とカーブ走行時の明暗差が小さいため)、カーブ走行から直線走行に復帰した際、運転者に違和感を与えるのを抑制することができる。 Further, according to the present embodiment, since the luminosity on the vertical line V is the highest in both the straight line running and the curve running (because the difference in brightness between the straight line running and the curve running is small), from the curve running. When returning to straight running, it is possible to suppress giving the driver a sense of discomfort.

また、本実施形態によれば、配光パターンP2は、鉛直線V上の光度B1が配光パターンP1中の鉛直線V上の光度A1(図1(a)参照)より低い(光度B1<光度A1)。 Further, according to the present embodiment, in the light distribution pattern P2, the luminous intensity B1 on the vertical line V is lower than the luminous intensity A1 on the vertical line V in the light distribution pattern P1 (see FIG. 1A) (luminous intensity B1 <. Luminosity A1).

これにより、カーブ走行時、鉛直線V上の光度B1を配光パターンP1中の鉛直線V上の光度A1(図1(a)参照)から変化させない場合(光度B1=光度A1の場合)と比べ、狙い角θ方向を運転者に明るく見せることができる。 As a result, when traveling on a curve, the luminosity B1 on the vertical line V is not changed from the luminosity A1 on the vertical line V in the light distribution pattern P1 (see FIG. 1A) (when the luminosity B1 = luminosity A1). In comparison, the target angle θ direction can be made to appear brighter to the driver.

また、本実施形態によれば、配光パターンP2は、鉛直線V上の光度B1と狙い角θ方向の光度B2との差W1、狙い角θ方向の光度B2と最外側(図1(b)中最左側)の光度B3との差W2、及び、鉛直線V上の光度B1と最外側(図1(b)中最右側)の光度B3との差W3が、それぞれ、対数値10%以上である。 Further, according to the present embodiment, the light distribution pattern P2 has a difference W1 between the luminous intensity B1 on the vertical line V and the luminous intensity B2 in the target angle θ direction, and the outermost light intensity B2 in the target angle θ direction (FIG. 1 (b). ) The difference W2 from the luminous intensity B3 on the leftmost side of the center, and the difference W3 between the luminous intensity B1 on the vertical line V and the luminous intensity B3 on the outermost side (the rightmost side in FIG. 1B) are 10% logarithmic values, respectively. That is all.

これにより、カーブ走行時、狙い角θ方向及び自車V0の前方(正面方向)を運転者に明るく見せることができる。 As a result, when traveling on a curve, the target angle θ direction and the front side (front direction) of the own vehicle V0 can be made to appear bright to the driver.

また、本実施形態によれば、配光パターンP2は、狙い角θ方向の光度B3と最外側(図1(b)中最左側)の光度B3との差W2が、鉛直線V上の光度B1と狙い角θ方向の光度B2との差W1より大きい(W2>W1)。 Further, according to the present embodiment, in the light distribution pattern P2, the difference W2 between the light intensity B3 in the target angle θ direction and the outermost (leftmost side in FIG. 1B) light intensity B3 is the light intensity on the vertical line V. The difference between B1 and the luminous intensity B2 in the target angle θ direction is larger than W1 (W2> W1).

これにより、カーブ走行時、狙い角θ方向を運転者に明るく見せることができる。 As a result, the driver can be made to see the aim angle θ direction brightly when traveling on a curve.

次に、変形例について説明する。 Next, a modification will be described.

上記実施形態では、鉛直線V上の光度B1が配光パターンP1中の鉛直線V上の光度A1(図1(a)参照)より低い(光度B1<光度A1)配光パターンP2を用いた例について説明したが、これに限らない。 In the above embodiment, the light distribution pattern P2 in which the luminous intensity B1 on the vertical line V is lower than the light intensity A1 (see FIG. 1 (a)) on the vertical line V in the light distribution pattern P1 is used (luminous intensity B1 <luminous intensity A1). An example has been described, but it is not limited to this.

例えば、鉛直線V上の光度B1が配光パターンP1中の鉛直線V上の光度A1(図1(a)参照)と同じ(光度B1=光度A1)配光パターンP2を用いてもよい。 For example, a light distribution pattern P2 having the same luminous intensity B1 on the vertical line V as the light intensity A1 on the vertical line V (see FIG. 1A) in the light distribution pattern P1 (luminous intensity B1 = luminous intensity A1) may be used.

また、上記実施形態では、蛇角センサ20を用いて自車V0が走行中の道路がカーブか否かを判定する例について説明したが、これに限らない。 Further, in the above embodiment, an example of determining whether or not the road on which the own vehicle V0 is traveling is a curve by using the serpentine angle sensor 20 has been described, but the present invention is not limited to this.

例えば、ヨーレートセンサ等の加速度センサ、白線検知、地図DB等を用いて自車V0が走行中の道路がカーブか否かを判定してもよい。 For example, an acceleration sensor such as a yaw rate sensor, a white line detection, a map DB, or the like may be used to determine whether or not the road on which the own vehicle V0 is traveling is a curve.

また、上記実施形態では、蛇角センサ20を用いてカーブでの自車V0の進行方向(運転者の視線方向)を表す狙い角θを算出する例について説明したが、これに限らない。 Further, in the above embodiment, an example of calculating the aim angle θ indicating the traveling direction (the driver's line-of-sight direction) of the own vehicle V0 on the curve by using the serpentine angle sensor 20 has been described, but the present invention is not limited to this.

例えば、ヨーレートセンサ等の加速度センサ、白線検知、地図DB等を用いて自車V0が走行中の道路がカーブか否かを判定してもよい。 For example, an acceleration sensor such as a yaw rate sensor, a white line detection, a map DB, or the like may be used to determine whether or not the road on which the own vehicle V0 is traveling is a curve.

上記各実施形態で示した各数値は全て例示であり、これと異なる適宜の数値を用いることができるのは無論である。 All of the numerical values shown in the above embodiments are examples, and it goes without saying that appropriate numerical values different from these can be used.

上記各実施形態はあらゆる点で単なる例示にすぎない。上記各実施形態の記載によって本発明は限定的に解釈されるものではない。本発明はその精神または主要な特徴から逸脱することなく他の様々な形で実施することができる。 Each of the above embodiments is merely an example in every respect. The present invention is not limitedly construed by the description of each of the above embodiments. The present invention can be practiced in various other forms without departing from its spirit or key features.

10…車両用灯具、20…蛇角センサ、30…制御部、31…走行状態判定部、32…角算出部、33…光照射範囲設定部、34…灯具ユニット制御部、40…灯具ユニット、40L…左灯具ユニット、40R…右灯具ユニット、NW…車載ネットワーク 10 ... Vehicle lamp, 20 ... Snake angle sensor, 30 ... Control unit, 31 ... Driving state determination unit, 32 ... Angle calculation unit, 33 ... Light irradiation range setting unit, 34 ... Lamp unit control unit, 40 ... Lamp unit, 40L ... Left lamp unit, 40R ... Right lamp unit, NW ... In-vehicle network

Claims (5)

自車が走行中の道路がカーブか否かを判定する走行状態判定手段と、
所定領域に各角度方向の光度を可変可能な配光パターンを形成可能な灯具ユニットと、
前記灯具ユニットを制御する灯具ユニット制御手段と、を備え、
前記灯具ユニット制御手段は、
前記走行状態判定手段によって自車が走行中の道路がカーブと判定されない場合、前記所定領域に鉛直線上の光度が最も高く、鉛直線から左右両側に向かうに従って光度が低下する光度分布を有する第1配光パターンが形成されるように、前記灯具ユニットを制御し、
前記走行状態判定手段によって自車が走行中の道路がカーブと判定された場合、前記所定領域に鉛直線上の光度が最も高く、かつ、自車のカーブでの進行方向を表す狙い角方向の光度が前記第1配光パターン中の前記狙い角方向の光度より高い光度分布を有する第2配光パターンが形成されるように、前記灯具ユニットを制御する車両用灯具。
A driving state determination means for determining whether or not the road on which the vehicle is traveling is a curve,
A lamp unit that can form a light distribution pattern that can change the luminous intensity in each angle direction in a predetermined area,
A lamp unit control means for controlling the lamp unit is provided.
The lamp unit control means is
When the road on which the vehicle is traveling is not determined to be a curve by the traveling state determining means, the first unit has a luminous intensity distribution in which the luminous intensity on the vertical line is the highest in the predetermined region and the luminous intensity decreases from the vertical line toward both the left and right sides. The lamp unit is controlled so that a light distribution pattern is formed.
When the road on which the own vehicle is traveling is determined to be a curve by the traveling state determination means, the luminous intensity on the vertical line is the highest in the predetermined region, and the luminous intensity in the target angle direction indicating the traveling direction on the curve of the own vehicle is the highest. Is a vehicle lamp that controls the lamp unit so that a second light distribution pattern having a luminous intensity higher than the luminous intensity in the target angle direction in the first light distribution pattern is formed.
前記第2配光パターンは、鉛直線上の光度が前記第1配光パターン中の鉛直線上の光度より低い請求項1に記載の車両用灯具。 The vehicle lighting fixture according to claim 1, wherein the second light distribution pattern has a luminous intensity on the vertical line lower than the light intensity on the vertical line in the first light distribution pattern. 前記第2配光パターンは、鉛直線上の光度と前記狙い角方向の光度との差、前記狙い角方向の光度と最外側の光度との差、及び、鉛直線上の光度と最外側の光度との差が、それぞれ、対数値10%以上である請求項1又は2に記載の車両用灯具。 The second light distribution pattern includes the difference between the luminous intensity on the vertical line and the luminous intensity in the target angle direction, the difference between the luminous intensity in the target angle direction and the outermost luminous intensity, and the luminous intensity on the vertical line and the outermost luminous intensity. The vehicle lighting fixture according to claim 1 or 2, wherein the difference between the two is 10% or more, respectively. 前記第2配光パターンは、前記狙い角方向の光度と最外側の光度との差が、鉛直線上の光度と前記狙い角方向の光度との差より大きい請求項1から3のいずれか1項に記載の車両用灯具。 The second light distribution pattern is any one of claims 1 to 3, wherein the difference between the luminous intensity in the aiming angle direction and the outermost luminous intensity is larger than the difference between the luminous intensity on the vertical line and the luminous intensity in the aiming angle direction. Vehicle lighting equipment described in. 前記所定領域は、ハイビーム領域である請求項1から4のいずれか1項に記載の車両用灯具。 The vehicle lamp according to any one of claims 1 to 4, wherein the predetermined region is a high beam region.
JP2018029822A 2018-02-22 2018-02-22 Vehicle lighting Active JP7002963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018029822A JP7002963B2 (en) 2018-02-22 2018-02-22 Vehicle lighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018029822A JP7002963B2 (en) 2018-02-22 2018-02-22 Vehicle lighting

Publications (2)

Publication Number Publication Date
JP2019142403A JP2019142403A (en) 2019-08-29
JP7002963B2 true JP7002963B2 (en) 2022-01-20

Family

ID=67770887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018029822A Active JP7002963B2 (en) 2018-02-22 2018-02-22 Vehicle lighting

Country Status (1)

Country Link
JP (1) JP7002963B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116848019A (en) * 2021-02-04 2023-10-03 株式会社小糸制作所 Headlight for vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107780A (en) 2013-12-06 2015-06-11 マツダ株式会社 Headlamp control unit of vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6218499B2 (en) * 2013-08-23 2017-10-25 スタンレー電気株式会社 Lighting control device for vehicle headlamp, vehicle headlamp system
JP6082446B2 (en) * 2015-09-30 2017-02-15 株式会社小糸製作所 Vehicle headlamp device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107780A (en) 2013-12-06 2015-06-11 マツダ株式会社 Headlamp control unit of vehicle

Also Published As

Publication number Publication date
JP2019142403A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6218499B2 (en) Lighting control device for vehicle headlamp, vehicle headlamp system
JP6059910B2 (en) Lamp control system and control device
JP5992278B2 (en) Lighting control device for vehicle headlamp, vehicle headlamp system
JP5976345B2 (en) Lighting control device for vehicle headlamp and vehicle headlamp system
JP2015033944A (en) Lighting control device for headlight of vehicle, and headlight system of vehicle
JP2008226140A (en) Vehicle operation support system
JP6054042B2 (en) Lighting control device for vehicle headlamp and vehicle headlamp system
JPWO2019159765A1 (en) Vehicle detector and vehicle lighting system
JP2016181351A (en) Vehicular headlamp
JP5955357B2 (en) Irradiation control device
JP7002963B2 (en) Vehicle lighting
JP5934612B2 (en) Lighting control device for vehicle headlamp, vehicle headlamp system
WO2021060099A1 (en) Vehicle light fixture system
JPWO2019172148A1 (en) Vehicle lighting and vehicle lighting systems
JP2014101069A (en) Lighting control unit of vehicular headlamps, and vehicular headlamp system
JP6203536B2 (en) Rear fog lamp control device and rear fog lamp system
JP2019156122A (en) Vehicular lighting fixture
JP7139309B2 (en) lighting equipment
JP2013147111A (en) Lighting control device for vehicle front light, and vehicle front light system
JP2014040177A (en) Lighting control system for vehicular headlamps, and vehicular headlamp system
JP6082446B2 (en) Vehicle headlamp device
JP2015033954A (en) Lighting control device of vehicle headlight, vehicle headlight system
JP2010143483A (en) Vehicle headlight device and method for controlling the same
JP2018122736A (en) Method for displaying vehicular lighting and display control device
JP2013163417A (en) Lighting control apparatus for vehicle headlight, and vehicle headlight system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R150 Certificate of patent or registration of utility model

Ref document number: 7002963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150