JP2015169547A - Ultrasonic inspection device for pipe - Google Patents

Ultrasonic inspection device for pipe Download PDF

Info

Publication number
JP2015169547A
JP2015169547A JP2014044785A JP2014044785A JP2015169547A JP 2015169547 A JP2015169547 A JP 2015169547A JP 2014044785 A JP2014044785 A JP 2014044785A JP 2014044785 A JP2014044785 A JP 2014044785A JP 2015169547 A JP2015169547 A JP 2015169547A
Authority
JP
Japan
Prior art keywords
hollow shaft
tube
pipe
ultrasonic
inspection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014044785A
Other languages
Japanese (ja)
Other versions
JP6039599B2 (en
Inventor
田中 健二
Kenji Tanaka
健二 田中
峰寛 中川
Minehiro Nakagawa
峰寛 中川
元則 安永
Motonori Yasunaga
元則 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Nondestructive Inspection Co Ltd
Original Assignee
Shin Nippon Nondestructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Nondestructive Inspection Co Ltd filed Critical Shin Nippon Nondestructive Inspection Co Ltd
Priority to JP2014044785A priority Critical patent/JP6039599B2/en
Publication of JP2015169547A publication Critical patent/JP2015169547A/en
Application granted granted Critical
Publication of JP6039599B2 publication Critical patent/JP6039599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic inspection device for pipe which can measure thickness or corrosion of a 360-degree position on a pipe inner side with an ultrasonic probe fixed without using a slip ring.SOLUTION: An ultrasonic inspection device 10 for pipe which inspects thickness or erosion state of a pipe 11 by emitting an ultrasonic wave to the inner surface of the pipe 11, comprises: a hollow shaft motor 16 which is arranged with the shaft center aligned with the center of the pipe 11; a supporting carriage 14 which has a plurality of wheels 13 brought into contact with the inner wall of the pipe 11 and positions the hollow shaft motor 16 at the center of the pipe 11; an inclined mirror 19 which is fixed to one side of a hollow shaft 18 of the hollow shaft motor 16, and arranged so as to be inclined at 45 degrees with respect to the shaft center of the hollow shaft motor 16; an ultrasonic probe 21 which is provided on the other side of the hollow shaft 18 with a gap held therebetween, supported by the supporting carriage 14, and provided so as to be aligned to the shaft center of the hollow shaft 18; and a rotation sensor 29 which detects the rotation of the hollow shaft 18.

Description

本発明は、管(配管ともいう)の中に入れて使用し、管の損傷状態、管の厚み等を測定可能な管の超音波検査装置に関する。 The present invention relates to an ultrasonic inspection apparatus for a pipe that can be used by being put in a pipe (also referred to as piping) and capable of measuring the damaged state of the pipe, the thickness of the pipe, and the like.

例えば、特許文献1に記載のように、発電設備の熱交換器に用いられている管は狭隘かつ複雑に配置され、更には熱効率向上のため、外面にフィンが取り付けられている場合があるので、管を外側から非破壊検査することは困難であった。そこで、従来の管内挿入式超音波探傷装置は、同公報の図7に示すように、管の管軸中心線上に保持された探触子本体と信号結合ユニットと駆動ユニットとに分割され、各構成ユニットをそれぞれ回転の伝達が可能な連結具で連結し、管外に超音波送受信器を設置していた。 For example, as described in Patent Document 1, pipes used in heat exchangers of power generation facilities are narrowly and complicatedly arranged, and furthermore, fins may be attached to the outer surface to improve thermal efficiency. It was difficult to non-destructively inspect the tube from the outside. Therefore, as shown in FIG. 7 of the publication, the conventional in-pipe insertion type ultrasonic flaw detector is divided into a probe main body, a signal coupling unit, and a drive unit that are held on the tube axis center line of the tube. The constituent units were connected by a coupler capable of transmitting rotation, and an ultrasonic transmitter / receiver was installed outside the tube.

この探傷装置においては、管の全周に亘って探傷するため、駆動用シャフトを介してモータで1個の振動子を配置した探触子本体を回転走査し、超音波送受信器と振動子との間で授受される電気信号はスリップリングを媒体として外部に送られていた。 In this flaw detection apparatus, in order to perform flaw detection over the entire circumference of the tube, a probe main body in which one vibrator is arranged by a motor is rotated and scanned through a drive shaft, and an ultrasonic transceiver, vibrator, The electric signals sent and received between them were sent to the outside using a slip ring as a medium.

また、特許文献2には、管の中に超音波探触子と回転体とを入れ、回転体の先側に45度傾斜したミラーを設けて、超音波探触子から発した超音波をミラーによって反射させ、その反射波を超音波探触子によって検知するものであった。 In Patent Document 2, an ultrasonic probe and a rotating body are placed in a tube, and a mirror inclined by 45 degrees is provided on the front side of the rotating body, so that an ultrasonic wave emitted from the ultrasonic probe is transmitted. It was reflected by a mirror and the reflected wave was detected by an ultrasonic probe.

特開平11−352113号公報JP-A-11-352113 特開2001−83124号公報JP 2001-83124 A

しかしながら、特許文献1記載の技術においては、回転する超音波探触子への信号線の伝達にスリップリングを用いているので、装置構成が複雑になるという問題がある。この問題を解決するためには、特許文献2記載の技術のように、超音波探触子を固定するとともに45度傾斜した反射ミラーを回転させて使うことにより、超音波探触子の信号線をスリップリングを介して連結する必要を無くすことが考えられる。しかしながら、特許文献2記載の技術では水ジェットノズルによる回転駆動機構が用いられるため、特に大型管の検査の場合、そのままでは回転する部分が大型となって、適用が困難という問題がある。この問題を解決するために、特許文献2の回転体を通常の電動モータに代えて駆動させることも考えられる。しかしながらそのような代替は、モータの回転軸に動力伝達手段を介して回転体を連結し、ミラーを回転駆動させる必要性により、機構が複雑化するこという問題を新たに生じさせる。また、特許文献2記載の技術では、管内の損傷のある位置が正確に判らないという別の問題もある。 However, the technique described in Patent Document 1 has a problem that the configuration of the apparatus becomes complicated because a slip ring is used to transmit a signal line to a rotating ultrasonic probe. In order to solve this problem, the signal line of the ultrasonic probe is used by fixing the ultrasonic probe and rotating the reflection mirror inclined by 45 degrees as in the technique described in Patent Document 2. It is conceivable to eliminate the need to connect the two via a slip ring. However, the technique described in Patent Document 2 uses a rotary drive mechanism using a water jet nozzle, and therefore, particularly in the case of inspection of a large pipe, there is a problem that the rotating part becomes large as it is and is difficult to apply. In order to solve this problem, it is conceivable to drive the rotating body of Patent Document 2 instead of a normal electric motor. However, such an alternative causes a new problem that the mechanism becomes complicated due to the necessity of connecting the rotating body to the rotating shaft of the motor via the power transmission means and driving the mirror to rotate. In addition, the technique described in Patent Document 2 has another problem that the position of damage in the pipe cannot be accurately determined.

本発明はかかる事情に鑑みてなされたもので、スリップリングを使用しない、超音波探触子が固定された機構でありながら、大型管の検査に適したシンプルな構造を有し、且つ、管内側の360度位置の厚み又は腐食の計測が可能な管の超音波検査装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and has a simple structure suitable for inspecting a large-sized pipe while having a mechanism in which an ultrasonic probe is fixed without using a slip ring, and a pipe. An object of the present invention is to provide an ultrasonic inspection apparatus for a pipe capable of measuring the thickness or corrosion at an inner 360 degree position.

前記目的に沿う本発明に係る管の超音波検査装置は、管の内面に超音波を当てて前記管の厚み又は浸食状態を検査する管の超音波検査装置において、
前記管の中央に軸心を合わせて配置された中空軸モータと、
前記管の内壁に当接する複数の車輪を有して、かつ前記中空軸モータを連結部材を介して前記管の中央に位置決めする支持台車と、
前記中空軸モータの中空軸の一側に固定され、該中空軸モータの軸心に対して45度傾けて配置された傾斜ミラーと、
前記中空軸の他側に該中空軸とは隙間を有して固定配置され、前記中空軸の軸心に向きを揃えて設けられた超音波探触子と、
前記中空軸の回転を検知する回転センサーとを備えている。
なお、本発明に係る超音波検査装置が検査対象とする管は、所定の内径を有する直管または曲管である。
An ultrasonic inspection apparatus for a tube according to the present invention that meets the above-described object is an ultrasonic inspection apparatus for a tube that applies ultrasonic waves to the inner surface of the tube to inspect the thickness or erosion state of the tube.
A hollow shaft motor arranged with its axis aligned in the center of the tube;
A support carriage having a plurality of wheels in contact with the inner wall of the pipe and positioning the hollow shaft motor at the center of the pipe via a connecting member;
An inclined mirror that is fixed to one side of the hollow shaft of the hollow shaft motor and is inclined by 45 degrees with respect to the axis of the hollow shaft motor;
An ultrasonic probe that is fixedly disposed on the other side of the hollow shaft with a gap between the hollow shafts, and is provided with a direction aligned with the axis of the hollow shaft;
A rotation sensor for detecting the rotation of the hollow shaft.
The tube to be inspected by the ultrasonic inspection apparatus according to the present invention is a straight tube or a curved tube having a predetermined inner diameter.

本発明に係る管の超音波検査装置において、前記回転センサーは前記中空軸の一回転を検出する1回転センサーであるのが好ましい。 In the ultrasonic inspection apparatus for a tube according to the present invention, the rotation sensor is preferably a one-rotation sensor that detects one rotation of the hollow shaft.

本発明に係る管の超音波検査装置において、前記1回転センサーは前記中空軸に設けられた磁石と、該磁石を検知するホール素子を備えて固定配置された検知部とを有しているのが好ましい。この場合、一回転より小さい角度は、一回転に要する時間を基準にして、その部分的回転時間から計算する。 In the ultrasonic inspection apparatus for a tube according to the present invention, the one-rotation sensor has a magnet provided on the hollow shaft and a detection unit fixedly provided with a Hall element for detecting the magnet. Is preferred. In this case, an angle smaller than one rotation is calculated from the partial rotation time based on the time required for one rotation.

そして、本発明に係る管の超音波検査装置において、前記支持台車の車輪は、前記管の内径に応じた長さに半径方向の突出長を固定可能なアジャスタを含む軸受部材の先部に設けられているのが好ましい。 In the tube ultrasonic inspection apparatus according to the present invention, the wheel of the support carriage is provided at a front portion of a bearing member including an adjuster capable of fixing a protruding length in the radial direction to a length corresponding to the inner diameter of the tube. It is preferred that

本発明に係る管の超音波検査装置は、管の中央に軸心を合わせて配置された中空軸モータの中空軸の一側に45度の傾斜ミラーを設け、中空軸の他側に超音波探触子を配置しているので、中空軸モータの中空軸を有効に使って超音波の通路を形成できる。
更に、超音波探触子が中空軸の他側に固定配置されて、超音波の授受を行うので、信号線が捩れないし、スリップリングも必要ではない。
このように、本発明に係る管の超音波検査装置は、スリップリングを使用しない、超音波探触子が固定された機構でありながら、大型管の検査に適したシンプルな構造を有する。
An ultrasonic inspection apparatus for a tube according to the present invention is provided with a 45-degree inclined mirror on one side of a hollow shaft of a hollow shaft motor arranged with its axis aligned in the center of the tube, and ultrasonic waves on the other side of the hollow shaft. Since the probe is arranged, an ultrasonic path can be formed by effectively using the hollow shaft of the hollow shaft motor.
Further, since the ultrasonic probe is fixedly arranged on the other side of the hollow shaft and transmits and receives ultrasonic waves, the signal line is not twisted and a slip ring is not necessary.
As described above, the ultrasonic inspection apparatus for a tube according to the present invention has a simple structure suitable for inspecting a large pipe, while using a mechanism in which an ultrasonic probe is fixed without using a slip ring.

また、中空軸の回転を検知する回転センサーが設けられているので、傾斜ミラーによる超音波探傷範囲(探傷角度)を明確に検知でき、その場所を明確に特定できる。
つまり、本発明に係る管の超音波検査装置は、管内側の360度位置の厚み又は腐食の計測が可能である。
Further, since the rotation sensor for detecting the rotation of the hollow shaft is provided, the ultrasonic flaw detection range (flaw detection angle) by the tilt mirror can be clearly detected, and the location can be clearly identified.
That is, the ultrasonic inspection apparatus for a pipe according to the present invention can measure the thickness or corrosion at a position of 360 degrees inside the pipe.

更に、中空軸モータを管の中央に位置決めする支持台車を用いているので、検査位置の位置決めが容易となる。
また、支持台車は複数の車輪を介して管内に設置されているので、管に沿って移動させることも容易にできる。
またスリップリングを使用しないため全長を短く製作可能となるため、曲り管にも容易に対応できる。
Further, since the support carriage for positioning the hollow shaft motor at the center of the tube is used, the inspection position can be easily positioned.
Moreover, since the support carriage is installed in the pipe via a plurality of wheels, it can be easily moved along the pipe.
In addition, since a slip ring is not used, the entire length can be made short, so that it can be easily applied to a bent pipe.

(A)は本発明の一実施の形態に係る管の超音波検査装置の側面図、(B)は同装置の背面図である。(A) is a side view of the ultrasonic inspection apparatus for a tube according to an embodiment of the present invention, and (B) is a rear view of the apparatus. 同装置主要部の側断面図である。FIG. (A)は同装置主要部の正面図、(B)は同装置主要部の背面図である。(A) is a front view of the main part of the apparatus, and (B) is a rear view of the main part of the apparatus. (A)は同装置主要部の組立図、(B)は図4の矢視A−A図、(C)は図4の矢視B−B図である。(A) is an assembly drawing of the main part of the apparatus, (B) is an AA view of FIG. 4, and (C) is an BB view of FIG. 4.

続いて添付した図面を参照しながら、本発明の一実施の形態に係る管の超音波検査装置について説明する。
図1〜図4に示すように、本発明の一実施の形態に係る管の超音波検査装置10は、管11の内面に超音波を照射し、その反射波の到達時間で、管(配管)11の厚み又は浸食状態を検査する装置であり、金具部分はステンレス材によって構成され、一部MCナイロン等の合成樹脂が使用されている。
Next, a tube ultrasonic inspection apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
As shown in FIGS. 1 to 4, the ultrasonic inspection apparatus 10 for a tube according to an embodiment of the present invention irradiates the inner surface of the tube 11 with ultrasonic waves, and reaches the tube (piping) at the arrival time of the reflected wave. ) 11 is a device for inspecting the thickness or erosion state, the metal part is made of stainless steel, and a part of synthetic resin such as MC nylon is used.

この管の超音波検査装置10は、図1(A)、(B)に示すように、周囲に複数(3以上)のアーム12を介して設けられた車輪13を有する支持台車14を有している。この支持台車14の車輪13は回転駆動源無しのフリー台車であってもよいし、回転駆動源を有して管11内の所定位置に移動するようにしてもよい。なお、フリー台車の場合は片側又は両側からこの管の超音波検査装置10を引っ張るか押すかするようにする。
アーム12は、検査対象となる管11の内径に対応した固定長を有する軸受部材が突設されたものであり、先部に車輪13が設けられる。
アーム12は、管の半径方向の突出長を調整するアジャスタを含んでもよい。この場合、超音波検査装置10の所定位置に配置する前にアジャスタを調整し、アーム12の突出長を、検査対象となる管11の内径に応じた突出長に固定する。これによって、内径が異なる複数種の管それぞれに対応可能である。なお、アーム12は、回動脚であってもよい。車輪13は、管の内壁に常時当接するように、スプリング等で内壁に向かう半径方向に付勢されるのがよい。
As shown in FIGS. 1 (A) and 1 (B), the ultrasonic inspection apparatus 10 for a tube has a support carriage 14 having wheels 13 provided around a plurality (three or more) arms 12 around the tube. ing. The wheels 13 of the support carriage 14 may be a free carriage without a rotational drive source, or may have a rotational drive source and move to a predetermined position in the pipe 11. In the case of a free carriage, the ultrasonic inspection apparatus 10 for this tube is pulled or pushed from one side or both sides.
The arm 12 is provided with a bearing member having a fixed length corresponding to the inner diameter of the tube 11 to be inspected, and a wheel 13 is provided at the tip.
The arm 12 may include an adjuster that adjusts the protruding length of the tube in the radial direction. In this case, the adjuster is adjusted before the ultrasonic inspection apparatus 10 is arranged at a predetermined position, and the protruding length of the arm 12 is fixed to the protruding length corresponding to the inner diameter of the tube 11 to be inspected. Accordingly, it is possible to cope with a plurality of types of pipes having different inner diameters. The arm 12 may be a rotating leg. The wheel 13 is preferably urged in the radial direction toward the inner wall by a spring or the like so as to always contact the inner wall of the pipe.

支持台車14の前側中央には、連結部材17を介して図2に示す検査装置本体15が設けられている。検査装置本体15は、管11の中央に軸心を合わせて配置された中空軸モータ16と、中空軸モータ16の中空軸18の一側に固定され、中空軸モータ16の軸心に対して45度傾けて配置された傾斜ミラー19を備えた先側金具20とを有している。 An inspection apparatus main body 15 shown in FIG. 2 is provided at the front center of the support carriage 14 via a connecting member 17. The inspection device main body 15 is fixed to one side of the hollow shaft 18 of the hollow shaft motor 16 and the hollow shaft motor 16 that is arranged in the center of the tube 11 with the shaft center aligned. And a front metal fitting 20 provided with an inclined mirror 19 disposed at an angle of 45 degrees.

中空軸18の他側にパイプ状の中空軸18の内壁とは僅少の隙間(例えば、0.1〜0.5mm)を有して超音波探触子21が設けられ、この超音波探触子21は、中空軸18によって回転駆動されないようになっている。超音波探触子21は連結部材17を介して支持台車14に支持され、中空軸18の軸心に向きを揃えて、環状の後ろ側金具22にねじ固定されている。図3(B)、図4(C)に示す23は超音波探触子21を固定するねじの一つである雌ねじ(120度間隔で3つある)である。先側金具20及びこれに接続される超音波探触子21の詳細は後述する。 An ultrasonic probe 21 is provided on the other side of the hollow shaft 18 with a slight gap (for example, 0.1 to 0.5 mm) from the inner wall of the pipe-shaped hollow shaft 18. The child 21 is not rotated by the hollow shaft 18. The ultrasonic probe 21 is supported by the support carriage 14 via the connecting member 17, and is screwed to the annular rear metal fitting 22 so that the direction is aligned with the axis of the hollow shaft 18. Reference numerals 23 shown in FIGS. 3B and 4C denote female screws (three at 120 degree intervals) that are one of screws for fixing the ultrasonic probe 21. Details of the front metal fitting 20 and the ultrasonic probe 21 connected thereto will be described later.

図2に示すように、中空軸モータ16の中空軸18はパイプ状となって、片側には突出リング26を有している。この突出リング26の所定角度位置には、永久磁石27が設けられている。そして、中空軸モータ16を収納するケーシング28の内側に設けられ、中空軸モータ16の外側に固定されているホール素子(検知部の一例)と永久磁石27によって1回転センサー29(回転センサーの一例)を形成し、1回転センサー29によって特定角度(例えば、原点)にある永久磁石27を検知、即ち中空軸18の一回転の時間を検出する構造となっている。 As shown in FIG. 2, the hollow shaft 18 of the hollow shaft motor 16 has a pipe shape and has a protruding ring 26 on one side. A permanent magnet 27 is provided at a predetermined angular position of the protruding ring 26. A one-rotation sensor 29 (an example of a rotation sensor) is provided by a hall element (an example of a detection unit) and a permanent magnet 27 that are provided inside a casing 28 that houses the hollow shaft motor 16 and are fixed to the outside of the hollow-axis motor 16. ) And the permanent magnet 27 at a specific angle (for example, the origin) is detected by the one rotation sensor 29, that is, the time for one rotation of the hollow shaft 18 is detected.

図2、図4(A)、(B)に示すように、ケーシング28は筒体部30と、筒体部30の先側に一体として設けられた内フランジ部31を有する。内フランジ部31の中央は開口されて先側金具20が挿通するようになっている。32、32aはオイルシール挿入用の環状溝である。中空軸モータ16は内フランジ部31にねじ止めされている。図3(B)に示す33は中空軸モータ16を固定するねじである。 As shown in FIGS. 2, 4 </ b> A, and 4 </ b> B, the casing 28 includes a cylindrical body portion 30 and an inner flange portion 31 that is integrally provided on the front side of the cylindrical body portion 30. The center of the inner flange portion 31 is opened so that the front metal fitting 20 can be inserted therethrough. 32 and 32a are annular grooves for inserting an oil seal. The hollow shaft motor 16 is screwed to the inner flange portion 31. Reference numeral 33 shown in FIG. 3B denotes a screw for fixing the hollow shaft motor 16.

図4(A)に示すように、先側金具20は、中空軸モータ16の中空軸18に装着される内側に超音波が通過する通路(空間部、水で充填される)である管状の超音波伝搬部34と、その先側に一体化して設けられているミラー収納部35と、ミラー収納部35に装着され、反射面36の角度が、中空軸モータ16の軸心に対して45度の傾斜ミラー19を有するミラー部37と有し、ミラー部36をミラー収納部35に装着して先側金具20が完成する。 As shown in FIG. 4A, the front metal fitting 20 has a tubular shape that is a passage (space portion, filled with water) through which ultrasonic waves pass inside the hollow shaft 18 of the hollow shaft motor 16. The ultrasonic wave propagation part 34, the mirror storage part 35 provided integrally on the front side thereof, and the mirror storage part 35 are mounted, and the angle of the reflection surface 36 is 45 with respect to the axis of the hollow shaft motor 16. And the mirror part 37 having the tilted mirror 19 of the degree, and the mirror part 36 is attached to the mirror housing part 35 to complete the front side metal fitting 20.

また、先側金具20の後部にある超音波伝搬部34は中空軸モータ16の中空軸18を貫通する長さを有し、中空軸18の突出リング26に設けられた単数又は複数のねじによって、中空軸18と先側金具20が一体化して低速回転できる構造となっている。中空軸モータ16は正面視して角が面取りされた正方形となって、ケーシング28内に所定の角度を保ちながら収納されている。従って,中空軸モータ16を駆動すると、中空軸18が回転し、これに伴い先側金具20が回転する。回転状況は、1回転センサー29で検知でき、1回転センサー29の検出タイミング(周期T)と作動時間(<T)から詳細な探傷位置が検知できる。 Further, the ultrasonic wave propagation part 34 at the rear part of the front metal fitting 20 has a length that penetrates the hollow shaft 18 of the hollow shaft motor 16, and is provided by one or a plurality of screws provided on the protruding ring 26 of the hollow shaft 18. The hollow shaft 18 and the front metal fitting 20 are integrated so that they can rotate at a low speed. The hollow shaft motor 16 has a square shape with chamfered corners when viewed from the front, and is housed in the casing 28 while maintaining a predetermined angle. Therefore, when the hollow shaft motor 16 is driven, the hollow shaft 18 is rotated, and the front metal fitting 20 is rotated accordingly. The rotation state can be detected by the single rotation sensor 29, and the detailed flaw detection position can be detected from the detection timing (cycle T) and the operation time (<T) of the single rotation sensor 29.

前記した超音波探触子21は円柱状の超音波伝搬部39と、超音波の発振部40と、発振部40に接続されるコード41とを有している。超音波伝搬部39の直径は、超音波伝搬部34の内径より小さくなって、超音波探触子21を固定状態で保持し、先側金具20が回転できる構造となっている。これによって、スリップリングを省略し、装置自身の簡素化ができる。 The ultrasonic probe 21 has a cylindrical ultrasonic wave propagation part 39, an ultrasonic wave oscillating part 40, and a cord 41 connected to the oscillating part 40. The diameter of the ultrasonic wave propagation part 39 is smaller than the inner diameter of the ultrasonic wave propagation part 34, and the ultrasonic probe 21 is held in a fixed state so that the front metal fitting 20 can rotate. This eliminates the slip ring and simplifies the apparatus itself.

ケーシング28の後ろ側に、MCナイロン製のモータカバー43が設けられ、このモータカバー43に、超音波探触子21を固定する後ろ側金具22がねじ孔43aを挿通するねじによって固定されている。そして、モータカバー43とケーシング28との固定は複数のねじを用いて行う。図4において、45はOリング溝を、46はねじ孔を、47は雌ねじ穴を示す。また、モータカバー43と後ろ側金具22とのシールもオイルシール又はOリングによって行われている。48、49はこれらのシーリング溝を示す。 A motor cover 43 made of MC nylon is provided on the rear side of the casing 28, and the rear metal fitting 22 for fixing the ultrasonic probe 21 is fixed to the motor cover 43 with screws that are inserted through the screw holes 43 a. . The motor cover 43 and the casing 28 are fixed using a plurality of screws. In FIG. 4, 45 is an O-ring groove, 46 is a screw hole, and 47 is a female screw hole. Further, the seal between the motor cover 43 and the rear metal fitting 22 is also performed by an oil seal or an O-ring. Reference numerals 48 and 49 denote these sealing grooves.

従って、この管の超音波検査装置10を使用する場合は、測定しようとする管11の所定位置にこの管の超音波検査装置10を、3つ以上の車輪13が管11の内壁に当接するように配置する。なお、管11が傾斜している場合、垂直の場合は、管の超音波検査装置10自体が移動しないように、車輪13をロックするか、支持部材等で管11の所定位置に保持しておく。以上の作業によって検査装置本体15(中空軸モータ16)の軸心が管11の軸心になるように設置(位置決め)する。 Therefore, when using the ultrasonic inspection apparatus 10 of this tube, the ultrasonic inspection apparatus 10 of this tube is brought into contact with the inner wall of the tube 11 at a predetermined position of the tube 11 to be measured. Arrange as follows. When the tube 11 is inclined or vertical, the wheel 13 is locked or held at a predetermined position by a support member or the like so that the tube ultrasonic inspection device 10 itself does not move. deep. Through the above operation, the inspection apparatus body 15 (hollow shaft motor 16) is installed (positioned) so that the axis of the tube 11 becomes the axis of the tube 11.

この後、管11内に水を入れて、超音波が伝搬し易い環境とし、中空軸モータ16に所定の電力を送って回転させ、かつ管の超音波探触装置10に接続された超音波探触子21を作動させ、1回転センサー29も作動させる。なお、ケーシング28内の中空軸モータ16及び1回転センサー29は密封されているので、内部に水が入ることはない。 Thereafter, water is introduced into the tube 11 to create an environment in which ultrasonic waves are easy to propagate, ultrasonic waves connected to the tube ultrasonic probe 10 are rotated by sending predetermined power to the hollow shaft motor 16. The probe 21 is operated, and the one rotation sensor 29 is also operated. In addition, since the hollow shaft motor 16 and the one rotation sensor 29 in the casing 28 are sealed, water does not enter the inside.

これによって、超音波探触子21からのパルス状の超音波は傾斜ミラー19に反射して、管11の内壁の所定位置に当たって反射し、傾斜ミラー19を介して超音波探触子21に戻る。ここで、1回転センサー29によって原点位置を検知し、次の1回転センサー29が原点を検知するまでの時間の間に、超音波探触子21の出力をグラフにして、管11の内径とその位置を検知できる。 As a result, the pulsed ultrasonic wave from the ultrasonic probe 21 is reflected by the tilting mirror 19, hits a predetermined position on the inner wall of the tube 11, and returns to the ultrasonic probe 21 via the tilting mirror 19. . Here, the origin position is detected by the one-turn sensor 29, and the output of the ultrasonic probe 21 is graphed during the time until the next one-turn sensor 29 detects the origin, and the inner diameter of the tube 11 is calculated. The position can be detected.

なお、検査装置本体15はその軸心を正確に管11の軸心に一致させる必要はない。管11の軸心と、検査装置本体15の軸心がずれると、検知した信号の角度位置(θ)と、その半径r(受信までの時間−超音波探触子から傾斜ミラーまのの超音波伝搬時間)のデータが偏心するのみで、円の中心を移動させることによって、容易に修正できる。
更に、本発明は前記実施の形態に限定されず、本発明の要旨を変更しない範囲での改良、部材変更をすることもできる。
また、前記実施の形態においては、回転センサーとして1回転センサーを使用したが、ロータリエンコーダ等であってもよい。
The inspection apparatus main body 15 does not need to have its axis exactly aligned with the axis of the tube 11. When the axis of the tube 11 and the axis of the inspection apparatus main body 15 are shifted, the angular position (θ) of the detected signal and its radius r (the time until reception-the distance from the ultrasonic probe to the tilted mirror) It can be easily corrected by moving the center of the circle only by decentering the data of the sound wave propagation time.
Furthermore, the present invention is not limited to the above-described embodiment, and improvements and member changes can be made without changing the gist of the present invention.
Moreover, in the said embodiment, although 1 rotation sensor was used as a rotation sensor, a rotary encoder etc. may be sufficient.

10:管の超音波検査装置、11:管、12:アーム、13:車輪、14:支持台車、15:検査装置本体、16:中空軸モータ、17:連結部材、18:中空軸、19:傾斜ミラー、20:先側金具、21:超音波探触子、22:後ろ側金具、23:雌ねじ、26:突出リング、27:永久磁石、27a:検知部、28:ケーシング、29:1回転センサー、30:筒体部、31:内フランジ部、32、32a:環状溝、33:ねじ、34:超音波伝搬部、35:ミラー収納部、36:反射面、37:ミラー部、39:超音波伝搬部、40:発振部、41:コード、43:モータカバー、43a:ねじ穴、45:Oリング溝、46:ねじ孔、47:雌ねじ穴孔、48、49:シーリング溝 10: Ultrasonic inspection device for tube, 11: Tube, 12: Arm, 13: Wheel, 14: Supporting carriage, 15: Inspection device body, 16: Hollow shaft motor, 17: Connecting member, 18: Hollow shaft, 19: Inclined mirror, 20: front metal fitting, 21: ultrasonic probe, 22: rear metal fitting, 23: female thread, 26: protruding ring, 27: permanent magnet, 27a: detector, 28: casing, 29: 1 rotation Sensor: 30: cylinder part, 31: inner flange part, 32, 32a: annular groove, 33: screw, 34: ultrasonic wave propagation part, 35: mirror housing part, 36: reflecting surface, 37: mirror part, 39: Ultrasonic wave propagation part, 40: Oscillating part, 41: Code, 43: Motor cover, 43a: Screw hole, 45: O-ring groove, 46: Screw hole, 47: Female screw hole, 48, 49: Sealing groove

Claims (4)

管の内面に超音波を当てて前記管の厚み又は浸食状態を検査する管の超音波検査装置において、
前記管の中央に軸心を合わせて配置された中空軸モータと、
前記管の内壁に当接する複数の車輪を有して、かつ前記中空軸モータを連結部材を介して前記管の中央に位置決めする支持台車と、
前記中空軸モータの中空軸の一側に固定され、該中空軸モータの軸心に対して45度傾けて配置された傾斜ミラーと、
前記中空軸の他側に該中空軸とは隙間を有して固定配置され、前記中空軸の軸心に向きを揃えて設けられた超音波探触子と、
前記中空軸の回転を検知する回転センサーとを備えたことを特徴とする管の超音波検査装置。
In an ultrasonic inspection apparatus for a tube that applies ultrasonic waves to the inner surface of the tube to inspect the thickness or erosion state of the tube,
A hollow shaft motor arranged with its axis aligned in the center of the tube;
A support carriage having a plurality of wheels in contact with the inner wall of the pipe and positioning the hollow shaft motor at the center of the pipe via a connecting member;
An inclined mirror that is fixed to one side of the hollow shaft of the hollow shaft motor and is inclined by 45 degrees with respect to the axis of the hollow shaft motor;
An ultrasonic probe that is fixedly disposed on the other side of the hollow shaft with a gap between the hollow shafts, and is provided with a direction aligned with the axis of the hollow shaft;
An ultrasonic inspection apparatus for a tube, comprising: a rotation sensor that detects rotation of the hollow shaft.
請求項1記載の管の超音波検査装置において、前記回転センサーは前記中空軸の一回転を検出する1回転センサーであることを特徴とする管の超音波検査装置。 2. The ultrasonic inspection apparatus for tubes according to claim 1, wherein the rotation sensor is a single rotation sensor that detects one rotation of the hollow shaft. 請求項2記載の管の超音波検査装置において、前記1回転センサーは前記中空軸に設けられた磁石と、該磁石を検知するホール素子を備えて固定配置された検知部とを有していることを特徴とする管の超音波検査装置。 3. The ultrasonic inspection apparatus for a tube according to claim 2, wherein the one-rotation sensor includes a magnet provided on the hollow shaft and a detection unit fixedly provided with a Hall element that detects the magnet. An ultrasonic inspection apparatus for tubes. 請求項1〜3のいずれか1記載の管の超音波検査装置において、前記支持台車の車輪は、前記管の内径に応じた長さに半径方向の突出長を固定可能なアジャスタを含む軸受部材の先部に設けられていることを特徴とする管の超音波検査装置。 The ultrasonic inspection apparatus for a pipe according to any one of claims 1 to 3, wherein a wheel of the support carriage includes an adjuster capable of fixing a protruding length in a radial direction to a length corresponding to an inner diameter of the pipe. An ultrasonic inspection apparatus for a tube, characterized by being provided at the tip of the tube.
JP2014044785A 2014-03-07 2014-03-07 Tube ultrasonic inspection equipment Active JP6039599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014044785A JP6039599B2 (en) 2014-03-07 2014-03-07 Tube ultrasonic inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014044785A JP6039599B2 (en) 2014-03-07 2014-03-07 Tube ultrasonic inspection equipment

Publications (2)

Publication Number Publication Date
JP2015169547A true JP2015169547A (en) 2015-09-28
JP6039599B2 JP6039599B2 (en) 2016-12-07

Family

ID=54202402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014044785A Active JP6039599B2 (en) 2014-03-07 2014-03-07 Tube ultrasonic inspection equipment

Country Status (1)

Country Link
JP (1) JP6039599B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106560708A (en) * 2016-08-31 2017-04-12 安徽金三环金属科技有限公司 Floating flaw detection equipment
CN113533507A (en) * 2021-06-25 2021-10-22 中国船舶重工集团公司第七一九研究所 Built-in pipeline damage detection device and detection method thereof
CN115308308A (en) * 2022-10-10 2022-11-08 山东广悦化工有限公司 Diesel pipeline corrosion prevention detection device and application method thereof
WO2023228184A1 (en) * 2022-05-24 2023-11-30 Scanmaster Systems (Irt) Ltd. Mirror connecting unit for an industrial ut system
CN117381715A (en) * 2023-12-11 2024-01-12 山西省水利水电工程建设监理有限公司 Large-caliber pipeline installation butt joint positioning device and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647855U (en) * 1992-12-02 1994-06-28 三菱重工業株式会社 Ultrasonic flaw detection probe
JP2006064690A (en) * 2004-07-26 2006-03-09 Univ Of Miyazaki In-tubing profile measuring device
JP2010008241A (en) * 2008-06-27 2010-01-14 Showa Engineering Co Ltd Ultrasonic inspection device of tube
JP2011158392A (en) * 2010-02-02 2011-08-18 Shin Nippon Hihakai Kensa Kk Piping reduced-thickness measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647855U (en) * 1992-12-02 1994-06-28 三菱重工業株式会社 Ultrasonic flaw detection probe
JP2006064690A (en) * 2004-07-26 2006-03-09 Univ Of Miyazaki In-tubing profile measuring device
JP2010008241A (en) * 2008-06-27 2010-01-14 Showa Engineering Co Ltd Ultrasonic inspection device of tube
JP2011158392A (en) * 2010-02-02 2011-08-18 Shin Nippon Hihakai Kensa Kk Piping reduced-thickness measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106560708A (en) * 2016-08-31 2017-04-12 安徽金三环金属科技有限公司 Floating flaw detection equipment
CN106560708B (en) * 2016-08-31 2019-03-29 安徽金三环金属科技有限公司 A kind of floating flaw detection tooling
CN113533507A (en) * 2021-06-25 2021-10-22 中国船舶重工集团公司第七一九研究所 Built-in pipeline damage detection device and detection method thereof
WO2023228184A1 (en) * 2022-05-24 2023-11-30 Scanmaster Systems (Irt) Ltd. Mirror connecting unit for an industrial ut system
CN115308308A (en) * 2022-10-10 2022-11-08 山东广悦化工有限公司 Diesel pipeline corrosion prevention detection device and application method thereof
CN115308308B (en) * 2022-10-10 2022-12-13 山东广悦化工有限公司 Diesel pipeline corrosion prevention detection device and application method thereof
CN117381715A (en) * 2023-12-11 2024-01-12 山西省水利水电工程建设监理有限公司 Large-caliber pipeline installation butt joint positioning device and method thereof
CN117381715B (en) * 2023-12-11 2024-02-09 山西省水利水电工程建设监理有限公司 Large-caliber pipeline installation butt joint positioning device and method thereof

Also Published As

Publication number Publication date
JP6039599B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6039599B2 (en) Tube ultrasonic inspection equipment
EP2138838B1 (en) Ultrasonic inspection probe carrier system for performing nondestructive testing
CN102016564A (en) System for ultrasonically detecting defects in a pipe wall
KR101424070B1 (en) Ultrasonic inspection device with rotatable head
KR101372828B1 (en) Ultrasonic inspection device for purforming non-destructive test
JP2013246175A5 (en)
JP2010271072A (en) Pipe thickness measuring device
KR101215901B1 (en) Ultrasonic measuring apparatus for wall thinning of a heat exchanger tube and method thereof
JP6498071B2 (en) Pipe welded flaw detection apparatus and method
CN104749257A (en) Ultrasonic wave angle adjustment device in water immersion ultrasonic testing
JP7050420B2 (en) Piping inspection method using piping inspection sensor, piping inspection device, and piping inspection sensor
JP2015172496A (en) In-pipe traveling ultrasonic inspection device
KR101346309B1 (en) Ultrasonic inspection device for purforming non-destructive test
JP5791485B2 (en) Pipe insertion type ultrasonic flaw detector
JP2009236613A (en) Inspection apparatus of piping and inspection method of the same
JP4772830B2 (en) Ultrasonic wall thickness measuring device for tubes
DK169900B1 (en) Method and apparatus for detecting corrosion in pipes
JP7458075B2 (en) Piping inner surface measuring device
JP2004163125A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
CN104749245A (en) Water-immersion ultrasonic detection method for small-pipe-diameter and large-wall-thickness pipeline equipment
US11162919B2 (en) Ultrasonic based internal inspection of tubes
JP6782277B2 (en) Piping inspection equipment
JP2012047480A (en) Bend pipe inspection device
JP2009204370A (en) Measuring method of pipe wall thickness and device
KR101885756B1 (en) Ultrasonic sensor module structure of ultrasonic inspection device for performing non-destructive test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161104

R150 Certificate of patent or registration of utility model

Ref document number: 6039599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250