JP6998291B2 - 状態監視装置、状態監視方法及びプログラム - Google Patents

状態監視装置、状態監視方法及びプログラム Download PDF

Info

Publication number
JP6998291B2
JP6998291B2 JP2018224689A JP2018224689A JP6998291B2 JP 6998291 B2 JP6998291 B2 JP 6998291B2 JP 2018224689 A JP2018224689 A JP 2018224689A JP 2018224689 A JP2018224689 A JP 2018224689A JP 6998291 B2 JP6998291 B2 JP 6998291B2
Authority
JP
Japan
Prior art keywords
vibration
bogie
vehicle body
condition
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018224689A
Other languages
English (en)
Other versions
JP2020012807A (ja
Inventor
岳夫 城取
香敏 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Publication of JP2020012807A publication Critical patent/JP2020012807A/ja
Application granted granted Critical
Publication of JP6998291B2 publication Critical patent/JP6998291B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、台車や車体の状態監視装置、状態監視方法及びプログラムに関するものである。
鉄道用車両の下部に設けられた台車では、台車枠に取り付けられた輪軸が、軸箱に設けられた軸受けに軸支されている。この軸箱は、軸ばねや軸ダンパ等を有する軸箱支持装置によって台車枠に取り付けられている。軸ばねは、ばね帽によって覆われており、台車枠に対する軸箱の上下方向の衝撃を緩衝する。軸ダンパは軸箱支持装置の上下方向の振動を減衰させる。また、軸箱と台車枠とは、軸箱支持装置のリンクや軸はりによって前後方向に連結され、高速走行時の蛇行等を抑制する直進安定性と、曲線走行時の転向性(輪軸の鉛直軸回りの回転性能)とのバランスを保つことが可能な前後方向の剛性が保持されている。
ところで、鉄道車両は、保全のため数年毎に大規模に分解する検査の他、営業終了後毎、月毎、或いは年毎等に、定期的に目視検査等が行われている。
極稀に、台車部品は、まだ十分に安全性が確保されている場合でも、摩耗等により異音等が生じ、営業線上で状態確認のため、乗務員が列車を停止させて検査することがある。このために列車運行に遅延が発生することがあり、大都市部では多くの乗客の足に影響してしまうことがある。このような事態を避けたいが、ばね帽に覆われた軸ばね、軸ダンパ、前後方向の剛性に関わる部品等は、目視での状態や機能の把握に限界がある。また、大手の鉄道事業者にとっては、保有する数千両の車両を対象にしなければならないという問題もある。
そこで、分解や部品の取り外しを行うことなく、台車に備えられた部品の状態を監視する状態監視装置が開発されている(例えば、特許文献1、2参照)。特許文献1には、台車枠に加速度センサを取付け、この加速度センサで測定した加速度に基づいて、軸ダンパ、軸ばね等の状態を監視することが開示されている。特許文献2には、ボルト等の監視対象の正常時の音と異常時の音を比較することで、状態監視を行うことが開示されている。このように、鉄道事業者等では、車両の分解等を行わなくても台車や車体に取り付けられた部品の状態監視を簡単かつ確実に行うことができる技術の開発が切望されている。
特開2014-210507号公報 特開2016-90461号公報
本発明は上記事情に鑑みてなされたものであって、台車や車体の状態監視を、より簡易な構成で高精度かつ効率よく行うことが可能な状態監視装置を提供することを目的としている。
前記目的を達成するために、本発明の状態監視装置は、車両の台車及び/又は車体の状態を監視する状態監視装置であって、振動励起部によって振動する前記台車及び/又は前記車体の撮像画像を連続して複数撮影し軌道脇に配置される画像取得部と、複数の前記撮像画像に基づいて、前記振動励起部によって振動する前記台車及び/又は前記車体の応答波形を取得する応答波形取得部と、を備え、前記応答波形に基づいて、前記台車及び/又は前記車体の状態監視を行うことを特徴とする。
ここで、前記応答波形取得部は、複数の前記撮像画像から所定の注目領域を抽出し、前記応答波形として、前記注目領域の変位情報を時系列に取得し、前記変位情報に基づいて前記応答波形を取得する構成とすることができる。さらには、前記注目領域が、前記台車若しくは前記台車に取り付けられた軸箱周りの部品若しくは前記車体の所定の形状、又は前記台車若しくは前記軸箱周りの部品若しくは前記車体に付された目印であり、前記応答波形取得部は、前記撮像画像の特徴量に基づくマッチングにより、前記注目領域を抽出し、前記注目領域の中心を着目点とし、複数の前記撮像画像における前記着目点の位置座標の変化に基づいて、前記変位情報を取得する構成とすることもできる。
また、前記応答波形が、前記変位情報を時間差分することで算出した振動加速度若しくは振動速度、又は前記振動加速度若しくは前記振動速度に基づいて算出したパワースペクトル密度であり、前記振動加速度若しくは前記振動速度、又は前記パワースペクトル密度に基づいて、前記台車及び/又は前記車体の状態監視を行うことが好ましい。または前記応答波形が、前記台車及び/又は前記車体の前記変位情報を時間差分することで算出した振動加速度若しくは振動速度と、軸箱周りの部品の前記変位情報を時間差分することで算出した振動加速度若しくは振動速度とに基づく応答倍率であり、前記応答倍率に基づいて、前記台車及び/又は前記車体の状態監視を行うことが好ましい。さらには、前記応答波形取得部によって取得された前記応答波形を、健全状態の台車及び/又は車体について取得された応答波形又は異常状態の台車及び/又は車体について取得された応答波形と比較することで、前記台車及び/又は前記車体の状態監視を行う構成であることが好ましい。または、前記応答波形取得部は、時刻を変えた複数の異なる時系列の前記応答波形を取得するように構成され、時刻を変えて時系列に取得された複数の前記応答波形に基づいて、前記台車及び/又は前記車体の経時的な状態監視を行う構成であることが好ましい。また、前記振動励起部は、軌道を挟むように、当該軌道の前記車両が通過する上面に配置される上部板材と、前記軌道の下面に配置される下部板材と、前記上部板材及び前記下部板材を連結して前記振動励起部を前記軌道に対して着脱自在に固定する固定部材と、を備えて構成されていることが好ましい。
また、本願の状態監視方法は、上述のような状態監視装置を用いて行われ、振動励起部によって台車及び/又は車体に振動を付与する工程と、振動する前記台車及び/又は前記車体の撮像画像を連続して複数撮影する工程と、複数の前記撮像画像に基づいて、前記振動励起部によって前記台車及び/又は前記車体が振動するときの応答波形を取得する工程と、前記応答波形に基づいて、前記台車及び/又は前記車体の状態監視を行う工程と、を有することを特徴とする。
また、本願のプログラムは、コンピュータを、振動が付与された台車及び/又は車体を連続して撮影した複数の撮像画像を記憶する手段と、前記撮像画像から所定の注目領域を抽出し、複数の前記撮像画像に基づいて、前記注目領域の変位情報を時系列に取得し、前記変位情報に基づいて前記台車及び/又は前記車体が振動するときの応答波形を取得する応答波形取得手段として機能させるためのプログラムである。
このように構成された本発明の状態監視装置、状態監視方法及びプログラムでは、振動励起部によって振動する車両を撮影した複数の撮像画像に基づいて、台車及び/又は車体の応答波形を高精度に取得することができる。この高精度な応答波形に基づいて、軸箱周りの部品が健全であるか否かなど、台車及び/又は車体の状態監視を行うことができる。そのため、状態監視のための台車及び/又は車体の部品の取り外しや分解等の手間や時間を省くことができる。また、画像取得部によって、車両に設けられた複数の台車及び/又は車体の撮像画像を取得して、各台車及び/又は車体の状態監視を行うことができる。そのため、台車及び/又は車体毎にセンサを取付けたり、センサを付け替えたりする必要がない。したがって、台車や車体の状態監視を、より簡易な構成で高精度かつ効率よく行うことができる。
また、応答波形取得部は、複数の撮像画像から所定の注目領域を抽出し、応答波形として、注目領域の変位情報を時系列に取得し、変位情報に基づいて応答波形を取得する構成とし、さらには、注目領域が、台車若しくは台車に取り付けられた軸箱周りの部品若しくは車体の所定の形状、又は台車若しくは軸箱周りの部品若しくは車体に付された目印であり、応答波形取得部は、撮像画像の特徴量に基づくマッチングにより、注目領域を抽出し、注目領域の中心を着目点とし、複数の撮像画像における着目点の位置座標の変化に基づいて、変位情報を取得する構成とすれば、応答波形をより簡易かつ高精度に取得することができる。
また、応答波形が、変位情報を時間差分することで算出した振動加速度若しくは振動速度、又は振動加速度若しくは振動速度に基づいて算出したパワースペクトル密度であり、振動加速度若しくは振動速度、又はパワースペクトル密度に基づいて、台車及び/又は車体の状態監視を行うものとすれば、応答波形をより高精度に取得することができ、状態監視の精度をより向上させることができる。または応答波形が、台車及び/又は車体の変位情報を時間差分することで算出した振動加速度若しくは振動速度と、軸箱周りの部品の変位情報を時間差分することで算出した振動加速度若しくは振動速度とに基づく応答倍率であり、応答倍率に基づいて、台車及び/又は車体の状態監視を行うものとすれば、より明確かつより詳細に台車や車体の状態監視を行うことができる。
さらには、応答波形取得部によって取得された応答波形を、健全状態の台車及び/又は車体について取得された応答波形又は異常状態の台車及び/又は車体について取得された応答波形と比較することで、台車及び/又は車体の状態監視を行う構成であれば、台車や車体の部品、軸箱周りの部品などが健全状態であるか否か、さらにはいずれの部品に不具合を生じたか等を容易に判定することができる。
または、応答波形取得部は、時刻を変えた複数の異なる時系列の応答波形を取得するように構成され、時刻を変えて時系列に取得された複数の応答波形に基づいて、台車及び/又は車体の経時的な状態監視を行う構成とすれば、台車や車体の状態を時系列で、より詳細に把握することができる。また、振動励起部は、軌道を挟むように、当該軌道の車両が通過する上面に配置される上部板材と、軌道の下面に配置される下部板材と、上部板材及び下部板材を連結して振動励起部を軌道に対して着脱自在に固定する固定部材と、を備えて構成されているものとすれば、振動励起部の設置の安定性が向上し、車両の通過による振動励起部のズレや軌道からの脱落が抑制され、より安定した再現性の高い加振が可能となる。
本実施形態の状態監視装置を備えた軸箱支持装置を有する台車の側面図である。 精度検証試験において、加速度センサで測定した振動加速度と撮像画像に基づいて算出した振動加速度とを比較したグラフである。 台車不具合検知試験で得られた健全条件1~3とボルト緩み条件1~3の軸箱前後振動加速度と台車枠前後振動加速度に基づく応答倍率を示すグラフである。 台車不具合検知試験で得られた健全条件1及びボルト緩み条件1の軸箱前後振動加速度PSD及び台車枠前後振動加速度PSDを示すグラフである。 台車不具合検知試験で得られた健全条件1とボルト緩み条件1の軸箱前後振動速度と台車枠前後振動速度に基づく応答倍率を示すグラフである。 振動励起部の変形例の説明図であり、軌道上に振動励起部として突起物を設置した状態を示す。 振動励起部の変形例の説明図であり、軌道の継ぎ目を振動励起部とした状態を示す。 振動励起部の変形例の説明図であり、軌道上に振動励起部として波形ブロックを設置した状態を示す。 振動励起部の変形例の説明図であり(a)は、変形例の振動励起部の斜視図を示し、(b)は軌道上に振動励起部を設置した状態を示す。 台車不具合検知試験2で得られたNorm.(標準条件)1~3とHard(2倍条件)1~3の軸箱の前後振動加速度PSDを示すグラフである。 標準条件での軸箱の前後振動加速度及び台車枠の前後振動加速度を示すグラフである。 数値モデルのシミュレーションにおける半車体数値モデルを示す図である。 数値モデルのシミュレーションにより得られた7位の軸箱における前後振動の周波数解析結果を示すグラフである。 経時的な状態監視を行ったときの数値シミュレーション結果を示すグラフである。 軸ダンパ装置の不具合検知試験で得られた健全条件1、2と不具合条件1、2の上下振動加速度PSDを示すグラフである。 台車枠に亀裂が生じたイメージを示す図である。 台車枠の亀裂による不具合検知試験で得られた健全条件と不具合条件の振動加速度の強さを示すグラフである。 牽引装置を備えた鉄道車両の模式図である。 牽引装置の不具合検知試験で得られた健全条件1、2と不具合条件1、2の振動加速度PSDを示すグラフである。 ヨーダンパを備えた鉄道車両の模式図である。 ヨーダンパの不具合検知試験で得られた健全条件と不具合条件の振動加速度PSDを示すグラフである。 スノウプラウとATS車上子を備えた鉄道車両の模式図である。 スノウプラウの不具合検知試験で得られた健全条件と不具合条件の振動加速度の強さを示すグラフである。 ATS車上子の不具合検知試験で得られた健全条件と不具合条件の振動加速度の強さを示すグラフである。
以下、本発明の実施の形態について図面を参照して説明する。図1は、本実施の形態の状態監視装置を備えた軸箱支持装置を有する台車の側面図である。
この図1に示すように、台車1は、鉄道車両2の車体の下部に設けられるものであり、台車枠10、空気ばね20等を有する車体支持装置、輪軸30、軸箱40等を有する軸箱支持装置50、モータ等を有する駆動装置、ブレーキ等を備えている。
台車枠10は、台車1を構成する構造部材であって、左右の側ばり、側ばりを中央でつなぐ横ばり等で構成されている。台車枠10は空気ばね20、牽引装置等の車体支持装置を介して車体に装着されている。
空気ばね20は、台車枠10と車体との間に設けられている。空気ばね20は、台車1の左右に例えば1対が設けられ、台車枠10の左右の側ばりの上部にそれぞれ固定されている。輪軸30は、2枚の車輪31を車軸32に圧入して組み立てられている。
軸箱40は、輪軸30の車軸32の両端部に設けられ、車軸32を回転可能に支持する軸受、軸受を収容する軸箱体、潤滑装置等を備えて構成されている。
軸箱支持装置50は、軸箱40を台車枠10に対して位置決めし、弾性的に支持する装置である。本実施形態の軸箱支持装置50は、モノリンク式のものであって、軸箱40の他に、軸ばね51、軸ダンパ52、モノリンク53等を備えている。しかし、軸箱支持装置50がモノリンク式に限定されることはなく、軸はり式の軸箱支持装置、両板ばね(IS)式の軸箱支持装置とすることができる。この他にも、軸箱もり式、片板ばね式、平行リンク式、円すい積層ゴム式、円筒案内式、緩衝ゴム式、その他の従来公知の軸箱支持装置とすることができる。
軸ばね51は、台車枠10の側端部に設けられたばね帽54内に収容されている。軸ばね51は、ばね帽54の上端部に設けられたばね受55と、軸箱40の上方に設けられたばね座56との間に配置されている。軸ばね51は、台車枠10に対する軸箱40の上下方向(垂直方向)の衝撃を緩衝し、車体などの荷重バランスを調整するとともに、台車枠10に対する軸箱40の鉄道車両2の進行方向における左右方向の衝撃も緩衝する。
軸ダンパ52は、軸箱40の側部と台車枠10との間に設けられている。この軸ダンパ52は、台車枠10に対する軸箱支持装置50の上下方向(垂直方向)の振動を減衰させる。したがって、車体の荷重バランスを調整して鉄道車両2の円滑な走行を可能とするためには、軸ばね51や軸ダンパ52等の一次ばね系の状態を監視することは重要である。
モノリンク53は、一方の端部が台車枠10の接続部11に連結され、他方の端部が軸箱40の接続部41に連結されている。モノリンク53によって台車枠10と軸箱40とを前後方向で連結している。各接続部11,41には、支軸12,42が設けられ、各支軸12,42がゴム等のリング状の弾性体13,43内に嵌合されている。このように、台車枠10と軸箱40とが、前後方向でモノリンク53を介して連結されることで、台車枠10に対する軸箱40の前後方向への剛性を調整して、高速走行時の蛇行等を抑制する直進安定性と、曲線走行時の転向性とのバランスが保持されている。したがって、高速走行や曲線走行を、蛇行や脱線等を生じることなく円滑に行うためには、前後方向の剛性に関わる部品の状態を監視することは重要である。
上述のような構成の台車1の状態監視を行うため、状態監視装置60が設けられている。この状態監視装置60は、台車1に備えられた様々な部品、台車1と鉄道車両2本体とを連結するボルト等、台車1周りの様々な部品、さらには台車1全体の状態監視に好適である。特に、ばね要素を含む装置や部品の状態監視に好適であり、軸箱周りの部品の状態監視に最も好適である。「状態監視」とは、例えば、台車1等の健全状態の検出、異常状態の検出、さらには摩耗、変形、亀裂等の劣化状態の検出等が挙げられるが、これらに限定されるものではない。台車1周りの様々な状態を監視することが可能である。
軸箱周りの部品としては、例えば、前述の軸ばね51、軸ダンパ52等の一次ばね系が挙げられる。また、モノリンク53、軸はり等の連結部材、連結部材周りの接続部11,41、支軸12,42、弾性体13,43(前後方向を支持するゴム、軸はりのゴム等)といった軸箱支持装置50の各部品等、前後方向の剛性を調整する部材等が挙げられる。また、軸ばね51等がゴムである場合もあり、この場合は軸ばね51等が、上下方向の剛性を調整する部材である。
これらの軸箱周りの部品は、外部からわかり難い場合や、部品点数が多い場合があるため、正常(健全)な状態であるか、ボルトの緩みやゴム部品の経時劣化等によって状態が変化したかを、目視で監視するのは困難である。本実施形態の状態監視装置60では、軸箱周りの部品を取り外したり、分解したりすることなく(在姿状態及び非分解で)、軸箱周りの部品など、台車1の状態監視を簡易な構成で高精度かつ効率よく行うことができるようになっている。
図1に示すように、本実施形態の状態監視装置60は、軌道3に配置される振動励起部61によって振動する台車1を撮影し軌道脇に配置される画像取得部としてのカメラ62と、カメラ62からの撮像画像に基づいて各種演算処理を行う制御部63aを有する情報処理装置63と、を備えている。
振動励起部61は、台車1に振動を生じさせることができるものであれば、特に限定されることはない。例えば、板材、突起物、継ぎ目、又は波形ブロック等を振動励起部とすることができる。本実施形態では、図1に示すように、振動励起部61として鉄板を用いている。
このような振動励起部61を軌道3上に配置し、鉄道車両2を図1の矢印方向(進行方向)に低速走行させると、車輪31が振動励起部61に乗り上げ、該車輪31が軌道3に着地する際の力により、台車1が振動(応答)する。車輪31が振動励起部61に乗り上げるときの振動(応答)をステップ応答といい、着地するときの振動(応答)をインパルス応答という。
振動励起部61は、一対の軌道3の一方に設け、左右対となる車輪31の一方のみを通過させて台車1を振動させる構成とし、振動励起部61を設けたほうの軌道3の近傍に一台のカメラ62を設置して振動する台車1を撮影するようにしてもよい。この構成では、状態監視装置60をより簡易かつ廉価にすることができ、状態監視も手軽に行える。または、振動励起部61を、一対の軌道3のそれぞれに設けて、左右対となる車輪31の双方を通過させて台車1を振動させる構成としてもよく、台車1をより安定して振動させることができる。この場合、カメラ62を一台のみ設置して、一方側から台車1を撮影しても、台車1の状態を精度よく監視することができるが、カメラ62を一対の軌道3の両側にそれぞれ設置し、両側から台車1を撮影してもよい。更には、3台以上のカメラ62を設置して、様々な角度から台車1を撮影してもよく、台車1の状態監視を、より詳細に行うことができる。
カメラ62は、台車1が振動したときの画像(撮像画像)を連続して複数撮影する。撮像画像の撮影は、カメラ62の操作ボタン等から直接に行ってもよいし、情報処理装置63からの遠隔操作によって行ってもよい。カメラ62は、台車1を撮影することができれば、軌道脇など、何れの位置に設置してもよい。また、台車1とカメラ62との距離は、カメラ62の性能や撮影領域によって、適宜設定することができる。例えば、台車1から約2m離れた位置にカメラ62を設置することで、高精度な応答波形を取得可能な撮像画像を取得することができる。
カメラ62の種類としては、台車1の所定の撮影領域を撮影できるものであれば、特に限定されることはないが、高画質で高サンプリングレートのデジタルビデオカメラ等が好適である。本実施形態では、カメラ62としてサンプリング周波数(フレームレート周波数)が1,000Hz(1,000fps)のデジタルビデオカメラを使用し、台車1の所定領域の動画像(フレーム画像)を撮影している。なお、カメラ62での撮影画像が、動画像に限定されるものではなく、所定時間毎に連続して撮影された静止画像であってもよい。
カメラ62での撮影領域としては、応答波形の取得象物の部品や装置を含んでいれば、台車1の何れの部分であってもよい。広角レンズを用いたり、台車1全体を撮影可能な位置にカメラ62を設置したりして、台車1全体を撮影領域とすれば、台車1の様々な箇所の応答波形を取得して、台車1の状態監視をより詳細に行うことが可能となるとともに、台車1に取り付けられた様々な部品の状態を個別に監視することもできる。また、カメラ62を台車1に近接して設置したり、ズーム撮影したりすることで、応答波形の取得対象のみ、又は台車1の特徴ある部分のみを撮影領域とすれば、より高精度な応答波形を取得可能となる。
また、カメラ62での台車1の撮影場所としては、特に限定されることはなく、車両基地や車庫、又はこれらの近傍等が挙げられる。また、撮影環境としては、屋内であってもよいし屋外であってもよい。屋外の場合、例えば太陽光下では、軸箱40に車体の強い影ができることが想定される。これにより、鉄道車両2が移動し、軸箱40が日陰や日向になる撮影では軸箱40の照度不足や照度過剰が起こって、撮影に影響するおそれがある。したがって、屋内や太陽光が直接に照射されることがない環境で撮影することがより望ましい。また、カメラ62は電子機器であるため、防水手段や温度調整手段など、雨雪や夏の炎天、冬の冷気からカメラ62を保護する手段を設けておくことが望ましい。
情報処理装置63は、CPU、RAM、ROM、ICメモリやハードディスクなどにより実現される記憶装置、外部装置との信号の入出力を制御する通信インターフェース、モニタ画面、キーボードやマウス等の入力部、プリンタ等を備えたコンピュータ(PC)等から構成することができる。また、情報処理装置63は、カメラ62と無線又は有線で接続されており、カメラ62で撮影された撮像画像を受信可能となっている。記憶装置には、情報処理装置63を動作させるOS、各種プログラムが記憶されている。記憶装置には、カメラ62から受信した撮像画像、パラメータ等、各種データが一時的又は長期的に記憶される。
本実施形態では、情報処理装置63として、状態監視を実施する作業者が簡単に持ち運びや操作ができるノートPCを用いている。また、情報処理装置63として、タブレット、スマートフォン、その他の携帯端末等を用いても、より手軽な持ち運びや操作が可能となる。また、情報処理装置63が車庫等に設けられたデスクトップ型PCであってもよいし、鉄道車両2の車体にそれぞれ設けられたPCその他の演算装置であってもよい。
制御部63aは、情報処理装置63全体の動作を制御するとともに、ROM等に予め記憶されているプログラムに従って、例えばRAMをワークメモリとして用いて状態監視処理を実行する。また、制御部63aは、カメラ62から入力される複数の撮像画像の画像信号に基づいて、台車1の振動時の応答波形を算出する応答波形取得部として機能する。また、制御部63aは、取得した応答波形のグラフ画像を生成して、モニタ画面やプリンタに出力したり、応答波形を解析して状態監視の対象物の状態を判定し、その判定結果をモニタ画面やプリンタに出力したりする機能や、カメラ62での撮影動作を制御する機能
も備えている。
本実施形態では、制御部63aは、カメラ62で撮影した複数の撮像画像から、所定の注目領域を抽出し、この注目領域の変位に基づいて応答波形を検出する応答波形取得部としても機能する。注目領域の抽出は、公知の画像認識(物体認識)手法を用いて行うことができる。例えば、撮像画像から特徴量を求め、得られた特徴量のマッチングを行って所定の注目領域を抽出し、この注目領域の変位情報を時系列に取得し、応答波形を算出している。より具体的には、例えば、制御部63aは、抽出した注目領域の中心(重心)を着目点とし、複数の撮像画像における着目点の位置座標の変化に基づいて、変位情報を取得している。よって、注目領域の変位情報に基づいて、応答波形をより高精度に取得することができる。
注目領域としては、例えば、台車枠10の形状など、台車1の特徴的な形状、軸ダンパ52、モノリンク53、ばね帽54等の軸箱周りの部品や、これらを取付けるボルト等、部品の特徴的な形状であってもよいし、台車1や部品に付された適宜の目印Mであってもよい。これらの特徴的な形状や目印Mを注目領域とすれば、撮像画像から、迅速に注目領域や着目点を抽出することができ、演算処理速度を速めることができる。
なお、応答波形の取得手順が本実施形態の手順に限定されることはなく、他のいずれの取得手順を用いてもよい。また、応答波形としては、変位情報を時間差分することで算出した振動加速度若しくは振動速度、又は振動加速度若しくは振動速度に基づいて算出したパワースペクトル密度であってもよく、応答波形をより高精度に取得することができ、より精度よく台車1の状態監視を行うことができる。または応答波形が、台車1の変位情報を時間差分することで算出した振動加速度若しくは振動速度と、軸箱周りの部品の変位情報を時間差分することで算出した振動加速度若しくは振動速度とに基づく応答倍率であってもよく、この応答倍率に基づいて、より明確かつより詳細に台車1の状態監視を行うことができる。
また、カメラ62による台車1の撮影から、制御部63aによる応答波形の取得並びに状態監視まで一貫して行ってもよいし、カメラ62による台車1の撮影のみを現場で行い、撮影画像を会社(事務所)等に持ち帰ったり転送したりして、撮影から時間をおいて応答波形の取得や状態監視を行ってもよい。
作業者等は、状態監視装置60で取得した応答波形を確認することで、軸箱周りの部品が健全状態であるか、または部品に破損や緩みなどの不具合が生じた異常状態であるか等を判定することができる。
この健全か否かの判定は、例えば、健全状態の台車1で取得した応答波形や、軸ばね51、軸ダンパ52、モノリンク53、その他の軸箱周りの各種部品に不具合が生じた台車1について取得した応答波形を、基準データとして予め記憶装置に記憶しておき、この基準データと、状態監視対象の台車1から取得した応答波形のデータとを比較して行うことができる。また、基準データと、応答波形データとを並べてモニタ画面等に表示することにより、状態の変化を明確に把握することができ、作業者等が一目で台車1が健全か否か、さらには何れの部品に不具合を生じたか等を容易に判定することが可能となる。
また、制御部63aにおいて、基準データと応答波形データとを比較して、健全か否かを自動で判定して結果を出力するように構成してもよい。制御部63aにより、軸箱周りの部品、その他の部品の状態、さらには台車1の状態をより高速かつ、より客観的に判定することが可能となる。また、様々な条件での状態監視データや鉄道車両2に関するデータをデータベースに記憶しておき、これらの情報(さらにはビッグデータ)に基づいて、台車1のいずれの部品に不具合が生じているかまで判定する構成とすることもできる。
健全か否か等の状態監視の異なる判定手法として、例えば、制御部63aにより、時刻を変えた複数の異なる時系列の応答波形を取得するようにし、このように時刻を変えて時系列に取得された複数の応答波形に基づいて、台車1の経時的な状態監視を行うことも好適である。この場合、一日の営業終わりに一回、即ち毎営業日に応答波形を取得することが好ましいが、監視対象や実情に応じて、数営業日毎、1週間毎、数週間毎、1月毎、又は数か月毎に行ってもよいし、一営業日内で数時間毎に複数回取得してもよい。そして、取得したそれぞれの応答波形を、時間軸を基準として時系列にグラフ化する等により、台車1の状態変化を監視する。より具体的には、例えば、ピーク周波数を時系列に表示して、その経時的な変化を監視する。
この経時的な状態監視により、台車1等の健全状態や異常状態、劣化状態などを、より詳細に把握することができる。更には、状態の経時的な変化によって、異常や劣化の発生を予測することができ、部品等の交換やメンテナンス等の必要性を判定したり、異常や劣化の発生前に交換やメンテナンス等の対応を行ったりすることができる。さらに、交換作業やメンテナンス作業のためのスケジュール調整、部品の手配などを円滑かつ迅速に行って、効率的な対応が可能となる。
図6A~図6Dに、振動励起部の変形例を列挙する。図6Aは、鉄板等の板材に代えて、進行方向に向かって高くなるくさび形の突起物からなる振動励起部61aを軌道3に設置した例である。なお、突起物がくさび形に限定されることはなく、軌道3上に突出して鉄道車両2に振動を付与できれば、他のいずれの形状であってもよい。図6Bは、軌道3の継ぎ目を振動励起部61bとした例である。図6Cは、波形ブロックからなる振動励起部61cを軌道3に設置した例である。
図6Dの(a)は、軌道3に着脱自在に固定することができる振動励起部61dの斜視図であり、図6Dの(b)は、この振動励起部61dを軌道3に設置した状態を示す図である。この振動励起部61dは、軌道3を挟むように、この軌道3の上面に配置される上部板材64と、軌道3の下面に配置される下部板材65と、上部板材64及び下部板材65を連結して振動励起部61dを軌道3に固定する固定部材(ボルトとナット等)66とを備えている。さらに下部板材65は、軌道3下部のフランジ部3aを挟持してこれに固定されるように、一対のスペーサ65c,65cを挟んでフランジ部3aの上面に配置される一対の板材65a,65a及びフランジ部3a下面に配置される板材65bと、フランジ部3aに対する下部板材65の位置を調整する調整部材(調整ねじ)67とを有して構成されている。
このような振動励起部61a,61b,61c上、又は振動励起部61dの上部板材64上を鉄道車両2が通過することで、台車1に振動を生じさせることができ、状態監視装置60を用いた台車1の状態監視を、高精度に行うことができる。また、以上のような本実施形態又は変形例の振動励起部61,61a,61b,61c,61dでは、鉄道車両2や軸箱周りの部品の耐久性等に影響を与えることなく、精度よく状態監視が可能な適度な振動を与えることができる。また、図6Dに示す振動励起部61dは、軌道3に固定できるため、設置の安定性が向上し、鉄道車両2の通過による振動励起部61dのズレや軌道3からの脱落が抑制される。そのため、より安定した再現性の高い加振が可能となり、より信頼性の高い状態監視が可能となる。
以上、本実施形態によれば、軌道3に配置される振動励起部61上を、鉄道車両2が走行することで、車輪31が振動励起部61に乗り上げ、該車輪31が軌道3に着地するときの力により、台車1が振動(応答)する。この振動時の台車1の撮像画像をカメラ62で連続して複数撮影し、これらの複数の撮像画像に基づいて、制御部63aが台車1の振動時の応答波形を取得する。この応答波形に基づいて、軸箱周りの部品の状態、その他の台車周りの部品の状態、さらには台車1全体の状態が健全か否か等、台車1の状態監視を行うことができる。
ここで、従来のように台車に加速度センサ等を取付けて状態監視を行う場合は、多くの加速度センサを必要とするとともに、加速度センサの取り付け作業も多くなる。しかし、本実施形態では、軌道脇に設置したカメラ62で複数の台車1の撮像画像を撮影することができ、台車1毎に加速度センサを用意したり取り付けたりする必要がない。したがって、台車1の状態監視を、より簡易な構成で高精度かつ効率よく行うことが可能な状態監視装置60を提供することができる。
また、部品の取り外しや分解を行うことなく、状態監視ができるため、外部から視認できない部品等の状態監視も行うことができるとともに、定期検査をより簡易に行うことができる。例えば、営業終了後毎に、車庫へ帰還する鉄道車両2の状態監視を簡易に行うことができるため、不具合が見つかった際に、部品交換や台車1交換等を、再出庫するまでに行うことができる。また、日々の劣化度合いを確認することができるので、大規模なメンテナンス時期の決定や、部品手配を計画的に行うことができる。そのため、鉄道車両2のメンテナンス性が向上するとともに信頼性も向上し、日々の円滑な営業が可能となる。
(試験例1:台車不具合検知試験)
以下、本実施の形態の状態監視装置60を用いて、台車不具合検知試験を試みた。また、この台車不具合検知試験の前に、カメラ62での撮像画像に基づいて取得する応答波形の精度を確認するための精度検証試験を行った。以下、各試験及びその成果について詳細に説明する。
<精度検証試験>
振動試験機において鉄片を上下振動させ、この振動について、加速度センサによって振動加速度を測定した。また、振動状態の鉄片をカメラ62で撮影した撮像画像に基づいて変位データを取得し、時間差分して振動加速度を算出した。加速度センサによる振動加速度と撮像画像による振動加速度とを比較した。比較結果のグラフを図2に示す。この試験では、後述する鉄道車両2での台車不具合検知試験を念頭に、カメラ62と鉄片との距離を約2mとし、振動試験機の振動周波数を台車1のピッチング周波数周辺(インパルス応答の周波数)の16Hzとした。また、サンプリング周波数を、使用したカメラの最大サンプリング周波数である1,000Hz(1,000fps)とした。
図2のグラフの横軸は時間(Time)[s]であり、縦軸は振動加速度(Acceleration)[m/s2]である。図2のグラフに示すとおり、加速度センサによる振動加速度と撮像画像による振動加速度とは、ほぼ一致している。よって、約2m離れた所からの撮像画像に基づいて取得した振動加速度は、加速度センサで測定した振動加速度と比較して、その精度に差がないことがわかった。
<台車不具合検知試験の手順>
構内走行で鉄道車両2を加振するため、図1に示すように、振動励起部61として、鉄板(長さ167mm、幅73mm、厚さ5mm)を軌道3上に設置した。今回の試験では、振動波形の観察を容易にしつつ、車輪31のフランジ高さ(概ね30mm)を考慮し脱線を回避するためと、車輪31やレールへの影響を極力小さくするために、鉄板の厚さを5mmとしたものであり、振動励起部61に用いる鉄板のサイズが、本試験で用いる鉄板のサイズに限定されるものではない。
そして、カメラ62を台車1から約2m離れた位置に設置し、鉄道車両2を約5km/hで低速走行させ、振動励起部61を車輪31が乗り上げるときと、振動励起部61から軌道3に車輪31が落下するときの軸箱40と台車枠10(具体的には、ばね帽54)の動画像を撮影した。振動励起部61による加振は、第8位車輪31のみに行った。
ここでは、以下の2つの条件下で台車不具合検知試験を行った。
(1)健全条件:軸箱周りの部品に不具合がない正常(健全)条件
(2)ボルト緩み条件:前後方向の剛性に不具合を生じさせた条件
上記(2)のボルト緩み条件を作り出すため、軸箱40とモノリンク53との間に2mm程度の隙間ができるように、軸箱40の接続部41とモノリンク53とを接続する軸箱締結ボルトを緩めた。
上記条件下で、それぞれ3回(3試番)、鉄道車両2を走行させて、合計6回の台車不具合検知試験を行った。それぞれの試験において、カメラ62で撮影した撮像画像から、注目領域として軸箱40部分とばね帽54部分を抽出した。この試験では、図1に示すように軸箱40の中心とばね帽54の中心に塗料で目印Mを付し、撮像画像から画像認識により各目印Mを抽出し、その目印の重心を着目点とし、各着目点の位置座標の変位データを取得した。各着目点の変位データに適宜のフィルタ処理を施した後、時間差分することにより、応答波形としての軸箱40の前後の振動加速度(軸箱前後振動加速度)と、台車枠10(ばね帽54)の前後の振動加速度(台車枠前後振動加速度)を算出した。得られた両振動加速度に基づいて、下記のように状態を評価(不具合の識別)した。
<試験結果>
図3に、軸箱前後振動加速度と台車枠前後振動加速度に基づく応答倍率のグラフを示す。図3では、3回行った健全条件1、2、3の応答倍率を、それぞれ細実線、細波線、細一点鎖線で示し、3回行ったボルト緩み条件1、2、3の応答倍率を、それぞれ太実線、太破線、太一点鎖線で示した。図3のグラフの横軸は周波数(Frequency)[Hz]であり、縦軸は応答倍率(Transfer function)である。
この図3の応答倍率のグラフによれば、健全条件の応答倍率とボルト緩み条件の応答倍率とに差があることがわかる。特に、6Hz付近から11Hz付近にかけて、健全条件の応答倍率が、ボルト緩み条件の応答倍率より大きいことがわかる(図3の斜線部分参照)。このような特性を示す理由を検討するために、図4に、健全条件1及びボルト緩み条件1の台車枠10と軸箱40の前後振動加速度PSD(Power Spectrum Density、パワースペクトル密度)を示した。図4のグラフの横軸は周波数(Frequency)[Hz]であり、縦軸は前後振動加速度PSD(Acceleration PSD)[(m/s22/Hz]である。
図4の健全条件1の台車枠前後振動加速度PSD(細波線)とボルト緩み条件1の台車枠前後振動加速度PSD(太破線)は、6Hzから11Hz付近までそれほど差がない。しかし、健全条件1の軸箱前後振動加速度PSD(細実線)は、台車枠前後PSD(細破線)より低いのに対し、ボルト緩み条件1の軸箱前後振動加速度PSD(太実線)は、台車枠前後PSD(太破線)より高くなる。
ここでの応答倍率は台車枠前後振動加速度/軸箱前後振動加速度としたので、ボルト緩み条件の軸箱前後振動加速度(分母)が高くなることにより、図3に示したボルト緩み条件の応答倍率は低くなったと考えられる。また、図4の10Hzから20Hzにある軸箱前後振動加速度PSDのピーク周波数が低下した。つまり、図4に矢印で示すように、応答波形のピーク位置が変化するという特性が見られた。このピーク周波数の低下は、3回の試験すべてに見られ、軸箱ボルトの緩みにより軸箱支持装置50の前後剛性が低下したためと考えられる。
<不具合の識別>
図3のグラフにおいて、6Hzから11Hzの周波数帯で健全条件のグループとボルト緩み条件のグループの2つに分けられる。したがって、状態監視装置60を用いた状態監視結果(応答倍率)が、図3のボルト緩み条件のような応答倍率となったときは、軸箱締結ボルトの緩みを識別することができる。また、図4の10Hzから20Hzにある軸箱前後振動加速度PSDのピーク周波数の低下によっても、軸箱締結ボルトの緩みを識別することができる。応答波形の特性は、不具合条件によって異なり、それぞれ固有の周波数において、固有の変化が見られる。
なお、上記では振動加速度や、振動加速度に基づく応答倍率若しくは振動加速度PSDに基づいて不具合の識別を行っているが、振動速度や、振動速度に基づく応答倍率若しくはPSDによっても不具合の識別を適切に行うことができる。図5に、上記台車不具合検知試験における健全条件1とボルト緩み条件1の軸箱前後振動速度と台車枠前後振動速度に基づく応答倍率のグラフを示した。図5では、健全条件1の応答倍率を細実線で示し、ボルト緩み条件1の応答倍率を太実線で示した。図5のグラフの横軸は周波数(Frequency)[Hz]であり、縦軸は応答倍率(Transfer function)である。
この図5の応答倍率のグラフによっても、健全条件の応答倍率とボルト緩み条件の応答倍率とに差があることがわかる。さらに、6Hz付近から11Hz付近にかけて、健全条件の応答倍率が、ボルト緩み条件の応答倍率より大きいことも示された。よって、振動速度も不具合の識別に好適な判断材料であることが確認された。
以上のような健全条件、不具合条件での応答波形の特性を利用すれば、台車1が健全であるか、締結ボルトの緩み等の前後方向の剛性に関わる部品に不具合を生じたのかを識別することができる。また、この応答波形の特性を利用すれば、軸ばね51、軸ダンパ52等の一次ばね系の不具合を識別することも可能となる。よって、図3~図5のような振動加速度、振動速度、応答倍率、PSD等のデータは、コンピュータ(制御部63a)が各基準データを比較して、台車1が健全か否かを評価したり、不具合を生じた部品を特定したりするとき等に用いるのに有効なデータである。なお、図3~図5のグラフをモニタ画面やプリンタ等に出力することで、作業者等が目視によって容易に状態監視をすることができるので、人間が台車1の状態を判定するときに用いるのに有効なデータである。
(試験例2:モノリンクゴムの剛性評価試験)
次に、試験例2として、図6Dに示す変形例の振動励起部61dを備えた状態監視装置60を用いて、モノリンク53のゴム製の弾性体13,43(以下、「モノリンクゴム」という。)の剛性評価試験(モノリンクゴムの剛性評価試験)を行った。以下、試験及びその成果について詳細に説明する。
前述の試験例1の台車不具合検知試験では、軸箱40の前後剛性を変えるために、軸箱40の接続部41とモノリンク53とを接続する軸箱締結ボルトを緩めて異常状態を作り出している。この場合、前後剛性が健全か、剛性なしの異常かの2つの状態を検出できる。
これに対して、モノリンクゴムのようなゴム製品の劣化状態を検出する場合、健全状態の剛性か、劣化により硬化した後の剛性かのみの検出だけでなく、劣化が進行していく過程での剛性の変化の状態を検出できることが必要となる。ここでは、健全状態の剛性値を有する現行品のモノリンクゴムを用意するとともに、劣化状態を想定した現行品の2倍の剛性値を有するモノリンクゴムを製作した。そして、現行品のモノリンクゴムを備えたモノリンクを取り付けた台車1と、2倍の剛性値を有するモノリンクゴムを備えた試作モノリンクを取り付けた台車1に対して、各々加振試験を行い、モノリンクの剛性の違いを、撮像画像から取得された変位データ(振動波形)に基づいて検出できるか調査した。
<試験条件>
試験場所:公益財団法人鉄道総合技術研究所 国立研究所 車庫南側
試験日:2017年12月4日~2018年1月17日
供試台車:試作在来線用台車 RTX-12
供試構体:試作在新直通車両用試験構体
試験速度:時速1~2km/h程度
加振方法:振動励起部(振動励起部61d、図6D参照)上の走行による台車(輪軸、台車枠等)の加振
車輪が乗り上がる鉄板(上部板材64)の高さ:10mm
モノリンク一本あたりの前後剛性:
・現行品 約6MN/mm
・試作モノリンク 約12MN/mm
測定項目:第7位車輪の軸箱支持装置付近の動画画像
使用レンズ:6mm f 1:1.4
サンプリング周波数:1,000Hz(1,000fps)
画素数:640×480画素
<試験方法>
この試験では、7位と8位のモノリンク2本を、現行品と試作モノリンクにそれぞれ変えて前後剛性を変化させた。加振治具として振動励起部61dを2個、それぞれ7位車輪と8位車輪の進行方向前方の軌道上に取付け、この軌道上を供試台車が通過する際の動画を撮影し、動画中の軸箱の前後振動を解析した。試験回数は、試験の信頼性確保のために同一条件で3回(3試番)ずつ行った。
<試験結果>
図7に、カメラ画像に基づいて取得した変位データを2回差分して得られた軸箱前後振動の周波数の解析結果(軸箱前後振動加速度PSD)を示した。この図7では、モノリンクの前後剛性が現行品(約6MN/mm/本)の場合の試験結果を「Norm.」、試作モノリンク(約12MN/mm/本)の場合の試験結果を「Hard」と記し、各条件での3回の試験結果を、線種を変えて表している。以下、本文中では、現行品のモノリンクを取り付けた条件を「標準条件」、試作モノリンクを取り付けた条件を「2倍条件」と呼ぶ。
図7によれば、標準条件では16Hzであったピーク周波数が、2倍条件では18~19Hzになっている。このことを利用すれば、撮像画像から取得した変位データに基づいて、モノリンクの前後剛性の変化を検出できる。したがって、撮像画像に基づいて、非接触測定でモノリンクゴムの剛性を評価することが可能であることがわかる。
ここで、減衰率の変化や台車の自由度などを省略した簡易計算を試みた。このとき、輪軸質量 mw=1.6×103/2kg、在来線輪軸の想定値(左右の片側)、モノリンク前後剛性 kjx=6×106N/m(標準条件)、標準条件での試験結果のピーク周波数 f1=16Hzとする。
この試験において、車輪が振動励起部61d上を通過したときの乗り上がり後と落下後に外力の無い自由振動をすると仮定し、固有振動を計算するとモノリンクの前後剛性のみでは試験結果16Hzより低い結果になる。そのため、軸ばねの前後剛性などモノリンクの前後剛性以外の前後剛性をk0として加味すると、下記式(1)のようになる。
Figure 0006998291000001

上記式(1)により、k0=2.1×106N/mが算出される。
上記の計算結果に基づいて、2倍条件を計算してみると、2倍条件の固有振動数f2は、モノリンク前後剛性 kjx’=12×106 N/m (2倍条件)として、下記式(2)により算出できる。
Figure 0006998291000002
上記式(2)によって、f2=約21Hzが算出される。2倍条件の試験結果が標準条件と比べ高くなる点は、図7に示す試験結果と一致したが、その値は18Hz~19Hz程度なので、簡易計算と試験結果は異なる。これは4~5Hzの台車モードの影響と考えられる。そこで、後述の<試験の数値モデル>で数値シミュレーションを試みた。
<試験の考察>
上部板材64から軌道への車輪31の落下により、軸箱40は主に上下方向に加振されるが、軸箱40は前後方向にも振動する。台車1のピッチングによりモノリンクが前後方向に運動し、軸箱40も前後方向に運動させられるためとも考えられる。
同じ条件のピーク周波数は一致度が高く、再現性は高い。例えば、2倍条件のピーク周波数が16Hzになることはない。4Hz~5Hzは輪軸30と台車1が一体の台車1の前後振動モードと思われ、モノリンクの前後剛性の条件が変わっても同じピーク周波数がある(図8の標準条件での軸箱40の前後振動加速度及び台車枠10の前後振動加速度のグラフ参照)。これは、台車1と輪軸30が一体(同相)で動くので、モノリンクの前後剛性の違いの影響を受けにくいためと考えられる。
また、図7に示された4Hz~5Hzのピーク周波数は、すべての試験で前後振動加速度PSDの高さがほぼ同じなので、同程度の強さで台車1の加振ができていると考えられる。即ち、試験で用いた振動励起部61dは、軌道3に固定されているため、車輪31の通過によるズレや脱落が抑制され、より安定した再現性の高い加振が実現できていることがわかる。
<試験の数値モデル>
モノリンクゴムの剛性評価試験の現象を詳細に調査するために、本試験を数値モデルで再現することを試みた。ここでは、輪軸30の前後加速度PSDに基づく数値モデルについて説明する。この数値モデルは、試験結果と定性的に一致するというシミュレーション結果が出ている。
<仮定した数値モデル>
モノリンクゴムの剛性評価試験では車輪31の7位と8位が通過する位置に加振治具として振動励起部61dを取り付けて、左右対称な加振を行っている。よって、数値モデルでは、車体は後1/4車体、台車は車輪5位側と車輪7位側の左右1/2台車を仮定した。その半車体数値モデルを図9に示す。また、車体、台車、軸箱、モノリンクを質点と仮定し、自由度は前後と上下、ピッチングを仮定した。また、空気ばね、軸ばね、モノリンクゴムは、ばね要素と減衰要素を仮定した。下記表1に、数値モデルに使用した主要諸元を示す。車輪と軌道間、車輪と振動励起部61d間で接触判定を行いながら、時速2km/h程で車両を走行させ、振動励起部の通過による状態監視の試験を模擬した。
Figure 0006998291000003
<シミュレーション結果>
図10に、シミュレーションにより得られた7位の軸箱における前後振動の周波数解析結果を示す。図10中では、標準条件即ちモノリンクの前後剛性が現行品(約6MN/mm/本)を「Norm.」、2倍条件即ち試作モノリンク(約12MN/mm/本)を「Hard」と記している。
モノリンクゴムの剛性評価試験の結果と同様に、数値モデルによるシミュレーションにおいても、4Hz~5Hzのピーク周波数は、モノリンクの前後剛性が変化しても変わらず、モノリンクの前後剛性を高くすると、16Hzのピーク周波数が18Hz~19Hzに変化し、PSDの高さも下がっている。
即ち、モノリンクゴムの剛性評価試験において軸箱40の前後振動加速度を測定した場合、振動加速度PSDの周波数ピークが標準条件で16Hz、2倍条件では18~19Hzという結果が得られ、数値シミュレーションの結果と一致した。したがって、カメラでの撮像画像を利用した状態監視装置60が、軸箱40の前後剛性の定量的評価を行うのに好適であることがわかる。
以上の試験結果より、本実施形態の状態監視装置60では、前後方向の剛性に関わる部品の不具合を識別することができることが確認された。したがって、本実施形態の状態監視装置60では、前後方向の剛性に関わる部品の状態、さらには一次ばね系などの軸箱周りの各種部品の状態や、その他の台車周りの状態など、台車1の状態監視を、簡易な構成で高精度かつ効率よく行えることがわかった。
<経時的な状態監視の数値シミュレーション>
上述したように、本数値モデルのシミュレーション結果が、剛性評価試験の結果とよく一致しているので、本数値モデルの妥当性が高いことがわかる。そこで、本数値モデルを用いて、時刻を変えた複数の異なる時系列応答波形より経時的な状態監視を行う実施形態について、以下で説明する。
モノリンクゴムの劣化形態には経年変化によりゴムが硬化する劣化形態やゴムに亀裂が入り剛性が低下する劣化形態などがある。経年変化によりゴムが硬化する劣化形態では、経年により前後剛性が新品時の2倍程度になるものがある。ゴムの劣化の程度は、線路線形の曲線の多さやブレーキの頻度などにより、千差万別である。1編成の複数車両の中においても先頭の車軸なのか、駆動軸であるのかなどの条件により、ゴムの劣化の程度は異なり、一定ではない。そこで、経年数だけではなく、モノリンク1つ1つについて劣化を経時的に監視することが望ましい。
例えば、ゴムに亀裂が入り剛性が低下する劣化形態では、何らかの理由でゴム部に亀裂が生じ、円筒形の外周部と円筒中心部にある軸部が分離した状態に近くなる。どのような条件でゴム部に亀裂が生じるかは明らかにされていないので、この劣化形態に関してもモノリンク1つ1つについて劣化を経時的に監視することが望ましい。
図11に、経時的な状態監視を行ったときの数値シミュレーション結果を示す。図11には、同一車両、同一箇所のモノリンクゴムの剛性が、新品に対し1.3倍、1.6倍、2倍に経時的に変化したと仮定し、数値シミュレーションを行った結果を示している。
図11によれば、モノリンクゴムの剛性が高くなるに従い、15Hzから18Hzにかけてのピーク周波数が経時的に高周波側に推移し、ピークの高さも経時的に低下していることがわかる。よってこの推移に着目すれば、ゴムが硬化する劣化形態の経時的な状態監視を行うことが可能になる。
また、図11中にはモノリンクゴムに亀裂が入り、モノリンク剛性が、標準条件の0.5倍になったと仮定した数値シミュレーションの結果も示している。標準条件の15Hzのピーク周波数が14Hzの低周波側に推移し、ピークの高さも高くなっている。なお、複雑になり図が見難くなるので標準条件の0.5倍になる過程の数値シミュレーションの結果は省いてあるが、例えば0.9倍、0.7倍と徐々に剛性が下がることを経時的に状態監視すれば、亀裂が進展していることが監視できる。なお、測定には統計学的に測定誤差による測定値の揺らぎを免れず、少ない回数の測定では測定誤差の範囲内なのか、不具合が生じているのかが明らかにならないこともあるが、経時的に傾向があれば不具合が生じていると明確に診断できる可能性が高くなる。
以上のように、経時的に台車の状態監視を行う構成とした状態監視装置、状態監視方法及びプログラムでは、経時的な状態監視結果に基づいて、モノリンクゴムの交換時期等の予測をより的確に行うことができる。この予測に基づいて、ゴム部品の購入手配や交換のための作業場所や要員の計画が事前に立てられるようになり、効率的なメンテナンスが実現できる。
以上、本発明の実施形態を詳述してきたが、具体的な構成は、これらの実施形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
例えば、上記実施形態及び試験では、軸箱40の前後剛性の評価を行うことで、カメラで撮影した撮像画像に基づいて、20Hz程度までの台車振動計測が可能なことがわかった。そのため、本発明の状態監視装置は、例えば、一本リンクやヨーダンパなど他の台車周りの装置や部品の状態監視にも好適に用いられる。更には、車体の状態監視にも好適に用いられる。
また、上記実施形態及び試験で使用したカメラは、1,000Hzサンプリングが可能であったが、着目する振動加速度PSDの周波数ピークが20Hz程度ならば、よりサンプリング周波数の低いカメラを利用することも可能である。また、画像ノイズが上記カメラと同程度である場合は、より低価格なカメラを利用することも可能である。
また、台車1の状態監視を非接触で行うことができるため、例えば各種車両の帰着検査時の加振による応答波形データ(振動データ)を簡易かつ大量に収集することが可能となる。したがって、状態監視装置の制御部にAI(artificial intelligence、人工知能)を搭載し、取得した大量のデータと、実際の検修時に明らかになる部品の劣化具合を、AIで統合することで、AIによる状態監視、異常や劣化の判定や予測等を、より高精度かつ詳細に行うことが可能となる。
以下、不具合試験の他の試験例について説明する。上述の試験例1では、ボルト緩み条件で、台車不具合試験を行っているが、以下では、軸ダンパ装置、台車枠、牽引装置、ヨーダンパ、スノウプラウ及びATS車上子に、それぞれ不具合が生じた場合を想定して、不具合試験(試験例3~試験例7)を行った。各試験例では、試験例1と同様に、図1に示す振動励起部61を備えた状態監視装置60を用いて、試験例1と同様の手順で、健全状態と、不具合状態での応答波形の検知を行った。
(試験例3:軸ダンパ装置の不具合検知試験)
試験例3として、軸ダンパ装置(図1に示す軸ダンパ52)の不具合検知試験を行った。軸ダンパ装置は、輪軸30と台車枠10との間の振動を減衰させ、乗心地を向上させるための部品である。この軸ダンパ装置や、後述するヨーダンパは、内部にシリコーン油などの液体が装填されているが、万が一、シール部材の不具合等でシリコーン油が流出した場合でも、外部から油量などを見ることができないので、その機能を診断することが難しい。このような場合でも、台車1の振動加速度をカメラ等で監視する本発明の実施形態に係る状態監視装置60、状態監視方法及びプログラムにより、軸ダンパ装置の機能診断を簡易に行うことが可能である。
この試験例3では、軸ダンパ装置が機能しないことの模擬条件(不具合条件)として、軸ダンパ装置を取り外した。試験例3では、健全条件と軸ダンパ装置を取り外した不具合条件を2回ずつ繰り返した。図12に、軸ダンパ装置の不具合を模擬した検知試験の結果として、健全条件1、2及び不具合条件1、2の上下振動加速度PSDを示す。この図12に示すように、健全条件1、2と軸ダンパ装置を取り外した不具合条件1、2では13Hz付近の上下振動加速度のPSDの高さが異なり、またこの再現性も高かった。
この図12の試験結果が示すように、軸ダンパ装置の不具合により台車1の上下振動加速度PSDが異なるため、本実施形態に係る状態監視装置60、状態監視方法及びプログラムにより、非分解で簡易に軸ダンパ装置の機能診断ができることがわかった。
(試験例4:台車枠の亀裂に対する不具合検知試験)
試験例4として、台車枠(図1に示す台車枠10)の亀裂に対する不具合検知試験を行った。鉄道車両2の台車枠10は、数十トンある車体を支える重要な部位であるため、この部分に亀裂等の存在の有無を簡易に検知できることが、円滑な運行を行う上で望ましい。図13に、台車枠10に亀裂が生じたイメージを示す。このような場合も、本発明の実施形態に係る状態監視装置60、状態監視方法及びプログラムにより、台車枠10の亀裂の存在を簡易に診断することができる。
この試験例4では、台車枠10の亀裂の模擬条件(不具合条件)として、台車枠10の上下剛性を低下させた。図14に、台車枠10の亀裂を模擬した検知試験の結果として、健全条件及び不具合条件の振動加速度の強さを示す。この図14に示すように、台車枠10に亀裂がある不具合条件では、45Hz付近の振動加速度の強さが、健全条件と異なった。
この図14の試験結果が示すように、台車枠10の亀裂により台車の振動加速度の強さが異なるため、本実施形態に係る状態監視装置60、状態監視方法及びプログラムにより、非分解で簡易に台車枠10の亀裂が検知できることがわかった。
(試験例5:牽引装置の不具合検知試験)
試験例5として、牽引装置の不具合検知試験を行った。図15に、牽引装置14を備えた鉄道車両2の模式図を示す。この図15に示すように、鉄道車両2には、モータ駆動力やブレーキ力を台車-車体間で伝達するための牽引装置14と呼ばれる部位がある。この牽引装置14は、モータ駆動力やブレーキ力を負担するだけでなく、高速走行時の安定性を確保する上でも重要な部位である。牽引装置14のゴム部は、外部に露出している部分が少ないため、外見のみでゴム剛性のような機能を診断することが難しく、また牽引装置14のボルト締結部は台車下部にある。このような場合も、本発明の実施形態に係る状態監視装置60、状態監視方法及びプログラムにより、牽引装置14の機能診断を簡易に行うことができる。
この試験例5では、牽引装置14に不具合が生じたことの模擬条件(不具合条件)として、牽引装置14のボルトを緩めた。試験例5では、健全条件とボルトを緩めた不具合条件を2回ずつ繰り返した。図16に、牽引装置14の不具合を模擬した検知試験の結果として、健全条件及び不具合条件の振動加速度PSDを示す。この図16に示すように、健全条件とボルトを緩めた不具合条件では、6Hz付近の振動加速度PSDの高さが異なり、またこの再現性も高かった。
この図16の試験結果が示すように、牽引装置14の不具合により台車1の振動加速度PSDが異なるため、本実施形態に係る状態監視装置60、状態監視方法及びプログラムにより、非分解で簡易に牽引装置14の機能診断ができることがわかった。
(試験例6:ヨーダンパの不具合検知試験)
試験例6として、ヨーダンパの不具合検知試験を行った。図17に、ヨーダンパ15を備えた鉄道車両2の模式図を示す。この図17に示すように、鉄道車両2には、ヨーダンパ15と呼ばれる車体と台車1間に取り付けられるダンパ部品がある。ヨーダンパ15は、高速走行時に車体と台車1の安定性を確保する安全上重要な部品である。ヨーダンパ15は、内部にシリコーン油などの液体が装填されているが、万が一、シール部材の不具合等でシリコーン油が流出した場合でも、外部から油量などを見ることができないので、機能を診断することが難しい。このような場合も、本発明の実施形態に係る状態監視装置60、状態監視方法及びプログラムにより、ヨーダンパ15の機能診断が容易に可能である。
この試験例6では、ヨーダンパ15に不具合が生じたことの模擬条件(不具合条件)として、ヨーダンパ15を取り外した。図18に、ヨーダンパ15の不具合を模擬した検知試験の結果として、健全条件及び不具合条件の振動加速度PSDを示す。この図18に示すように、ヨーダンパ15を取り外した不具合条件の台車1の振動加速度PSDは、健全条件と比べ、3倍程高くなり、ピーク周波数も0.5Hz程低くなった。
この図18の試験結果が示すように、ヨーダンパ15の不具合により台車1の振動加速度PSDが異なるため、本実施形態に係る状態監視装置60、状態監視方法及びプログラムにより、非分解で簡易にヨーダンパ15の機能診断ができることがわかった。
(試験例7:スノウプラウとATS車上子の不具合検知試験)
試験例7として、スノウプラウとATS車上子の不具合検知試験を行った。図19に、スノウプラウ16とATS車上子17を備えた鉄道車両2の模式図を示す。この図19に示すように、鉄道車両2(先頭車両)には、スノウプラウ16と呼ばれる雪かき装置が台車枠10に取り付けられている。また、自動列車停止装置(Automatic Train Stop:ATS)と呼ばれる衝突防止装置があり、これには車上子(ATS車上子17)と呼ばれるアンテナが車体に取り付けられている。このスノウプラウ16とATS車上子17は、稀に線路外から線路内に入ってきた飛来物等との衝突による、亀裂や取り付けボルトの緩みにより、ぐらついてしまう場合がある。このような場合でも、本発明の実施形態に係る状態監視装置60、状態監視方法及びプログラムにより、スノウプラウ16とATS車上子17のぐらつき診断が容易に可能である。
この試験例7では、スノウプラウ16とATS車上子17のぐらつきを模擬するために、それぞれの取り付け部の剛性を変えて検知試験を行った。図20に、スノウプラウ16の健全条件と不具合条件の振動加速度の強さを示す。図21に、ATS車上子17の健全条件と不具合条件の振動加速度の強さを示す。スノウプラウ16については、図20に示すように、健全状態では36Hzにピークがあったが、ぐらつきがある不具合状態ではピーク周波数が26Hzに変化した。ATS車上子17については、図21に示すように健全条件とぐらつきがある不具合条件で、1Hzから10Hzにピーク周波数等の違いが生じた。
この図20、図21の試験結果が示すように、スノウプラウ16とATS車上子17のぐらつきにより、各装置のピーク周波数が異なるため、本発明の実施形態に係る状態監視装置60、状態監視方法及びプログラムにより、非分解で簡易にスノウプラウ16とATS車上子17のぐらつきが診断できることがわかった。
1 台車
2 鉄道車両(車両)
3 軌道
40 軸箱
61,61a,61b,61c,61d 振動励起部
62 カメラ(画像取得部)
63 制御部(応答波形取得部)
M 目印

Claims (9)

  1. 車両の台車及び/又は車体の状態を監視する状態監視装置であって、
    振動励起部によって振動する前記台車及び/又は前記車体の撮像画像を連続して複数撮影し軌道脇に配置される画像取得部と、
    複数の前記撮像画像から所定の注目領域を抽出し、前記注目領域の変位情報を時系列に取得し、前記変位情報に基づいて、前記振動励起部によって振動する前記台車及び/又は前記車体の応答波形を取得する応答波形取得部と、を備え、
    前記応答波形が、前記台車及び/又は前記車体の前記変位情報を時間差分することで算出した振動加速度若しくは振動速度と、軸箱周りの部品の前記変位情報を時間差分することで算出した振動加速度若しくは振動速度とに基づく応答倍率であり、
    前記応答波形である前記応答倍率に基づいて、前記台車及び/又は前記車体の状態監視を行うことを特徴とする状態監視装置。
  2. 車両の台車及び/又は車体の状態を監視する状態監視装置であって、
    振動励起部によって振動する前記台車及び/又は前記車体の撮像画像を連続して複数撮影し軌道脇に配置される画像取得部と、
    複数の前記撮像画像から所定の注目領域を抽出し、前記注目領域の変位情報を時系列に取得し、前記変位情報に基づいて、前記振動励起部によって振動する前記台車及び/又は前記車体の応答波形を取得する応答波形取得部と、を備え、
    前記応答波形が、前記変位情報を時間差分することで算出した振動加速度若しくは振動速度に基づいて算出したパワースペクトル密度であり、
    前記応答波形である前記パワースペクトル密度に基づいて、前記台車及び/又は前記車体の状態監視を行うことを特徴とする状態監視装置。
  3. 前記注目領域が、前記台車若しくは前記台車に取り付けられた軸箱周りの部品若しくは前記車体の所定の形状、又は前記台車若しくは前記軸箱周りの部品若しくは前記車体に付された目印であり、前記応答波形取得部は、前記撮像画像の特徴量に基づくマッチングにより、前記注目領域を抽出し、前記注目領域の中心を着目点とし、複数の前記撮像画像における前記着目点の位置座標の変化に基づいて、前記変位情報を取得することを特徴とする請求項1又は2に記載の状態監視装置。
  4. 前記応答波形取得部によって取得された前記応答波形を、健全状態の台車及び/又は車体について取得された応答波形又は異常状態の台車及び/又は車体について取得された応答波形と比較することで、前記台車及び/又は前記車体の状態監視を行うことを特徴とする請求項1~3のいずれか一項に記載の状態監視装置。
  5. 前記応答波形取得部は、時刻を変えた複数の異なる時系列の前記応答波形を取得するように構成され、時刻を変えて時系列に取得された複数の前記応答波形に基づいて、前記台車及び/又は前記車体の経時的な状態監視を行うことを特徴とする請求項1~のいずれか一項に記載の状態監視装置。
  6. 前記振動励起部は、軌道を挟むように、当該軌道の前記車両が通過する上面に配置される上部板材と、前記軌道の下面に配置される下部板材と、前記上部板材及び前記下部板材を連結して前記振動励起部を前記軌道に対して着脱自在に固定する固定部材と、を備えて構成されていることを特徴とする請求項1~のいずれか一項に記載の状態監視装置。
  7. 車両の台車及び/又は車体の状態を監視する状態監視装置であって、
    振動励起部によって振動する前記台車及び/又は前記車体の撮像画像を連続して複数撮影し軌道脇に配置される画像取得部と、
    複数の前記撮像画像に基づいて、前記振動励起部によって振動する前記台車及び/又は前記車体の応答波形を取得する応答波形取得部と、を備え、
    前記振動励起部は、軌道を挟むように、当該軌道の前記車両が通過する上面に配置される上部板材と、前記軌道の下面に配置される下部板材と、前記上部板材及び前記下部板材を連結して前記振動励起部を前記軌道に対して着脱自在に固定する固定部材と、を備えて構成され、
    前記応答波形に基づいて、前記台車及び/又は前記車体の状態監視を行うことを特徴とする状態監視装置
  8. 請求項1に記載の状態監視装置を用いて行われる状態監視方法であって、
    振動励起部によって台車及び/又は車体に振動を付与する工程と、
    振動する前記台車及び/又は前記車体の撮像画像を連続して複数撮影する工程と、
    複数の前記撮像画像から所定の注目領域を抽出し、前記注目領域の変位情報を時系列に取得し、前記変位情報に基づいて、前記振動励起部によって前記台車及び/又は前記車体が振動するときの応答波形を取得するときに、前記台車及び/又は前記車体の前記変位情報を時間差分することで算出した振動加速度若しくは振動速度と、軸箱周りの部品の前記変位情報を時間差分することで算出した振動加速度若しくは振動速度とに基づく応答倍率を、前記応答波形として取得する工程と、
    前記応答波形である前記応答倍率に基づいて、前記台車及び/又は前記車体の状態監視を行う工程と、
    を有することを特徴とする状態監視方法。
  9. コンピュータを、
    振動が付与された台車及び/又は車体を連続して撮影した複数の撮像画像を記憶する手段と、
    前記撮像画像から所定の注目領域を抽出し、複数の前記撮像画像に基づいて、前記注目領域の変位情報を時系列に取得し、前記変位情報に基づいて前記台車及び/又は前記車体が振動するときの応答波形を取得するときに、前記台車及び/又は前記車体の前記変位情報を時間差分することで算出した振動加速度若しくは振動速度と、軸箱周りの部品の前記変位情報を時間差分することで算出した振動加速度若しくは振動速度とに基づく応答倍率を、前記台車及び/又は前記車体の状態監視を行うため前記応答波形として取得する応答波形取得手段として機能させるためのプログラム。
JP2018224689A 2017-12-05 2018-11-30 状態監視装置、状態監視方法及びプログラム Active JP6998291B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017233352 2017-12-05
JP2017233352 2017-12-05
JP2018128984 2018-07-06
JP2018128984 2018-07-06

Publications (2)

Publication Number Publication Date
JP2020012807A JP2020012807A (ja) 2020-01-23
JP6998291B2 true JP6998291B2 (ja) 2022-01-18

Family

ID=69170931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018224689A Active JP6998291B2 (ja) 2017-12-05 2018-11-30 状態監視装置、状態監視方法及びプログラム

Country Status (1)

Country Link
JP (1) JP6998291B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046148B1 (ja) 2020-11-26 2022-04-01 三菱電機株式会社 診断システム、診断プログラムおよび診断方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114637A (ja) 2003-10-10 2005-04-28 Hitachi Kasado Eng Co Ltd 車両の異常検出システム及び異常検出方法
JP2009198370A (ja) 2008-02-22 2009-09-03 Meidensha Corp 画像処理による非接触式位置計測装置
US20090312966A1 (en) 2008-06-17 2009-12-17 Guenter Nobis Method for testing a vibration damper of a motor vehicle in the installed state, and vibration damper-test system for a motor vehicle
JP2011051518A (ja) 2009-09-03 2011-03-17 Railway Technical Res Inst 鉄道車両の状態監視システム
US20110193955A1 (en) 2008-09-01 2011-08-11 Steffen Abraham Chassis testing unit and method for testing a chassis
JP2016173234A (ja) 2015-03-16 2016-09-29 住友ゴム工業株式会社 タイヤに対する衝撃の評価方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114637A (ja) 2003-10-10 2005-04-28 Hitachi Kasado Eng Co Ltd 車両の異常検出システム及び異常検出方法
JP2009198370A (ja) 2008-02-22 2009-09-03 Meidensha Corp 画像処理による非接触式位置計測装置
US20090312966A1 (en) 2008-06-17 2009-12-17 Guenter Nobis Method for testing a vibration damper of a motor vehicle in the installed state, and vibration damper-test system for a motor vehicle
US20110193955A1 (en) 2008-09-01 2011-08-11 Steffen Abraham Chassis testing unit and method for testing a chassis
JP2011051518A (ja) 2009-09-03 2011-03-17 Railway Technical Res Inst 鉄道車両の状態監視システム
JP2016173234A (ja) 2015-03-16 2016-09-29 住友ゴム工業株式会社 タイヤに対する衝撃の評価方法

Also Published As

Publication number Publication date
JP2020012807A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
US10203306B2 (en) Resonant signal analysis-based inspection
Bernal et al. Onboard condition monitoring sensors, systems and techniques for freight railway vehicles: a review
CA2976899C (en) Abnormal vehicle dynamics detection
US9310340B2 (en) Resonant signal analysis-based inspection of rail components
Burdzik et al. Concept of on-board comfort vibration monitoring system for vehicles
US20080306705A1 (en) Apparatus and method for identifying a defect and/or operating characteristic of a system
CN111238837A (zh) 基于车轮振动加速度响应高速列车轮对损伤识别试验台
Dumitriu Fault detection of damper in railway vehicle suspension based on the cross-correlation analysis of bogie accelerations
JP2007218790A (ja) 車両加振システム
JP2014167788A (ja) 乗物関連のデータを記録するための、特に、軽い損傷を検出し且つ評価するための方法と、乗物に設置するためのセンサ装置と、前記方法を実施するための、センサ装置を有する乗物
JP6998291B2 (ja) 状態監視装置、状態監視方法及びプログラム
Kundu et al. A review on condition monitoring technologies for railway rolling stock
JP6722573B2 (ja) 状態監視装置
CN109050575A (zh) 一种列车车轮在线运动中数据集成采集方法
EP4008603B1 (en) System for monitoring and predictive maintening the state of wear of mechanical components and operation method thereof
KR101827116B1 (ko) 차륜 및 베어링 측정 장치
Lingamanaik et al. Using instrumented revenue vehicles to inspect track integrity and rolling stock performance in a passenger network during peak times
CN109799052A (zh) 一种模拟轨道车辆走行部振动动力学系统的试验台
KR20190089583A (ko) 지상 차량 부품 탐지 시스템
Edwards et al. Development of machine vision technology for railcar safety appliance inspection
EP2956345A1 (en) Monitoring system of vehicle circulation conditions at the connection and operation point between the cable, car, station and support clamp in a cable drawn transport system
Santamato et al. A lightweight robotic device for the inspection of railway pantograph
UA149344U (uk) Спосіб визначення непрацездатності гасителя коливань
Aranda Radiative heat transfer analysis of railroad bearings for wayside thermal detector optimization
Wolf et al. Diagnostics using self-sufficient wireless sensor network for a condition-based maintenance strategy strategy for tram bearing diagnostics

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 6998291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150