JP7001188B1 - Method for producing isolated plant-based protein - Google Patents

Method for producing isolated plant-based protein Download PDF

Info

Publication number
JP7001188B1
JP7001188B1 JP2021052501A JP2021052501A JP7001188B1 JP 7001188 B1 JP7001188 B1 JP 7001188B1 JP 2021052501 A JP2021052501 A JP 2021052501A JP 2021052501 A JP2021052501 A JP 2021052501A JP 7001188 B1 JP7001188 B1 JP 7001188B1
Authority
JP
Japan
Prior art keywords
protein
water
heat treatment
plant
isolated plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021052501A
Other languages
Japanese (ja)
Other versions
JP2022150076A (en
Inventor
司 馬場
敦也 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2021052501A priority Critical patent/JP7001188B1/en
Priority to JP2021175856A priority patent/JP7169558B2/en
Priority to CN202111283687.0A priority patent/CN115124589A/en
Application granted granted Critical
Publication of JP7001188B1 publication Critical patent/JP7001188B1/en
Publication of JP2022150076A publication Critical patent/JP2022150076A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/145Extraction; Separation; Purification by extraction or solubilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types

Abstract

【課題】本発明は、新たな分離植物性蛋白の製造法を提供することを課題とする。特に、各種食品の蛋白質の強化に適し、各種食品に比較的多量に添加しても、該食品の形状や物性、食感などへの影響を抑えるため、吸水性の低い分離植物性蛋白の製造法を提供する。【解決手段】下記工程を含むことを特徴とする、分離植物性蛋白の製造法。(a)植物性蛋白質原料を水抽出して得られる蛋白質抽出液から蛋白質を濃縮し、蛋白質濃縮物を得る工程、(b)該蛋白質濃縮物又はその加水物に、ペクチン性多糖類またはアルギン酸エステルを、蛋白質に対して0.05重量%以上添加し、混合液を得る工程、(c)該混合液をpH3.5~5.5の酸性下において80~170℃の加熱処理を行い、加熱処理液を得る工程、(d)該加熱処理液を粉末化し、分離植物性蛋白とする工程。【選択図】なしPROBLEM TO BE SOLVED: To provide a new method for producing a isolated plant-based protein. In particular, it is suitable for strengthening the protein of various foods, and even if it is added in a relatively large amount to various foods, it suppresses the influence on the shape, physical characteristics, texture, etc. of the food, so that it is possible to produce a separated plant protein having low water absorption. Provide the law. A method for producing an isolated plant-based protein, which comprises the following steps. (A) A step of concentrating a protein from a protein extract obtained by extracting a vegetable protein raw material with water to obtain a protein concentrate, (b) a pectinic polysaccharide or an alginate ester in the protein concentrate or its hydrolyzate. To obtain a mixed solution by adding 0.05% by weight or more to the protein, (c) heat-treat the mixed solution at 80 to 170 ° C. under acidic pH of 3.5 to 5.5, and heat-treated solution. (D) A step of pulverizing the heat treatment liquid to obtain a separated vegetable protein. [Selection diagram] None

Description

本発明は、分離植物性蛋白の製造法に関する。 The present invention relates to a method for producing an isolated plant-based protein.

蛋白質は高分子であり、ゲル化性、増粘性、保水性(吸水性)を有する場合が多い。蛋白質を高濃度に含む分離大豆蛋白質(Soy Protein Isolate; SPI)等に代表される、粉末状植物性蛋白質製品は、水を含まないため液状の製品に比べて流通がしやすく、保管の管理もしやすい。また該製品は、加工食品に高濃度に配合できるため、様々な加工食品への物性改良材としても幅広く使用されている。
例えば、大豆蛋白質はアミノ酸組成のバランスが良く、また血清コレステロール低下作用に代表されるような生理機能を有している。そのため大豆蛋白質は、栄養面や生理機能面を期待した栄養・健康訴求食品で使用されている。
Proteins are macromolecules and often have gelling properties, thickening properties, and water retention (water absorption). Powdered vegetable protein products, such as soy protein isolate (SPI), which contains a high concentration of protein, are easier to distribute than liquid products because they do not contain water, and storage management is also possible. Cheap. Further, since the product can be blended in a high concentration in processed foods, it is widely used as a material for improving physical properties in various processed foods.
For example, soy protein has a well-balanced amino acid composition and has a physiological function typified by a serum cholesterol lowering action. Therefore, soy protein is used in nutritional and health-promoting foods that are expected to have nutritional and physiological functions.

日本の内閣府発表の「平成23年版 高齢社会白書」によると、65歳以上の高齢者人口は、過去最高の2,958万人となること、5人に1人が高齢者となることが記載されており、超高齢社会(全人口中65歳以上の高齢者の占める割合が、21%を超えた社会)が目前に迫っている。このような中、日本の厚生労働省が推進する「健康日本21」において挙げられている目標が、健康寿命の延伸である。ここで言われる「健康寿命」とは、生涯の間で病気や障害がなく過ごすことができた期間を指し、健康寿命(平均自立期間)=平均寿命-非自立期間(健康を損ない自立して生活できない期間)で表される。 According to the "2011 White Paper on Aging Society" released by the Cabinet Office of Japan, it is stated that the population of elderly people aged 65 and over will reach a record high of 29.58 million, and one in five will be elderly. A super-aging society (a society in which the percentage of elderly people aged 65 and over in the total population exceeds 21%) is imminent. Under these circumstances, the goal set forth in "Health Japan 21" promoted by the Ministry of Health, Labor and Welfare of Japan is to extend healthy life expectancy. "Healthy life expectancy" here refers to the period during which you can spend your life without any illness or disability, and healthy life expectancy (average independence period) = average life expectancy-non-independence period (independence that impairs your health) It is represented by the period during which you cannot live.

健康寿命を延伸させるためには、必要量の栄養成分の摂取が欠かせない。特に蛋白質は、生命の維持に不可欠な物質であり、組織を構築すると共に、様々な機能を果たしている。厚生労働省が示す「日本人の栄養摂取基準」(2010年版)によると、蛋白質の推奨摂取量は、70歳以上の高齢者においても一般成人と同じ1日当たり60gである。しかし、一般に高齢者は、日常の生活活動が不活発である。そのため、高齢者の食欲は低下し、該食事摂取量は少なくなる。したがって、高齢者の場合、少量の摂取量で効率良く蛋白質を摂取することが必要とされる。 Ingestion of the required amount of nutritional components is essential for extending healthy life expectancy. In particular, proteins are essential substances for the maintenance of life, and they have various functions as well as constructing tissues. According to the "Japanese Nutrition Intake Standards" (2010 edition) presented by the Ministry of Health, Labor and Welfare, the recommended intake of protein is 60 g per day even for the elderly aged 70 and over, which is the same as for general adults. However, in general, elderly people are inactive in their daily activities. Therefore, the appetite of the elderly is reduced, and the food intake is reduced. Therefore, in the case of elderly people, it is necessary to efficiently ingest protein with a small amount of intake.

このような状況下、食品メーカーは、植物性蛋白質の優れた栄養生理機能を活用し、植物性蛋白質の補給を目的とした加工食品の開発に注力している。該加工食品のジャンルの一つとして、蛋白質が強化されたパン類が開発されている。
ここで、分離大豆蛋白質のような分離植物性蛋白は、蛋白質含量が高いため、各種食品の高蛋白質化の目的に適している。また該素材は、形態が粉末状であるため、小麦粉と同様に扱うことができる点で利点を有する。また、該素材は、豆乳のような多量の水を含まないため、蛋白質の強化のために食品に添加する量が制限されにくい点でも利点を有する。
Under these circumstances, food manufacturers are focusing on developing processed foods for the purpose of supplementing plant protein by utilizing the excellent nutritional and physiological functions of plant protein. As one of the genres of processed foods, protein-enriched breads have been developed.
Here, isolated plant-based proteins such as isolated soybean protein have a high protein content, and are therefore suitable for the purpose of increasing the protein content of various foods. Further, since the material is in the form of powder, it has an advantage that it can be treated in the same manner as wheat flour. Further, since the material does not contain a large amount of water like soymilk, it has an advantage that the amount added to the food for strengthening the protein is not easily limited.

しかしながら、蛋白質の強化を目的として粉末状植物性蛋白を食品に多量に添加すると、植物性蛋白質が一般に有する吸水性によって食品中の自由水を奪い、また、食品中の各種原料の機能の発揮を阻害する場合がある。そのため、粉末状植物性蛋白質を多量に添加した食品は、望ましい形状や物性が損なわれたり、食べたときの食感が悪化したりする場合がある。 However, when a large amount of powdered plant protein is added to food for the purpose of strengthening the protein, the free water in the food is deprived by the water absorption generally possessed by the plant protein, and the functions of various raw materials in the food are exhibited. May interfere. Therefore, a food to which a large amount of powdered vegetable protein is added may impair the desired shape and physical properties, or may deteriorate the texture when eaten.

したがって、食品に比較的多くの粉末状植物性蛋白質を添加しても、食品の形状や物性が損なわれたり、食べたときの食感の悪化が生じない技術を提供することが求められている。 Therefore, it is required to provide a technique that does not impair the shape and physical properties of the food or deteriorate the texture when eaten even if a relatively large amount of powdered vegetable protein is added to the food. ..

特開平11-243844号公報Japanese Unexamined Patent Publication No. 11-243844 国際公開WO2007/114129号International release WO2007 / 114129 特開2009-142200号公報Japanese Unexamined Patent Publication No. 2009-142200 特開2016-2059号公報Japanese Unexamined Patent Publication No. 2016-2059 国際公開WO2016/147754号International release WO2016 / 147754 米国特許第4054679号明細書U.S. Pat. No. 4,504,679

特許文献1には、パン生地中に、粉末状大豆蛋白とキシラナーゼを添加することを特徴とする、蛋白質が強化されたパン類の製造法が記載されている。この技術は、蛋白質が強化されたパン類の比容積の低下の防止に貢献することが記載されている。 Patent Document 1 describes a method for producing breads fortified with protein, which comprises adding powdered soybean protein and xylanase to bread dough. It has been described that this technique contributes to the prevention of a decrease in the specific volume of protein-enriched breads.

特許文献2には、酸化マグネシウムなどのマグネシウム塩を含み、部分的にプロテアーゼで加水分解された粉末状大豆蛋白素材が記載されている。この粉末状大豆蛋白素材は、実施例ではNSIが32かつ0.22M TCA可溶率が11%のもの、NSIが17かつ該TCA可溶率が10%のもの、NSIが45かつ該TCA可溶率が10%のもの、あるいはNSIが30かつ該TCA可溶率が22%のもの記載されている。この技術は、蛋白質が強化されたクッキーのような焼成食品の製造に有効であることについて、記載されている。 Patent Document 2 describes a powdered soybean protein material containing a magnesium salt such as magnesium oxide and partially hydrolyzed with a protease. In the examples, this powdered soybean protein material has an NSI of 32 and a 0.22M TCA solubility of 11%, an NSI of 17 and a TCA solubility of 10%, and an NSI of 45 and the TCA solubility. Those with a rate of 10% or those with an NSI of 30 and the TCA solubility of 22% are described. This technique has been described as being effective in the production of baked foods such as protein-enriched cookies.

特許文献3の実施例には、大豆パフ(蛋白質含量78重量%)と粉末状大豆蛋白素材を焼き菓子生地に配合することが記載されている。大豆パフはエクストルーダーによって組織化されたものであるが、本技術はこれを用いることが特徴である。 An example of Patent Document 3 describes that a soybean puff (protein content 78% by weight) and a powdered soybean protein material are blended into a baked confectionery dough. The soybean puff is organized by an extruder, and this technology is characterized by using it.

特許文献4には、粉末状大豆蛋白素材を10~50重量%含有するペーストにし、これを100~250℃の熱風で水分量15重量%以下まで乾燥させ、再度粉末化した、パン類の蛋白質強化用大豆蛋白質素材が記載されている。そして、該素材を用いてパン類を製造することは、蛋白質が強化されたパン類の比容積の低下の防止に貢献することが記載されている。 In Patent Document 4, a paste containing 10 to 50% by weight of powdered soybean protein material is prepared, dried with hot air at 100 to 250 ° C. to a water content of 15% by weight or less, and powdered again. The soy protein material for fortification is described. It is described that the production of breads using the material contributes to the prevention of a decrease in the specific volume of protein-enriched breads.

各種食品に添加する蛋白質含量を高めるための分離植物性蛋白の製法として、上記特許文献1~5などの方法が提供されている。
しかしながら、特許文献1の方法では大豆蛋白添加によるパン品質の低下を添加剤によって補っており、分離植物性蛋白の本質的な改変には至っていない。
特許文献2では、二価金属塩の添加と酵素分解によって該素材の吸水性を抑える方法であり、食品製造の作業性は向上するが、蛋白質の低分子化による単位重量あたりの分子数増大によって、グルテンネットワークの阻害がより強くなってしまうため、高比容積が求められるパン類等の食品には適さない。
特許文献3では、エクストルーダーにより粒状に加工処理をすることが特徴であり、小麦粉などと同様の粉末として利用できない。
特許文献4では、蛋白質を低分子化せずに、熱変性による吸水性の低下を行っているが、本発明はより一般的な設備と実用的な条件での処理を特徴としており、効率的な生産が可能である。
As a method for producing a separated plant-based protein for increasing the protein content added to various foods, the methods such as Patent Documents 1 to 5 are provided.
However, in the method of Patent Document 1, the deterioration of bread quality due to the addition of soybean protein is compensated by the additive, and the essential modification of the isolated plant-based protein has not been achieved.
Patent Document 2 is a method of suppressing the water absorption of the material by adding a divalent metal salt and enzymatically decomposing the material, which improves the workability of food production, but increases the number of molecules per unit weight due to the reduction of the molecular weight of the protein. , Since the inhibition of the gluten network becomes stronger, it is not suitable for foods such as breads that require a high specific volume.
Patent Document 3 is characterized in that it is processed into granules by an extruder, and cannot be used as a powder similar to wheat flour.
In Patent Document 4, the water absorption is reduced by heat denaturation without reducing the molecular weight of the protein, but the present invention is characterized by more general equipment and treatment under practical conditions, and is efficient. Production is possible.

以上に鑑みて、本発明は、新たな分離植物性蛋白の製造法を提供することを課題とする。特に、各種食品の蛋白質の強化に適し、各種食品に比較的多量に添加しても、該食品の形状や物性、食感などへの影響を抑えるため、吸水性の低い分離植物性蛋白の製造法を提供する。
別の態様では、本発明は、分離植物性蛋白の製造工程において、蛋白質溶液を加熱処理装置において加熱処理する際に、該溶液が酸性のpH範囲にあっても加熱処理装置内で溶液が凝固しない加工処理方法を提供する。
さらに別の態様では、本発明は、嵩比重が高い分離植物性蛋白を提供する。
In view of the above, it is an object of the present invention to provide a new method for producing a isolated plant-based protein. In particular, it is suitable for strengthening the protein of various foods, and even if it is added in a relatively large amount to various foods, it suppresses the influence on the shape, physical characteristics, texture, etc. of the food, so that it is possible to produce a separated plant protein having low water absorption. Provide the law.
In another aspect, according to the present invention, when a protein solution is heat-treated in a heat treatment device in the process of producing a separated plant-based protein, the solution coagulates in the heat treatment device even if the solution is in the acidic pH range. Provides a processing method that does not.
In yet another aspect, the invention provides a isolated plant-based protein with a high bulk specific density.

本発明者らは、上記の課題に対して鋭意研究を重ねた結果、新たなアプローチにより前記課題を解決しうることを見出し、本発明の技術思想を完成するに到った。 As a result of diligent research on the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by a new approach, and have completed the technical idea of the present invention.

すなわち本発明は、以下の発明を包含するものである。
(1)下記工程を含むことを特徴とする、分離植物性蛋白の製造法、(a)植物性蛋白質原料を水抽出して得られる蛋白質抽出液から蛋白質を濃縮し、蛋白質濃縮物を得る工程、(b)該蛋白質濃縮物又はその加水物に、ペクチン性多糖類またはアルギン酸エステルを、蛋白質に対して0.05重量%以上添加し、混合液を得る工程、(c)該混合液をpH3.5~5.5の酸性下において80~170℃の加熱処理を行い、加熱処理液を得る工程、(d)該加熱処理液を粉末化し、分離植物性蛋白とする工程、
(2)該分離植物性蛋白のNSIが50以下かつ、蛋白質に対するカルシウム含量が0.6重量%以下、かつマグネシウム含量が0.3重量%以下であることを特徴とする、前記(1)記載の分離植物性蛋白の製造法、
(3)(e)植物性蛋白質原料を水抽出して得られる蛋白質抽出液から蛋白質を濃縮し、蛋白質濃縮物を得る工程、及び(f)該蛋白質濃縮物又はその加水物をpH3.5~5.5の酸性下において80~170℃の連続式加熱処理を行い、加熱処理液を得る工程を有する分離植物性蛋白の製造工程において、(f)工程を行う際に、該蛋白質濃縮物にペクチン性多糖類またはアルギン酸エステルを混合しておくことを特徴とする、酸性下での加熱処理における蛋白質の凝固防止方法、
(4)(g)植物性蛋白質原料を水抽出して得られる蛋白質抽出液から蛋白質を濃縮し、蛋白質濃縮物を得る工程、(h)該蛋白質濃縮物又はその加水物に80~170℃の加熱処理を行い、加熱処理液を得る工程、及び(i)該加熱処理液を粉末化する工程を有する分離植物性蛋白の製造工程において、(h)工程の加熱処理の際に、該蛋白質濃縮物又はその加水物のpHを3.5~5.5の酸性下にしておくこと、及び該蛋白質濃縮物又はその加水物にペクチン性多糖類またはアルギン酸エステルを混合しておくことを特徴とする、分離植物性蛋白分離植物性蛋白の嵩比重の増大方法、
(5)下記工程を含むことを特徴とする、分離植物性蛋白の製造法、(a)分離植物性蛋白を用意し、これに加水して蛋白質濃縮物を得る工程、(b)該蛋白質濃縮物に、ペクチン性多糖類またはアルギン酸エステルを、蛋白質に対して0.05重量%以上添加し、混合液を得る工程、(c)該混合液をpH3.5~5.5の酸性下において80~170℃の加熱処理を行い、加熱処理液を得る工程、(d)該加熱処理液を粉末化する工程。
That is, the present invention includes the following inventions.
(1) A method for producing a separated plant-based protein, which comprises the following steps, (a) a step of concentrating a protein from a protein extract obtained by water-extracting a plant-based protein raw material to obtain a protein concentrate. , (B) Add 0.05% by weight or more of pectinic polysaccharide or alginate ester to the protein concentrate or its hydrolyzate to obtain a mixed solution, (c) pH 3 of the mixed solution. A step of heat-treating at 80 to 170 ° C. under acidic conditions of .5-5.5 to obtain a heat-treated solution, (d) a step of pulverizing the heat-treated solution into a separated plant-based protein.
(2) The isolated plant-based protein according to (1) above, characterized in that the NSI of the isolated plant-based protein is 50 or less, the calcium content with respect to the protein is 0.6% by weight or less, and the magnesium content is 0.3% by weight or less. How to make protein,
(3) (e) A step of concentrating a protein from a protein extract obtained by extracting a plant-based protein raw material with water to obtain a protein concentrate, and (f) pH 3.5 to the protein concentrate or its hydrolyzate. In the process of producing a separated plant-based protein, which comprises a step of continuously heat-treating at 80 to 170 ° C. under the acidity of 5.5 to obtain a heat-treated solution, when the step (f) is performed, the protein concentrate is pectinic. A method for preventing protein coagulation in heat treatment under acidic conditions, which comprises mixing a polysaccharide or an alginate ester.
(4) (g) A step of concentrating a protein from a protein extract obtained by water-extracting a vegetable protein raw material to obtain a protein concentrate, (h) the protein concentrate or a hydrolyzate thereof at 80 to 170 ° C. In the step of performing heat treatment to obtain a heat treatment liquid and (i) the step of producing a separated vegetable protein having a step of pulverizing the heat treatment liquid, the protein is concentrated during the heat treatment of (h) step. Isolated vegetable origin, characterized in that the pH of the product or its water is kept acidic at 3.5-5.5, and the protein concentrate or its water is mixed with a pectinic polysaccharide or alginate ester. Protein Separation Method for increasing bulk specific gravity of vegetable protein,
(5) A method for producing a separated plant-based protein, which comprises the following steps, (a) a step of preparing a separated plant-based protein and adding water to the separated vegetable protein to obtain a protein concentrate, (b) the protein concentration. A step of adding 0.05% by weight or more of a pectinic polysaccharide or an alginate ester to a protein to obtain a mixed solution, (c) 80 to 170 of the mixed solution under acidic conditions of pH 3.5 to 5.5. A step of performing a heat treatment at ° C. to obtain a heat treatment liquid, and (d) a step of pulverizing the heat treatment liquid.

なお、本発明の目的とは異なるが、特許文献5では、大豆蛋白質の等電点よりも酸性側の可溶化領域であるpH2~4、好ましくはpH3.5以下で加熱処理することを特徴としている。この点、本発明では大豆蛋白質が不溶化するpH領域で加熱処理することが好ましい。
また特許文献6も、大豆蛋白質の等電点で加熱処理する発明が開示されているが、その目的は大豆蛋白質素材の風味の改良であり、本発明の目的とは異なる。
Although different from the object of the present invention, Patent Document 5 is characterized in that heat treatment is performed at pH 2 to 4, preferably pH 3.5 or less, which is a solubilization region on the acidic side of the isoelectric point of soybean protein. There is. In this respect, in the present invention, it is preferable to heat-treat in the pH region where the soybean protein is insolubilized.
Further, Patent Document 6 also discloses an invention of heat-treating a soybean protein at an isoelectric point, but the purpose thereof is to improve the flavor of the soybean protein material, which is different from the object of the present invention.

第一に、本発明により、新たな分離植物性蛋白の製造法を提供することができる。
副次的には、本発明の製造法によれば、特に、各種食品の蛋白質の強化に適し、低い吸水性を有する分離植物性蛋白を提供できる。これにより、本発明のある態様によれば、各種食品に比較的多量に添加しても、該食品の形状や物性、食感などへの影響を抑えることが分離植物性蛋白できる。
また、本発明の製造法によれば、嵩密度が高い分離植物性蛋白を提供できる。これらの物性により、水やドウ生地などへの分散性も高まり、各種食品の製造時における作業性の向上が図られる。また、嵩密度が高いことにより、包装をコンパクトにすることができ、保管時の省スペース化にも寄与できる。
First, the present invention can provide a new method for producing a isolated plant-based protein.
As a side effect, according to the production method of the present invention, it is possible to provide a separated plant-based protein which is particularly suitable for fortifying proteins of various foods and has low water absorption. Thereby, according to an aspect of the present invention, even if it is added to various foods in a relatively large amount, it is possible to suppress the influence on the shape, physical characteristics, texture and the like of the food as a separated plant protein.
Further, according to the production method of the present invention, it is possible to provide a separated plant-based protein having a high bulk density. Due to these physical characteristics, the dispersibility in water, dough, etc. is enhanced, and the workability at the time of manufacturing various foods can be improved. In addition, the high bulk density makes it possible to make the packaging compact, which also contributes to space saving during storage.

以下、本発明について具体的に説明する。 Hereinafter, the present invention will be specifically described.

(分離植物性蛋白)
本発明において「分離植物性蛋白」(Plant Protein Isolate)という用語は、原料である植物性蛋白質原料から蛋白質以外の成分、すなわち脂質、可溶性糖質、澱粉、不溶性繊維(オカラ)などをできるだけ除去し、蛋白質が濃縮された植物性蛋白素材を意味する。その蛋白質含量は、一般には固形分中70重量%以上、好ましくは80重量%以上、より好ましくは85重量%以上、最も好ましくは90重量%以上である。なお、本明細書においては、本発明より提供される分離植物性蛋白を、特に「本分離植物性蛋白」と称することがある。
(Isolated plant protein)
In the present invention, the term "plant protein isolate" is used to remove components other than protein, that is, lipids, soluble sugars, starches, insoluble fibers (okara), etc. from the raw material of vegetable protein as much as possible. , Means a vegetable protein material enriched with protein. The protein content is generally 70% by weight or more, preferably 80% by weight or more, more preferably 85% by weight or more, and most preferably 90% by weight or more in the solid content. In the present specification, the isolated plant-based protein provided by the present invention may be particularly referred to as "the present isolated plant-based protein".

(植物性蛋白質原料)
本分離植物性蛋白の原料となる植物性蛋白質原料としては、蛋白質を含む植物性原料が挙げられ、例えば大豆、エンドウ、緑豆、ヒヨコ豆、落花生、ルピナス、キマメ、ナタ豆、ツル豆、インゲン豆、小豆、ササゲ、レンズ豆、ソラ豆、イナゴ豆などの豆類や、ナタネ種子(特にキャノーラ品種)、ヒマワリ種子、綿実種子等の種子類や、小麦、大麦、ライ麦、米、トウモロコシ等の穀類などの全粒物やその粉砕物が挙げられ、これらから油脂や澱粉を工業的に抽出した粕を用いることもできる。これらに含まれる主要な蛋白質は等電点が約pH3~5、最も典型的には約pH4.4~4.6に存在する。特に分離蛋白として商業的に生産されている大豆、エンドウ、緑豆、ナタネ種子(キャノーラ種子)やこれらの油脂もしくは澱粉の抽出粕を用いることが好ましい。例えば大豆の場合は、全脂大豆や部分脱脂大豆を用いることもできるし、脱脂大豆を用いることもできる。
(Vegetable protein raw material)
Examples of the vegetable protein raw material that is the raw material of the isolated vegetable protein include soybeans, peas, green beans, chick beans, peanuts, lupines, kimame, rape beans, vine beans, and green beans. , Beans such as red beans, sage, lens beans, sora beans, locust beans, seeds such as rapeseed seeds (especially canola varieties), sunflower seeds, cotton seeds, and grains such as wheat, barley, rye, rice, and corn. Examples thereof include whole grains and crushed products thereof, and beans obtained by industrially extracting fats and oils and starch from these can also be used. The major proteins contained therein have an isoelectric point of about pH 3-5, most typically about pH 4.4-4.6. In particular, it is preferable to use commercially produced soybeans, peas, mung beans, rapeseed seeds (canola seeds), and extracted meals of these fats and starches as separated proteins. For example, in the case of soybeans, full-fat soybeans, partially defatted soybeans, and defatted soybeans can be used.

ここで、最も典型的な分離植物性蛋白の製造法を例示する。
まず、植物性蛋白質原料を適量の水で分散させて水抽出を行い、繊維質を主体とする不溶性画分を除去し、蛋白質抽出液を得る。該蛋白質抽出液を塩酸等の酸によりpH3~5、好ましくはpH4~5、より好ましくはpH4.2~4.8、さらに好ましくはpH4.4~4.6、さらに好ましくはpH4.45~4.55に調整し、蛋白質を等電点沈殿させて酸可溶性画分(ホエー)を除去する。回収した酸不溶性画分(カード)を再度適量の水に分散させてカードスラリーを得る。該カードスラリーを水酸化ナトリウム等のアルカリ剤で中和し、分離植物性蛋白を得る。
分離植物性蛋白は、溶液の状態において高温加熱処理装置によって加熱殺菌され、一般にはスプレードライヤー等により噴霧乾燥され、最終的に製品化される。
ただし、上記の等電点沈澱を用いる製造法は、典型的な例示であって限定されるものではなく、膜ろ過による蛋白質の濃縮法など、蛋白質の純度が高められる方法が適宜適用される。
Here, a method for producing the most typical isolated plant-based protein is illustrated.
First, a vegetable protein raw material is dispersed in an appropriate amount of water and water extraction is performed to remove an insoluble fraction mainly composed of fiber to obtain a protein extract. The protein extract is subjected to pH 3 to 5, preferably pH 4 to 5, more preferably pH 4.2 to 4.8, still more preferably pH 4.4 to 4.6, still more preferably pH 4.45 to 4 with an acid such as hydrochloric acid. The protein is adjusted to .55 and the protein is isoelectrically precipitated to remove the acid-soluble fraction (whey). The recovered acid-insoluble fraction (curd) is dispersed again in an appropriate amount of water to obtain a curd slurry. The curd slurry is neutralized with an alkaline agent such as sodium hydroxide to obtain a separated plant-based protein.
The isolated plant-based protein is heat-sterilized by a high-temperature heat treatment device in the state of a solution, generally spray-dried by a spray dryer or the like, and finally commercialized.
However, the above-mentioned production method using isoelectric point precipitation is not limited to a typical example, and a method for increasing the purity of a protein, such as a method for concentrating a protein by membrane filtration, is appropriately applied.

(水溶性多糖類)
本分離植物性蛋白の製造法は、特定の水溶性多糖類が特定の工程において添加され、得られる本分離植物性蛋白は該水溶性多糖類を含有することが、一つの特徴である。ここで、「水溶性多糖類を含有する」の意味は、本分離植物性蛋白において、蛋白質などの他の成分と一体となっており、物理的に分離できない状態で含有することを指す。具体的には、この状態は例えば水系下において蛋白質と該水溶性多糖類の共存下、加熱処理などで均質化されることにより実現することができる。一方、分離植物性蛋白と水溶性多糖類とが単に粉同士で混合されただけのものは、本粉末状分離蛋白に該当しない。なお、本明細書においては、本分離植物性蛋白に含まれる特定の水溶性多糖類を、「本水溶性多糖類」と称することがある。
(Water-soluble polysaccharide)
One of the features of the method for producing the isolated plant-based protein is that a specific water-soluble polysaccharide is added in a specific step, and the obtained isolated plant-based protein contains the water-soluble polysaccharide. Here, the meaning of "containing a water-soluble polysaccharide" means that the isolated plant-based protein is integrated with other components such as a protein and is contained in a state in which it cannot be physically separated. Specifically, this state can be realized, for example, by homogenizing the protein and the water-soluble polysaccharide in the coexistence of the protein and the water-soluble polysaccharide by heat treatment or the like in an aqueous system. On the other hand, a protein obtained by simply mixing the separated plant-based protein and the water-soluble polysaccharide with each other does not fall under the present powdered separated protein. In addition, in this specification, a specific water-soluble polysaccharide contained in this isolated plant-based protein may be referred to as "this water-soluble polysaccharide".

■ペクチン性多糖類
本水溶性多糖類は、ペクチン性多糖類又はアルギン酸エステルである。このうちペクチン性多糖類は、ガラクツロン酸を主鎖に含む酸性多糖類をいう。例えば、水溶性大豆多糖類、水溶性エンドウ多糖類、ペクチン等が挙げられる。
■ Pectic polysaccharide This water-soluble polysaccharide is a pectic polysaccharide or an alginate ester. Of these, pectic polysaccharides are acidic polysaccharides containing galacturonic acid in the main chain. For example, water-soluble soybean polysaccharide, water-soluble pea polysaccharide, pectin and the like can be mentioned.

水溶性大豆多糖類や水溶性エンドウ多糖類は、ラムノース、フコース、アラビノース、キシロース、ガラクトース、グルコース及びガラクツロン酸等の糖類から構成される水溶性多糖類であって、一般には以下の条件で分析されるゲルろ過HPLC法で平均分子量が100万以下のものである。これらは大豆やエンドウの不溶性食物繊維(オカラ)を含む原料から公知の方法により水で抽出し、必要により精製して調製されたものを用いることができる。水溶性大豆多糖類は、市販品を使用することができ、例えば「ソヤファイブ(R)」シリーズ(不二製油(株)製)や「SM」シリーズ(三栄源エフ・エフ・アイ(株)製)などを用いることができる。また水溶性エンドウ多糖類も、市販品を使用することができ、また例えば国際公開WO2012/176852号や国際公開WO2014/103833号に記載の方法で得られるものを用いることができる。 Water-soluble soybean polysaccharides and water-soluble pea polysaccharides are water-soluble polysaccharides composed of sugars such as rhamnose, fucose, arabinose, xylose, galactose, glucose and galacturonic acid, and are generally analyzed under the following conditions. The average molecular weight is 1 million or less by the gel filtration HPLC method. These can be prepared by extracting with water by a known method from a raw material containing insoluble dietary fiber (okara) of soybean or pea, and purifying if necessary. Commercially available water-soluble soybean polysaccharides can be used, for example, "Soya Five (R)" series (manufactured by Fuji Oil Co., Ltd.) and "SM" series (manufactured by Saneigen FFI Co., Ltd.). ) Etc. can be used. As the water-soluble pea polysaccharide, a commercially available product can be used, and for example, one obtained by the method described in International Publication WO2012 / 176852 and International Publication WO2014 / 103833 can be used.

ゲルろ過HPLCは、標準プルラン(昭和電工(株))を標準物質として、分析カラム「TSKgel G5000PWXL」(東ソー(株)製、カラムサイズ:7.8mmI.D.×30cm、充填剤基材:メタクリレートポリマー、充填剤粒子径:10μm、排除限界分子量:250万)を用いる。平均絶対分子量(MM)は、カラム通液後にトルエンでキャリブレーションしたマルチアングルレーザーライトスキャッタリング(MALLS)により求める。溶離液は例えば50mM酢酸ナトリウム水溶液(pH5.0)を用い、カラムの流速は1.0mL/分とし、検出器はRI検出器及びMALLS検出器を用いる。ただし、分析値に大きな誤差が生じない範囲で各分析条件を適宜変更してもよい。 For gel filtration HPLC, standard pullulan (Showa Denko KK) is used as a standard substance, and the analysis column "TSKgel G5000PWXL" (manufactured by Tosoh Corporation, column size: 7.8 mm I.D. × 30 cm, filler base material: methacrylate polymer) , Filler particle size: 10 μm, exclusion limit polymer weight: 2.5 million) is used. The average absolute molecular weight (MM) is determined by multi-angle laser light scattering (MALLS) calibrated with toluene after passing through the column. For example, use a 50 mM sodium acetate aqueous solution (pH 5.0) as the eluent, set the column flow velocity to 1.0 mL / min, and use the RI detector and the MALLS detector as the detectors. However, each analysis condition may be appropriately changed within a range in which a large error does not occur in the analysis value.

■アルギン酸エステル
アルギン酸は、海藻由来の水溶性多糖類であり、マンヌロン酸とグルクロン酸を主鎖に含む酸性多糖類である。そして、アルギン酸エステルはアルギン酸の構成糖であるウロン酸のカルボキシル基にプロピレングリコールがエステル結合された誘導体である。
■ Alginic acid ester Alginic acid is a water-soluble polysaccharide derived from seaweed, and is an acidic polysaccharide containing mannuronic acid and glucuronic acid in the main chain. The alginic acid ester is a derivative in which propylene glycol is ester-bonded to the carboxyl group of uronic acid, which is a constituent sugar of alginic acid.

本分離植物性蛋白の固形分中における、本水溶性多糖類の含量は、0.5重量%以上が好ましい。さらに好ましい態様では、該含量は、0.5重量%以上、又は1重量%以上であり得る。ある態様では、該含量の上限は、5重量%以下、4重量%以下、又は3重量%以下であり得る。 The content of the water-soluble polysaccharide in the solid content of the isolated plant protein is preferably 0.5% by weight or more. In a more preferred embodiment, the content can be 0.5% by weight or more, or 1% by weight or more. In some embodiments, the upper limit of the content may be 5% by weight or less, 4% by weight or less, or 3% by weight or less.

(製造例)
本分離植物性蛋白の製造例を示す。ここでは植物性蛋白質原料として脱脂大豆を例として製造例を示すが、当業者はこれを参照することにより、他の植物性蛋白質原料も下記の製造態様に準じて、過度の試行錯誤を必要とせずに分離植物性蛋白を製造することができる。
(Manufacturing example)
An example of production of this isolated plant protein is shown. Here, a production example is shown using defatted soybean as an example of a plant-based protein raw material, but by referring to this, other plant-based protein raw materials also require excessive trial and error according to the following production mode. It is possible to produce isolated plant-based protein without the need for production.

■製造態様1
植物性蛋白質原料から本発明の分離大豆蛋白を製造する態様を示す。
I)抽出工程
脱脂大豆に加水し、攪拌等して懸濁液(スラリー)とし、蛋白質を水で抽出する。水は中性~アルカリ性のpH、例えばpH6.5~9、好ましくはpH7~9、より好ましくはpH7~8とすることができる。抽出後、該スラリーを遠心分離等の固液分離手段で不溶性食物繊維を主体とする不溶性画分(オカラ)を分離し、蛋白質抽出液(いわゆる豆乳)を得る。
■ Manufacturing mode 1
An embodiment of producing the isolated soybean protein of the present invention from a plant protein raw material is shown.
I) Extraction step Add water to defatted soybeans and stir to make a suspension (slurry), and extract the protein with water. The pH of water can be neutral to alkaline, such as pH 6.5-9, preferably pH 7-9, more preferably pH 7-8. After extraction, the slurry is separated into an insoluble fraction (okara) mainly composed of insoluble dietary fiber by a solid-liquid separation means such as centrifugation to obtain a protein extract (so-called soymilk).

II)蛋白質濃縮工程
次に、該蛋白質抽出液から蛋白質を濃縮し、蛋白質濃縮物を得る。典型的には、該蛋白質抽出液に塩酸やクエン酸等の酸を添加し、該抽出液のpHを大豆蛋白質の等電点であるpH4~5に調整し、蛋白質を不溶化させて酸沈殿させる。次に遠心分離等の固液分離手段により酸可溶性成分である糖質や灰分を含む上清(いわゆるホエー)を除去して、酸不溶性成分を含む「酸沈殿カード」を回収する。
該酸沈殿カードをそのまま蛋白質濃縮物として次の工程に供することができる。また、該酸沈殿カードを必要により加水し、アルカリ剤で中和したものを蛋白質濃縮物として次の工程に供することもできる。
ある態様では、上記の酸沈殿法の代わりに、該蛋白質抽出液から限外ろ過膜等による膜濃縮を行うことにより、蛋白質濃縮物を得ることもできる。
II) Protein concentration step Next, the protein is concentrated from the protein extract to obtain a protein concentrate. Typically, an acid such as hydrochloric acid or citric acid is added to the protein extract, the pH of the extract is adjusted to pH 4 to 5, which is the isoelectric point of soy protein, and the protein is insolubilized and acid-precipitated. .. Next, the supernatant (so-called whey) containing sugar and ash, which are acid-soluble components, is removed by a solid-liquid separation means such as centrifugation, and the “acid precipitation card” containing the acid-insoluble component is collected.
The acid precipitation card can be used as it is as a protein concentrate in the next step. Further, the acid precipitation card can be added with water as needed and neutralized with an alkaline agent to be used as a protein concentrate in the next step.
In some embodiments, instead of the acid precipitation method described above, a protein concentrate can be obtained by performing membrane concentration from the protein extract with an ultrafiltration membrane or the like.

III)本水溶性多糖類の添加工程
次に、該蛋白質濃縮物に必要により加水し、必要により該カードを水で洗浄後、液状のスラリーを得る。そして該スラリーに上記した本水溶性多糖類を添加し、蛋白質-多糖類混合液を得る。
本水溶性多糖類の添加量は、該蛋白質濃縮物の蛋白質あたり少なくとも0.05重量%以上とし、さらに0.1重量%以上、0.3重量%、0.5重量%以上又は0.7重量%以上とすることができる。該添加量の上限は特に限定されないが、該蛋白質濃縮物の蛋白質あたり5重量%以下が適当であり、さらに4重量%以下、3重量%以下、2重量%以下、1.5重量%以下又は1.2重量%以下とすることができる。
本水溶性多糖類を上記の適当な量とすることで、所望の分離植物性蛋白を製造することができる。
III) Step of adding the water-soluble polysaccharide Next, water is added to the protein concentrate as necessary, and the curd is washed with water if necessary to obtain a liquid slurry. Then, the above-mentioned water-soluble polysaccharide is added to the slurry to obtain a protein-polysaccharide mixture.
The amount of the water-soluble polysaccharide added is at least 0.05% by weight or more per protein of the protein concentrate, and further 0.1% by weight or more, 0.3% by weight, 0.5% by weight or more or 0.7. It can be% by weight or more. The upper limit of the addition amount is not particularly limited, but 5% by weight or less per protein of the protein concentrate is appropriate, and further 4% by weight or less, 3% by weight or less, 2% by weight or less, 1.5% by weight or less or It can be 1.2% by weight or less.
By adjusting the amount of the water-soluble polysaccharide to the above-mentioned appropriate amount, a desired isolated plant-based protein can be produced.

該蛋白質-多糖類混合液は、最終的にpH3.5~5.5の酸性pH域にある状態で、次の加熱処理工程に供されることが本発明において重要である。該pH範囲は3.8以上、4以上、4超、4.05以上、4.1以上、4.2以上、4.3以上又は4.4以上とすることができる。また、5.3以下、5以下、4.9以下、4.8以下、4.7以下又は4.6以下等とすることができる。該酸性pH域への調整は、塩酸やクエン酸等の酸により、該蛋白質濃縮物の調整後、次の工程の加熱処理前であればいずれの段階においても可能である。例えば、該蛋白質濃縮物を得た後や、該水溶性多糖類の添加後にpH調整することができる。また、該蛋白質濃縮物のpHがすでにpH3.5~5.5の範囲内であれば、pH調整不要な場合もある。
pHを上記の適当な値とすることで、所望の分離植物性蛋白を製造することができる。
It is important in the present invention that the protein-polysaccharide mixed solution is finally subjected to the next heat treatment step in a state where the pH is in the acidic pH range of 3.5 to 5.5. The pH range can be 3.8 or more, 4 or more, 4 or more, 4.05 or more, 4.1 or more, 4.2 or more, 4.3 or more, or 4.4 or more. Further, it can be 5.3 or less, 5 or less, 4.9 or less, 4.8 or less, 4.7 or less, 4.6 or less, and the like. The adjustment to the acidic pH range is possible at any stage after the adjustment of the protein concentrate with an acid such as hydrochloric acid or citric acid and before the heat treatment in the next step. For example, the pH can be adjusted after obtaining the protein concentrate or after adding the water-soluble polysaccharide. Further, if the pH of the protein concentrate is already in the range of pH 3.5 to 5.5, it may not be necessary to adjust the pH.
By setting the pH to the above-mentioned appropriate value, a desired isolated plant-based protein can be produced.

IV)加熱処理工程
次に、pH3.5~5.5の該混合液を80~170℃、1~120秒間加熱処理を行う。等電点付近のpH域にある蛋白質溶液を加熱処理を行うと、加熱処理装置内で粗大な凝集を引き起こし、最悪の場合加熱処理装置の配管が閉塞してしまう場合がある。本発明では上記III)の工程を経ることにより、蛋白質の凝集の発生を抑制することができ、安定して連続的に加熱処理液を得ることができる。加熱処理の工程は、間接加熱方式や直接加熱方式の何れの方法も利用でき、UHT殺菌が好ましい。例えばジェットクッカー装置やVTIS装置(アルファラバル社製)などのスチームインジェクション方式の連続式直接加熱殺菌装置を用いることができる。
該加熱温度は90℃以上、100℃以上、110℃以上、120℃以上、130℃以上又は140℃以上であることができる。また、160℃以下、155℃以下又は150℃以下であることができる。該加熱時間は、2秒以上、3秒以上又は4秒以上であることができ、また100秒以下、80秒以下、60秒以下、40秒以下、30秒以下、20秒以下又は10秒以下であることができる。
加熱温度を上記の適当な温度とすることで、所望の分離植物性蛋白を製造することができる。
IV) Heat treatment step Next, the mixed solution having a pH of 3.5 to 5.5 is heat-treated at 80 to 170 ° C. for 1 to 120 seconds. When a protein solution in the pH range near the isoelectric point is heat-treated, coarse aggregation may occur in the heat treatment device, and in the worst case, the piping of the heat treatment device may be blocked. In the present invention, by going through the step III) above, the occurrence of protein aggregation can be suppressed, and a stable and continuous heat treatment liquid can be obtained. As the heat treatment step, either an indirect heating method or a direct heating method can be used, and UHT sterilization is preferable. For example, a steam injection type continuous direct heat sterilizer such as a jet cooker device or a VTIS device (manufactured by Alfa Laval) can be used.
The heating temperature can be 90 ° C. or higher, 100 ° C. or higher, 110 ° C. or higher, 120 ° C. or higher, 130 ° C. or higher, or 140 ° C. or higher. Further, the temperature may be 160 ° C. or lower, 155 ° C. or lower, or 150 ° C. or lower. The heating time can be 2 seconds or more, 3 seconds or more or 4 seconds or more, and 100 seconds or less, 80 seconds or less, 60 seconds or less, 40 seconds or less, 30 seconds or less, 20 seconds or less or 10 seconds or less. Can be.
By setting the heating temperature to the above-mentioned appropriate temperature, a desired isolated plant-based protein can be produced.

V)中和工程
該加熱処理液に必要によりアルカリを添加し中和し、中和液を得る。この際に用いるアルカリは水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなど食品製造上用いることができるアルカリであれば種類に制限はない。必ずしも粉末化工程前に中和工程を必要としないが、製造工程中で添加する酸の中和による除去を目的とする場合、pH6~8、pH6.5~7.5、又はpH6.7~7.3の範囲で調整することができる。このときのpHが分離植物性蛋白のpHにほぼ相当するものとなる。
V) Neutralization step If necessary, an alkali is added to the heat-treated solution to neutralize the solution to obtain a neutralized solution. The alkali used at this time is not limited in type as long as it is an alkali that can be used in food production such as sodium hydroxide, potassium hydroxide, and calcium hydroxide. A neutralization step is not always required before the powdering step, but if the purpose is to remove the acid added during the manufacturing step by neutralization, pH 6 to 8, pH 6.5 to 7.5, or pH 6.7 to It can be adjusted in the range of 7.3. The pH at this time is substantially equivalent to the pH of the isolated plant protein.

VI)粉末化工程
該中和液を乾燥粉末化し、目的の分離植物性蛋白を得る。乾燥機としては、例えば噴霧乾燥機、ドラム乾燥機、真空乾燥機、凍結乾燥機などを用いることができるが、噴霧乾燥機が好ましく用いられる。噴霧乾燥機の乾燥条件としては、例えば、送風温度約100~200℃、排風温度約60~100℃で行うことができる。また、必要により流動層造粒機により顆粒状に造粒加工することもできる。
VI) Powdering step The neutralizing solution is dried and powdered to obtain the desired isolated plant-based protein. As the dryer, for example, a spray dryer, a drum dryer, a vacuum dryer, a freeze dryer and the like can be used, but a spray dryer is preferably used. As the drying conditions of the spray dryer, for example, the blowing temperature can be about 100 to 200 ° C. and the exhaust air temperature can be about 60 to 100 ° C. Further, if necessary, it can be granulated into granules by a fluidized bed granulator.

■製造態様2
別の態様として、市販されている分離植物性蛋白を用意し、出発原料に用いることができる。この場合は、該分離植物性蛋白に加水し、これを製造態様1における「蛋白質濃縮物」として用い、III)の工程に供して以降の工程は同様にして、本分離植物性蛋白を得ることができる。
■ Manufacturing mode 2
As another embodiment, a commercially available isolated plant-based protein can be prepared and used as a starting material. In this case, the isolated plant-based protein is hydrated and used as the "protein concentrate" in the production embodiment 1, and the protein is subjected to the step of III) in the same manner as the subsequent steps to obtain the isolated plant-based protein. Can be done.

(本分離植物性蛋白の特徴)
以上により得られる本分離植物性蛋白の特徴を示す。
■水への溶解性(NSI)
本分離植物性蛋白は、水への溶解性が低いものである。その指標として、NSI(Nitrogen Solubility Index:窒素溶解指数)は50以下であり、45以下、40以下、37以下、35以下、30以下、25以下、22以下又は20以下であり得る。ちなみに、典型的な分離大豆蛋白である「フジプロF」(不二製油(株)製)の場合、NSIは99.5である。
(Characteristics of this isolated plant protein)
The characteristics of this isolated plant-based protein obtained by the above are shown.
■ Solubility in water (NSI)
This isolated plant-based protein has low solubility in water. As the index, the NSI (Nitrogen Solubility Index) is 50 or less, and may be 45 or less, 40 or less, 37 or less, 35 or less, 30 or less, 25 or less, 22 or less, or 20 or less. Incidentally, in the case of "Fuji Pro F" (manufactured by Fuji Oil Co., Ltd.), which is a typical isolated soybean protein, the NSI is 99.5.

(NSI)
なお、本発明において、NSIは所定の方法に基づき、全窒素量に占める水溶性窒素(粗蛋白)の比率(重量%)で表すことができ、本発明においては以下の方法に準じて測定された値とする。
すなわち、試料3gに60mlの水を加え、37℃で1時間プロペラ攪拌した後、1400×gにて10分間遠心分離し、上澄み液(I)を採取する。次に、残った沈殿に再度水100mlを加え、再度37℃で1時間プロペラ撹拌した後、遠心分離し、上澄み液(II)を採取する。(I)液および(II)液を合わせ、その混合液に水を加えて250mlとする。これを濾紙(NO.5)にて濾過した後、濾液中の窒素含量をケルダール法にて測定する。同時に試料中の窒素量をケルダール法にて測定し、濾液として回収された窒素量(水溶性窒素)の試料中の全窒素量に対する割合を重量%として表したものをNSIとする。
(NSI)
In the present invention, NSI can be expressed as the ratio (% by weight) of water-soluble nitrogen (crude protein) to the total amount of nitrogen based on a predetermined method, and in the present invention, it is measured according to the following method. Value.
That is, 60 ml of water is added to 3 g of the sample, the propeller is stirred at 37 ° C. for 1 hour, and then centrifuged at 1400 × g for 10 minutes to collect the supernatant liquid (I). Next, add 100 ml of water to the remaining precipitate again, stir the propeller again at 37 ° C. for 1 hour, centrifuge, and collect the supernatant liquid (II). Combine the solution (I) and the solution (II), and add water to the mixture to make 250 ml. This is filtered through a filter paper (NO.5), and then the nitrogen content in the filtrate is measured by the Kjeldahl method. At the same time, the amount of nitrogen in the sample is measured by the Kjeldahl method, and the ratio of the amount of nitrogen recovered as a filtrate (water-soluble nitrogen) to the total amount of nitrogen in the sample is expressed as% by weight, which is defined as NSI.

■二価金属塩の含量
一方、カルシウムやマグネシウム等の二価金属塩の添加などの加工処理によって、NSIを低下させた分離植物性蛋白も存在し、例えばNSIが20以上50未満のものも存在する。しかし、本発明の製造法では、2価金属塩の添加を行うことなく、NSIの低い分離植物性蛋白を製造することができる。すなわち、本分離植物性蛋白は、蛋白質に対するカルシウム含量が0.6重量%以下、かつマグネシウム含量が0.3重量%以下であることができる。該カルシウム含量は、さらに0.55重量%以下、0.5重量%以下、0.4重量%以下、0.3重量%以下又は0.2重量%以下であることができる。該マグネシウム含量はさらに0.2重量%以下、0.15重量%以下又は0.1重量%以下であることができる。さらには本分離植物性蛋白は、製造中にカルシウム塩又は/及びマグネシウム塩が添加されていないものであり得る。なお、カルシウム及びマグネシウムの含量は、公定された原子吸光法で測定される。
■ Content of divalent metal salt On the other hand, there are isolated plant-based proteins whose NSI is lowered by processing such as addition of divalent metal salts such as calcium and magnesium, for example, those with NSI of 20 or more and less than 50. do. However, in the production method of the present invention, a isolated plant-based protein having a low NSI can be produced without adding a divalent metal salt. That is, the isolated plant-based protein can have a calcium content of 0.6% by weight or less and a magnesium content of 0.3% by weight or less with respect to the protein. The calcium content can be further 0.55% by weight or less, 0.5% by weight or less, 0.4% by weight or less, 0.3% by weight or less, or 0.2% by weight or less. The magnesium content can be further 0.2% by weight or less, 0.15% by weight or less, or 0.1% by weight or less. Furthermore, the isolated plant-based protein may be one to which a calcium salt and / or a magnesium salt has not been added during production. The contents of calcium and magnesium are measured by an official atomic absorption method.

■分解度(0.22M トリクロロ酢酸可溶率)
本分離植物性蛋白は、プロテアーゼによる酵素分解がされていないことも特徴である。該酵素分解がされていないことの指標として、0.22M トリクロロ酢酸可溶率(以下、「TCA可溶率」と称する)を用いることができる。該数値は、分離植物性蛋白を蛋白質含量として1.0重量%となるように水に分散させ十分撹拌した分散液について、全蛋白質に対する0.22M トリクロロ酢酸に溶解する蛋白質の割合を、ケルダール法により測定したものである。蛋白質の加水分解が進行するにつれて、TCA可溶率の値は上昇する。
本植物性蛋白質素材は、このTCA可溶率が10%未満であることを特徴とする。ある実施態様では、TCA可溶率は上限が7%以下、6%以下又は5%以下であり得る。酵素分解された分離植物性蛋白は、しばしば各種食品の形状や物性にマイナスに影響する要因になる場合がある。そのような場合に本分離植物性蛋白は有用である。
■ Degradation degree (0.22M trichloroacetic acid solubility)
This isolated plant-based protein is also characterized by not being enzymatically decomposed by protease. A 0.22M trichloroacetic acid solubility (hereinafter referred to as "TCA solubility") can be used as an index of the absence of the enzymatic decomposition. The numerical value is the ratio of the protein dissolved in 0.22 M trichloroacetic acid to the total protein in the dispersion liquid in which the isolated plant-based protein is dispersed in water so as to have a protein content of 1.0% by weight and sufficiently stirred, using the Kjeldahl method. It was measured by. As the hydrolysis of the protein progresses, the value of TCA solubility increases.
The present vegetable protein material is characterized in that the TCA solubility is less than 10%. In certain embodiments, the TCA solubility may be up to 7% or less, 6% or less or 5% or less. Enzymatically degraded isolated plant-based proteins can often be a factor that negatively affects the shape and physical properties of various foods. This isolated plant-based protein is useful in such cases.

■吸水性
本分離植物性蛋白は、典型的な分離植物性蛋白よりも吸水性が低いことも特徴である。吸水性のレベルは、吸水率を直接測定することが困難であるため、下記の「吸水性の評価方法」を用いて評価するものとする。
「吸水性の評価方法」
分離植物性蛋白50部、水100部及び大豆油50部の配合で、ホモジナイザー((株)日本精機製作所製、型番:ED-7)を用いて12000rpmで2分間撹拌し、エマルジョン生地を得る。
エマルジョン生地を作製できた場合には、該生地を容器径φ=5.5cm、容器高さh=1.5cmの容器に気泡が入らないように充填する。そして、テクスチャーアナライザー((株)島津製作所製、型番:EZ Test EZ-SX)を用いてプランジャー径φ=18mm、測定速度5mm/秒の条件にてエマルジョン生地の硬さ(gf)を測定する。
吸水性が高いほどエマルジョン生地の硬さは高い数値を示し、吸水性が高すぎる場合はエマルジョン生地を作製できなくなる。したがって、エマルジョン生地の作製の可否および該生地の硬さ(gf)の数値の大小によって吸水性のレベルを評価する。
本分離植物性蛋白の吸水性のレベルは、上記の測定方法にて、エマルジョン生地を作製できるレベルであり、好ましくは該生地の硬さが1300gf以下であり、より好ましくは1000gf以下であり得る。ちなみに、典型的な分離大豆蛋白である「フジプロF」(不二製油(株)製)などの場合、吸水性が高すぎて、該エマルジョン生地を作製できない。
■ Water absorption This isolated plant-based protein is also characterized by its lower water absorption than typical isolated plant-based proteins. Since it is difficult to directly measure the water absorption rate, the water absorption level shall be evaluated using the following "water absorption evaluation method".
"Evaluation method of water absorption"
A mixture of 50 parts of isolated plant protein, 100 parts of water and 50 parts of soybean oil is stirred at 12000 rpm for 2 minutes using a homogenizer (manufactured by Nissei Tokyo Office, model number: ED-7) to obtain an emulsion dough.
When an emulsion dough can be prepared, the dough is filled in a container having a container diameter of φ = 5.5 cm and a container height of h = 1.5 cm so that air bubbles do not enter. Then, the hardness (gf) of the emulsion dough is measured using a texture analyzer (manufactured by Shimadzu Corporation, model number: EZ Test EZ-SX) under the conditions of a plunger diameter of φ = 18 mm and a measurement speed of 5 mm / sec. ..
The higher the water absorption, the higher the hardness of the emulsion dough, and if the water absorption is too high, the emulsion dough cannot be produced. Therefore, the level of water absorption is evaluated by the feasibility of producing an emulsion dough and the magnitude of the numerical value of the hardness (gf) of the dough.
The level of water absorption of the isolated plant-based protein is a level at which an emulsion dough can be produced by the above-mentioned measuring method, and the hardness of the dough is preferably 1300 gf or less, more preferably 1000 gf or less. By the way, in the case of "Fujipro F" (manufactured by Fuji Oil Co., Ltd.), which is a typical isolated soybean protein, the water absorption is too high to produce the emulsion dough.

■嵩密度
本分離植物性蛋白は、嵩密度が高いことも特徴である。
本分離植物性蛋白の嵩密度は、0.5g/cm以上であり、0.55g/cm以上、0.6g/cm以上又は0.65g/cm以上であり得る。ちなみに、典型的な分離大豆蛋白である「フジプロF」(不二製油(株)製)の場合、嵩密度は約0.45g/cmである。
なお、嵩密度は、「POWDER TESTER model PT-X」(ホソカワミクロン社製)を用いて、タッピング回数は180回に設定して測定する。
■ Bulk density This isolated plant-based protein is also characterized by its high bulk density.
The bulk density of the isolated plant protein is 0.5 g / cm 3 or more, and can be 0.55 g / cm 3 or more, 0.6 g / cm 3 or more, or 0.65 g / cm 3 or more. Incidentally, in the case of "Fujipro F" (manufactured by Fuji Oil Co., Ltd.), which is a typical isolated soybean protein, the bulk density is about 0.45 g / cm 3 .
The bulk density is measured by using "POWDER TESTER model PT-X" (manufactured by Hosokawa Micron) and setting the tapping frequency to 180 times.

(分離植物性蛋白の用途)
以上のように、本分離植物性蛋白は、吸水性が低く、かつ嵩密度が高いため、いわば「細かい砂」のような性状をしている。そのため、これを各種食品に添加しても、その形状や物性、食感などに影響を与えにくい特徴を有し、蛋白質の増量材のように用い、食品の蛋白質を強化することができる。
例えば、本発明の分離植物性蛋白をパン類等に添加することにより、生地の伸展性などの作業性や焼成後の膨らみ、食感などの品質を維持しつつ、蛋白質を強化することができる。同様に、パン以外にもクッキー、ビスケット、パウンドケーキ等のベーカリー類、中華麺、うどん、そば、パスタ等の麺類、チョコレート、スナック、シリアル、和菓子等の菓子類、マーガリン、バター、ファットスプレッド等の加工油脂類、豆腐、油揚げ、がんも等の大豆加工品、粉末飲料、液体飲料、スープ等の飲料類等の各種食品の蛋白質の強化に利用することができる。
(Use of isolated plant protein)
As described above, this isolated plant-based protein has a property similar to that of "fine sand" because of its low water absorption and high bulk density. Therefore, even if it is added to various foods, it has a characteristic that it does not easily affect its shape, physical properties, texture and the like, and it can be used as a protein extender to enhance the protein of foods.
For example, by adding the isolated plant-based protein of the present invention to breads and the like, the protein can be strengthened while maintaining workability such as extensibility of the dough, swelling after baking, and quality such as texture. .. Similarly, in addition to bread, bakeries such as cookies, biscuits and pound cakes, noodles such as Chinese noodles, udon, soba and pasta, sweets such as chocolate, snacks, cereals and Japanese sweets, margarine, butter, fat spreads, etc. It can be used to fortify the protein of various foods such as processed fats and oils, tofu, fried tofu, processed soybean products such as cancer, powdered beverages, liquid beverages, and beverages such as soup.

以下、実施例により本発明の実施態様をより具体的に説明する。なお、実施例中の「%」と「部」は特記しない限り「重量%」と「重量部」を示す。 Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples. In addition, "%" and "part" in an Example indicate "% by weight" and "part by weight" unless otherwise specified.

(実施例1)
植物性蛋白質原料である脱脂大豆10部と、水100部とを混合し分散させ、ホモミキサーで攪拌しながら50℃で30分間蛋白質をpH7で抽出した後、遠心分離機を用いて不溶性食物繊維を主体とする不溶性画分(オカラ)を除去し、蛋白質抽出液を得た。
次に、該抽出液に対して、pH4.5になるまで撹拌しつつ塩酸を添加し、遠心分離機により上清を除去し、酸沈殿カードを回収した。
この酸沈殿カード(固形分4部)を水40部に分散してスラリー状の蛋白質濃縮物を得た。該蛋白質濃縮物のpHは4.5であった。
該蛋白質濃縮物に対し、水溶性大豆多糖類「ソヤファイブ-S-DA100」(不二製油(株)製)を蛋白質に対して1%添加し、そのまま蛋白質-多糖類混合液(pH4.5)を得た。
次に、該混合液に対して、スチームインジェクション方式の直接加熱処理装置にて140℃で10秒間の加熱処理を行った。
得られた加熱処理液に、水酸化ナトリウムを加えてpH7に調整して中和し、該中和液をスプレードライヤーを用いて噴霧乾燥し、分離大豆蛋白を得た。
(Example 1)
10 parts of defatted soybean, which is a raw material for vegetable protein, and 100 parts of water are mixed and dispersed, and the protein is extracted at pH 7 for 30 minutes at 50 ° C while stirring with a homomixer, and then insoluble dietary fiber is used in a centrifuge. The insoluble fraction (okara) mainly composed of soybean was removed to obtain a protein extract.
Next, hydrochloric acid was added to the extract while stirring until the pH reached 4.5, the supernatant was removed by a centrifuge, and the acid precipitation card was collected.
This acid precipitation curd (4 parts of solid content) was dispersed in 40 parts of water to obtain a slurry-like protein concentrate. The pH of the protein concentrate was 4.5.
To the protein concentrate, 1% of water-soluble soybean polysaccharide "Soya Five-S-DA100" (manufactured by Fuji Oil Co., Ltd.) was added to the protein, and the protein-polysaccharide mixed solution (pH 4.5) was added as it was. Got
Next, the mixed solution was heat-treated at 140 ° C. for 10 seconds with a steam injection type direct heat treatment device.
Sodium hydroxide was added to the obtained heat-treated solution to adjust the pH to 7 for neutralization, and the neutralized solution was spray-dried using a spray dryer to obtain separated soybean protein.

(比較例1) 加熱処理時のpHの変更(pH7)
実施例1の蛋白質濃縮物(pH4.5)に水溶性大豆多糖類を添加した後、水酸化ナトリウムでpH7に調整する以外は、実施例1と同様にして分離大豆蛋白を得た。
(Comparative Example 1) Change in pH during heat treatment (pH 7)
A separated soybean protein was obtained in the same manner as in Example 1 except that a water-soluble soybean polysaccharide was added to the protein concentrate (pH 4.5) of Example 1 and then adjusted to pH 7 with sodium hydroxide.

(比較例2) 加熱処理時のpHの変更(pH2)
実施例1の蛋白質濃縮物(pH4.5)に水溶性大豆多糖類を添加した後、塩酸でpH2に調整する以外は、実施例1と同様にして分離大豆蛋白を得た。
(Comparative Example 2) Change in pH during heat treatment (pH 2)
A separated soybean protein was obtained in the same manner as in Example 1 except that a water-soluble soybean polysaccharide was added to the protein concentrate (pH 4.5) of Example 1 and then adjusted to pH 2 with hydrochloric acid.

(比較例3) 水溶性大豆多糖類の無添加
実施例1の蛋白質濃縮物(pH4.5)に水溶性大豆多糖類を添加することなく、そのまま次の加熱処理に供したところ、加熱処理装置の配管の中に蛋白質濃縮物の凝集が張り付いて閉塞し、連続的な通液ができなくなったため、運転を中止した。そのため、分離大豆蛋白を製造することはできなかった。
(Comparative Example 3) No addition of water-soluble soybean polysaccharide When the protein concentrate (pH 4.5) of Example 1 was directly subjected to the next heat treatment without adding the water-soluble soybean polysaccharide, the heat treatment apparatus. The operation was stopped because the agglomeration of the protein concentrate stuck in the pipe and blocked it, which made it impossible to continuously pass the liquid. Therefore, it was not possible to produce isolated soybean protein.

(実施例2) 加熱処理時のpHの変更(pH4)
実施例1の蛋白質濃縮物(pH4.5)に水溶性大豆多糖類を添加した後、塩酸でpH4に調整する以外は、実施例1と同様にして分離大豆蛋白を得た。
(Example 2) Change in pH during heat treatment (pH 4)
A separated soybean protein was obtained in the same manner as in Example 1 except that a water-soluble soybean polysaccharide was added to the protein concentrate (pH 4.5) of Example 1 and then adjusted to pH 4 with hydrochloric acid.

(実施例3) 加熱処理時のpHの変更(pH5)
実施例1の蛋白質濃縮物(pH4.5)に水溶性大豆多糖類を添加した後、塩酸水酸化ナトリウムでpH5に調整する以外は、実施例1と同様にして分離大豆蛋白を得た。
(Example 3) Change in pH during heat treatment (pH 5)
After adding a water-soluble soybean polysaccharide to the protein concentrate (pH 4.5) of Example 1, isolated soybean protein was obtained in the same manner as in Example 1 except that the pH was adjusted to 5 with sodium hydroxide hydroxide.

(実施例4) 水溶性大豆多糖類の添加量の変更(0.1%)
実施例1の蛋白質濃縮物(pH4.5)の蛋白質に対して水溶性大豆多糖類を0.1%添加する以外は、実施例1と同様にして分離大豆蛋白を得た。
(Example 4) Change in the amount of water-soluble soybean polysaccharide added (0.1%)
Separated soybean protein was obtained in the same manner as in Example 1 except that 0.1% of water-soluble soybean polysaccharide was added to the protein of the protein concentrate (pH 4.5) of Example 1.

(比較例4) 水溶性大豆多糖類の添加量の変更(0.01%)
実施例1の蛋白質濃縮物(pH4.5)の蛋白質に対して水溶性大豆多糖類を0.01%添加する以外は、実施例1と同様にして分離大豆蛋白を得た。
(Comparative Example 4) Change in the amount of water-soluble soybean polysaccharide added (0.01%)
Separated soybean protein was obtained in the same manner as in Example 1 except that 0.01% of water-soluble soybean polysaccharide was added to the protein of the protein concentrate (pH 4.5) of Example 1.

(実施例5) 水溶性大豆多糖類の添加量の変更(3%)
実施例1の蛋白質濃縮物(pH4.5)の蛋白質に対して水溶性大豆多糖類を3%添加する以外は、実施例1と同様にして分離大豆蛋白を得た。
(Example 5) Change in the amount of water-soluble soybean polysaccharide added (3%)
Separated soybean protein was obtained in the same manner as in Example 1 except that 3% of water-soluble soybean polysaccharide was added to the protein of the protein concentrate (pH 4.5) of Example 1.

上記の実施例1~5および比較例1~3の製造条件を表1にまとめ、各例で得られた分離大豆蛋白の各種成分分析値及び物性の測定値を記した。なお、蛋白質の含量は固形分中の含量を、カルシウム(Ca)、マグネシウム(Mg)、水溶性大豆多糖類の添加率は蛋白質あたりの添加率を示す。 The production conditions of Examples 1 to 5 and Comparative Examples 1 to 3 are summarized in Table 1, and the analysis values of various components and the measured values of the physical properties of the isolated soybean protein obtained in each example are shown. The protein content indicates the content in the solid content, and the addition rate of calcium (Ca), magnesium (Mg), and water-soluble soybean polysaccharide indicates the addition rate per protein.

(表1)

Figure 0007001188000001
(Table 1)
Figure 0007001188000001

(考察)
比較例3の結果の通り、水溶性大豆多糖類を添加せずにスラリー状の蛋白質濃縮物をpH3.5~5.5の酸性pH領域で100℃以上の加熱処理をする場合、加熱処理装置の配管内に粗大な凝集物が目詰まりして、連続的な加熱処理ができなくなることが示された。
(Discussion)
As shown in the result of Comparative Example 3, when the slurry-like protein concentrate is heat-treated at 100 ° C. or higher in the acidic pH region of pH 3.5 to 5.5 without adding the water-soluble soybean polysaccharide, the piping of the heat treatment device. It was shown that coarse agglomerates were clogged inside, making continuous heat treatment impossible.

一方で、水溶性大豆多糖類を蛋白質濃縮物の固形分に対して1.0%添加している実施例1では、酸性pH領域での100℃以上の加熱処理をしても、驚くべきことに問題なく連続処理ができ、分離大豆蛋白を製造できた。 On the other hand, in Example 1 in which 1.0% of the water-soluble soybean polysaccharide was added to the solid content of the protein concentrate, there was a surprising problem even if the heat treatment was performed at 100 ° C. or higher in the acidic pH region. Continuous treatment was possible without any problem, and isolated soybean protein could be produced.

比較例1、比較例2では、加熱処理時の蛋白質濃縮物のpHが大豆蛋白質の等電点であるpH4.5から離れた領域(pH2、pH7)であったためか、得られた分離大豆蛋白のNSIは70%以上となり高い溶解性を示すものとなった。 In Comparative Example 1 and Comparative Example 2, the obtained isolated soybean protein was obtained probably because the pH of the protein concentrate during the heat treatment was in a region (pH2, pH7) away from the isoelectric point of the soybean protein, pH4.5. NSI was 70% or more, showing high solubility.

一方で、加熱処理時の蛋白質濃縮物のpHを3.5~5.5の範囲に調整した実施例1~3で得られた分離大豆蛋白のNSIはいずれも30以下であり、低い溶解性を示した。 On the other hand, the NSI of the isolated soybean proteins obtained in Examples 1 to 3 in which the pH of the protein concentrate at the time of heat treatment was adjusted to the range of 3.5 to 5.5 was 30 or less, showing low solubility.

(実験例1) 水溶性多糖類の種類の検討
蛋白質濃縮物に添加する水溶性多糖類を水溶性エンドウ多糖類、アルギン酸エステル、アルギン酸ナトリウム、グァーガム、タマリンドガム、キサンタンガム、キトサン、アラビアガムなどに置換する以外は、実施例1と同様にして分離大豆蛋白の製造を試みた。
その結果、水溶性エンドウ多糖類とアルギン酸エステルについては、実施例1と同等の分離大豆蛋白を製造できた。しかし、他の水溶性多糖類では加熱処理装置の配管が閉塞し、連続的な通液ができなくなったため、運転を中止した。そのため、分離大豆蛋白を製造できなかった。
(Experimental Example 1) Examination of types of water-soluble polysaccharides Substitute water-soluble polysaccharides added to protein concentrates with water-soluble pea polysaccharides, alginate esters, sodium alginate, guar gum, tamarind gum, xanthan gum, chitosan, arabic gum, etc. An attempt was made to produce the isolated soybean protein in the same manner as in Example 1.
As a result, with respect to the water-soluble pea polysaccharide and the alginic acid ester, the same isolated soybean protein as in Example 1 could be produced. However, with other water-soluble polysaccharides, the piping of the heat treatment device was blocked and continuous liquid flow was not possible, so the operation was stopped. Therefore, isolated soybean protein could not be produced.

(実施例6)
市販の分離大豆蛋白「フジプロF」(不二製油(株)製、固形分中の蛋白質含量91.0%)を12部準備した。これを水88部に加え、これを蛋白質濃縮物(固形分88%)とした。該蛋白質濃縮物のpHは6.95であった。
該蛋白質濃縮物に対し、水溶性大豆多糖類「ソヤファイブ-S-DA100」(不二製油(株)製)を蛋白質に対して1%添加した後、塩酸を用いてpH4.5に調整し、蛋白質-多糖類混合液を得た。以降の工程は実施例1と同様にして、加工後の分離大豆蛋白を得た。
得られた分離大豆蛋白は、実施例1と同様の物性を有していた。
(Example 6)
Twelve copies of commercially available isolated soybean protein "Fujipro F" (manufactured by Fuji Oil Co., Ltd., protein content in solid content 91.0%) were prepared. This was added to 88 parts of water to make a protein concentrate (solid content 88%). The pH of the protein concentrate was 6.95.
To the protein concentrate, add 1% of the water-soluble soybean polysaccharide "Soya Five-S-DA100" (manufactured by Fuji Oil Co., Ltd.) to the protein, and then adjust the pH to 4.5 with hydrochloric acid. A protein-polysaccharide mixed solution was obtained. Subsequent steps were the same as in Example 1 to obtain processed soybean protein.
The obtained isolated soybean protein had the same physical characteristics as in Example 1.

(実施例7)
植物性蛋白質原料を脱脂大豆からエンドウ粕に変更する以外は、実施例1と同様にして分離エンドウ蛋白を製造した。得られた分離エンドウ蛋白は実施例1の分離大豆蛋白と同様の物性を有していた。このことから、他の植物性蛋白質原料を用いても、実施例1と同じ製造工程を適用すれば、同様の効果を奏することが予測できた。
(Example 7)
The isolated pea protein was produced in the same manner as in Example 1 except that the raw material for the vegetable protein was changed from defatted soybean to pea meal. The obtained isolated pea protein had the same physical characteristics as the isolated soybean protein of Example 1. From this, it was predicted that even if other vegetable protein raw materials were used, the same effect would be obtained if the same production process as in Example 1 was applied.

(参考例)他製品の成分・物性比較
実施例1で得られた分離大豆蛋白と、市販の各種分離大豆蛋白のサンプルA~E(いずれも不二製油(株)製)との成分や物性を比較した。なお、蛋白質の含量は固形分中の含量を示し、カルシウム(Ca),マグネシウム(Mg)の含量は蛋白質に対する含量を示す。
(Reference example) Comparison of components and physical properties of other products The components and physical properties of the isolated soybean protein obtained in Example 1 and samples A to E of various commercially available isolated soybean proteins (both manufactured by Fuji Oil Co., Ltd.). Was compared. The protein content indicates the content in the solid content, and the calcium (Ca) and magnesium (Mg) contents indicate the content with respect to the protein.

(表2)

Figure 0007001188000002
(Table 2)
Figure 0007001188000002

表2の通り、実施例1の本分離植物性蛋白は、吸水性については測定可能なレベルにまで低下できていた。
吸水性については、サンプルB、Cのようにミネラルの添加によって蛋白質を不溶化させたり、またはサンプルB~Eのように蛋白質の分解度を高めることで、低くすることができている。ただし、サンプルAとの比較で把握できるように、本分離植物性蛋白では、ミネラルの添加や蛋白質の分解をしていないにもかかわらず、吸水性が測定可能な領域まで低くなっていることが、非常に特徴的である。
また驚くべきことに、実施例1の本分離植物性蛋白は、嵩密度が最も高くなっていた。
As shown in Table 2, the isolated plant-based protein of Example 1 was able to reduce the water absorption to a measurable level.
The water absorption can be lowered by insolubilizing the protein by adding minerals as in Samples B and C, or by increasing the degree of protein decomposition as in Samples B to E. However, as can be understood by comparison with sample A, the water absorption of this isolated plant-based protein is low to the measurable region even though no minerals are added or the protein is decomposed. , Very characteristic.
Surprisingly, the isolated plant-based protein of Example 1 had the highest bulk density.

Claims (10)

下記工程(a)及び(b)を有する、NSIが50以下の分離植物性蛋白の製造工程において、下記工程(c)を行うことを特徴とする、酸性下での加熱処理における蛋白質の凝固防止方法。
)植物性蛋白質原料を水抽出して得られる蛋白質抽出液から蛋白質を濃縮し、蛋白質濃縮物を得る工程
)該蛋白質濃縮物又はその加水物をpH~5.5の酸性下において80~170℃の連続式加熱処理を行い、加熱処理液を得る工程
(c))工程を行う際に、該蛋白質濃縮物にペクチン性多糖類またはアルギン酸エステルを混合しておく工程
In the step of producing a separated plant-based protein having an NSI of 50 or less, which comprises the following steps (a) and (b), the following step (c) is performed to prevent protein coagulation in heat treatment under acidic conditions. Method.
( A ) A step of concentrating a protein from a protein extract obtained by extracting a vegetable protein raw material with water to obtain a protein concentrate.
( B ) A step of continuously heat-treating the protein concentrate or its hydrolyzate at 80 to 170 ° C. under acidic pH of 4 to 5.5 to obtain a heat-treated liquid.
(C) A step of mixing a pectic polysaccharide or an alginic acid ester with the protein concentrate when performing the step ( b ).
前記工程(b)のpHが4.3~4.9である、請求項1記載の方法。The method according to claim 1, wherein the pH of the step (b) is 4.3 to 4.9. 前記工程(b)において、さらに該加熱処理液を中和する工程を含む、請求項1又は2記載の方法。The method according to claim 1 or 2, further comprising a step of neutralizing the heat treatment liquid in the step (b). 下記(a)~(c)の全工程を有するNSIが50以下の分離植物性蛋白の製造工程において、下記工程(d)及び(e)を行うことを特徴とする、分離植物性蛋白の嵩密度の増大方法。
)植物性蛋白質原料を水抽出して得られる蛋白質抽出液から蛋白質を濃縮し、蛋白質濃縮物を得る工程、
)該蛋白質濃縮物又はその加水物に80~170℃の加熱処理を行い、加熱処理液を得る工程
)該加熱処理液を粉末化する工程
(d)前記工程()の加熱処理の際に、該蛋白質濃縮物又はその加水物のpHを~5.5の酸性下にしておくこと
(e)前記工程(b)の加熱処理の際に、該蛋白質濃縮物又はその加水物にペクチン性多糖類またはアルギン酸エステルを混合しておくこ
The bulk of the isolated plant-based protein, which comprises the following steps (d) and (e) in the step of producing the isolated plant-based protein having an NSI of 50 or less, which has all the steps (a) to (c) below. How to increase the density.
( A ) A step of concentrating a protein from a protein extract obtained by extracting a vegetable protein raw material with water to obtain a protein concentrate.
( B ) A step of subjecting the protein concentrate or its hydrolyzate to a heat treatment at 80 to 170 ° C. to obtain a heat treatment liquid.
( C ) Step of pulverizing the heat treatment liquid ,
(D) At the time of the heat treatment in the step ( b ), the pH of the protein concentrate or its hydrolyzate should be kept under acidic conditions of 4 to 5.5 .
(E) At the time of the heat treatment in the step (b), a pectic polysaccharide or an alginic acid ester is mixed with the protein concentrate or its hydrolyzate.
前記工程(d)のpHが4.3~4.9である、請求項4記載の方法。The method according to claim 4, wherein the pH of the step (d) is 4.3 to 4.9. 前記工程(b)において、前記工程(c)の前に、さらに該加熱処理液を中和する工程を含む、請求項4又は5記載の方法。The method according to claim 4 or 5, wherein the step (b) further comprises a step of neutralizing the heat treatment liquid before the step (c). 該嵩密度が0.5g/cmThe bulk density is 0.5 g / cm 3 以上となる、請求項4~6の何れか1項記載の方法。The method according to any one of claims 4 to 6, which is the above. 下記(a)~(c)の全工程を経ることにより、水への溶解性をNSI50以下に低下させることを特徴とする、分離植物性蛋白の処理方法
(a)分離植物性蛋白を用意し、これに加水して蛋白質濃縮物を得る工程、
(b)該蛋白質濃縮物に、ペクチン性多糖類またはアルギン酸エステルを、蛋白質 に対して0.05重量%以上添加し、混合液を得る工程、
(c)該混合液をpH~5.5の酸性下において80~170℃の加熱処理を行い、加熱処理液を得る工程
A method for treating an isolated plant-based protein, which comprises reducing the solubility in water to NSI 50 or less by going through all the steps (a) to (c) below .
(A) A step of preparing a separated plant-based protein and adding water to the isolated plant-based protein to obtain a protein concentrate.
(B) A step of adding 0.05% by weight or more of a pectic polysaccharide or an alginic acid ester to the protein concentrate to obtain a mixed solution.
(C) A step of heat-treating the mixed liquid at 80 to 170 ° C. under acidic pH of 4 to 5.5 to obtain a heat-treated liquid .
前記工程(c)のpHが4.3~4.9である、請求項8記載の方法。The method according to claim 8, wherein the pH of the step (c) is 4.3 to 4.9. 前記工程(c)において、さらに該加熱処理液を中和する工程を含む、請求項8又は9記載の方法。The method according to claim 8 or 9, further comprising a step of neutralizing the heat treatment liquid in the step (c).
JP2021052501A 2021-03-26 2021-03-26 Method for producing isolated plant-based protein Active JP7001188B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021052501A JP7001188B1 (en) 2021-03-26 2021-03-26 Method for producing isolated plant-based protein
JP2021175856A JP7169558B2 (en) 2021-03-26 2021-10-27 Method for producing isolated vegetable protein
CN202111283687.0A CN115124589A (en) 2021-03-26 2021-11-01 Method for producing isolated plant protein, method for increasing bulk specific gravity, and method for preventing protein coagulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021052501A JP7001188B1 (en) 2021-03-26 2021-03-26 Method for producing isolated plant-based protein

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021175856A Division JP7169558B2 (en) 2021-03-26 2021-10-27 Method for producing isolated vegetable protein

Publications (2)

Publication Number Publication Date
JP7001188B1 true JP7001188B1 (en) 2022-02-15
JP2022150076A JP2022150076A (en) 2022-10-07

Family

ID=80929752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021052501A Active JP7001188B1 (en) 2021-03-26 2021-03-26 Method for producing isolated plant-based protein

Country Status (2)

Country Link
JP (1) JP7001188B1 (en)
CN (1) CN115124589A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062935A1 (en) 1998-06-01 1999-12-09 Fuji Oil Co., Ltd. Reaction products between carboxylic acid and amino acid or amino acid condensate and process for producing the same
WO2005058071A1 (en) 2003-12-19 2005-06-30 Fuji Oil Company, Limited Acidic protein food or drink and material thereof
JP2005287506A (en) 2004-03-08 2005-10-20 Fuji Oil Co Ltd Powdery composition for protein-containing acid food and drink
JP6504199B2 (en) 2012-03-29 2019-04-24 不二製油株式会社 Protein material and method for producing the same
CN110498935A (en) 2019-08-15 2019-11-26 南京林业大学 A kind of High Internal Phase Emulsion and preparation method thereof of soybean protein isolate-pectin stable composite Quercetin
CN111587947A (en) 2020-06-02 2020-08-28 平顶山天晶植物蛋白有限责任公司 Preparation method of soybean protein isolate with high dispersion stability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062935A1 (en) 1998-06-01 1999-12-09 Fuji Oil Co., Ltd. Reaction products between carboxylic acid and amino acid or amino acid condensate and process for producing the same
WO2005058071A1 (en) 2003-12-19 2005-06-30 Fuji Oil Company, Limited Acidic protein food or drink and material thereof
JP2005287506A (en) 2004-03-08 2005-10-20 Fuji Oil Co Ltd Powdery composition for protein-containing acid food and drink
JP6504199B2 (en) 2012-03-29 2019-04-24 不二製油株式会社 Protein material and method for producing the same
CN110498935A (en) 2019-08-15 2019-11-26 南京林业大学 A kind of High Internal Phase Emulsion and preparation method thereof of soybean protein isolate-pectin stable composite Quercetin
CN111587947A (en) 2020-06-02 2020-08-28 平顶山天晶植物蛋白有限责任公司 Preparation method of soybean protein isolate with high dispersion stability

Also Published As

Publication number Publication date
JP2022150076A (en) 2022-10-07
CN115124589A (en) 2022-09-30

Similar Documents

Publication Publication Date Title
US8012525B2 (en) Whole soybean powders
RU2259780C2 (en) High molecular soya protein
JP4389785B2 (en) Soy protein acidic gel food and production method thereof
JP2022078181A (en) Chickpea protein concentrate
JP2005521396A (en) Protein isolates, compositions containing protein isolates and methods of use
JP2004520066A (en) Soy protein concentrate with high isoflavone content and method for producing the same
CA2692631C (en) Dispersion improver for gluten, and dispersion solution of gluten
JP4480173B2 (en) Oat granule with high concentration of β-glucan
JP5327391B2 (en) Processed soy material and soy material
EP3272223B1 (en) Chocolate-like food
WO2020196440A1 (en) Method for producing protein-enriched breads
JP5879756B2 (en) Egg white substitute composition and egg white substitute food using the same
JP7001188B1 (en) Method for producing isolated plant-based protein
EP1535517B1 (en) Processed soybean beta-conglycinin protein
JP7169558B2 (en) Method for producing isolated vegetable protein
JP2006524041A (en) Improved method for producing alternative dairy products based on lupine protein
JP6848191B2 (en) Fisheries paste product containing powdered soy protein composition
JP2022168335A (en) vegetable protein isolate
WO2020226166A1 (en) Method for manufacturing powdery vegetable protein material
KR20190075413A (en) Failure rate reduced a dry bean curd and the method for preparing thereof
TW202203778A (en) Pongamia protein products, and methods for producing and using thereof
JP2023048999A (en) Meat substitutional food product containing defatted soybean flour
JP2021073935A (en) Wheat flour composition, dough, and crouton and method of producing the same
CN117500381A (en) Legume protein compositions having improved acid gelation properties
EP2997831A1 (en) Gluten dispersibility improver and gluten dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 7001188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150