JP6998476B2 - How to determine the risk of developing myopia - Google Patents

How to determine the risk of developing myopia Download PDF

Info

Publication number
JP6998476B2
JP6998476B2 JP2020569530A JP2020569530A JP6998476B2 JP 6998476 B2 JP6998476 B2 JP 6998476B2 JP 2020569530 A JP2020569530 A JP 2020569530A JP 2020569530 A JP2020569530 A JP 2020569530A JP 6998476 B2 JP6998476 B2 JP 6998476B2
Authority
JP
Japan
Prior art keywords
snp
myopia
seq
risk
base sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020569530A
Other languages
Japanese (ja)
Other versions
JPWO2020158503A1 (en
Inventor
信久 水木
明 目黒
敬浩 山根
正樹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seed Co Ltd
Original Assignee
Seed Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seed Co Ltd filed Critical Seed Co Ltd
Publication of JPWO2020158503A1 publication Critical patent/JPWO2020158503A1/en
Application granted granted Critical
Publication of JP6998476B2 publication Critical patent/JP6998476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Description

本発明は、遺伝的効果の高い一塩基多型(SNP)を用いて近視の発症リスクを判定する方法に関する。 The present invention relates to a method for determining the risk of developing myopia using a single nucleotide polymorphism (SNP) having a high genetic effect.

近視は等価球面度数(SE)が-0.5 D(ジオプトリ-)かそれを超えるものと定義されており、世界中で最も多くみられる屈折異常である。強度近視はSE<-6.0 D又は眼軸長>26.0 mmと一般的に定義されており、失明や深刻な視力障害を引き起こし得る網膜剥離、緑内障、白内障、黄斑部出血、黄斑変性等の様々な眼疾患及び全身性疾患の発症リスクを高める(非特許文献1、2)。近視はアジア人集団において非アジア人集団よりも多くみられ(非特許文献3-8)、若年成人層における強度近視の有病率は非アジア諸国(2.0-2.3%)に比べてアジア地域(6.8-21.6%)で極めて高いことが報告されている(非特許文献9)。ここ数十年の間に近視の有病率は世界中で劇的に上昇し続けており(非特許文献10)、近年の報告によると、2050年までに世界の近視患者数は約50億人(世界の人口のほぼ半分)、強度近視患者数は約10億人(世界の人口の約10%)に達するであろうと予測されている(非特許文献11)。近視の病因は正確には解明されていないが、近視は様々な環境的要因及び遺伝的要因が複合的に関与して発症する多因子疾患と考えられている(非特許文献12-17)。近視の強度が高いほど遺伝的要因がより強く寄与していることが示唆されている(非特許文献18-20)。 Myopia is defined as having an equivalent spherical power (SE) of -0.5 D (diopter) or higher, and is the most common refractive error in the world. Severe myopia is commonly defined as SE <-6.0 D or axial length> 26.0 mm and can cause a variety of retinal detachments, glaucoma, cataracts, macular bleeding, macular degeneration, etc. that can cause blindness and severe visual impairment. Increases the risk of developing eye diseases and systemic diseases (Non-Patent Documents 1 and 2). Myopia is more common in the Asian population than in the non-Asian population (Non-Patent Document 3-8), and the prevalence of severe myopia in the young adult population is higher in the Asian region (2.0-2.3%) than in non-Asian countries (2.0-2.3%). It has been reported to be extremely high at 6.8-21.6%) (Non-Patent Document 9). The prevalence of myopia has continued to rise dramatically worldwide over the last few decades (Non-Patent Document 10), and recent reports indicate that by 2050, the number of myopia patients worldwide will be approximately 5 billion. It is predicted that the number of people (almost half of the world's population) and the number of patients with severe myopia will reach about 1 billion (about 10% of the world's population) (Non-Patent Document 11). Although the etiology of myopia has not been elucidated accurately, myopia is considered to be a multifactorial disease that develops due to the combined involvement of various environmental and genetic factors (Non-Patent Document 12-17). It is suggested that the higher the intensity of myopia, the stronger the contribution of genetic factors (Non-Patent Documents 18-20).

ゲノムワイド関連解析(GWAS)とは、ゲノム全域を網羅する遺伝子多型を対象に非血縁の患者集団と健常者集団の間で有意な頻度差を示す遺伝子多型を検索する手法であり、多因子疾患の遺伝的要因を解明する上で非常に有効である。2009年以降、近視を対象としたGWASが複数実施されており、現在までに、様々な人種集団において近視及び近視関連形質の感受性遺伝子領域が多数同定されている(非特許文献21-24)。論文として報告されたGWAS研究の結果を集約したデータベースであるNHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/)には、近視及び近視関連形質に関する候補遺伝子領域が約200箇所報告されている(非特許文献25)。しかしながら、これらの約200箇所の候補遺伝子領域は近視及び近視関連形質の遺伝的要因全体の一部でしかないと推測されている。近視及び屈折異常の大規模GWASに関する2013年の論文2報により、30以上の感受性遺伝子領域が報告されたが(非特許文献26、27)、これらの遺伝子領域は近視及び屈折異常の表現型分散全体の12%にも満たないと推定されている(非特許文献17)。その上、約200箇所の候補遺伝子領域の多くにおいて、近視又は近視関連形質と候補遺伝子領域の相関性の強さ又は相関性の有無が人種集団の間又は近視の重症度の間で異なることが認められている。これらの事実は、近視・近視関連形質に寄与する未同定の遺伝的要因が数多く存在するということを暗示している。 Genome-wide association study (GWAS) is a method for searching for gene polymorphisms that cover the entire genome and show a significant frequency difference between unrelated patient populations and healthy populations. It is very effective in elucidating the genetic factors of factor diseases. Since 2009, multiple GWAS for myopia have been carried out, and to date, a large number of susceptibility gene regions for myopia and myopia-related traits have been identified in various racial populations (Non-Patent Document 21-24). .. The NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/), a database that summarizes the results of GWAS studies reported as a paper, contains about candidate gene regions for myopia and myopia-related traits. It has been reported in 200 places (Non-Patent Document 25). However, it is estimated that these approximately 200 candidate gene regions are only part of the overall genetic factors of myopia and myopia-related traits. Two 2013 papers on large-scale GWAS on myopia and refractive error reported more than 30 susceptibility gene regions (Non-Patent Documents 26 and 27), but these gene regions are phenotypic dispersions of myopia and refractive error. It is estimated to be less than 12% of the total (Non-Patent Document 17). Moreover, in many of the approximately 200 candidate gene regions, the strength or presence or absence of correlation between myopia or myopia-related traits and the candidate gene region varies between racial populations or the severity of myopia. Is recognized. These facts imply that there are many unidentified genetic factors that contribute to myopia / myopia-related traits.

Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25(5):381-391.Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005; 25 (5): 381-391. Burton TC. The influence of refractive error and lattice degeneration on the incidence of retinal detachment. Trans Am Ophthalmol Soc. 1989;87:143-157.Burton TC. The influence of refractive error and lattice degeneration on the incidence of retinal detachment. Trans Am Ophthalmol Soc. 1989; 87: 143-157. Wilson A, Woo G. A review of the prevalence and causes of myopia. Singapore Med J. 1989;30(5):479-484.Wilson A, Woo G. A review of the prevalence and causes of myopia. Singapore Med J. 1989; 30 (5): 479-484. Lam CS, Goldschmidt E, Edwards MH. Prevalence of myopia in local and international schools in Hong Kong. Optom Vis Sci. 2004;81(5):317-322.Lam CS, Goldschmidt E, Edwards MH. Prevalence of myopia in local and international schools in Hong Kong. Optom Vis Sci. 2004; 81 (5): 317-322. Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol. 2004;122(4):495-505.Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol. 2004; 122 (4): 495 -505. Sawada A, Tomidokoro A, Araie M, Iwase A, Yamamoto T; Tajimi Study Group. Refractive errors in an elderly Japanese population: the Tajimi study. Ophthalmology. 2008;115(2):363-370.Sawada A, Tomidokoro A, Araie M, Iwase A, Yamamoto T; Tajimi Study Group. Refractive errors in an elderly Japanese population: the Tajimi study. Ophthalmology. 2008; 115 (2): 363-370. Pan CW, Klein BE, Cotch MF, Shrager S, Klein R, Folsom A, et al. Racial variations in the prevalence of refractive errors in the United States: the multi-ethnic study of atherosclerosis. Am J Ophthalmol. 2013;155(6):1129-1138.Pan CW, Klein BE, Cotch MF, Shrager S, Klein R, Folsom A, et al. Racial variations in the prevalence of refractive errors in the United States: the multi-ethnic study of atherosclerosis. Am J Ophthalmol. 2013; 155 ( 6): 1129-1138. Pan CW, Zheng YF, Anuar AR, Chew M, Gazzard G, Aung T, et al. Prevalence of refractive errors in a multiethnic Asian population: the Singapore epidemiology of eye disease study. Invest Ophthalmol Vis Sci. 2013;54(4):2590-2598.Pan CW, Zheng YF, Anuar AR, Chew M, Gazzard G, Aung T, et al. Prevalence of refractive errors in a multiethnic Asian population: the Singapore epidemiology of eye disease study. Invest Ophthalmol Vis Sci. 2013; 54 (4) : 2590-2598. Wong YL, Saw SM. Epidemiology of Pathologic Myopia in Asia and Worldwide. Asia Pac J Ophthalmol (Phila). 2016;5(6):394-402.Wong YL, Saw SM. Epidemiology of Pathologic Myopia in Asia and Worldwide. Asia Pac J Ophthalmol (Phila). 2016; 5 (6): 394-402. Dolgin E. The myopia boom. Nature. 2015;519(7543):276-278.Dolgin E. The myopia boom. Nature. 2015; 519 (7543): 276-278. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036-1042.Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016; 123 (5): 1036-1042. Baird PN, Schache M, Dirani M. The GEnes in Myopia (GEM) study in understanding the aetiology of refractive errors. Prog Retin Eye Res. 2010;29(6):520-542.Baird PN, Schache M, Dirani M. The GEnes in Myopia (GEM) study in understanding the aetiology of refractive errors. Prog Retin Eye Res. 2010; 29 (6): 520-542. Au Eong KG, Tay TH, Lim MK. Education and myopia in 110,236 young Singaporean males. Singapore Med J. 1993;34(6):489-492.Au Eong KG, Tay TH, Lim MK. Education and myopia in 110,236 young Singaporean males. Singapore Med J. 1993; 34 (6): 489-492. Au Eong KG, Tay TH, Lim MK. Race, culture and myopia in 110,236 young Singaporean males. Singapore Med J. 1993;34(1):29-32.Au Eong KG, Tay TH, Lim MK. Race, culture and myopia in 110,236 young Singaporean males. Singapore Med J. 1993; 34 (1): 29-32. Morgan IG, Rose KA. Myopia and international educational performance. Ophthalmic Physiolog Opt. 2013;33(3):329-338.Morgan IG, Rose KA. Myopia and international academic performance. Ophthalmic Physiolog Opt. 2013; 33 (3): 329-338. French AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res. 2013;114:56-68.French AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res. 2013; 114: 56-68. Fan Q, Verhoeven VJ, Wojciechowski R, Barathi VA, Hysi PG, Guggenheim JA, et al. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error. Nat Commun. 2016;7:11008.Fan Q, Verhoeven VJ, Wojciechowski R, Barathi VA, Hysi PG, Guggenheim JA, et al. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error. Nat Commun. 2016; 7: 11008. Guggenheim JA, Kirov G, Hodson SA. The heritability of high myopia: a reanalysis of Goldschmidt's data. J Med Genet. 2000;37(3):227-231.Guggenheim JA, Kirov G, Hodson SA. The heritability of high myopia: a reanalysis of Goldschmidt's data. J Med Genet. 2000; 37 (3): 227-231. Farbrother JE, Kirov G, Owen MJ, Guggenheim JA. Family aggregation of high myopia: estimation of the sibling recurrence risk ratio. Invest Ophthalmol Vis Sci. 2004;45(9):2873-2878.Farbrother JE, Kirov G, Owen MJ, Guggenheim JA. Family aggregation of high myopia: estimation of the sibling recurrence risk ratio. Invest Ophthalmol Vis Sci. 2004; 45 (9): 2873-2878. Peet JA, Cotch MF, Wojciechowski R, Bailey-Wilson JE, Stambolian D. Heritability and familial aggregation of refractive error in the Old Order Amish. Invest Ophthalmol Vis Sci. 2007;48(9):4002-4006.Peet JA, Cotch MF, Wojciechowski R, Bailey-Wilson JE, Stambolian D. Heritability and familial aggregation of refractive error in the Old Order Amish. Invest Ophthalmol Vis Sci. 2007; 48 (9): 4002-4006. Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis. 2017;23:1048-1080.Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis. 2017; 23: 1048-1080. Fan Q, Barathi VA, Cheng CY, Zhou X, Meguro A, Nakata I, et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia. PLoS Genet. 2012;8(6):e1002753.Fan Q, Barathi VA, Cheng CY, Zhou X, Meguro A, Nakata I, et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia. PLoS Genet. 2012; 8 (6): e1002753. Solouki AM, Verhoeven VJ, van Duijn CM, Verkerk AJ, Ikram MK, Hysi PG, et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat Genet. 2010;42(10):897-901.Solouki AM, Verhoeven VJ, van Duijn CM, Verkerk AJ, Ikram MK, Hysi PG, et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat Genet. 2010; 42 (10): 897-901. Hysi PG, Young TL, Mackey DA, Andrew T, Fernandez-Medarde A, Solouki AM, et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nat Genet. 2010;42(10):902-905.Hysi PG, Young TL, Mackey DA, Andrew T, Fernandez-Medarde A, Solouki AM, et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nat Genet. 2010; 42 (10) : 902-905. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):D896-D901.MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017; 45 (D1): D896-D901. Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet. 2013;9(2):e1003299.Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet. 2013; 9 ( 2): e1003299. Verhoeven VJ, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Hohn R, et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet. 2013;45(3):314-318.Verhoeven VJ, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Hohn R, et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet. 2013; 45 (3) : 314-318.

上述したように、近視は遺伝的要因と環境的要因が複合的に関与して発症する疾患と考えられており(非特許文献12~17)、近視の強度が高いほど遺伝的要因がより強く寄与していることが示唆されている(非特許文献18~20)。従来報告されている近視の発症リスクと相関を示す遺伝子多型は、主として弱度近視や中等度近視を含む近視症例群を対象とした遺伝子研究により同定された遺伝子多型であるが、弱度~中等度の近視症例群には環境的要因の影響が大きい症例が多数含まれている。かかる症例群を対象として同定された遺伝子多型は、近視発症の遺伝的効果が高い多型とは言い難いため、近視発症リスクの判定に用いる遺伝子多型として必ずしも有効ではない。また、そのような遺伝子多型では、強度近視の有病率の高い地域において近視発症リスクを正確に判定することは困難である。本発明は、強度近視の有病率の高い地域も含めた様々な地域・人種において、近視の発症リスクを従来技術よりも正確に判定できる手段を提供することを目的とする。 As mentioned above, myopia is considered to be a disease that develops due to the combined involvement of genetic factors and environmental factors (Non-Patent Documents 12 to 17), and the higher the intensity of myopia, the stronger the genetic factors. It is suggested that it contributes (Non-Patent Documents 18 to 20). The previously reported gene polymorphisms that correlate with the risk of developing myopia are gene polymorphisms identified by genetic studies mainly targeting myopia cases including weak myopia and moderate myopia, but they are weak. The group of cases with moderate myopia includes many cases that are greatly affected by environmental factors. Since it is hard to say that the gene polymorphism identified for such a case group has a high genetic effect on the onset of myopia, it is not always effective as a gene polymorphism used for determining the risk of developing myopia. Moreover, with such gene polymorphisms, it is difficult to accurately determine the risk of developing myopia in areas with a high prevalence of severe myopia. An object of the present invention is to provide a means for determining the risk of developing myopia more accurately than in the prior art in various regions and races including regions with a high prevalence of severe myopia.

本願発明者らは、強度近視の有病率が高い日本人を対象とし、膨大な数の強度近視患者及び健常者の集団からサンプルを得て鋭意に遺伝子解析を行なった結果、強度近視とゲノムワイドな有意水準で相関を示す9個の一塩基多型(SNP)を同定するに至り、本願発明を完成した。 The inventors of the present application obtained samples from a huge number of patients with severe myopia and a group of healthy subjects and conducted a diligent genetic analysis on Japanese subjects with a high prevalence of severe myopia. We have completed the invention of the present application by identifying nine single nucleotide polymorphisms (SNPs) that correlate with a wide range of significance.

すなわち、本発明は、ヒト被検者から分離したゲノムDNA試料を用いて、下記(1)~(9)の一塩基多型(SNP):
(1) 第15番染色体の85,692,651位(配列番号1における201位)にあるSNP ID番号rs72748160のSNP
(2) 第3番染色体の69,229,747位(配列番号2における201位)にあるSNP ID番号rs74633073のSNP
(3) 第12番染色体の130,041,322位(配列番号3における201位)にあるSNP ID番号rs76903431のSNP
(4) 第1番染色体の204,974,863位(配列番号4における201位)にあるSNP ID番号rs2246661のSNP
(5) 第1番染色体の219,605,617位(配列番号5における201位)にあるSNP ID番号rs12032649のSNP
(6) 第1番染色体の41,867,932位(配列番号6における201位)にあるSNP ID番号rs698047のSNP
(7) 第3番染色体の1,739,832位(配列番号7における201位)にあるSNP ID番号rs17029206のSNP
(8) 第15番染色体の34,709,241位(配列番号8における201位)にあるSNP ID番号rs589135のSNP
(9) 第15番染色体の79,092,508位(配列番号9における201位)にあるSNP ID番号rs28415942のSNP
から選択される少なくとも5つのSNPの遺伝子型を調べることを含む、近視の発症リスクを判定する方法であって、近視発症の高リスクの指標となるリスクアリルは、(1)がTであり、(2)がTであり、(3)がAであり、(4)がCであり、(5)がGであり、(6)がGであり、(7)がTであり、(8)がGであり、(9)がTである、方法を提供する。

That is, the present invention uses the following (1) to (9) single nucleotide polymorphisms (SNP): using genomic DNA samples isolated from human subjects.
(1) SNP of SNP ID number rs72748160 at position 85,692,651 (position 201 in SEQ ID NO: 1) of chromosome 15.
(2) SNP of SNP ID number rs74633073 at position 69,229,747 of chromosome 3 (position 201 in SEQ ID NO: 2)
(3) SNP of SNP ID number rs76903431 at position 130,041,322 (position 201 in SEQ ID NO: 3) of chromosome 12.
(4) SNP of SNP ID number rs2246661 at position 204,974,863 (position 201 in SEQ ID NO: 4) of chromosome 1.
(5) SNP of SNP ID number rs12032649 at position 219,605,617 of chromosome 1 (position 201 in SEQ ID NO: 5)
(6) SNP of SNP ID number rs698047 at position 41,867,932 of chromosome 1 (position 201 in SEQ ID NO: 6)
(7) SNP of SNP ID number rs17029206 at position 1,739,832 of chromosome 3 (position 201 in SEQ ID NO: 7)
(8) SNP of SNP ID number rs589135 at position 34,709,241 (position 201 in SEQ ID NO: 8) of chromosome 15.
(9) SNP of SNP ID number rs28415942 at position 79,092,508 of chromosome 15 (position 201 in SEQ ID NO: 9)
A method for determining the risk of developing myopia, which involves examining the genotypes of at least 5 SNPs selected from the above, and the risk allele that is an indicator of the high risk of developing myopia is (1) T. (2) is T, (3) is A, (4) is C, (5) is G, (6) is G, (7) is T, (8) ) Is G and (9) is T, providing a method.

本発明により、従来技術よりも正確に近視の発症リスクを判定できる手段が提供される。強度近視の発症リスクと有意に相関するSNPは、近視発症リスクに対して遺伝的効果が高いSNPであるといえる。かかるSNPを指標とすることで、近視の発症リスクに対する遺伝的影響をより適切に評価することが可能であり、従来技術よりも正確に近視の発症リスクを判定(医師等による近視発症リスクの判定を補助)することができる。近視の発症リスクを知ることそれ自体を目的とした遺伝子検査の他、近視発症前の被検者を対象に本発明を実施し、近視進行を抑制するための生活指導(パソコン、スマートフォン、TVゲーム、読書等の生活環境の改善の助言)や、オルソケラトロジー、低濃度アトロピン治療などの近視進行を抑制する医療処置の早期実施に役立てることができる。 INDUSTRIAL APPLICABILITY The present invention provides a means for determining the risk of developing myopia more accurately than in the prior art. An SNP that significantly correlates with the risk of developing myopia can be said to be an SNP with a high genetic effect on the risk of developing myopia. By using such SNP as an index, it is possible to more appropriately evaluate the genetic effect on the risk of developing myopia, and the risk of developing myopia is determined more accurately than in the prior art (determination of the risk of developing myopia by a doctor or the like). Can be assisted). In addition to genetic testing aimed at knowing the risk of developing myopia itself, the present invention is implemented for subjects before the onset of myopia, and lifestyle guidance (computers, smartphones, video games) to suppress the progression of myopia. , Advice on improving the living environment such as reading), orthokeratology, low-concentration atropine treatment, and other medical procedures that suppress the progression of myopia can be used at an early stage.

本願発明者らが同定した、強度近視と有意に相関する9個のSNPを表1に示す。 Table 1 shows the nine SNPs identified by the inventors of the present application that significantly correlate with intense myopia.

Figure 0006998476000001
Figure 0006998476000001

なお、本明細書において、任意の塩基の染色体上の位置は、ヒトゲノム参照配列GRCh38に基づいて示している。rsで始まるSNP ID番号は、米国バイオテクノロジー情報センター(National Center for Biotechnology Information:NCBI)のSNPデータベースであるdbSNP(http://www.ncbi.nlm.nih.gov/projects/SNP/)におけるreference SNP ID番号である。当業者であれば、このSNP ID番号に基づき、SNPの染色体上の物理的位置やその近傍の塩基配列等の情報を容易に入手することができる。本願配列表の配列番号1~9には、各SNPの前後200bpのゲノム塩基配列を示しているが、これらの領域に隣接するゲノム塩基配列についても、当業者であれば容易に入手可能である。 In addition, in this specification, the position on the chromosome of an arbitrary base is shown based on the human genome reference sequence GRCh38. SNP ID numbers starting with rs are references in dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/), the SNP database of the National Center for Biotechnology Information (NCBI). SNP ID number. A person skilled in the art can easily obtain information such as the physical position of the SNP on the chromosome and the base sequence in the vicinity thereof based on this SNP ID number. SEQ ID NOs: 1 to 9 in the sequence listing of the present application show the genomic nucleotide sequences of 200 bp before and after each SNP, but genomic nucleotide sequences adjacent to these regions can be easily obtained by those skilled in the art. ..

表1に示したSNPは、日本人の強度近視患者集団及び健常者集団を対象としたGWASにより、強度近視と有意に相関するSNPとして網羅的に同定されたものである。もっとも、日本人集団を対象としたのは、日本を含むアジア地域における強度近視の有病率が他の地域と比べて著しい高値を示し、遺伝的要因の寄与が特に大きいと考えられる強度近視患者のサンプルを多数取得できるためである。本発明の方法により近視発症リスクの正確な判定を行うことができる対象人種は日本人に限らず、日本以外のアジア地域、及び欧米その他の非アジア地域の人の判定も可能である。従って、本発明の方法を実施できる対象には、日本人を含むアジア人、及び欧米人等の非アジア人が広く包含される。本発明の方法を被検者の近視進行の抑制に活かす場合には、若齢(例えば15歳程度以下)の被検者が主たる対象となり得る。 The SNPs shown in Table 1 were comprehensively identified as SNPs that significantly correlate with severe myopia by GWAS in the Japanese population of patients with severe myopia and the population of healthy subjects. However, the Japanese population was targeted at patients with severe myopia, whose prevalence of severe myopia in the Asian region including Japan was significantly higher than in other regions, and the contribution of genetic factors is considered to be particularly large. This is because a large number of samples can be obtained. The target race that can accurately determine the risk of developing myopia by the method of the present invention is not limited to Japanese, but it is also possible to determine people in Asian regions other than Japan, and in Europe, the United States and other non-Asian regions. Therefore, the subjects to which the method of the present invention can be implemented include Asians including Japanese and non-Asians such as Westerners. When the method of the present invention is utilized for suppressing the progression of myopia of a subject, a young subject (for example, about 15 years old or younger) may be the main target.

本発明の方法では、表1に示した9個のSNPのうちの少なくとも1個、例えば、2個以上、3個以上、4個以上、5個以上、6個以上、7個以上、8個以上、又は9個全ての遺伝子型を調べる。健常者群1,586名を対象に算出したリスクアリルの平均保有個数は4.39±1.21個であったことから(下記実施例参照)、少なくとも5個、より好ましくは9個全ての遺伝子型を調べることが望ましい。9個のうちの一部のみを調べる場合、いずれのSNPを選択してもよいが、オッズ比が高いもの、すなわち表1中で上位に記載したSNPを優先的に選択してもよい。例えば、(1)~(9)のうち5個以上のSNPの遺伝子型を調べる場合には、(1)~(5)を含む5個以上のSNPを選択することが好ましい。 In the method of the present invention, at least one of the nine SNPs shown in Table 1, for example, two or more, three or more, four or more, five or more, six or more, seven or more, eight. Examine the above or all 9 genotypes. Since the average number of risk alleles carried in 1,586 healthy subjects was 4.39 ± 1.21 (see the examples below), it is possible to examine the genotypes of at least 5, more preferably all 9 of them. desirable. When examining only a part of the nine SNPs, any SNP may be selected, but the one having a high odds ratio, that is, the SNP listed higher in Table 1 may be preferentially selected. For example, when investigating the genotypes of 5 or more SNPs among (1) to (9), it is preferable to select 5 or more SNPs including (1) to (5).

また、(1)~(9)のSNPに代えて、各SNPと連鎖不平衡にあるSNPの遺伝子型を調べてもよい。この分野において周知の通り、複数のSNPが強い連鎖不平衡状態にあるとき、それらのSNPは同様の挙動を示す。例えば、SNP-A, SNP-B, SNP-Cが強い連鎖不平衡状態にある場合において、SNP-Aが疾患Xと有意な相関を示すときには、SNP-BとSNP-Cも疾患Xと有意な相関を示す。従って、(1)~(9)の各SNPと強い連鎖不平衡状態にあるSNPであれば、(1)~(9)のSNPと同様に強度近視と有意に相関するので、近視発症リスク判定に用いることができる。 Further, instead of the SNPs (1) to (9), the genotypes of SNPs that are in linkage disequilibrium with each SNP may be investigated. As is well known in the art, when multiple SNPs are in a strong linkage disequilibrium, they behave similarly. For example, when SNP-A, SNP-B, and SNP-C are in a strong linkage disequilibrium, and SNP-A shows a significant correlation with disease X, SNP-B and SNP-C are also significant with disease X. Correspondence is shown. Therefore, if the SNP is in a strong linkage disequilibrium state with each of the SNPs (1) to (9), it significantly correlates with the intense myopia as in the SNPs of (1) to (9), so that the risk of developing myopia is determined. Can be used for.

連鎖不平衡の強さを表す値としてはD'、r2等の連鎖不平衡係数が知られている。D'及びr2はGabrielらの算出法(Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science. 2002;296(5576):2225-2229.)により求めることができる。一般に、r2>0.7の関係にあるSNP同士は強い連鎖不平衡状態にあるとされる。本発明において、あるSNPと「連鎖不平衡にあるSNP」といった場合、当該SNPとr2>0.7の関係にあるSNPをいう。特定のSNPと「連鎖不平衡にあるSNP(r2>0.7の関係にあるSNP)」の情報は、例えば、米国国立癌研究所(National Cancer Institute:NCI)の連鎖不平衡データベースであるLDlink(https://ldlink.nci.nih.gov/)内のLDproxy(https://ldlink.nci.nih.gov/?tab=ldproxy)において容易に検索することができる。Linkage disequilibrium coefficients such as D'and r 2 are known as values representing the strength of linkage disequilibrium. D'and r 2 are calculated by Gabriel et al. (Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science. 2002; 296 (5576) ): 2225-2229.). Generally, SNPs having a relationship of r 2 > 0.7 are considered to be in a strong linkage disequilibrium state. In the present invention, the term "SNP in linkage disequilibrium" with a certain SNP means an SNP having a relationship of r 2 > 0.7 with the SNP. Information on "SNPs in linkage disequilibrium (SNPs with a relationship of r 2 >0.7)" with specific SNPs can be found, for example, in the National Cancer Institute (NCI) linkage disequilibrium database LDlink ( It can be easily searched by LDproxy (https://ldlink.nci.nih.gov/?tab=ldproxy) in https://ldlink.nci.nih.gov/).

本発明において、複数のSNPの遺伝子型を調べる場合、例えば、リスクアリル(強度近視の発症リスクと正の相関を示すアリル)を保有する遺伝子型(高リスク遺伝子型)の個数によって、被検者の近視発症リスクを判定することができる。この場合、高リスク遺伝子型の個数が多いほど近視の発症リスクが高いことが示される。健常者の高リスク遺伝子型の平均保有個数が4.39±1.21個であったことから、この平均値を超える「高リスク遺伝子型が5個以上」を、近視発症リスクが高いと判定する目安としてもよい。 In the present invention, when investigating the genotypes of a plurality of SNPs, for example, the subject is determined by the number of genotypes (high-risk genotypes) having risk alleles (allyls showing a positive correlation with the risk of developing severe myopia). The risk of developing myopia can be determined. In this case, it is shown that the higher the number of high-risk genotypes, the higher the risk of developing myopia. Since the average number of high-risk genotypes possessed by healthy subjects was 4.39 ± 1.21, "5 or more high-risk genotypes" exceeding this average value can be used as a guide to judge that the risk of developing myopia is high. good.

さらに、各リスクアリルにオッズ比による重み付けを加えてもよい。高リスク遺伝子型を2個持つ被検者の中でも、(4)(rs2246661、オッズ比1.31)及び(6)(rs698047、オッズ比1.28)の2個について高リスク遺伝子型を保有する被検者Aと、(1)(rs72748160、オッズ比1.93)及び(2)(rs74633073、オッズ比1.91)の2個について高リスク遺伝子型を保有する被検者Bとを比べると、被検者Bの方が近視の発症リスクがより高いと評価できる。本発明の方法では、高リスク遺伝子型の個数に加え、検出された高リスク遺伝子型のオッズ比の高さ(高リスク遺伝子型の種類及び組み合わせ)も考慮して近視の発症リスクを判定してもよい。例えば、オッズ比、又はオッズ比の大きさに応じた適当な数値を、各SNPのリスクアリルのスコアとして設定し、被検者で検出された高リスク遺伝子型のスコアを加算ないし積算して、被検者の近視発症リスクをスコア評価する、といった判定方法が考えられる。表1に示したオッズ比の数値を利用してもよいし、さらに多数の強度近視患者を対象に解析を進めてオッズ比を算出し、得られた数値を表1のオッズ比に差し替えて利用してもよい。 In addition, each risk allele may be weighted by odds ratio. Among subjects with two high-risk genotypes, subjects A with high-risk genotypes for (4) (rs2246661, odds ratio 1.31) and (6) (rs698047, odds ratio 1.28) Compared with subject B, who has a high-risk genotype for (1) (rs72748160, odds ratio 1.93) and (2) (rs74633073, odds ratio 1.91), subject B is better. It can be evaluated that the risk of developing myopia is higher. In the method of the present invention, in addition to the number of high-risk genotypes, the high odds ratio of detected high-risk genotypes (types and combinations of high-risk genotypes) is also taken into consideration to determine the risk of developing myopia. May be good. For example, the odds ratio or an appropriate numerical value according to the magnitude of the odds ratio is set as the risk allele score of each SNP, and the scores of the high-risk genotypes detected in the subject are added or integrated. A judgment method such as score evaluation of the subject's risk of developing myopia can be considered. The odds ratio values shown in Table 1 may be used, or the odds ratios may be calculated by proceeding with analysis for a large number of patients with severe myopia, and the obtained values may be replaced with the odds ratios in Table 1 for use. You may.

本発明の方法に用いられるゲノムDNA試料は、被検者より採取した末梢血や口腔粘膜等から常法により容易に調製することができる。 The genomic DNA sample used in the method of the present invention can be easily prepared by a conventional method from peripheral blood, oral mucosa, etc. collected from a subject.

SNPの遺伝子型を調べる手法自体は周知であり、本発明においてもその手法は特に限定されない。例えば、SNP部位の塩基配列をシークエンシングにより決定して遺伝子型を調べてもよい。また、SNPタイピング方法として、インベーダー法、TaqMan-PCR法、Allele Specific Primer(ASP)法、SNP検出用プローブを搭載したチップによるタイピング法など、各種の方法が知られている。いずれも常法であり、これらの手法に必要となる試薬類を含んだキットも各種市販されている。本発明でSNPの遺伝子型を調べる際には、公知のいずれの手法を用いてもよい。遺伝子型の検出に必要となるプライマー、プローブ等は、当業者であれば、SNP近傍の塩基配列情報に基づいて容易に設計・調製することができる。 The method itself for investigating the genotype of SNP is well known, and the method is not particularly limited in the present invention. For example, the base sequence of the SNP site may be determined by sequencing and the genotype may be examined. Further, as an SNP typing method, various methods such as an invader method, a TaqMan-PCR method, an Allele Specific Primer (ASP) method, and a typing method using a chip equipped with an SNP detection probe are known. All of them are conventional methods, and various kits containing the reagents required for these methods are also commercially available. When investigating the genotype of SNP in the present invention, any known method may be used. Primers, probes, etc. required for genotype detection can be easily designed and prepared by those skilled in the art based on the base sequence information in the vicinity of SNP.

TaqMan-PCR法等のSNPタイピング方法で用いるSNP検出用のプローブは、通常、検査対象のSNPの前後数塩基を含むゲノム部分領域の塩基配列と同一の塩基配列又はこれと相補的な塩基配列からなる核酸部分(標的のゲノム領域にハイブリダイズする部分)に、必要に応じてリンカーやアダプターのような付加的な核酸部分を連結した構造を有する。標的のゲノム領域にハイブリダイズする部分の全長(付加的な核酸部分を含まない場合には、プローブの全長)は概ね15~30塩基程度、例えば16~30塩基程度、17~30塩基程度、又は18~30塩基程度である。 The probe for SNP detection used in SNP typing methods such as the TaqMan-PCR method usually consists of the same base sequence as the base sequence of the genomic partial region containing several bases before and after the SNP to be tested, or a base sequence complementary thereto. It has a structure in which an additional nucleic acid portion such as a linker or an adapter is linked to a nucleic acid portion (a portion that hybridizes to a target genomic region), if necessary. The overall length of the part that hybridizes to the target genomic region (or the total length of the probe if no additional nucleic acid part is included) is approximately 15 to 30 bases, for example, 16 to 30 bases, 17 to 30 bases, or It is about 18 to 30 bases.

(1)rs72748160の遺伝子型を検出するためのプローブは、配列番号1の201位(rs72748160のSNP)及びその前後数塩基を含む15~30塩基程度の塩基配列又はこれと相補的な塩基配列からなる核酸部分を、標的のゲノム領域にハイブリダイズする部分として含む。例えば、配列番号1に示した塩基配列中の197~205位を含む15~30塩基程度の部分領域と同一の塩基配列、又はこれと相補的な塩基配列からなるプローブであってよい。この場合のプローブは、配列番号1中の197~205位の配列又はこれと相補的な配列として、TTAG[G]GCAA、TTAG[T]GCAA、TTGC[C]CTAA、又はTTGC[A]CTAA([]がSNP部分)を含む。 (1) The probe for detecting the genotype of rs72748160 is from a base sequence of about 15 to 30 bases including position 201 (SNP of rs72748160) of SEQ ID NO: 1 and several bases before and after it, or a base sequence complementary thereto. Nucleic acid moiety is included as a moiety that hybridizes to the target genomic region. For example, it may be a probe having the same base sequence as a partial region of about 15 to 30 bases including positions 197 to 205 in the base sequence shown in SEQ ID NO: 1, or a probe having a base sequence complementary thereto. In this case, the probe is TTAG [G] GCAA, TTAG [T] GCAA, TTGC [C] CTAA, or TTGC [A] CTAA as the sequence at positions 197 to 205 in SEQ ID NO: 1 or a sequence complementary thereto. ([] Is the SNP part) is included.

(2)rs74633073の遺伝子型を検出するためのプローブは、配列番号2の201位(rs74633073のSNP)及びその前後数塩基を含む15~30塩基程度の塩基配列又はこれと相補的な塩基配列からなる核酸部分を、標的のゲノム領域にハイブリダイズする部分として含む。例えば、配列番号2に示した塩基配列中の197~205位を含む15~30塩基程度の部分領域と同一の塩基配列、又はこれと相補的な塩基配列からなるプローブであってよい。この場合のプローブは、配列番号2中の197~205位の配列又はこれと相補的な配列として、CTGT[C]GCCA、CTGT[T]GCCA、TGGC[G]ACAG、又はTGGC[A]ACAG([]がSNP部分)を含む。 (2) The probe for detecting the genotype of rs74633073 is from a base sequence of about 15 to 30 bases including position 201 (SNP of rs74633073) of SEQ ID NO: 2 and several bases before and after it, or a base sequence complementary thereto. Nucleic acid moiety is included as a moiety that hybridizes to the target genomic region. For example, it may be a probe having the same base sequence as a partial region of about 15 to 30 bases including positions 197 to 205 in the base sequence shown in SEQ ID NO: 2, or a probe having a base sequence complementary thereto. In this case, the probe is CTGT [C] GCCA, CTGT [T] GCCA, TGGC [G] ACAG, or TGGC [A] ACAG as the sequence at positions 197 to 205 in SEQ ID NO: 2 or a sequence complementary thereto. ([] Is the SNP part) is included.

(3)rs76903431の遺伝子型を検出するためのプローブは、配列番号3の201位(rs76903431のSNP)及びその前後数塩基を含む15~30塩基程度の塩基配列又はこれと相補的な塩基配列からなる核酸部分を、標的のゲノム領域にハイブリダイズする部分として含む。例えば、配列番号3に示した塩基配列中の197~205位を含む15~30塩基程度の部分領域と同一の塩基配列、又はこれと相補的な塩基配列からなるプローブであってよい。この場合のプローブは、配列番号3中の197~205位の配列又はこれと相補的な配列として、ATAG[A]TCAA、ATAG[T]TCAA、TTGA[T]CTAT、又はTTGA[A]CTAT([]がSNP部分)を含む。 (3) The probe for detecting the genotype of rs76903431 is from a base sequence of about 15 to 30 bases including position 201 (SNP of rs76903431) of SEQ ID NO: 3 and several bases before and after it, or a base sequence complementary thereto. Nucleic acid moiety is included as a moiety that hybridizes to the target genomic region. For example, it may be a probe having the same base sequence as a partial region of about 15 to 30 bases including positions 197 to 205 in the base sequence shown in SEQ ID NO: 3, or a probe having a base sequence complementary thereto. The probe in this case is ATAG [A] TCAA, ATAG [T] TCAA, TTGA [T] CTAT, or TTGA [A] CTAT as the sequence at positions 197 to 205 in SEQ ID NO: 3 or a sequence complementary thereto. ([] Is the SNP part) is included.

(4)rs2246661の遺伝子型を検出するためのプローブは、配列番号4の201位(rs2246661のSNP)及びその前後数塩基を含む15~30塩基程度の塩基配列又はこれと相補的な塩基配列からなる核酸部分を、標的のゲノム領域にハイブリダイズする部分として含む。例えば、配列番号4に示した塩基配列中の197~205位を含む15~30塩基程度の部分領域と同一の塩基配列、又はこれと相補的な塩基配列からなるプローブであってよい。この場合のプローブは、配列番号4中の197~205位の配列又はこれと相補的な配列として、GGGA[C]AAGG、GGGA[T]AAGG、CCTT[G]TCCC、又はCCTT[A]TCCC([]がSNP部分)を含む。 (4) The probe for detecting the genotype of rs2246661 is from a base sequence of about 15 to 30 bases including position 201 (SNP of rs2246661) of SEQ ID NO: 4 and several bases before and after it, or a base sequence complementary thereto. Nucleic acid moiety is included as a moiety that hybridizes to the target genomic region. For example, it may be a probe having the same base sequence as a partial region of about 15 to 30 bases including positions 197 to 205 in the base sequence shown in SEQ ID NO: 4, or a probe having a base sequence complementary thereto. In this case, the probe is GGGA [C] AAGG, GGGA [T] AAGG, CCTT [G] TCCC, or CCTT [A] TCCC as the sequence at positions 197 to 205 in SEQ ID NO: 4 or a sequence complementary thereto. ([] Is the SNP part) is included.

(5)rs12032649の遺伝子型を検出するためのプローブは、配列番号5の201位(rs12032649のSNP)及びその前後数塩基を含む15~30塩基程度の塩基配列又はこれと相補的な塩基配列からなる核酸部分を、標的のゲノム領域にハイブリダイズする部分として含む。例えば、配列番号5に示した塩基配列中の197~205位を含む15~30塩基程度の部分領域と同一の塩基配列、又はこれと相補的な塩基配列からなるプローブであってよい。この場合のプローブは、配列番号5中の197~205位の配列又はこれと相補的な配列として、GCCA[G]CTGG、GCCA[T]CTGG、CCAG[C]TGGC、又はCCAG[A]TGGC([]がSNP部分)を含む。 (5) The probe for detecting the genotype of rs12032649 is from a base sequence of about 15 to 30 bases including position 201 (SNP of rs12032649) of SEQ ID NO: 5 and several bases before and after it, or a base sequence complementary thereto. Nucleic acid moiety is included as a moiety that hybridizes to the target genomic region. For example, it may be a probe having the same base sequence as a partial region of about 15 to 30 bases including positions 197 to 205 in the base sequence shown in SEQ ID NO: 5, or a probe having a base sequence complementary thereto. In this case, the probe is GCCA [G] CTGG, GCCA [T] CTGG, CCAG [C] TGGC, or CCAG [A] TGGC as the sequence at positions 197 to 205 in SEQ ID NO: 5 or a sequence complementary thereto. ([] Is the SNP part) is included.

(6)rs698047の遺伝子型を検出するためのプローブは、配列番号6の201位(rs698047のSNP)及びその前後数塩基を含む15~30塩基程度の塩基配列又はこれと相補的な塩基配列からなる核酸部分を、標的のゲノム領域にハイブリダイズする部分として含む。例えば、配列番号6に示した塩基配列中の197~205位を含む15~30塩基程度の部分領域と同一の塩基配列、又はこれと相補的な塩基配列からなるプローブであってよい。この場合のプローブは、配列番号6中の197~205位の配列又はこれと相補的な配列として、CCCC[C]TCCC、CCCC[G]TCCC、GGGA[G]GGGG、又はGGGA[C]GGGG([]がSNP部分)を含む。 (6) The probe for detecting the genotype of rs698047 is from a base sequence of about 15 to 30 bases including position 201 (SNP of rs698047) of SEQ ID NO: 6 and several bases before and after it, or a base sequence complementary thereto. Nucleic acid moiety is included as a moiety that hybridizes to the target genomic region. For example, it may be a probe having the same base sequence as a partial region of about 15 to 30 bases including positions 197 to 205 in the base sequence shown in SEQ ID NO: 6, or a probe having a base sequence complementary thereto. The probe in this case is CCCC [C] TCCC, CCCC [G] TCCC, GGGA [G] GGGG, or GGGA [C] GGGG as the sequence at positions 197 to 205 in SEQ ID NO: 6 or a sequence complementary thereto. ([] Is the SNP part) is included.

(7)rs17029206の遺伝子型を検出するためのプローブは、配列番号7の201位(rs17029206のSNP)及びその前後数塩基を含む15~30塩基程度の塩基配列又はこれと相補的な塩基配列からなる核酸部分を、標的のゲノム領域にハイブリダイズする部分として含む。例えば、配列番号7に示した塩基配列中の197~205位を含む15~30塩基程度の部分領域と同一の塩基配列、又はこれと相補的な塩基配列からなるプローブであってよい。この場合のプローブは、配列番号7中の197~205位の配列又はこれと相補的な配列として、GAAA[C]TTAC、GAAA[T]TTAC、GTAA[G]TTTC、又はGTAA[A]TTTC([]がSNP部分)を含む。 (7) The probe for detecting the genotype of rs17029206 is from a base sequence of about 15 to 30 bases including position 201 (SNP of rs17029206) of SEQ ID NO: 7 and several bases before and after it, or a base sequence complementary thereto. Nucleic acid moiety is included as a moiety that hybridizes to the target genomic region. For example, it may be a probe having the same base sequence as a partial region of about 15 to 30 bases including positions 197 to 205 in the base sequence shown in SEQ ID NO: 7, or a probe having a base sequence complementary thereto. The probe in this case is GAAA [C] TTAC, GAAA [T] TTAC, GTAA [G] TTTC, or GTAA [A] TTTC as the sequence at positions 197 to 205 in SEQ ID NO: 7 or a sequence complementary thereto. ([] Is the SNP part) is included.

(8)rs589135の遺伝子型を検出するためのプローブは、配列番号8の201位(rs589135のSNP)及びその前後数塩基を含む15~30塩基程度の塩基配列又はこれと相補的な塩基配列からなる核酸部分を、標的のゲノム領域にハイブリダイズする部分として含む。例えば、配列番号8に示した塩基配列中の197~205位を含む15~30塩基程度の部分領域と同一の塩基配列、又はこれと相補的な塩基配列からなるプローブであってよい。この場合のプローブは、配列番号8中の197~205位の配列又はこれと相補的な配列として、GAAG[A]GGCT、GAAG[G]GGCT、AGCC[T]CTTC、又はAGCC[C]CTTC([]がSNP部分)を含む。 (8) The probe for detecting the genotype of rs589135 is from a base sequence of about 15 to 30 bases including position 201 (SNP of rs589135) of SEQ ID NO: 8 and several bases before and after it, or a base sequence complementary thereto. Nucleic acid moiety is included as a moiety that hybridizes to the target genomic region. For example, it may be a probe having the same base sequence as a partial region of about 15 to 30 bases including positions 197 to 205 in the base sequence shown in SEQ ID NO: 8, or a probe having a base sequence complementary thereto. The probe in this case is GAAG [A] GGCT, GAAG [G] GGCT, AGCC [T] CTTC, or AGCC [C] CTTC as the sequence at positions 197 to 205 in SEQ ID NO: 8 or a sequence complementary thereto. ([] Is the SNP part) is included.

(9)rs28415942の遺伝子型を検出するためのプローブは、配列番号9の201位(rs28415942のSNP)及びその前後数塩基を含む15~30塩基程度の塩基配列又はこれと相補的な塩基配列からなる核酸部分を、標的のゲノム領域にハイブリダイズする部分として含む。例えば、配列番号9に示した塩基配列中の197~205位を含む15~30塩基程度の部分領域と同一の塩基配列、又はこれと相補的な塩基配列からなるプローブであってよい。この場合のプローブは、配列番号9中の197~205位の配列又はこれと相補的な配列として、CACA[C]CCAC、CACA[T]CCAC、GTGG[G]TGTG、又はGTGG[A]TGTG([]がSNP部分)を含む。 (9) The probe for detecting the genotype of rs28415942 is from a base sequence of about 15 to 30 bases including position 201 (SNP of rs28415942) of SEQ ID NO: 9 and several bases before and after it, or a base sequence complementary thereto. Nucleic acid moiety is included as a moiety that hybridizes to the target genomic region. For example, it may be a probe having the same base sequence as a partial region of about 15 to 30 bases including positions 197 to 205 in the base sequence shown in SEQ ID NO: 9, or a probe having a base sequence complementary thereto. The probe in this case is CACA [C] CCAC, CACA [T] CCAC, GTGG [G] TGTG, or GTGG [A] TGTG as the sequence at positions 197 to 205 in SEQ ID NO: 9 or a sequence complementary thereto. ([] Is the SNP part) is included.

本発明による強度近視発症リスクの判定方法は、他の遺伝子診断方法と組み合わせて実施しても差し支えない。例えば、疾患のリスクや体質などに関連する多型の遺伝子型を検出するプローブと、表1に示したSNPを検出するプローブを組み合わせたマイクロアレイチップを用いて、様々な項目を対象とする遺伝子検査の中の1項目として本発明による強度近視発症リスクの判定を行なってもよい。 The method for determining the risk of developing severe myopia according to the present invention may be carried out in combination with other genetic diagnosis methods. For example, genetic testing for various items using a microarray chip that combines a probe that detects polymorphic genotypes related to disease risk and constitution and a probe that detects SNPs shown in Table 1. The risk of developing severe myopia may be determined according to the present invention as one of the items.

本発明によれば、高リスクと判定された被検者に対し、近視を発症するリスクが高いという情報ないしアドバイスを提供することができる。かかる情報が提供されることにより、生活環境(パソコン、スマートフォン、TVゲーム、読書等の環境)の改善による近視予防の助言や、オルソケラトロジー又は低濃度アトロピン治療による近視進行の抑制等の、近視の予防ないし進行抑制のための処置を早期に実行可能となる。 According to the present invention, it is possible to provide information or advice that a subject determined to be at high risk has a high risk of developing myopia. By providing such information, advice on myopia prevention by improving the living environment (environment such as personal computer, smartphone, video game, reading, etc.) and suppression of myopia progression by orthokeratology or low-concentration atropine treatment, etc. It becomes possible to carry out preventive measures or preventive measures at an early stage.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples.

材料及び方法
対象
強度近視(少なくとも片眼がSE < -9.0 D)を有する非血縁の日本人患者計1,668名、及び非血縁の日本人健常コントロール(両眼とも-0.5 D < SE < +2.0 D)計1,601名をGWASのdiscoveryステージの対象とした。患者症例および健常者症例の収集は神奈川県横浜市の横浜市立大学、岡田眼科及びあおと眼科において実施された。対象者は全員、眼軸長(AL)、眼底検査、球面屈折力、角膜曲率を含む包括的な眼科検査(オートレフラクターはARK-730A (ニデック), ARK-700A (ニデック), KP-8100P (トプコン)を、バイオメーター/パキメーターはAL-2000 (トーメー)を使用)により診断した。強度近視患者は、近視ないしは強度近視の少なくともいずれかに関連することが知られている遺伝性疾患(緑内障、円錐角膜、マルファン症候群など)を有していないことを確認した。末梢血リンパ球の採取及び末梢血細胞からのゲノムDNAの抽出にはQIAamp DNA Blood Maxi Kit (QIAGEN) を使用した。DNA品質のばらつきを防ぐため、実験操作は標準条件下で行なった。
Materials and Methods Targets A total of 1,668 unrelated Japanese patients with severe myopia (at least one eye SE <-9.0 D) and unrelated Japanese healthy controls (both eyes -0.5 D <SE <+2.0 D) ) A total of 1,601 people were targeted for the GWAS discovery stage. Collection of patient cases and healthy subjects was carried out at Yokohama City University, Okada Ophthalmology and Aoto Ophthalmology in Yokohama City, Kanagawa Prefecture. All subjects were comprehensive ophthalmologic examinations including axial length (AL), fundus examination, spherical power, and corneal curvature (autorefractors are ARK-730A (Nidek), ARK-700A (Nidek), KP-8100P ( Topcon) was diagnosed with AL-2000 (Tome) as the biometer / pachymeter). Patients with severe myopia were confirmed to be free of hereditary disorders known to be associated with at least either myopia or severe myopia (glaucoma, keratoconus, Marfan syndrome, etc.). The QIAamp DNA Blood Maxi Kit (QIAGEN) was used to collect peripheral blood lymphocytes and extract genomic DNA from peripheral blood cells. Experimental procedures were performed under standard conditions to prevent variability in DNA quality.

replicationステージ(追認試験)のため、GWASステージとは異なる非血縁の日本人集団(両眼AL>26.0 mmの患者500名、健常コントロール4,869名)を追加した。日本人の強度近視症例は京都強度近視コホート[1-3]から収集した。また、滋賀県長浜市在住の一般市民から2008~2010年に募集した、包括的ヒトバイオサイエンスデータセットのための長浜前向きゲノムコホート(Nagahama Study)由来の一般健常者[4,5]を日本人健常コントロールとした。追認試験参加者は全員、包括的な眼科検査により診断した(オートレフラクターはARK-530A (ニデック)を、バイオメーター/パキメーターはAL-2000, UD-6000 (トーメー), IOL Master (Carl Zeiss Meditec)を使用)。 For the replication stage (confirmation study), an unrelated Japanese population (500 patients with binocular AL> 26.0 mm and 4,869 healthy controls) different from the GWAS stage was added. Japanese cases of severe myopia were collected from the Kyoto High Myopia Cohort [1-3]. In addition, the general healthy subjects [4,5] derived from the Nagahama Proactive Genome Cohort (Nagahama Study) for the comprehensive human bioscience dataset, which were recruited from the general public living in Nagahama City, Shiga Prefecture from 2008 to 2010, are Japanese. It was a healthy control. All confirmatory study participants were diagnosed by a comprehensive ophthalmologic examination (autorefractor ARK-530A (Nidek), biometer / pachymeter AL-2000, UD-6000 (Tome), IOL Master (Carl Zeiss Meditec). use).

研究方法はヘルシンキ宣言の教義を遵守し、参加した各施設の倫理委員会によって承認された。全ての患者及びコントロール健常者に対して研究の詳細を説明し、参加者全員から書面によるインフォームド・コンセントを得た。 The research method adhered to the doctrine of the Declaration of Helsinki and was approved by the ethics committee of each participating institution. Details of the study were explained to all patients and healthy controls, and written informed consent was obtained from all participants.

GWASのdiscoveryステージにおけるジェノタイピング
日本人discoveryサンプルを対象としたGWASジェノタイピングは、GeneChip Human Mapping 500K Array Set (500,568 SNPs) (Affymetrix)、又はHuman OmniExpress chip (727,413 SNPs) (Illumina) を用いて、各製造者の推奨する標準プロトコールに基づいて行なわれた。まず、GeneChip Human Mapping 500K Array Setを用いて1,042サンプル(強度近視患者504名、健常者538名)のジェノタイピングを行なった。残りの2,227サンプル(強度近視患者1,164名、健常者1,063名) のジェノタイピングにはHuman OmniExpress chipを使用した。サンプルの評価基準を、最小SNPコール率97%以上に設定し、SNPコール率が97%未満のサンプルを除外した。また、SNPの評価基準については、下記4点のクオリティーコントロール基準に基づいてSNPを除外した。
・コール率98%未満
・強度近視患者-健常者間で欠損データ率に有意差あり(P < 1.0×10-6
・マイナーアリルの頻度が1%未満
・健常者群でハーディ-ヴァインベルク平衡(HWE)から大きな逸脱あり(P < 0.0001)
Genotyping in the GWAS discovery stage GWAS genotyping for Japanese discovery samples is performed using the GeneChip Human Mapping 500K Array Set (500,568 SNPs) (Affymetrix) or Human OmniExpress chip (727,413 SNPs) (Illumina). It was based on the standard protocol recommended by the manufacturer. First, genotyping of 1,042 samples (504 patients with severe myopia and 538 healthy subjects) was performed using the GeneChip Human Mapping 500K Array Set. The remaining 2,227 samples (1,164 patients with severe myopia and 1,063 healthy subjects) were genotyped using the Human OmniExpress chip. Sample evaluation criteria were set to a minimum SNP call rate of 97% or higher, and samples with an SNP call rate of less than 97% were excluded. Regarding the SNP evaluation criteria, SNPs were excluded based on the following four quality control criteria.
・ Call rate less than 98% ・ Significant difference in missing data rate between patients with severe myopia and healthy subjects (P <1.0 × 10 -6 )
・ Frequency of minor allele is less than 1% ・ There is a large deviation from Hardy-Weinberg equilibrium (HWE) in the healthy group (P <0.0001)

さらに、サンプル間の潜在的な近縁性を同祖性に基づいて算出し、PI-HAT値 > 0.1875を示す近縁のサンプルを除外した。最終的に上記の評価基準を通過した、Affymetrix GeneChip Human Mapping 500K Array Set上の常染色体SNP 320,897個 (強度近視患者494名、健常者538名)、及びIllumina Human OmniExpress chip上の常染色体SNP 556,905個 (強度近視患者1,138名、健常者1,048名) を用いてインピュテーション解析を行った。 In addition, potential relatives between samples were calculated based on homogeneity and excluded closely related samples with a PI-HAT value> 0.1875. 320,897 autosomal SNPs on the Affymetrix GeneChip Human Mapping 500K Array Set (494 patients with severe myopia, 538 healthy subjects) and 556,905 autosomal SNPs on the Illumina Human Omni Express chip that finally passed the above criteria. Imputation analysis was performed using (1,138 patients with severe myopia and 1,048 healthy subjects).

ジェノタイプインピュテーション
Michigan Imputation Server (https://imputationserver.sph.umich.edu) [6]を用いてGWASデータのインピュテーション解析を実行した。インピュテーションのリファレンスパネルには、1000 Genomes Phase 3 v5のデータ(http://www.1000genomes.org) [7]を使用した。インピュテーションされたSNPの評価基準をHWE P > 0.001、マイナーアリル頻度 > 1%、R-squared(インピュテーションされた遺伝子型と実際の遺伝子型の間の一致率を示す決定係数)> 0.7と設定し、最終的に、強度近視患者1,632名及び健常者1,586名における常染色体上の5,046,652個のSNPが評価基準をクリアし、統計解析に用いられた。
Genotype imputation
Imputation analysis of GWAS data was performed using Michigan Imputation Server (https://imputationserver.sph.umich.edu) [6]. 1000 Genomes Phase 3 v5 data (http://www.1000genomes.org) [7] was used as the reference panel for the imputation. Criteria for imputed SNPs are HWE P> 0.001, minor allele frequency> 1%, R-squared (coefficient of determination showing concordance between imputed genotype and actual genotype)> 0.7 Finally, 5,046,652 SNPs on the autosomal chromosome in 1,632 patients with severe myopia and 1,586 healthy subjects cleared the evaluation criteria and were used for statistical analysis.

追認試験
GWASのdiscoveryステージの結果を評価するために追認試験を行なった。以前に実施した日本人集団を対象としたGWAS研究[8,9]のデータを基に、日本人集団における追認試験を実施した。
Confirmation test
A confirmatory test was conducted to evaluate the outcome of the GWAS discovery stage. Based on the data from the previously conducted GWAS study [8,9] on the Japanese population, a confirmation test was conducted in the Japanese population.

統計解析
全ての関連解析はHelixTree SVSソフトウェア(Golden Helix, Inc.)を用いて実施した。GWASの日本人集団における集団階層化に起因する偽陽性の結果を避けるため、GWASステージで得られたP値をinflation factorの値(λ= 1.06)で補正した。GWASステージとreplicationステージの集団間のメタ解析はPLINK [10]を使用して固定効果モデルの下で実施した。ゲノムワイド有意水準の閾値をP < 5.0×10-8に設定した。
Statistical analysis All relevant analyzes were performed using HelixTree SVS software (Golden Helix, Inc.). In order to avoid false positive results due to population stratification in the Japanese population of GWAS, the P value obtained in the GWAS stage was corrected by the inflation factor value (λ = 1.06). A meta-analysis between the GWAS and replication stage populations was performed using PLINK [10] under a fixed effects model. The threshold for genome-wide significance was set to P <5.0 × 10 -8 .

結果
GWASのdiscoveryステージでは、強度近視を有する日本人患者1,632名及び日本人健常コントロール1,586名(日本人集団1)を対象に、常染色体上の計5,046,652個のSNPについて関連解析を実施した。その結果、アリルベースの関連解析において、P < 0.0001で強度近視と相関を示す62個の候補遺伝子領域を同定した。
result
In the GWAS discovery stage, a total of 5,046,652 SNPs on autosomal chromosomes were associated with 1,632 Japanese patients with severe myopia and 1,586 Japanese healthy controls (Japanese population 1). As a result, in an allyl-based association study, 62 candidate gene regions that correlated with intensity myopia were identified at P <0.0001.

GWASステージで同定されたP < 0.0001を示す62個の候補遺伝子領域を検証するため、上記の日本人集団1とは別の日本人集団2(強度近視患者500名、健常者4,869名)を用いて追認試験を実施した。62個の候補遺伝子領域のうち、9個の候補遺伝子領域内のSNPが、2つの日本人集団を対象としたメタ解析においてゲノムワイド有意水準(P < 5.0×10-8)の相関を示した。これら9個のSNPを表2に示す。日本人集団1の健常者群1,586名を対象にリスクSNPの平均保有個数を算出したところ、4.39±1.21個であった。本研究で同定した9個の候補遺伝子領域のうち、1q41のZC3H11B領域、15q14のGJD2領域及び15q25.1のRASGRF1領域の3遺伝子領域は、近視または近視関連形質の発症リスクと相関を示す領域として同定されている遺伝子領域であるが(非特許文献22-24)、本研究では、これら3遺伝子領域内において、強度近視と強固に相関を示すSNPを新規に同定した。In order to verify the 62 candidate gene regions showing P <0.0001 identified in the GWAS stage, we used a Japanese population 2 (500 severe myopia patients, 4,869 healthy subjects) different from the above Japanese population 1. A confirmation test was conducted. Of the 62 candidate gene regions, SNPs in 9 candidate gene regions showed a genome-wide significance level (P <5.0 × 10 -8 ) in a meta-analysis of two Japanese populations. .. These 9 SNPs are shown in Table 2. The average number of risk SNPs possessed by 1,586 healthy subjects in the Japanese population 1 was calculated to be 4.39 ± 1.21. Of the nine candidate gene regions identified in this study, the ZC3H11B region of 1q41, the GJD2 region of 15q14, and the RASGRF1 region of 15q25.1 are the regions that correlate with the risk of developing myopia or myopia-related traits. Although it is a gene region that has been identified (Non-Patent Document 22-24), in this study, we newly identified an SNP that strongly correlates with intense myopia within these three gene regions.

Figure 0006998476000002
Figure 0006998476000002

参考文献
1. Miyake M, Yamashiro K, Nakanishi H, Nakata I, Akagi-Kurashige Y, Kumagai K, et al. Evaluation of pigment epithelium-derived factor and complement factor I polymorphisms as a cause of choroidal neovascularization in highly myopic eyes. Invest Ophthalmol Vis Sci. 2013;54(6):4208-4212.

2. Miyake M, Yamashiro K, Nakanishi H, Nakata I, Akagi-Kurashige Y, Tsujikawa A, et al. Association of paired box 6 with high myopia in Japanese. Mol Vis. 2012;18:2726-2735.

3. Miyake M, Yamashiro K, Nakanishi H, Nakata I, Akagi-Kurashige Y, Tsujikawa A, et al. Insulin-like growth factor 1 is not associated with high myopia in a large Japanese cohort. Mol Vis. 2013;19:1074-1081.

4. Miyake M, Yamashiro K, Tabara Y, Suda K, Morooka S, Nakanishi H, et al. Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat Commun. 2015;6:6689.

5. Nakata I, Yamashiro K, Kawaguchi T, Nakanishi H, Akagi-Kurashige Y, Miyake M, et al. Calcium, ARMS2 genotype, and Chlamydia pneumoniae infection in early age-related macular degeneration: a multivariate analysis from the Nagahama study. Sci Rep. 2015;5:9345.

6. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48(10):1284-1287.

7. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56-65.

8. Khor CC, Miyake M, Chen LJ, Shi Y, Barathi VA, Qiao F, et al. Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia. Hum Mol Genet. 2013;22(25):5288-5294.

9. Hosoda Y, Yoshikawa M, Miyake M, Tabara Y, Shimada N, Zhao W, et al. CCDC102B confers risk of low vision and blindness in high myopia. Nat Commun. 2018;9(1):1782.

10. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-575.
References
1. Miyake M, Yamashiro K, Nakanishi H, Nakata I, Akagi-Kurashige Y, Kumagai K, et al. Evaluation of pigment epithelium-derived factor and complement factor I polymorphisms as a cause of choroidal neovascularization in highly myopic eyes. Vis Sci. 2013; 54 (6): 4208-4212.

2. Miyake M, Yamashiro K, Nakanishi H, Nakata I, Akagi-Kurashige Y, Tsujikawa A, et al. Association of paired box 6 with high myopia in Japanese. Mol Vis. 2012; 18: 2726-2735.

3. Miyake M, Yamashiro K, Nakanishi H, Nakata I, Akagi-Kurashige Y, Tsujikawa A, et al. Insulin-like growth factor 1 is not associated with high myopia in a large Japanese cohort. Mol Vis. 2013; 19: 1074-1081.

4. Miyake M, Yamashiro K, Tabara Y, Suda K, Morooka S, Nakanishi H, et al. Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat Commun. 2015; 6: 6689.

5. Nakata I, Yamashiro K, Kawaguchi T, Nakanishi H, Akagi-Kurashige Y, Miyake M, et al. Calcium, ARMS2 genotype, and Chlamydia pneumoniae infection in early age-related macular degeneration: a multivariate analysis from the Nagahama study. Sci Rep. 2015; 5: 9345.

6. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016; 48 (10): 1284-1287.

7. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012; 491 (7422): 56-65.

8. Khor CC, Miyake M, Chen LJ, Shi Y, Barathi VA, Qiao F, et al. Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia. Hum Mol Genet. 2013; 22 (25): 5288 -5294.

9. Hosoda Y, Yoshikawa M, Miyake M, Tabara Y, Shimada N, Zhao W, et al. CCDC102B confers risk of low vision and blindness in high myopia. Nat Commun. 2018; 9 (1): 1782.

10. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81 (3): 559-575.

Claims (3)

ヒト被検者から分離したゲノムDNA試料を用いて、下記(1)~(9)の一塩基多型(SNP):
(1) 第15番染色体の85,692,651位(配列番号1における201位)にあるSNP ID番号rs72748160のSNP
(2) 第3番染色体の69,229,747位(配列番号2における201位)にあるSNP ID番号rs74633073のSNP
(3) 第12番染色体の130,041,322位(配列番号3における201位)にあるSNP ID番号rs76903431のSNP
(4) 第1番染色体の204,974,863位(配列番号4における201位)にあるSNP ID番号rs2246661のSNP
(5) 第1番染色体の219,605,617位(配列番号5における201位)にあるSNP ID番号rs12032649のSNP
(6) 第1番染色体の41,867,932位(配列番号6における201位)にあるSNP ID番号rs698047のSNP
(7) 第3番染色体の1,739,832位(配列番号7における201位)にあるSNP ID番号rs17029206のSNP
(8) 第15番染色体の34,709,241位(配列番号8における201位)にあるSNP ID番号rs589135のSNP
(9) 第15番染色体の79,092,508位(配列番号9における201位)にあるSNP ID番号rs28415942のSNP
から選択される少なくとも5つのSNPの遺伝子型を調べることを含む、近視の発症リスクを判定する方法であって、近視発症の高リスクの指標となるリスクアリルは、(1)がTであり、(2)がTであり、(3)がAであり、(4)がCであり、(5)がGであり、(6)がGであり、(7)がTであり、(8)がGであり、(9)がTである、方法。
Using genomic DNA samples isolated from human subjects, the following single nucleotide polymorphisms (SNPs) in (1) to (9):
(1) SNP of SNP ID number rs72748160 at position 85,692,651 (position 201 in SEQ ID NO: 1) of chromosome 15.
(2) SNP of SNP ID number rs74633073 at position 69,229,747 of chromosome 3 (position 201 in SEQ ID NO: 2)
(3) SNP of SNP ID number rs76903431 at position 130,041,322 (position 201 in SEQ ID NO: 3) of chromosome 12.
(4) SNP of SNP ID number rs2246661 at position 204,974,863 (position 201 in SEQ ID NO: 4) of chromosome 1.
(5) SNP of SNP ID number rs12032649 at position 219,605,617 of chromosome 1 (position 201 in SEQ ID NO: 5)
(6) SNP of SNP ID number rs698047 at position 41,867,932 of chromosome 1 (position 201 in SEQ ID NO: 6)
(7) SNP of SNP ID number rs17029206 at position 1,739,832 of chromosome 3 (position 201 in SEQ ID NO: 7)
(8) SNP of SNP ID number rs589135 at position 34,709,241 (position 201 in SEQ ID NO: 8) of chromosome 15.
(9) SNP of SNP ID number rs28415942 at position 79,092,508 of chromosome 15 (position 201 in SEQ ID NO: 9)
A method for determining the risk of developing myopia, which involves examining the genotypes of at least 5 SNPs selected from the above, and the risk allele that is an indicator of the high risk of developing myopia is (1) T. (2) is T, (3) is A, (4) is C, (5) is G, (6) is G, (7) is T, (8) ) Is G and (9) is T, the method.
前記(1)~(9)のうちの少なくとも6つのSNPの遺伝子型を調べることを含む、請求項記載の方法。 The method according to claim 1 , comprising examining the genotypes of at least 6 SNPs among the above (1) to (9). 前記(1)~(9)のSNPの遺伝子型を調べることを含む、請求項記載の方法。 The method according to claim 1 , which comprises examining the genotypes of the SNPs (1) to (9) above.
JP2020569530A 2019-01-31 2020-01-21 How to determine the risk of developing myopia Active JP6998476B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019015193 2019-01-31
JP2019015193 2019-01-31
PCT/JP2020/001896 WO2020158503A1 (en) 2019-01-31 2020-01-21 Method for determining onset risk of myopia

Publications (2)

Publication Number Publication Date
JPWO2020158503A1 JPWO2020158503A1 (en) 2021-10-21
JP6998476B2 true JP6998476B2 (en) 2022-02-04

Family

ID=71840306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020569530A Active JP6998476B2 (en) 2019-01-31 2020-01-21 How to determine the risk of developing myopia

Country Status (3)

Country Link
JP (1) JP6998476B2 (en)
TW (1) TWI807159B (en)
WO (1) WO2020158503A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522634A (en) 2004-12-13 2008-07-03 エフ.ホフマン−ラ ロシュ アーゲー Single nucleotide polymorphism (SNP) associated with type 2 diabetes
JP2010094099A (en) 2008-10-20 2010-04-30 Kaohsiung Medical Univ Use of polymorphism of bicd1 gene, as method for diagnosis and treatment of myopia
CN102251045A (en) 2010-07-30 2011-11-23 四川省医学科学院(四川省人民医院) Screening kit for detecting high myopia
CN105861714A (en) 2016-05-22 2016-08-17 深圳中美基因研究院有限公司 Gene detection kit for myopia risk assessment and detection method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104730A1 (en) * 2008-02-21 2009-08-27 国立大学法人愛媛大学 Identification of hypertension susceptibility gene group
US20110129838A1 (en) * 2008-07-28 2011-06-02 Kaohsiung Medical University Using genetic polymorphisms of the bicd1 gene as a method for determining a risk of developing myopia
TWI358456B (en) * 2008-09-12 2012-02-21 Univ Kaohsiung Medical Method of determining susceptibility of high myopi
KR20130041767A (en) * 2010-05-26 2013-04-25 가부시끼가이샤 메니콘 Normal-tension glaucoma susceptibility gene and method for using the same
WO2015129018A1 (en) * 2014-02-28 2015-09-03 株式会社メニコン Method and kit for diagnosing glaucoma in dogs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522634A (en) 2004-12-13 2008-07-03 エフ.ホフマン−ラ ロシュ アーゲー Single nucleotide polymorphism (SNP) associated with type 2 diabetes
JP2010094099A (en) 2008-10-20 2010-04-30 Kaohsiung Medical Univ Use of polymorphism of bicd1 gene, as method for diagnosis and treatment of myopia
CN102251045A (en) 2010-07-30 2011-11-23 四川省医学科学院(四川省人民医院) Screening kit for detecting high myopia
CN105861714A (en) 2016-05-22 2016-08-17 深圳中美基因研究院有限公司 Gene detection kit for myopia risk assessment and detection method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Clinical Ophthalmology, 2015, Vol.9, pp.2005-2011
Clinical Ophthalmology, 2016, Vol.10, pp.2157-2163
Clinical Ophthalmology, 2017, Vol.11, pp.2151-2156

Also Published As

Publication number Publication date
TW202041674A (en) 2020-11-16
WO2020158503A1 (en) 2020-08-06
JPWO2020158503A1 (en) 2021-10-21
TWI807159B (en) 2023-07-01

Similar Documents

Publication Publication Date Title
Brancati et al. A locus for autosomal dominant keratoconus maps to human chromosome 3p14–q13
Hansen et al. Genetic heterogeneity in microcornea-cataract: five novel mutations in CRYAA, CRYGD, and GJA8
Nosková et al. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis
Bandah-Rozenfeld et al. Homozygosity mapping reveals null mutations in FAM161A as a cause of autosomal-recessive retinitis pigmentosa
Bandah-Rozenfeld et al. Novel null mutations in the EYS gene are a frequent cause of autosomal recessive retinitis pigmentosa in the Israeli population
Tang et al. Three VSX1 gene mutations, L159M, R166W, and H244R, are not associated with keratoconus
Li et al. Homozygosity mapping and genetic analysis of autosomal recessive retinal dystrophies in 144 consanguineous Pakistani families
Liskova et al. Molecular analysis of the VSX1 gene in familial keratoconus
Paget et al. Linkage analysis of high myopia susceptibility locus in 26 families
Funayama et al. SNPs and interaction analyses of noelin 2, myocilin, and optineurin genes in Japanese patients with open-angle glaucoma
Piotrowska-Nowak et al. Investigation of whole mitochondrial genome variation in normal tension glaucoma
Paliwal et al. A novel VSX1 mutation identified in an individual with keratoconus in India
Zhang et al. Novel mutations associated with various types of corneal dystrophies in a Han Chinese population
Xiao et al. Cerulean cataract mapped to 12q13 and associated with a novel initiation codon mutation in MIP
Lu et al. Two Chinese families with pulverulent congenital cataracts and DG91 CRYBA1 mutations
Riveiro-Alvarez et al. Correlation of genetic and clinical findings in Spanish patients with X-linked juvenile retinoschisis
Dong et al. Two novel PRPF31 premessenger ribonucleic acid processing factor 31 homolog mutations including a complex insertion-deletion identified in Chinese families with retinitis pigmentosa
Prokisch et al. A population-based epidemiological and genetic study of X-linked retinitis pigmentosa
Zhang et al. Mutational screening of 10 genes in Chinese patients with microphthalmia and/or coloboma
Weisschuh et al. A clinical and molecular genetic study of German patients with primary congenital glaucoma
JP5721150B2 (en) Prediction risk of age-related macular degeneration
Hu et al. A novel locus for congenital simple microphthalmia family mapping to 17p12-q12
JP6998476B2 (en) How to determine the risk of developing myopia
Park et al. Genetic risk for primary open-angle glaucoma determined by LMX1B haplotypes
Hassan et al. A syndromic form of autosomal recessive congenital microcephaly (Jawad syndrome) maps to chromosome 18p11. 22–q11. 2

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 6998476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150