JP6999906B2 - In-pipe inspection equipment - Google Patents

In-pipe inspection equipment Download PDF

Info

Publication number
JP6999906B2
JP6999906B2 JP2019009367A JP2019009367A JP6999906B2 JP 6999906 B2 JP6999906 B2 JP 6999906B2 JP 2019009367 A JP2019009367 A JP 2019009367A JP 2019009367 A JP2019009367 A JP 2019009367A JP 6999906 B2 JP6999906 B2 JP 6999906B2
Authority
JP
Japan
Prior art keywords
main body
end side
blade
casing
inspection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019009367A
Other languages
Japanese (ja)
Other versions
JP2020118539A (en
Inventor
雄大 芝
昇史 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University Public Corporation Osaka
Original Assignee
University Public Corporation Osaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Public Corporation Osaka filed Critical University Public Corporation Osaka
Priority to JP2019009367A priority Critical patent/JP6999906B2/en
Publication of JP2020118539A publication Critical patent/JP2020118539A/en
Application granted granted Critical
Publication of JP6999906B2 publication Critical patent/JP6999906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、管内検査装置に関し、より詳しくは、超音波により管内を検査する管内検査装置に関する。 The present invention relates to an in-pipe inspection device, and more particularly to an in-pipe inspection device for inspecting the inside of a tube by ultrasonic waves.

熱交換器チューブ等の管内の肉厚や損傷などを検査する従来の管内検査装置として、例えば、特許文献1に開示された超音波探傷装置が知られている。図5に示すように、超音波探傷装置50は、円筒状のケーシング51と、ケーシング51の後端部に設けられ中央に超音波探触子52を備える水切り治具53と、超音波探触子52から発信された超音波パルスを前方に導くようにケーシング51内に回転可能に支持された中空軸54と、中空軸54の後端に固定された水タービン55と、中空軸54内の前部に設けられた音響ミラー56とを備えている。 As a conventional in-tube inspection device for inspecting the thickness and damage in a tube of a heat exchanger tube or the like, for example, an ultrasonic flaw detector disclosed in Patent Document 1 is known. As shown in FIG. 5, the ultrasonic flaw detector 50 includes a cylindrical casing 51, a drainage jig 53 provided at the rear end of the casing 51 and having an ultrasonic probe 52 in the center, and an ultrasonic probe. A hollow shaft 54 rotatably supported in the casing 51 so as to guide the ultrasonic pulse transmitted from the child 52 forward, a water turbine 55 fixed to the rear end of the hollow shaft 54, and a hollow shaft 54. It is provided with an acoustic mirror 56 provided at the front portion.

この超音波探傷装置50は、ケーシング51を被検管60の軸方向に移動させながら水Wを流すと、超音波探触子52から発射された超音波Uが、音響ミラー56で反射して被検管60に伝播された後、その反射波が超音波探触子52で検出されると共に、ケーシング51を流れる水Wが、水切り冶具53による断面減少効果によって流速が増加して水タービン55に当たり、水タービン55が回転する。検出された情報は、不図示の厚さ測定器に送信されて、被検管60の全周の厚さ情報を取得することができる。 In this ultrasonic flaw detector 50, when water W is flowed while moving the casing 51 in the axial direction of the tube 60 to be inspected, the ultrasonic wave U emitted from the ultrasonic probe 52 is reflected by the acoustic mirror 56. After being propagated to the test tube 60, the reflected wave is detected by the ultrasonic probe 52, and the flow velocity of the water W flowing through the casing 51 increases due to the cross-sectional reduction effect of the drainage jig 53, and the water turbine 55. The water turbine 55 rotates. The detected information is transmitted to a thickness measuring instrument (not shown), and the thickness information of the entire circumference of the test tube 60 can be acquired.

実開平4-127567号公報Jikkenhei 4-127567

上記従来の超音波探傷装置50は、水タービン55が、外周面に螺旋溝を有しており、水Wが、水タービン55を通過した後に、水抜き孔57から中空軸54内に導入されるように構成されているため、水タービン55を高速回転させると、水タービン55の周辺でキャビテーションが発生するおそれがあった。 In the conventional ultrasonic flaw detector 50, the water turbine 55 has a spiral groove on the outer peripheral surface, and water W is introduced into the hollow shaft 54 from the drain hole 57 after passing through the water turbine 55. Therefore, when the water turbine 55 is rotated at high speed, cavitation may occur around the water turbine 55.

このため、水タービン55の高速回転に限界が生じ、検査時間の短縮が困難なだけでなく、発生した気泡が中空軸54内に導入されることで、超音波探触子52による検査精度を低下させるおそれがあった。 For this reason, the high-speed rotation of the water turbine 55 is limited, and it is difficult to shorten the inspection time. In addition, the generated bubbles are introduced into the hollow shaft 54, so that the inspection accuracy by the ultrasonic probe 52 can be improved. There was a risk of lowering it.

そこで、本発明は、超音波による管内の検査を短時間で精度良く行うことができる管内検査装置の提供を目的とする。 Therefore, an object of the present invention is to provide an in-pipe inspection device capable of performing an in-tube inspection by ultrasonic waves in a short time and with high accuracy.

本発明の前記目的は、円筒状のケーシングと、前記ケーシング内に回転自在に支持された回転体と、前記回転体に向けて基端側から超音波パルスを照射する超音波探触子とを備え、前記回転体は、中空筒状の本体部と、前記本体部の先端側に設けられた反射体とを備えており、前記ケーシングを被検査管の内部に挿入して前記超音波探触子から超音波パルスを発することにより、超音波パルスを前記反射体で反射させて前記被検査管の検査を行うことができる管内検査装置であって、前記ケーシングの内部には、基端側から供給される水を螺旋状に旋回させる静翼部が設けられ、前記回転体は、前記本体部の基端側に固定されて前記静翼部が生成する旋回流により前記本体部を回転させる動翼部を備えており、前記動翼部は、前記本体部の周方向に間隔をあけて環状に配置された複数の動翼羽根を備え、前記各動翼羽根の間に形成される複数の動翼流路により旋回流を外周側から内周側に案内して前記本体部の内部に導入する管内検査装置により達成される。 The object of the present invention is to provide a cylindrical casing, a rotating body rotatably supported in the casing, and an ultrasonic probe that irradiates an ultrasonic pulse toward the rotating body from the proximal end side. The rotating body includes a hollow cylindrical main body portion and a reflector provided on the tip end side of the main body portion, and the casing is inserted into the inside of the tube to be inspected to detect the ultrasonic wave. It is an in-tube inspection device capable of inspecting the tube to be inspected by reflecting the ultrasonic pulse with the reflector by emitting an ultrasonic pulse from a child, and the inside of the casing is inside the casing from the proximal end side. A stationary wing portion for spirally swirling the supplied water is provided, and the rotating body is fixed to the base end side of the main body portion, and the main body portion is rotated by a swirling flow generated by the stationary wing portion. A wing portion is provided, and the moving wing portion includes a plurality of moving wing blades arranged in a ring shape at intervals in the circumferential direction of the main body portion, and a plurality of moving wing blades formed between the moving wing portions. This is achieved by an in-pipe inspection device that guides the swirling flow from the outer peripheral side to the inner peripheral side by the moving blade flow path and introduces it into the inside of the main body.

この管内検査装置において、前記動翼流路は、基端側から見た外周側の入口部の長さが内周側の出口部の長さよりも長くなるように形成されていることが好ましい。 In this in-pipe inspection device, it is preferable that the rotor blade flow path is formed so that the length of the inlet portion on the outer peripheral side as seen from the proximal end side is longer than the length of the outlet portion on the inner peripheral side.

また、前記動翼流路は、基端側から見た案内方向両側部が円弧状となるように形成されていることが好ましい。 Further, it is preferable that the rotor blade flow path is formed so that both sides in the guiding direction when viewed from the proximal end side are arcuate.

本発明によれば、超音波による管内の検査を短時間で精度良く行うことができる管内検査装置を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an in-pipe inspection device capable of performing an in-tube inspection by ultrasonic waves with high accuracy in a short time.

本発明の一実施形態に係る管内検査装置の縦断面図である。It is a vertical sectional view of the in-pipe inspection apparatus which concerns on one Embodiment of this invention. 図1に示す管内検査装置の要部平面図である。FIG. 3 is a plan view of a main part of the in-pipe inspection device shown in FIG. 図2のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 本発明の他の実施形態に係る管内検査装置の要部断面図である。It is sectional drawing of the main part of the in-pipe inspection apparatus which concerns on other embodiment of this invention. 従来の管内検査装置の縦断面図である。It is a vertical sectional view of the conventional pipe inspection apparatus.

以下、本発明の実施の形態について、添付図面を参照して説明する。図1は、発明の一実施形態に係る管内検査装置の縦断面図である。図1に示すように、管内検査装置1は、ケーシング10と、ケーシング10内の先端側に配置された回転体20と、ケーシング10内の基端側に配置された超音波探触子30とを備えている。超音波探触子30は、超音波パルスの送受信を行う装置であり、回転体20に向けて基端側から超音波パルスを照射する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a vertical sectional view of an in-pipe inspection device according to an embodiment of the invention. As shown in FIG. 1, the in-pipe inspection device 1 includes a casing 10, a rotating body 20 arranged on the distal end side in the casing 10, and an ultrasonic probe 30 arranged on the proximal end side in the casing 10. It is equipped with. The ultrasonic probe 30 is a device that transmits and receives ultrasonic pulses, and irradiates the rotating body 20 with ultrasonic pulses from the proximal end side.

ケーシング10は円筒状に形成されており、内周面に静翼部11を備えている。静翼部11は、内周面に螺旋溝11aが形成されており、ケーシング10の基端側から供給される水Wを、螺旋溝11aに沿って螺旋状に旋回させる。静翼部11は、螺旋状の旋回流を形成する構成であればよく、例えば、ケーシング10の内周面や超音波探触子30の外周面などに設けた螺旋状のリブであってもよい。 The casing 10 is formed in a cylindrical shape, and has a stationary blade portion 11 on the inner peripheral surface. The stationary blade portion 11 has a spiral groove 11a formed on the inner peripheral surface thereof, and the water W supplied from the base end side of the casing 10 is spirally swirled along the spiral groove 11a. The stationary blade portion 11 may be configured to form a spiral swirling flow, and may be, for example, a spiral rib provided on the inner peripheral surface of the casing 10 or the outer peripheral surface of the ultrasonic probe 30. good.

回転体20は、本体部21と、本体部21内の先端側に設けられた反射体22と、本体部21の基端側に固定された動翼部23とを備えている。本体部21は、中空筒状に形成されており、ベアリング12,13によりケーシング10と同軸状に回転自在に支持されている。反射体22は、本体21の軸線に対して傾斜配置された音響ミラーからなり、超音波探触子30から本体部21内に照射された超音波パルスを反射させて、ケーシング10の周壁に形成された窓部24を介して出力する。 The rotating body 20 includes a main body portion 21, a reflector 22 provided on the tip end side in the main body portion 21, and a moving blade portion 23 fixed to the base end side of the main body portion 21. The main body 21 is formed in a hollow cylindrical shape, and is rotatably supported by bearings 12 and 13 in a coaxial manner with the casing 10. The reflector 22 is composed of an acoustic mirror inclined with respect to the axis of the main body 21, and is formed on the peripheral wall of the casing 10 by reflecting the ultrasonic pulse radiated from the ultrasonic probe 30 into the main body 21. It is output through the window portion 24.

図2は、動翼部23を拡大して示す平面図である。また、図3は、図2に示す動翼部23をケーシング10の基端側から見たA-A断面図である。図1から図3に示すように、動翼部23は、外径が本体部21の外径よりも大きく、内径が本体部21の内径に等しい円環状に形成されており、基端側の複数個所を切欠状に形成することで、本体部21の周方向に間隔をあけて環状に配置された複数の動翼羽根23aを備えている。各動翼羽根23aの間には、外周側の入口部23cから内周側の出口部23dに向けて水Wを案内する動翼流路23bが形成されており、出口部23dが本体部21の内部と連通している。 FIG. 2 is an enlarged plan view of the rotor blade portion 23. Further, FIG. 3 is a cross-sectional view taken along the line AA of the rotor blade portion 23 shown in FIG. 2 as viewed from the base end side of the casing 10. As shown in FIGS. 1 to 3, the rotor blade portion 23 is formed in an annular shape having an outer diameter larger than the outer diameter of the main body portion 21 and an inner diameter equal to the inner diameter of the main body portion 21, and is formed on the proximal end side. By forming a plurality of portions in a notch shape, a plurality of blade blades 23a arranged in an annular shape at intervals in the circumferential direction of the main body portion 21 are provided. Between each blade blade 23a, a blade flow path 23b for guiding water W from the inlet portion 23c on the outer peripheral side to the outlet portion 23d on the inner peripheral side is formed, and the outlet portion 23d is the main body portion 21. It communicates with the inside of.

図3に示すように、動翼羽根23aは、動翼流路23bを通過する水Wの案内方向両側部231b,232bが円弧状となるように形成されている。案内方向両側部231b,232bは、出口部23d側が内周円の接線に沿うように先細に形成されており、出口部23dから排出された水Wを、静翼部11により生じる旋回流の旋回方向(矢示A方向)とは逆方向の矢示C方向に旋回させる。 As shown in FIG. 3, the rotor blade blade 23a is formed so that both side portions 231b and 232b of the water W passing through the rotor blade flow path 23b have an arc shape. Both side portions 231b and 232b in the guiding direction are tapered so that the outlet portion 23d side is along the tangent line of the inner peripheral circle, and the water W discharged from the outlet portion 23d is swirled by the stationary blade portion 11. Turn in the direction of arrow C, which is the direction opposite to the direction (direction of arrow A).

上記の構成を備える管内検査装置1は、従来の管内検査装置と同様に、ケーシング10を被検査管の内部に挿入し、超音波探触子30から超音波パルスを発することにより、超音波パルスを反射体22で反射させて被検査管の検査を行うことができる。ケーシング10内には、基端側から水Wを供給することで、静翼部11により螺旋状の旋回流が発生し、この旋回流が動翼23に作用することで、回転体20が回転する。これにより、被検査管の減肉状況等を周方向に検査することができ、ケーシング10を被検査管内で移動させることにより、被検査管の全体を検査することができる。回転体20の回転数は、窓部24の近傍に設けられたターゲットピンやホール素子等の回転数検出器14により検出することができる。 The in-tube inspection device 1 having the above configuration inserts the casing 10 into the tube to be inspected and emits an ultrasonic pulse from the ultrasonic probe 30 in the same manner as the conventional in-tube inspection device. Can be reflected by the reflector 22 to inspect the tube to be inspected. By supplying water W from the base end side into the casing 10, a spiral swirling flow is generated by the stationary blade portion 11, and the swirling flow acts on the moving blade 23 to rotate the rotating body 20. do. As a result, the thinning state of the tube to be inspected can be inspected in the circumferential direction, and by moving the casing 10 in the tube to be inspected, the entire tube to be inspected can be inspected. The rotation speed of the rotating body 20 can be detected by a rotation speed detector 14 such as a target pin or a Hall element provided in the vicinity of the window portion 24.

本実施形態の管内検査装置1は、図3に示すように、動翼部23の外周に沿って流れる矢示A方向の旋回流を、各動翼流路23bの外周側から内周側に案内することで、動翼部23を矢示B方向に回転させるように構成されており、動翼部23を通過後の水Wは、本体部21に押し込まれる。この結果、動翼流路23bを通過する水Wの流速を高めつつ、動翼部23の周辺における圧力低下を防止してキャビテーションの発生を抑制することができるので、回転体20を高速回転させて検査効率を高めることができる。 As shown in FIG. 3, the in-pipe inspection device 1 of the present embodiment causes a swirling flow in the direction of arrow A flowing along the outer periphery of the rotor blade portion 23 from the outer peripheral side to the inner peripheral side of each rotor blade flow path 23b. By guiding, the moving blade portion 23 is configured to rotate in the direction of arrow B, and the water W after passing through the moving blade portion 23 is pushed into the main body portion 21. As a result, it is possible to prevent the pressure drop in the vicinity of the rotor blade portion 23 and suppress the occurrence of cavitation while increasing the flow velocity of the water W passing through the rotor blade flow path 23b, so that the rotating body 20 is rotated at high speed. The inspection efficiency can be improved.

また、動翼流路23bは、図3に示すように、外周側の入口部23cの長さ(外周面に沿った円弧長さ)L1が、内周側の出口部23dの長さ(内周面に沿った円弧長さ)L2よりも長くなるように形成されており、これによってもキャビテーションの発生を抑制して、回転体20の高速回転を可能にしている。L1のL2に対する比(L1/L2)は、大きすぎると、動翼流路23b内の流速を高めることが困難になる一方、小さすぎると、出口部23dでの流れ抵抗が大きくなり、いずれの場合も回転体20の高速回転が困難になり易いことから、1.5~2.5の範囲に設定することが好ましい。 Further, as shown in FIG. 3, in the moving blade flow path 23b, the length L1 of the inlet portion 23c on the outer peripheral side (the arc length along the outer peripheral surface) L1 is the length of the outlet portion 23d on the inner peripheral side (inner). The arc length along the peripheral surface) is formed to be longer than L2, which also suppresses the occurrence of cavitation and enables high-speed rotation of the rotating body 20. If the ratio of L1 to L2 (L1 / L2) is too large, it becomes difficult to increase the flow velocity in the rotor blade flow path 23b, while if it is too small, the flow resistance at the outlet portion 23d increases. In this case as well, it is easy to make high-speed rotation of the rotating body 20 difficult, so it is preferable to set it in the range of 1.5 to 2.5.

動翼流路23bを通過する水Wは、円弧状の案内方向両側部231b,232bにより案内されて、出口部23dから内周に沿って排出されるため、本体部21内での乱流の発生が抑制されて、キャビテーションの発生が抑えられる。 The water W passing through the rotor blade flow path 23b is guided by the arc-shaped guide direction side portions 231b and 232b and discharged from the outlet portion 23d along the inner circumference, so that the turbulent flow in the main body portion 21 Occurrence is suppressed and cavitation is suppressed.

また、動翼流路23bの入口部23cの長さ(外周面に沿った円弧長さ)L1は、動翼羽根23aの外周長さ(円弧長さ)L3以下であることが好ましく、これによって動翼流路23b内の流速を高めて、回転体20の高速回転を図ることができる。動翼部23の外周面における開口比率(L1/(L1+L3))は、大きすぎると、動翼流路23b内の流速を高めることが困難になる一方、小さすぎると、動翼流路23b内の流れ抵抗が大きくなり、いずれの場合も回転体20の高速回転が困難になり易いことから、1/2~1/4の範囲に設定することが好ましい。 Further, the length (arc length along the outer peripheral surface) L1 of the inlet portion 23c of the rotor blade flow path 23b is preferably equal to or less than the outer peripheral length (arc length) L3 of the rotor blade blade 23a. The flow velocity in the rotor blade flow path 23b can be increased to achieve high-speed rotation of the rotating body 20. If the opening ratio (L1 / (L1 + L3)) on the outer peripheral surface of the rotor blade portion 23 is too large, it becomes difficult to increase the flow velocity in the rotor blade flow path 23b, while if it is too small, it is in the rotor blade flow path 23b. In either case, the flow resistance of the rotor blade 20 becomes large, and high-speed rotation of the rotor blade 20 tends to be difficult. Therefore, it is preferable to set it in the range of 1/2 to 1/4.

以上、本発明の一実施形態について詳述したが、動翼羽根23aの配置や形状等は、特に限定されるものではなく、各動翼羽根23aの間に形成される複数の動翼流路23bにより旋回流を外周側から内周側に案内して本体部21に導入する構成であればよい。例えば、図4に示すように、各動翼羽根23aの間に形成される動翼流路23bの案内方向両側部の一方側が、円環状の動翼23における内周の接線と一致するように、直線状に延びる構成であってもよい。動翼羽根23aの枚数は、多くなるほど回転体20の高速回転が容易になる傾向にあるが、特に限定されるものではない。 Although one embodiment of the present invention has been described in detail above, the arrangement and shape of the blade blades 23a are not particularly limited, and a plurality of blade flow paths formed between the blade blades 23a are not particularly limited. The configuration may be such that the swirling flow is guided from the outer peripheral side to the inner peripheral side by 23b and introduced into the main body portion 21. For example, as shown in FIG. 4, one side of both sides of the moving blade flow path 23b formed between the moving blade blades 23a in the guiding direction coincides with the tangent line of the inner circumference of the annular moving blade 23. , It may be configured to extend linearly. The larger the number of blade blades 23a, the easier it is for the rotating body 20 to rotate at high speed, but the number is not particularly limited.

1 管内検査装置
10 ケーシング
11 静翼部
11a 螺旋溝
20 回転体
21 本体部
22 反射体
23 動翼部
23a 動翼羽根
23b 動翼流路
231b,232b 案内方向両側部
23c 入口部
23d 出口部
30 超音波探触子
1 In-pipe inspection device 10 Casing 11 Silent wing part 11a Spiral groove 20 Rotating body 21 Main body part 22 Reflector 23 Moving blade part 23a Moving blade blade 23b Moving blade flow path 231b, 232b Guide direction both sides 23c Inlet part 23d Outlet part 30 Super Sound probe

Claims (3)

円筒状のケーシングと、前記ケーシング内に回転自在に支持された回転体と、前記回転体に向けて基端側から超音波パルスを照射する超音波探触子とを備え、
前記回転体は、中空筒状の本体部と、前記本体部の先端側に設けられた反射体とを備えており、
前記ケーシングを被検査管の内部に挿入して前記超音波探触子から超音波パルスを発することにより、超音波パルスを前記反射体で反射させて前記被検査管の検査を行うことができる管内検査装置であって、
前記ケーシングの内部には、基端側から供給される水を螺旋状に旋回させる静翼部が設けられ、
前記回転体は、前記本体部の基端側に固定されて前記静翼部が生成する旋回流により前記本体部を回転させる動翼部を備えており、
前記動翼部は、前記本体部の周方向に間隔をあけて環状に配置された複数の動翼羽根を備え、前記各動翼羽根の間に形成される複数の動翼流路により旋回流を外周側から内周側に案内して前記本体部の内部に導入する管内検査装置。
It is provided with a cylindrical casing, a rotating body rotatably supported in the casing, and an ultrasonic probe that irradiates an ultrasonic pulse from the proximal end side toward the rotating body.
The rotating body includes a hollow cylindrical main body portion and a reflector provided on the tip end side of the main body portion.
By inserting the casing into the inside of the tube to be inspected and emitting an ultrasonic pulse from the ultrasonic probe, the ultrasonic pulse is reflected by the reflector to inspect the tube to be inspected. It ’s an inspection device,
Inside the casing, a stationary wing portion that spirally swirls the water supplied from the base end side is provided.
The rotating body includes a moving blade portion that is fixed to the base end side of the main body portion and rotates the main body portion by a swirling flow generated by the stationary blade portion.
The rotor blade portion includes a plurality of blade blades arranged in an annular shape at intervals in the circumferential direction of the main body portion, and a swirling flow is provided by a plurality of blade flow paths formed between the blade blades. An in-pipe inspection device that guides the blades from the outer peripheral side to the inner peripheral side and introduces them into the inside of the main body.
前記動翼流路は、基端側から見た外周側の入口部の長さが内周側の出口部の長さよりも長くなるように形成されている請求項1に記載の管内検査装置。 The in-pipe inspection device according to claim 1, wherein the rotor blade flow path is formed so that the length of the inlet portion on the outer peripheral side as seen from the proximal end side is longer than the length of the outlet portion on the inner peripheral side. 前記動翼流路は、基端側から見た案内方向両側部が円弧状となるように形成されている請求項1または2に記載の管内検査装置。 The in-pipe inspection device according to claim 1 or 2, wherein the rotor blade flow path is formed so that both sides in the guiding direction when viewed from the proximal end side are arcuate.
JP2019009367A 2019-01-23 2019-01-23 In-pipe inspection equipment Active JP6999906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019009367A JP6999906B2 (en) 2019-01-23 2019-01-23 In-pipe inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019009367A JP6999906B2 (en) 2019-01-23 2019-01-23 In-pipe inspection equipment

Publications (2)

Publication Number Publication Date
JP2020118539A JP2020118539A (en) 2020-08-06
JP6999906B2 true JP6999906B2 (en) 2022-01-19

Family

ID=71890510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019009367A Active JP6999906B2 (en) 2019-01-23 2019-01-23 In-pipe inspection equipment

Country Status (1)

Country Link
JP (1) JP6999906B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226707A (en) 1999-12-10 2001-08-21 Sumitomo Metal Ind Ltd Method for inspecting stave cooler, device for the same, method for inspecting multilayered structure consisting of pipe as core and device for the same
JP2003510212A (en) 1999-09-29 2003-03-18 ユニバーシティ オブ ダーハム Conduit moving vehicle
JP2011052663A (en) 2009-09-04 2011-03-17 Mitsubishi Heavy Ind Ltd Runner and fluid machine
JP5237113B2 (en) 2005-12-20 2013-07-17 スリーエム イノベイティブ プロパティズ カンパニー Dental composition containing radiation-to-heat converter and use thereof
CN204142337U (en) 2014-09-24 2015-02-04 上海贝岭股份有限公司 Flowmeter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2587077Y2 (en) * 1991-05-13 1998-12-14 三菱重工業株式会社 Ultrasonic flaw detector for pipes
JPH05237113A (en) * 1992-02-28 1993-09-17 Fujitsu Ltd Ultrasonic probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510212A (en) 1999-09-29 2003-03-18 ユニバーシティ オブ ダーハム Conduit moving vehicle
JP2001226707A (en) 1999-12-10 2001-08-21 Sumitomo Metal Ind Ltd Method for inspecting stave cooler, device for the same, method for inspecting multilayered structure consisting of pipe as core and device for the same
JP5237113B2 (en) 2005-12-20 2013-07-17 スリーエム イノベイティブ プロパティズ カンパニー Dental composition containing radiation-to-heat converter and use thereof
JP2011052663A (en) 2009-09-04 2011-03-17 Mitsubishi Heavy Ind Ltd Runner and fluid machine
CN204142337U (en) 2014-09-24 2015-02-04 上海贝岭股份有限公司 Flowmeter

Also Published As

Publication number Publication date
JP2020118539A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US7302851B2 (en) Methods and apparatus for rotary machinery inspection
US8286491B2 (en) Ultrasonic internal rotating inspection probe that self-eliminates air bubbles
ES2769358T3 (en) Procedure and device to aid the production control of the penetration capacity of tubes
CN103278114B (en) A kind of ultrasound wave Pipe thickness measurement device
JP6999906B2 (en) In-pipe inspection equipment
JP7065844B2 (en) Wing vibration monitoring device, wing vibration monitoring system, and blade
JP2015169547A (en) Ultrasonic inspection device for pipe
CA2426747C (en) Test device for the ultrasonic testing of strand material
JP2017198663A (en) Ultrasonic flaw detecting device, and ultrasonic flaw detecting method
JP2018136271A (en) Piping inspection sensor, piping inspection device, and piping inspection method using piping inspection sensor
JP7144001B2 (en) propulsion device
US6449326B1 (en) Apparatus and method for ultrasonically examining remotely located welds in cast stainless steel nuclear steam supply systems
JP6782277B2 (en) Piping inspection equipment
JP3352653B2 (en) Ultrasonic flaw detector for pipes
CN204740230U (en) Probe subassembly of steam generator heat -transfer pipe ultrasonic examination
JP6731774B2 (en) Ultrasonic flaw detector
KR100768390B1 (en) Heat exchanger tube inspection device using guided ultrasonic wave
JP2625211B2 (en) Ultrasonic testing equipment for small diameter pipes
JP2587077Y2 (en) Ultrasonic flaw detector for pipes
JP2002365033A (en) Apparatus and method for measurement of wall thickness of tube
BR102012004558A2 (en) Supersonic compressor rotor and supersonic compressor system
JPH10153582A (en) Ultrasonic probe to be inserted into tube
JP6378509B2 (en) Wind power generator
Amir Advances in non-invasive tube inspection using pulse reflectometry
JP3205678B2 (en) Ultrasonic flaw detector for lead sheath tube

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6999906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150