JP6993843B2 - Nitride semiconductor light emitting device and method for manufacturing a nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device and method for manufacturing a nitride semiconductor light emitting device Download PDF

Info

Publication number
JP6993843B2
JP6993843B2 JP2017208306A JP2017208306A JP6993843B2 JP 6993843 B2 JP6993843 B2 JP 6993843B2 JP 2017208306 A JP2017208306 A JP 2017208306A JP 2017208306 A JP2017208306 A JP 2017208306A JP 6993843 B2 JP6993843 B2 JP 6993843B2
Authority
JP
Japan
Prior art keywords
layer
algan
light emitting
composition ratio
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017208306A
Other languages
Japanese (ja)
Other versions
JP2019083222A (en
Inventor
勇介 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2017208306A priority Critical patent/JP6993843B2/en
Publication of JP2019083222A publication Critical patent/JP2019083222A/en
Priority to JP2021122199A priority patent/JP7216776B2/en
Application granted granted Critical
Publication of JP6993843B2 publication Critical patent/JP6993843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、窒化物半導体発光素子及び窒化物半導体発光素子の製造方法に関する。 The present invention relates to a nitride semiconductor light emitting device and a method for manufacturing a nitride semiconductor light emitting device.

近年、紫外光を出力する発光ダイオードやレーザダイオード等の窒化物半導体発光素子が提供されており、発光強度を向上させた窒化物半導体発光素子の開発が進められている(特許文献1参照。)。 In recent years, nitride semiconductor light emitting devices such as light emitting diodes and laser diodes that output ultraviolet light have been provided, and development of nitride semiconductor light emitting devices with improved light emission intensity is underway (see Patent Document 1). ..

特許第4291960号公報Japanese Patent No. 4291960

特許文献1に記載の窒化物半導体発光素子は、窒化物半導体基板上に、活性層をp型クラッド層とn型クラッド層とで挟み込む構造を有する窒化物半導体発光素子において、該活性層は、井戸層の全積層数が2以下である、障壁層と井戸層とからなる量子井戸構造であり、n型クラッド層と活性層との間、およびp型クラッド層と活性層との間の両方にはAlGa1-cN(0≦c<1)からなる第2の窒化物半導体層を有し、さらに前記活性層と第2の窒化物半導体層との間に、Inを含む窒化物半導体からなる第1の窒化物半導体層を有し、該第1の窒化物半導体層は、InzGa1-zN(0<z≦1)を含む多層膜構造であり、前記活性層とp側の第1の窒化物半導体層の間には、AlγGa1-γN(0<γ<1)からなる電子閉じ込め層を有し、前記活性層は2層以上の障壁層を有し、最もp型層側に位置する障壁層は、活性層内で最もp側に形成され、n型不純物を実質的に含まず、p型不純物を含み、他の障壁層はアンドープ若しくはn型不純物を含み、前記p型クラッド層、n型クラッド層が、AlGa1-bN(0.05<b<1)とGaNの超格子からなることを特徴とする。 The nitride semiconductor light emitting element described in Patent Document 1 is a nitride semiconductor light emitting element having a structure in which an active layer is sandwiched between a p-type clad layer and an n-type clad layer on a nitride semiconductor substrate. It is a quantum well structure consisting of a barrier layer and a well layer in which the total number of well layers is 2 or less, both between the n-type clad layer and the active layer, and between the p-type clad layer and the active layer. Has a second nitride semiconductor layer composed of Al c Ga 1-c N (0 ≦ c <1), and nitrides containing In between the active layer and the second nitride semiconductor layer. It has a first nitride semiconductor layer made of a physical semiconductor, and the first nitride semiconductor layer has a multilayer film structure containing In z Ga 1-z N (0 <z ≦ 1), and the active layer. An electron confinement layer composed of Al γ Ga 1-γ N (0 <γ <1) is provided between the first nitride semiconductor layer on the p side and the active layer, and the active layer has two or more barrier layers. The barrier layer having and located on the most p-type layer side is formed on the most p-side in the active layer, substantially free of n-type impurities, contains p-type impurities, and the other barrier layers are undoped or n. The p-type clad layer and the n-type clad layer contain type impurities, and are characterized in that the p-type clad layer and the n-type clad layer are composed of an Al b Ga 1-b N (0.05 <b <1) and a super lattice of GaN.

ところで、窒化物半導体発光素子の表面の平坦性を向上するためには、超格子の積層数を多くすることが好ましい。しかしながら、超格子の積層数が多くなるにつれ、窒化物半導体発光素子の素材であるウエハの反りが大きくなり、発光素子の加工に支障が生じる虞がある。 By the way, in order to improve the flatness of the surface of the nitride semiconductor light emitting device, it is preferable to increase the number of superlattices stacked. However, as the number of superlattices stacked increases, the warpage of the wafer, which is the material of the nitride semiconductor light emitting device, increases, which may hinder the processing of the light emitting device.

そこで、本発明は、窒化物半導体発光素子の素材であるウエハの反りを抑制し発光素子の加工に支障を生じにくくさせることができる窒化物半導体発光素子及び窒化物半導体発光素子の製造方法を提供することを目的とする。 Therefore, the present invention provides a nitride semiconductor light emitting device and a method for manufacturing a nitride semiconductor light emitting device, which can suppress the warp of a wafer, which is a material of the nitride semiconductor light emitting device, and make it difficult for the processing of the light emitting device to be hindered. The purpose is to do.

本発明は、上記課題を解決することを目的として、基板を含む下地構造部上に位置するn型AlGaNにより形成されたn型クラッド層と、前記n型クラッド層上に位置する、複数の障壁層と複数の井戸層とをこの順に交互に積層してなる多重量子井戸層とを含む窒化物半導体発光素子であって、前記n型クラッド層は、前記下地構造部側に位置して、第1のAl組成比を有するn型AlGaNにより形成された第1のAlGaN層と、前記第1のAlGaN層及び前記多重量子井戸層の間に位置して、前記第1のAl組成比以下のAl組成比を有するAlGaNにより形成された複数の層が交互に積層された緩衝層とを備え、前記緩衝層は、互いに相違するAl組成比を有するAlGaNにより形成された2種類の層が交互に積層されたものであり、前記2種類の層は、前記第1のAl組成比以下の第2のAl組成比を有するAlGaNを含む第2のAlGaN層と、前記第2のAl組成比よりも小さい第3のAl組成比を有するAlGaNを含む第3のAlGaN層とを含み、前記第3のAlGaN層は、前記第2のAlGaN層の厚さよりも大きい厚さを有する、窒化物半導体発光素子及び窒化物半導体発光素子の製造方法を提供する。 An object of the present invention is to solve the above-mentioned problems, an n-type clad layer formed of an n-type AlGaN located on a base structure including a substrate, and a plurality of barriers located on the n-type clad layer. A nitride semiconductor light emitting device including a multiplex quantum well layer in which layers and a plurality of well layers are alternately laminated in this order, wherein the n-type clad layer is located on the base structure side and is a second device. An Al that is located between the first AlGaN layer formed of n-type AlGaN having an Al composition ratio of 1 and the first AlGaN layer and the multiple quantum well layer, and is equal to or less than the first Al composition ratio. A buffer layer in which a plurality of layers formed of AlGaN having a composition ratio are alternately laminated is provided , and the buffer layer is formed by alternately stacking two types of layers formed of AlGaN having different Al composition ratios. The two types of layers are smaller than the second AlGaN layer containing AlGaN having a second Al composition ratio equal to or lower than the first Al composition ratio and the second Al composition ratio. A nitride semiconductor light emitting device and a nitride semiconductor light emitting device including a third AlGaN layer containing AlGaN having a third Al composition ratio, wherein the third AlGaN layer has a thickness larger than the thickness of the second AlGaN layer. Provided is a method for manufacturing a nitride semiconductor light emitting device.

本発明によれば、ウエハの反りを抑制して発光素子の加工に支障を生じにくくさせることができる窒化物半導体発光素子及び窒化物半導体発光素子の製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a nitride semiconductor light emitting device and a method for manufacturing a nitride semiconductor light emitting device, which can suppress the warp of a wafer and make it difficult for the processing of the light emitting device to be hindered.

図1は、本発明の第1の実施の形態に係る窒化物半導体発光素子の構成を概略的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of a nitride semiconductor light emitting device according to the first embodiment of the present invention. 図2は、図1に示す発光素子のn型クラッド層のAl組成比の一例を模式的に示すグラフである。FIG. 2 is a graph schematically showing an example of the Al composition ratio of the n-type clad layer of the light emitting device shown in FIG. 1. 図3は、変形例に係る発光素子のn型クラッド層のAl組成比の一例を模式的に示すグラフである。FIG. 3 is a graph schematically showing an example of the Al composition ratio of the n-type clad layer of the light emitting device according to the modified example. 図4は、比較例及び実施例に係る発光素子の構成と、測定結果とを示す図である。FIG. 4 is a diagram showing configurations of light emitting elements according to Comparative Examples and Examples and measurement results. 図5は、比較例及び実施例に係る発光素子の素材であるウエハの反り及びウエハの面内発光割合を示すグラフである。FIG. 5 is a graph showing the warp of the wafer, which is the material of the light emitting element according to the comparative example and the embodiment, and the in-plane light emission ratio of the wafer. 図6は、本発明の第2の実施の形態に係る発光素子のn型クラッド層のAl組成比の一例を模式的に示すグラフである。FIG. 6 is a graph schematically showing an example of the Al composition ratio of the n-type clad layer of the light emitting device according to the second embodiment of the present invention.

[第1の実施の形態]
本発明の第1の実施の形態について、図1及び図2を参照して説明する。なお、以下に説明する実施の形態は、本発明を実施する上での好適な具体例として示すものであり、技術的に好ましい種々の技術的事項を具体的に例示している部分もあるが、本発明の技術的範囲は、この具体的態様に限定されるものではない。また、各図面における各構成要素の寸法比は、必ずしも実際の窒化物半導体発光素子の寸法比と一致するものではない。
[First Embodiment]
The first embodiment of the present invention will be described with reference to FIGS. 1 and 2. It should be noted that the embodiments described below are shown as suitable specific examples for carrying out the present invention, and there are some parts that specifically exemplify various technically preferable technical matters. , The technical scope of the present invention is not limited to this specific aspect. Further, the dimensional ratio of each component in each drawing does not necessarily match the dimensional ratio of the actual nitride semiconductor light emitting device.

図1は、本発明の第1の実施の形態に係る窒化物半導体発光素子の構成を概略的に示す断面図である。窒化物半導体発光素子1(以下、単に「発光素子1」ともいう。)は、紫外領域の波長の光を発する発光ダイオード(Light Emitting Diode:LED)である。本実施の形態では、特に、中心波長が280nm~360nmの深紫外光を発する発光素子1を例に挙げて説明する。 FIG. 1 is a cross-sectional view schematically showing the configuration of a nitride semiconductor light emitting device according to the first embodiment of the present invention. The nitride semiconductor light emitting device 1 (hereinafter, also simply referred to as “light emitting device 1”) is a light emitting diode (LED) that emits light having a wavelength in the ultraviolet region. In the present embodiment, in particular, a light emitting device 1 that emits deep ultraviolet light having a center wavelength of 280 nm to 360 nm will be described as an example.

図1に示すように、発光素子1は、基板10と、バッファ層22と、n型クラッド層30と、多重量子井戸層を含む活性層50と、電子ブロック層60と、p型クラッド層70と、p型コンタクト層80と、n側電極90と、p側電極92とを含んで構成されている。 As shown in FIG. 1, the light emitting device 1 includes a substrate 10, a buffer layer 22, an n-type clad layer 30, an active layer 50 including a multiple quantum well layer, an electron block layer 60, and a p-type clad layer 70. The p-type contact layer 80, the n-side electrode 90, and the p-side electrode 92 are included.

発光素子1を構成する半導体には、例えば、AlGaIn1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)にて表される2元系、3元系若しくは4元系のIII族窒化物半導体を用いることができる。また、これらのIII族元素の一部は、ホウ素(B)、タリウム(Tl)等で置き換えても良く、また、Nの一部をリン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)等で置き換えても良い。 The semiconductor constituting the light emitting device 1 is, for example, a binary system represented by Al x Gay In 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1). A ternary or quaternary group III nitride semiconductor can be used. Further, a part of these Group III elements may be replaced with boron (B), thallium (Tl) or the like, and a part of N may be replaced with phosphorus (P), arsenic (As), antimony (Sb), etc. It may be replaced with bismuth (Bi) or the like.

基板10は、発光素子1が発する深紫外光に対して透光性を有している。基板10は、例えば、サファイア(Al)を含むサファイア基板である。基板10には、サファイア(Al)基板の他に、例えば、窒化アルミニウム(AlN)基板や、窒化アルミニウムガリウム(AlGaN)基板を用いてもよい。 The substrate 10 has translucency with respect to the deep ultraviolet light emitted by the light emitting element 1. The substrate 10 is, for example, a sapphire substrate containing sapphire (Al 2 O 3 ). As the substrate 10, in addition to the sapphire (Al 2 O 3 ) substrate, for example, an aluminum nitride (AlN) substrate or an aluminum nitride gallium (AlGaN) substrate may be used.

バッファ層22は、基板10上に形成されている。バッファ層22は、AlN層を含んで構成されている。基板10及びバッファ層22は、下地構造部2を構成する。なお、基板10がAlN基板またはAlGaN基板である場合、バッファ層22は必ずしも設けなくてもよい。 The buffer layer 22 is formed on the substrate 10. The buffer layer 22 is configured to include an AlN layer. The substrate 10 and the buffer layer 22 form the base structure portion 2. When the substrate 10 is an AlN substrate or an AlGaN substrate, the buffer layer 22 does not necessarily have to be provided.

n型クラッド層30は、下地構造部2上に形成されている。n型クラッド層30は、n型のAlGaN(以下、単に「n型AlGaN」ともいう。)により形成された層であり、例えば、n型の不純物としてシリコン(Si)がドープされたAlGaNを含む層である。なお、n型の不純物としては、ゲルマニウム(Ge)、セレン(Se)、テルル(Te)、炭素(C)等を用いてもよい。 The n-type clad layer 30 is formed on the base structure portion 2. The n-type clad layer 30 is a layer formed of n-type AlGaN (hereinafter, also simply referred to as “n-type AlGaN”), and contains, for example, AlGaN doped with silicon (Si) as an n-type impurity. It is a layer. As the n-type impurities, germanium (Ge), selenium (Se), tellurium (Te), carbon (C) and the like may be used.

n型クラッド層30は、下地構造部2上に形成された第1のAlGaN層32と、この第1のAlGaN層32上に形成された緩衝層34とを備えている。換言すれば、n型クラッド層30は、n型クラッド層30内において、下地構造部2側に位置する第1のAlGaN層と、第1のAlGaN層32と後述する多重量子井戸層との間に位置する緩衝層34とを備えている。 The n-type clad layer 30 includes a first AlGaN layer 32 formed on the base structure portion 2 and a buffer layer 34 formed on the first AlGaN layer 32. In other words, the n-type clad layer 30 is located between the first AlGaN layer located on the base structure portion 2 side, the first AlGaN layer 32, and the multiple quantum well layer described later in the n-type clad layer 30. It is provided with a cushioning layer 34 located at.

次に、図2を参照して、第1のAlGaN層32及び緩衝層34の詳細について説明する。図2は、図1に示す発光素子1のn型クラッド層30のAl組成比の一例を模式的に示すグラフである。なお、Al組成比には、別の表現として、「AlNモル分率」(%)を用いてもよい。図2の縦軸は、n型クラッド層30のAl組成比(%)を示し、横軸は、n型クラッド層30を構成する第1のAlGaN層32及び緩衝層34の位置を模式的に示している。図2内の符号「t」、「t」、「t」は、それぞれ、第1のAlGaN層32、第2のAlGaN層342(後述)、第3のAlGaN層344(後述)の厚さを示している。 Next, the details of the first AlGaN layer 32 and the buffer layer 34 will be described with reference to FIG. FIG. 2 is a graph schematically showing an example of the Al composition ratio of the n-type clad layer 30 of the light emitting device 1 shown in FIG. As another expression, "AlN mole fraction" (%) may be used for the Al composition ratio. The vertical axis of FIG. 2 shows the Al composition ratio (%) of the n-type clad layer 30, and the horizontal axis schematically shows the positions of the first AlGaN layer 32 and the buffer layer 34 constituting the n-type clad layer 30. Shows. Reference numerals “t 1 ”, “t 2 ”, and “t 3 ” in FIG. 2 are for the first AlGaN layer 32, the second AlGaN layer 342 (described later), and the third AlGaN layer 344 (described later), respectively. Shows the thickness.

図2に示すように、第1のAlGaN層32は、第1のAl組成比qを有するAlGa1-qN(0<q≦1)に形成された層である。また、第1のAlGaN層32は、1.5μm(マイクロメートル)以下の厚さtを有している。 As shown in FIG. 2, the first AlGaN layer 32 is a layer formed in Al q Ga 1-q N (0 <q ≦ 1) having the first Al composition ratio q. Further, the first AlGaN layer 32 has a thickness t 1 of 1.5 μm (micrometer) or less.

緩衝層34は、第1のAl組成比以下のAl組成比を有するAlGaNにより形成された複数の層が交互に形成された層である。具体的には、緩衝層34は、第1のAl組成比以下の互いに相違するAl組成比を有するAlGaNによりそれぞれ形成された2種類の層342,344が交互に積層された多重層を含んでいる。より具体的には、緩衝層34は、2種類の層342,344が交互にL(Lは自然数)層ずつ積層してなる多重層を含んでいる。 The buffer layer 34 is a layer in which a plurality of layers formed of AlGaN having an Al composition ratio equal to or lower than the first Al composition ratio are alternately formed. Specifically, the buffer layer 34 includes a multi-layer in which two types of layers 342 and 344 respectively formed of AlGaN having different Al composition ratios equal to or lower than the first Al composition ratio are alternately laminated. There is. More specifically, the buffer layer 34 includes a multi-layer in which two types of layers 342 and 344 are alternately laminated with L (L is a natural number) layers.

さらにより具体的には、緩衝層34は、2種類の層342,344のうち、相対的に大きいAl組成比(以下、「第2のAl組成比u」)を有するAlGa1-uN(0<u≦q≦1)により形成された第2のAlGaN層342と、相対的に小さいAl組成比(以下、「第3のAl組成比v」)を有するAlGa1-vN(0<v<u≦q≦1)により形成された第3のAlGaN層344とを含んでいる。 More specifically, the buffer layer 34 has an Al u Ga 1-u having a relatively large Al composition ratio (hereinafter, “second Al composition ratio u”) among the two types of layers 342 and 344. Al v Ga 1-v having a second AlGaN layer 342 formed by N (0 <u ≦ q ≦ 1) and a relatively small Al composition ratio (hereinafter, “third Al composition ratio v”). It includes a third AlGaN layer 344 formed by N (0 <v <u ≦ q ≦ 1).

換言すれば、緩衝層34は、第1のAl組成比以下の第2のAl組成比uを有するAlGaNを含む第2のAlGaN層342と、第2のAl組成比よりも小さい第3のAl組成比vを有するAlGaNを含む第3のAlGaN層344とを含んでいる。 In other words, the buffer layer 34 has a second AlGaN layer 342 containing AlGaN having a second Al composition ratio u equal to or less than the first Al composition ratio, and a third Al smaller than the second Al composition ratio. It includes a third AlGaN layer 344 containing AlGaN having a composition ratio v.

第2のAlGaN層342は、第1のAlGaN層32上に形成されている。また、第2のAlGaN342及び第3のAlGaN層344は、第1のAlGaN層32から後述する多重量子井戸層に向かってこの順に互いに交互にL層ずつ積層されている。Lは、適宜に選択することができ、例えば、15、20、30等である。 The second AlGaN layer 342 is formed on the first AlGaN layer 32. Further, the second AlGaN 342 and the third AlGaN layer 344 are alternately laminated with each other in this order from the first AlGaN layer 32 toward the multiple quantum well layer described later. L can be appropriately selected, for example, 15, 20, 30, and the like.

好ましくは、緩衝層34の厚さ((t+t)xL)は、4.0μm以下である。また、好ましくは、第3のAlGaN層344の厚さtは、第2のAlGaN層342の厚さtよりも大きい。すなわち、t及びtは、t<tの関係を有する。個々の第2のAlGaN層342及び第3のAlGaN層344それぞれは、厚くても緩衝層34としての厚さが4.0μm以下になる程度に小さい厚さ(例えば、数十nm)を有する。第2のAlGaN層342及び第3のAlGaN層344は、超格子層であってもよい。 Preferably, the thickness of the buffer layer 34 ((t 2 + t 3 ) xL) is 4.0 μm or less. Also, preferably, the thickness t 3 of the third AlGaN layer 344 is larger than the thickness t 2 of the second AlGaN layer 342. That is, t 2 and t 3 have a relationship of t 2 <t 3 . Each of the second AlGaN layer 342 and the third AlGaN layer 344 has a thickness as small as 4.0 μm or less (for example, several tens of nm) even if it is thick. The second AlGaN layer 342 and the third AlGaN layer 344 may be superlattice layers.

多重量子井戸層を含む活性層50は、n型クラッド層30上に形成されている。活性層50は、AlGa1-rNを含んで構成される多重量子井戸層のn型クラッド層30側の障壁層52a、及び後述する電子ブロック層60側の障壁層52cを含む3層の障壁層52a,52b,52cとAlGa1-sNを含んで構成される3層の井戸層54a,54b,54c(0≦r≦1、0≦s≦1、r>s)とを交互に積層した多重量子井戸層を含む層である。活性層50は、波長360nm以下の深紫外光を出力するためにバンドギャップが3.4eV以上となるように構成されている。なお、本実施の形態では、活性層50に障壁層52a,52b,52c及び井戸層54a,54b,54cを各3層ずつ設けたが、必ずしも3層に限定されるものではなく、2層以下でもよく、4層以上でもよい。 The active layer 50 including the multiple quantum well layer is formed on the n-type clad layer 30. The active layer 50 is a three-layered layer including a barrier layer 52a on the n-type clad layer 30 side of a multiple quantum well layer composed of Allr Ga 1-r N and a barrier layer 52c on the electron block layer 60 side described later. With the three well layers 54a, 54b, 54c (0 ≦ r ≦ 1, 0 ≦ s ≦ 1, r> s) including the barrier layers 52a, 52b, 52c and Al s Ga 1-s N. It is a layer including a multiple quantum well layer in which is alternately laminated. The active layer 50 is configured to have a band gap of 3.4 eV or more in order to output deep ultraviolet light having a wavelength of 360 nm or less. In the present embodiment, the active layer 50 is provided with three barrier layers 52a, 52b, 52c and three well layers 54a, 54b, 54c, but the active layer 50 is not necessarily limited to three layers, and two or less layers are provided. However, it may have four or more layers.

電子ブロック層60は、活性層50上に形成されている。電子ブロック層60は、p型のAlGaN(以下、単に「p型AlGaN」ともいう。)により形成されている。電子ブロック層60は、1nm~10nm程度の厚さを有している。なお、電子ブロック層60は、AlNにより形成された層を含んでもよい。また、電子ブロック層60は、必ずしもp型の半導体層に限られず、アンドープの半導体層でもよい。 The electron block layer 60 is formed on the active layer 50. The electron block layer 60 is formed of p-type AlGaN (hereinafter, also simply referred to as “p-type AlGaN”). The electron block layer 60 has a thickness of about 1 nm to 10 nm. The electron block layer 60 may include a layer formed of AlN. Further, the electron block layer 60 is not necessarily limited to the p-type semiconductor layer, and may be an undoped semiconductor layer.

p型クラッド層70は、電子ブロック層60上に形成されている。p型クラッド層70は、p型AlGaNにより形成される層であり、例えば、p型の不純物としてマグネシウム(Mg)がドープされたAlGaN層である。なお、p型の不純物としては、亜鉛(Zn)、ベリリウム(Be)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を用いてもよい。p型クラッド層70は、300nm~700nm程度の厚さを有し、例えば、400nm~600nm程度の厚さを有する。 The p-type clad layer 70 is formed on the electron block layer 60. The p-type clad layer 70 is a layer formed of p-type AlGaN, and is, for example, an AlGaN layer doped with magnesium (Mg) as a p-type impurity. As the p-type impurities, zinc (Zn), beryllium (Be), calcium (Ca), strontium (Sr), barium (Ba) and the like may be used. The p-type clad layer 70 has a thickness of about 300 nm to 700 nm, and has a thickness of, for example, about 400 nm to 600 nm.

p型コンタクト層80は、p型クラッド層70上に形成されている。p型コンタクト層80は、例えば、Mg等の不純物が高濃度にドープされたp型のGaN層である。 The p-type contact layer 80 is formed on the p-type clad layer 70. The p-type contact layer 80 is, for example, a p-type GaN layer doped with impurities such as Mg at a high concentration.

n側電極90は、n型クラッド層30の一部の領域上に形成されている。n側電極90は、例えば、n型クラッド層30の上に順にチタン(Ti)/アルミニウム(Al)/Ti/金(Au)が順に積層された多層膜で形成される。 The n-side electrode 90 is formed on a partial region of the n-type clad layer 30. The n-side electrode 90 is formed of, for example, a multilayer film in which titanium (Ti) / aluminum (Al) / Ti / gold (Au) are sequentially laminated on the n-type clad layer 30.

p側電極92は、p型コンタクト層80の上に形成されている。p側電極92は、例えば、p型コンタクト層80の上に順に積層されるニッケル(Ni)/金(Au)の多層膜で形成される。 The p-side electrode 92 is formed on the p-type contact layer 80. The p-side electrode 92 is formed of, for example, a nickel (Ni) / gold (Au) multilayer film that is sequentially laminated on the p-type contact layer 80.

(製造方法)
次に、発光素子1の製造方法について説明する。基板10上にバッファ層22、n型クラッド層30、活性層50、電子ブロック層60、p型クラッド層70を、この順に、例えば、温度を段階的に下げながら連続的に高温成長させてウエハを形成する。ウエハは、一例として、例えば、直径約50mmの円形状の形状を有する。これら層の成長には、有機金属化学気相成長法(Metal Organic Chemical Vapor Deposition:MOCVD)、分子線エピタキシ法(Molecular Beam Epitaxy:MBE)、ハライド気相エピタキシ法(Halide Vapor Phase Epitaxy:NVPE)等の周知のエピタキシャル成長法を用いて形成することができる。
(Production method)
Next, a method of manufacturing the light emitting element 1 will be described. A wafer in which a buffer layer 22, an n-type clad layer 30, an active layer 50, an electron block layer 60, and a p-type clad layer 70 are continuously grown at a high temperature on a substrate 10 in this order, for example, while gradually lowering the temperature. To form. As an example, the wafer has a circular shape having a diameter of about 50 mm. The growth of these layers includes the Metal Organic Chemical Vapor Deposition (MOCVD), Molecular Beam Epitaxy (MBE), Halide Vapor Phase Epitaxy (NVPE), etc. It can be formed by using the well-known epitaxial growth method of.

次に、p型クラッド層70の上にマスクを形成し、マスクが形成されていない露出領域の活性層50、電子ブロック層60、及びp型クラッド層70を除去する。活性層50、電子ブロック層60、及びp型クラッド層70の除去は、例えば、プラズマエッチングにより行うことができる。n型クラッド層30の露出面30a(図1参照)上にn側電極90を形成し、マスクを除去したp型コンタクト層80上にp側電極92を形成する。n側電極90及びp側電極92は、例えば、電子ビーム蒸着法やスパッタリング法などの周知の方法により形成することができる。このウエハを、所定の寸法に切り分けることにより、図1に示す発光素子1が形成される。 Next, a mask is formed on the p-type clad layer 70, and the active layer 50, the electron block layer 60, and the p-type clad layer 70 in the exposed region where the mask is not formed are removed. The active layer 50, the electron block layer 60, and the p-type clad layer 70 can be removed by, for example, plasma etching. The n-side electrode 90 is formed on the exposed surface 30a (see FIG. 1) of the n-type clad layer 30, and the p-side electrode 92 is formed on the p-type contact layer 80 from which the mask has been removed. The n-side electrode 90 and the p-side electrode 92 can be formed by a well-known method such as an electron beam vapor deposition method or a sputtering method. By cutting this wafer into predetermined dimensions, the light emitting element 1 shown in FIG. 1 is formed.

(実施例)
次に、図4及び図5を参照して、本発明の第1の実施の形態に係る実施例について説明する。図4は、比較例及び実施例に係る発光素子1の構成と、測定結果とを示す図である。図5は、比較例及び実施例に係る発光素子の素材であるウエハの反り及びウエハの面内発光割合を示すグラフである。なお、図4の「ループ数」は、第2のAlGaN層342及び第3のAlGaN層344の各層の数L(「積層数L」ともいう)を示す。
(Example)
Next, an example according to the first embodiment of the present invention will be described with reference to FIGS. 4 and 5. FIG. 4 is a diagram showing the configuration of the light emitting element 1 according to the comparative example and the embodiment and the measurement result. FIG. 5 is a graph showing the warp of the wafer, which is the material of the light emitting element according to the comparative example and the embodiment, and the in-plane light emission ratio of the wafer. The “number of loops” in FIG. 4 indicates the number L of each layer of the second AlGaN layer 342 and the third AlGaN layer 344 (also referred to as “stacking number L”).

図4に示すように、実施例の発光素子1は、第2のAlGaN層342及び第3のAlGaN層344を交互に複数積層させた緩衝層34を有しているのに対し、比較例の発光素子は、かかる緩衝層34を有していない点で両者は相違している。 As shown in FIG. 4, the light emitting device 1 of the embodiment has a buffer layer 34 in which a plurality of second AlGaN layer 342 and a third AlGaN layer 344 are alternately laminated, whereas the light emitting element 1 of the comparative example has a buffer layer 34. The light emitting element is different from each other in that it does not have such a buffer layer 34.

具体的に、図4に示すように、実施例1に係る発光素子1は、第1のAl組成比qとしてAl組成比39.3%を有するAlGaNにより形成された第1のAlGaN層32と、第2のAl組成比uとして第1のAl組成比qと等しいAl組成比39.3%を有するAlGaNにより形成された第2のAlGaN層344と、第3のAl組成比vとして第2のAl組成比uよりも小さいAl組成比25.8%を有するAlGaNにより形成された第3のAlGaN層344とを含む。 Specifically, as shown in FIG. 4, the light emitting element 1 according to the first embodiment has a first AlGaN layer 32 formed of AlGaN having an Al composition ratio of 39.3% as the first Al composition ratio q. , The second AlGaN layer 344 formed of AlGaN having an Al composition ratio of 39.3% equal to the first Al composition ratio q as the second Al composition ratio u, and the second Al composition ratio v as the third Al composition ratio v. Includes a third AlGaN layer 344 formed of AlGaN having an Al composition ratio of 25.8%, which is smaller than the Al composition ratio u of.

実施例1に係る発光素子1は、第2のAlGaN層342及び第3のAlGaN層344が交互に20層ずつ積層した多重層を含む。また、第1のAlGaN層32の厚さtは、0.2μmであり、第2のAlGaN層342の厚さtは、0.035μmであり、第3のAlGaN層344の厚さtは、0.085μmである。すなわち、緩衝層34の厚さは、略2.4μm((0.035+0.085)x20)である。 The light emitting element 1 according to the first embodiment includes a multi-layer in which 20 layers of a second AlGaN layer 342 and a third AlGaN layer 344 are alternately laminated. Further, the thickness t 1 of the first AlGaN layer 32 is 0.2 μm, the thickness t 2 of the second AlGaN layer 342 is 0.035 μm, and the thickness t of the third AlGaN layer 344 is t. 3 is 0.085 μm. That is, the thickness of the buffer layer 34 is approximately 2.4 μm ((0.035 + 0.085) x 20).

また、実施例2に係る発光素子1は、上述の実施例1に係る発光素子1と同様のAl組成比を有する第1から第3のAlGaN層32,342,344を含む。実施例2に係る発光素子1の緩衝層34の積層数Lは、15である。また、第1のAlGaN層32の厚さtは、0.4μmであり、第2のAlGaN層342の厚さtは、0.035μmであり、第3のAlGaN層344の厚さtは、0.11μmである。すなわち、緩衝層34の厚さは、略2.18μm((0.035+0.11)x15)である。 Further, the light emitting element 1 according to the second embodiment includes first to third AlGaN layers 32, 342 and 344 having the same Al composition ratio as the light emitting element 1 according to the first embodiment described above. The number of layers L of the buffer layer 34 of the light emitting element 1 according to the second embodiment is 15. Further, the thickness t 1 of the first AlGaN layer 32 is 0.4 μm, the thickness t 2 of the second AlGaN layer 342 is 0.035 μm, and the thickness t of the third AlGaN layer 344 is t. 3 is 0.11 μm. That is, the thickness of the buffer layer 34 is approximately 2.18 μm ((0.035 + 0.11) × 15).

上記の実施例1及び2に対して、比較例に係る発光素子は、第1のAlGaN層32に相当する層を含んでいない。また、積層数は、1である。また、第2のAlGaN層342の厚さtは、1μmであり、第3のAlGaN層344の厚さtは、2μmである。 With respect to Examples 1 and 2 above, the light emitting device according to the comparative example does not include a layer corresponding to the first AlGaN layer 32. The number of layers is 1. The thickness t 2 of the second AlGaN layer 342 is 1 μm, and the thickness t 3 of the third AlGaN layer 344 is 2 μm.

発光素子の素材であるウエハの反り及びウエハの面内発光割合に関する結果を、図4及び図5を参照して説明する。図5の記号Aは、後述する面内発光割合(左軸参照)を示し、記号Bは、ウエハの反り(右軸参照)を示す。図4及び図5に示すように、ウエハの反りは、比較例では、160km-1であったのに対し、実施例1では、77km-1まで抑制され、実施例2では、89km-1まで抑制された。 The results regarding the warp of the wafer, which is the material of the light emitting element, and the in-plane light emission ratio of the wafer will be described with reference to FIGS. 4 and 5. The symbol A in FIG. 5 indicates the in-plane emission ratio (see the left axis) described later, and the symbol B indicates the warp of the wafer (see the right axis). As shown in FIGS. 4 and 5, the warpage of the wafer was 160 km -1 in Comparative Example, whereas it was suppressed to 77 km -1 in Example 1 and up to 89 km -1 in Example 2. It was suppressed.

また、ウエハの反りが抑制されたことに伴い、一つのウエハから取得できる発光素子の総数に対して、所定の発光強度以上の強度で発光する発光素子の数の割合(以下、「面内発光割合」ともいう。)は、比較例では、16%であったのに対し、実施例1では、55%に向上し、実施例2では、52%に向上した。なお、本実施例では、所定の発光強度を4.2mWとした。 Further, as the warp of the wafer is suppressed, the ratio of the number of light emitting elements that emit light with an intensity equal to or higher than a predetermined light emission intensity to the total number of light emitting elements that can be obtained from one wafer (hereinafter, "in-plane light emission"). (Also referred to as “ratio”) was 16% in Comparative Example, improved to 55% in Example 1, and improved to 52% in Example 2. In this embodiment, the predetermined emission intensity was set to 4.2 mW.

このように、実施例1の発光素子1の反りは、比較例の発光素子の反りの約48%に抑えられ、実施例2の発光素子1の反りは、比較例の発光素子の反りの約56%に抑えられた。また、実施例1の発光素子1の面内発光割合は、比較例の発光素子の面内発光割合の約3.8倍となり、実施例2の発光素子1の面内発光割合は、比較例の発光素子の面内発光割合の約3.2倍となった。以上のように、本発明により、発光素子1の反りが抑制され、発光強度の面内部分のバラツキが上昇することが明らかになった。これにより、発光素子の加工に支障を生じにくくさせることができるとともに、発光素子の歩留まりの低下を抑制することができる。 As described above, the warp of the light emitting element 1 of the first embodiment is suppressed to about 48% of the warp of the light emitting element of the comparative example, and the warp of the light emitting element 1 of the second embodiment is about the warp of the light emitting element of the comparative example. It was suppressed to 56%. Further, the in-plane light emitting ratio of the light emitting element 1 of Example 1 is about 3.8 times the in-plane light emitting ratio of the light emitting element of Comparative Example, and the in-plane light emitting ratio of the light emitting element 1 of Example 2 is the comparative example. The ratio of in-plane light emission of the light emitting element was about 3.2 times. As described above, it has been clarified by the present invention that the warp of the light emitting element 1 is suppressed and the variation in the in-plane portion of the light emitting intensity is increased. As a result, it is possible to make it difficult for the processing of the light emitting element to be hindered, and it is possible to suppress a decrease in the yield of the light emitting element.

<変形例>
図3は、変形例に係る発光素子のn型クラッド層のAl組成比の一例を模式的に示すグラフである。図3に示すように、第2のAl組成比uは、第1のAl組成比qと等しい値になるようにしてもよい。
<Modification example>
FIG. 3 is a graph schematically showing an example of the Al composition ratio of the n-type clad layer of the light emitting device according to the modified example. As shown in FIG. 3, the second Al composition ratio u may be set to a value equal to the first Al composition ratio q.

[第2の実施の形態]
図6は、本発明の第2の実施の形態に係る発光素子1のn型クラッド層のAl組成比の変形例を模式的に示すグラフである。第2の実施の形態に係る発光素子1は、後述する第4のAlGaN層36を備える点で、第1の実施の形態に係る発光素子1と相違する。以下、第1の実施の形態と同一の構成要素については、同一の符号を付して重複した説明を省略するとともに、第1の実施の形態と異なる点を中心に説明する。
[Second Embodiment]
FIG. 6 is a graph schematically showing a modification of the Al composition ratio of the n-type clad layer of the light emitting device 1 according to the second embodiment of the present invention. The light emitting device 1 according to the second embodiment is different from the light emitting device 1 according to the first embodiment in that it includes a fourth AlGaN layer 36 described later. Hereinafter, the same components as those of the first embodiment will be referred to with the same reference numerals, duplicated description will be omitted, and the points different from those of the first embodiment will be mainly described.

図6に示すように、発光素子1のn型クラッド層30は、緩衝層34上に位置する第4のAlGaN層36をさらに備える。第4のAlGaN層36は、第3のAl組成比v以下の第4のAl組成比wを有するAlGa1-wN(0<w≦v<u≦q≦1)により形成されている。 As shown in FIG. 6, the n-type clad layer 30 of the light emitting element 1 further includes a fourth AlGaN layer 36 located on the buffer layer 34. The fourth AlGaN layer 36 is formed by Al w Ga 1-w N (0 <w ≦ v <u ≦ q ≦ 1) having a fourth Al composition ratio w equal to or less than the third Al composition ratio v. There is.

第4のAlGaN層36は、2.0μm以下の厚さtを有している。すなわち、tは、0≦t≦2.0μmの範囲の値をとり得る。 The fourth AlGaN layer 36 has a thickness t 4 of 2.0 μm or less. That is, t 4 can take a value in the range of 0 ≦ t 4 ≦ 2.0 μm.

なお、図示はしないが、第4のAl組成比wは、第3のAl組成比vと等しい値となるようにしてもよい。 Although not shown, the fourth Al composition ratio w may be set to a value equal to the third Al composition ratio v.

以上のようにしても、第1の実施の形態に係る発光素子1と同様に、ウエハの反りを抑制することができる。また、発光強度の面内分布を向上させることができる。この結果、発光素子の加工に支障を生じにくくさせることができるとともに、発光素子の歩留まりの低下を抑制することができる。 Even in the above manner, the warp of the wafer can be suppressed as in the light emitting element 1 according to the first embodiment. In addition, the in-plane distribution of emission intensity can be improved. As a result, it is possible to prevent the processing of the light emitting element from being hindered, and it is possible to suppress a decrease in the yield of the light emitting element.

(実施の形態の作用及び効果)
以上説明したように、本発明の第1の実施の形態及びその変形例並びに第2の実施の形態に係る発光素子1では、n型クラッド層30が、下地構造部2側に位置して、第1のAl組成比を有するn型AlGaNにより形成された第1のAlGaN層32と、第1のAlGaN層32及び多重量子井戸層の間に位置して、第1のAl組成比以下のAl組成比を有するAlGaNにより形成された複数の層342,344が交互に積層された緩衝層34とを有している。これにより、発光素子1の素材であるウエハの反りが抑制され、発光強度の面内分布を向上させることが可能となる。
(Actions and effects of embodiments)
As described above, in the light emitting element 1 according to the first embodiment of the present invention, its modifications, and the second embodiment, the n-type clad layer 30 is located on the base structure portion 2 side. Al located between the first AlGaN layer 32 formed of n-type AlGaN having the first Al composition ratio, the first AlGaN layer 32 and the multiple quantum well layer, and equal to or less than the first Al composition ratio. It has a buffer layer 34 in which a plurality of layers 342 and 344 formed of AlGaN having a composition ratio are alternately laminated. As a result, the warp of the wafer, which is the material of the light emitting element 1, is suppressed, and the in-plane distribution of the light emitting intensity can be improved.

(実施形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号等は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of embodiments)
Next, the technical idea grasped from the embodiment described above will be described with reference to the reference numerals and the like in the embodiment. However, the respective reference numerals and the like in the following description are not limited to the members and the like in which the components within the scope of the claims are specifically shown in the embodiment.

[1]基板(10)を含む下地構造部(2)上に位置するn型AlGaNにより形成されたn型クラッド層(30)と、前記n型クラッド層(30)上に位置する、複数の障壁層(52a,52b,52c)と複数の井戸層(54a,54b,54c)とをこの順に交互に積層してなる多重量子井戸層とを含む窒化物半導体発光素子(1)であって、前記n型クラッド層(30)は、前記下地構造部(2)側に位置して、第1のAl組成比(q)を有するn型AlGaNにより形成された第1のAlGaN層(32)と、前記第1のAlGaN層(32)及び前記多重量子井戸層の間に位置して、前記第1のAl組成比(q)以下のAl組成比を有するAlGaNにより形成された複数の層が交互に積層された緩衝層(34)とを備える、窒化物半導体発光素子。
[2]前記緩衝層(34)は、互いに相違するAl組成比を有するAlGaNにより形成された2種類の層が交互に積層されたものである、前記[1]に記載の窒化物半導体発光素子(1)。
[3]前記2種類の層は、前記第1のAl組成比以下の第2のAl組成比(u)を有するAlGaNを含む第2のAlGaN層(342)と、前記第2のAl組成比よりも小さい第3のAl組成比(v)を有するAlGaNを含む第3のAlGaN層(344)とを含む、前記[2]に記載の窒化物半導体発光素子(1)。
[4]前記第2のAlGaN層(342)は、前記第1のAlGaN層(32)上に形成されている、前記[3]に記載の窒化物半導体発光素子(1)。
[5]前記緩衝層(34)は、複数の前記第2のAlGaN層(342)と、複数の前記第3のAlGaN層(344)とを、前記第1のAlGaN層(32)側から前記多重量子井戸層側に向かってこの順に交互にL層ずつ積層してなる多重層を含む、前記[4]に記載の窒化物半導体発光素子。
[6]前記第2のAl組成比(u)は、前記第1のAl組成比(q)と略等しい値である、前記[4]又は[5]に記載の窒化物半導体発光素子。
[7]前記第3のAlGaN層(344)は、前記第2のAlGaN層(342)の厚さ(t)よりも大きい厚さ(t)を有する、前記[3]から[6]のいずれか1つに記載の窒化物半導体発光素子(1)。
[8]前記第1のAlGaN層(32)は、1.5マイクロメートル以下の厚さ(t)を有する、前記[1]から[7]のいずれか1つに記載の窒化物半導体発光素子(1)。
[9]前記緩衝層(34)は、4.0マイクロメートル以下の厚さを有する、前記[1]から[8]のいずれか1つに記載の窒化物半導体発光素子(1)。
[10]前記n型クラッド層(30)は、前記緩衝層(34)上に位置して、前記第3のAl組成比(v)以下の第4のAl組成比(w)を有するn型AlGaNにより形成された第4のAlGaN(36)層をさらに含む、前記[1]から[9]のいずれか1つに記載の窒化物半導体発光素子(1)。
[11]前記第4のAlGaN層(36)は、2.0マイクロメートル以下の厚さ(t)を有する、前記[10]に記載の窒化物半導体発光素子(1)。
[12]前記第4のAl組成比(w)は、前記第3のAl組成比(v)と略等しい値である、前記[1]0又は[11]に記載の窒化物半導体発光素子(1)。
[13]基板(10)を含む下地構造部(2)上に位置するn型AlGaNを有するn型クラッド層(30)を形成する工程と、前記n型クラッド層(30)上に位置する、複数の障壁層(52a,52b,52c)と複数の井戸層(54a,54b,54c)とをこの順に交互に積層してなる多重量子井戸層を形成する工程とを含む窒化物半導体発光素子(1)の製造方法であって、前記n型クラッド層(30)を形成する工程は、前記下地構造部(2)側に位置して、第1のAl組成比(q)を有するn型AlGaNを含む第1のAlGaN層(32)を形成する工程と、前記第1のAlGaN層(32)及び前記多重量子井戸層の間に位置して、前記第1のAl組成比(q)以下のAl組成比を有するAlGaNを含む複数の層が交互に積層された緩衝層(34)を形成する工程とを備える、窒化物半導体発光素子(1)の製造方法。
[1] An n-type clad layer (30) formed of n-type AlGaN located on the base structure portion (2) including the substrate (10), and a plurality of n-type clad layers (30) located on the n-type clad layer (30). A nitride semiconductor light emitting device (1) including a multiple quantum well layer in which a barrier layer (52a, 52b, 52c) and a plurality of well layers (54a, 54b, 54c) are alternately laminated in this order. The n-type clad layer (30) is located on the base structure portion (2) side and has a first AlGaN layer (32) formed of n-type AlGaN having a first Al composition ratio (q). , A plurality of layers formed of AlGaN having an Al composition ratio of the first Al composition ratio (q) or less, which are located between the first AlGaN layer (32) and the multiple quantum well layer, alternate. A nitride semiconductor light emitting device, comprising a buffer layer (34) laminated on the above.
[2] The nitride semiconductor light emitting device according to the above [1], wherein the buffer layer (34) is formed by alternately stacking two types of layers formed of AlGaN having different Al composition ratios. (1).
[3] The two types of layers are a second AlGaN layer (342) containing AlGaN having a second Al composition ratio (u) equal to or lower than the first Al composition ratio, and the second Al composition ratio. The nitride semiconductor light emitting device (1) according to the above [2], which includes a third AlGaN layer (344) containing AlGaN having a third Al composition ratio (v) smaller than that.
[4] The nitride semiconductor light emitting device (1) according to the above [3], wherein the second AlGaN layer (342) is formed on the first AlGaN layer (32).
[5] The buffer layer (34) includes a plurality of the second AlGaN layer (342) and the plurality of the third AlGaN layer (344) from the first AlGaN layer (32) side. The nitride semiconductor light emitting device according to the above [4], which includes multiple layers in which L layers are alternately laminated in this order toward the multiple quantum well layer side.
[6] The nitride semiconductor light emitting device according to the above [4] or [5], wherein the second Al composition ratio (u) is a value substantially equal to the first Al composition ratio (q).
[7] The third AlGaN layer (344) has a thickness (t 3 ) larger than the thickness (t 2 ) of the second AlGaN layer (342), from [3] to [6]. The nitride semiconductor light emitting device (1) according to any one of the above.
[8] The nitride semiconductor light emitting device according to any one of [1] to [7], wherein the first AlGaN layer (32) has a thickness (t 1 ) of 1.5 micrometers or less. Element (1).
[9] The nitride semiconductor light emitting device (1) according to any one of the above [1] to [8], wherein the buffer layer (34) has a thickness of 4.0 micrometers or less.
[10] The n-type clad layer (30) is located on the buffer layer (34) and has an n-type having a fourth Al composition ratio (w) equal to or less than the third Al composition ratio (v). The nitride semiconductor light emitting device (1) according to any one of the above [1] to [9], further including a fourth AlGaN (36) layer formed of AlGaN.
[11] The nitride semiconductor light emitting device (1) according to the above [10], wherein the fourth AlGaN layer (36) has a thickness (t 4 ) of 2.0 micrometers or less.
[12] The nitride semiconductor light emitting device according to [1] 0 or [11], wherein the fourth Al composition ratio (w) is substantially equal to the third Al composition ratio (v). 1).
[13] A step of forming an n-type clad layer (30) having an n-type AlGaN located on the base structure portion (2) including the substrate (10), and a step of forming the n-type clad layer (30) located on the n-type clad layer (30). A nitride semiconductor light emitting device (including a step of forming a multiple quantum well layer in which a plurality of barrier layers (52a, 52b, 52c) and a plurality of well layers (54a, 54b, 54c) are alternately laminated in this order. In the manufacturing method of 1), the step of forming the n-type clad layer (30) is located on the base structure portion (2) side and has the first Al composition ratio (q). Located between the step of forming the first AlGaN layer (32) including the first AlGaN layer (32) and the first AlGaN layer (32) and the multiple quantum well layer, the first Al composition ratio (q) or less. A method for manufacturing a nitride semiconductor light emitting device (1), comprising a step of forming a buffer layer (34) in which a plurality of layers containing AlGaN having an Al composition ratio are alternately laminated.

1…窒化物半導体発光素子(発光素子)
2…下地構造部
10…基板
22…バッファ層
30…n型クラッド層
30a…露出面
32…第1のAlGaN層
34…緩衝層
342…第2のAlGaN層
344…第3のAlGaN層
36…第4のAlGaN層
50…活性層
52,52a,52b,52c…障壁層
54,54a,54b,54c…井戸層
60…電子ブロック層
70…p型クラッド層
80…p型コンタクト層
90…n側電極
92…p側電極
L…積層数
…第1のAlGaN層の厚さ
…第2のAlGaN層の厚さ
…第3のAlGaN層の厚さ
…第4のAlGaN層の厚さ
q…第1のAl組成比
u…第2のAl組成比
v…第3のAl組成比
w…第4のAl組成比
1 ... Nitride semiconductor light emitting device (light emitting element)
2 ... Underlayer structure 10 ... Substrate 22 ... Buffer layer 30 ... n-type clad layer 30a ... Exposed surface 32 ... First AlGaN layer 34 ... Buffer layer 342 ... Second AlGaN layer 344 ... Third AlGaN layer 36 ... Third AlGaN layer 50 ... Active layer 52, 52a, 52b, 52c ... Barrier layer 54, 54a, 54b, 54c ... Well layer 60 ... Electronic block layer 70 ... p-type clad layer 80 ... p-type contact layer 90 ... n-side electrode 92 ... p-side electrode L ... Number of stacks t 1 ... Thickness of first AlGaN layer t 2 ... Thickness of second AlGaN layer t 3 ... Thickness of third AlGaN layer t 4 ... Fourth AlGaN layer Thickness q ... 1st Al composition ratio u ... 2nd Al composition ratio v ... 3rd Al composition ratio w ... 4th Al composition ratio

Claims (10)

基板を含む下地構造部上に位置するn型AlGaNにより形成されたn型クラッド層と、
前記n型クラッド層上に位置する、複数の障壁層と複数の井戸層とをこの順に交互に積層してなる多重量子井戸層と
を含む窒化物半導体発光素子であって、
前記n型クラッド層は、
前記下地構造部側に位置して、第1のAl組成比を有するn型AlGaNにより形成された第1のAlGaN層と、
前記第1のAlGaN層及び前記多重量子井戸層の間に位置して、前記第1のAl組成比以下のAl組成比を有するAlGaNにより形成された複数の層が交互に積層された緩衝層と
を備え
前記緩衝層は、互いに相違するAl組成比を有するAlGaNにより形成された2種類の層が交互に積層されたものであり、
前記2種類の層は、前記第1のAl組成比以下の第2のAl組成比を有するAlGaNを含む第2のAlGaN層と、前記第2のAl組成比よりも小さい第3のAl組成比を有するAlGaNを含む第3のAlGaN層とを含み、
前記第3のAlGaN層は、前記第2のAlGaN層の厚さよりも大きい厚さを有する、
窒化物半導体発光素子。
An n-type clad layer formed of n-type AlGaN located on the underlying structure including the substrate, and an n-type clad layer.
A nitride semiconductor light-emitting device including a multiple quantum well layer in which a plurality of barrier layers and a plurality of well layers are alternately laminated in this order, which are located on the n-type clad layer.
The n-type clad layer is
A first AlGaN layer located on the base structure side and formed of an n-type AlGaN having a first Al composition ratio,
A buffer layer in which a plurality of layers formed of AlGaN having an Al composition ratio equal to or lower than that of the first Al composition ratio are alternately laminated, located between the first AlGaN layer and the multiple quantum well layer. Equipped with
The buffer layer is formed by alternately laminating two types of layers formed of AlGaN having different Al composition ratios.
The two types of layers are a second AlGaN layer containing AlGaN having a second Al composition ratio equal to or lower than the first Al composition ratio, and a third Al composition ratio smaller than the second Al composition ratio. A third AlGaN layer containing AlGaN and
The third AlGaN layer has a thickness larger than the thickness of the second AlGaN layer.
Nitride semiconductor light emitting device.
前記第2のAlGaN層は、前記第1のAlGaN層上に形成されている、
請求項に記載の窒化物半導体発光素子。
The second AlGaN layer is formed on the first AlGaN layer.
The nitride semiconductor light emitting device according to claim 1 .
前記緩衝層は、
複数の前記第2のAlGaN層と、複数の前記第3のAlGaN層とを、前記第1のAlGaN層側から前記多重量子井戸層側に向かってこの順に交互にL層ずつ積層してなる多重層を含む、
請求項に記載の窒化物半導体発光素子。
The buffer layer is
A plurality of the second AlGaN layer and the plurality of the third AlGaN layers are alternately laminated in this order from the first AlGaN layer side toward the multiple quantum well layer side. Including multiple layers,
The nitride semiconductor light emitting device according to claim 2 .
前記第2のAl組成比は、前記第1のAl組成比と等しい値である、
請求項2又は3に記載の窒化物半導体発光素子。
The second Al composition ratio is a value equal to the first Al composition ratio.
The nitride semiconductor light emitting device according to claim 2 or 3 .
前記第1のAlGaN層は、1.5マイクロメートル以下の厚さを有する、
請求項1からのいずれか1項に記載の窒化物半導体発光素子。
The first AlGaN layer has a thickness of 1.5 micrometers or less.
The nitride semiconductor light emitting device according to any one of claims 1 to 4 .
前記緩衝層は、4.0マイクロメートル以下の厚さを有する、
請求項1からのいずれか1項に記載の窒化物半導体発光素子。
The buffer layer has a thickness of 4.0 micrometers or less.
The nitride semiconductor light emitting device according to any one of claims 1 to 5 .
前記n型クラッド層は、前記緩衝層上に位置して、前記第3のAl組成比以下の第4のAl組成比を有するn型AlGaNにより形成された第4のAlGaN層をさらに含む、
請求項1からのいずれか1項に記載の窒化物半導体発光素子。
The n-type clad layer further includes a fourth AlGaN layer located on the buffer layer and formed of n-type AlGaN having a fourth Al composition ratio equal to or lower than the third Al composition ratio.
The nitride semiconductor light emitting device according to any one of claims 1 to 6 .
前記第4のAlGaN層は、2.0マイクロメートル以下の厚さを有する、
請求項に記載の窒化物半導体発光素子。
The fourth AlGaN layer has a thickness of 2.0 micrometers or less.
The nitride semiconductor light emitting device according to claim 7 .
前記第4のAl組成比は、前記第3のAl組成比と等しい値である、
請求項7又は8に記載の窒化物半導体発光素子。
The fourth Al composition ratio is a value equal to the third Al composition ratio.
The nitride semiconductor light emitting device according to claim 7 .
基板を含む下地構造部上に位置するn型AlGaNを有するn型クラッド層を形成する工程と、
前記n型クラッド層上に位置する、複数の障壁層と複数の井戸層とをこの順に交互に積層してなる多重量子井戸層を形成する工程と
を含む窒化物半導体発光素子の製造方法であって、
前記n型クラッド層を形成する工程は、
前記下地構造部側に位置して、第1のAl組成比を有するn型AlGaNを含む第1のAlGaN層を形成する工程と、
前記第1のAlGaN層及び前記多重量子井戸層の間に位置して、前記第1のAl組成比以下のAl組成比を有するAlGaNを含む複数の層が交互に積層された緩衝層を形成する工程と
を備え
前記緩衝層を形成する工程においては、互いに相違するAl組成比を有するAlGaNにより形成された2種類の層が交互に積層され、
前記2種類の層は、前記第1のAl組成比以下の第2のAl組成比を有するAlGaNを含む第2のAlGaN層と、前記第2のAl組成比よりも小さい第3のAl組成比を有するAlGaNを含む第3のAlGaN層とを含み、
前記第3のAlGaN層を形成する工程においては、形成される前記第3のAlGaN層の厚さが、前記第2のAlGaN層の厚さよりも大きくなるよう、前記第3のAlGaN層が形成される、
窒化物半導体発光素子の製造方法。
A step of forming an n-type clad layer having an n-type AlGaN located on a base structure including a substrate, and a step of forming the n-type clad layer.
A method for manufacturing a nitride semiconductor light emitting device, which comprises a step of forming a multiple quantum well layer in which a plurality of barrier layers and a plurality of well layers are alternately laminated in this order, which are located on the n-type clad layer. hand,
The step of forming the n-type clad layer is
A step of forming a first AlGaN layer containing an n-type AlGaN having a first Al composition ratio, which is located on the base structure side.
A buffer layer is formed between the first AlGaN layer and the multiple quantum well layer, in which a plurality of layers containing AlGaN having an Al composition ratio equal to or lower than the first Al composition ratio are alternately laminated. With the process ,
In the step of forming the buffer layer, two types of layers formed of AlGaN having different Al composition ratios are alternately laminated.
The two types of layers are a second AlGaN layer containing AlGaN having a second Al composition ratio equal to or lower than the first Al composition ratio, and a third Al composition ratio smaller than the second Al composition ratio. A third AlGaN layer containing AlGaN and
In the step of forming the third AlGaN layer, the third AlGaN layer is formed so that the thickness of the formed third AlGaN layer is larger than the thickness of the second AlGaN layer. Ru,
A method for manufacturing a nitride semiconductor light emitting device.
JP2017208306A 2017-10-27 2017-10-27 Nitride semiconductor light emitting device and method for manufacturing a nitride semiconductor light emitting device Active JP6993843B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017208306A JP6993843B2 (en) 2017-10-27 2017-10-27 Nitride semiconductor light emitting device and method for manufacturing a nitride semiconductor light emitting device
JP2021122199A JP7216776B2 (en) 2017-10-27 2021-07-27 Nitride semiconductor light-emitting device and method for manufacturing nitride semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017208306A JP6993843B2 (en) 2017-10-27 2017-10-27 Nitride semiconductor light emitting device and method for manufacturing a nitride semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021122199A Division JP7216776B2 (en) 2017-10-27 2021-07-27 Nitride semiconductor light-emitting device and method for manufacturing nitride semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
JP2019083222A JP2019083222A (en) 2019-05-30
JP6993843B2 true JP6993843B2 (en) 2022-01-14

Family

ID=66669682

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017208306A Active JP6993843B2 (en) 2017-10-27 2017-10-27 Nitride semiconductor light emitting device and method for manufacturing a nitride semiconductor light emitting device
JP2021122199A Active JP7216776B2 (en) 2017-10-27 2021-07-27 Nitride semiconductor light-emitting device and method for manufacturing nitride semiconductor light-emitting device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021122199A Active JP7216776B2 (en) 2017-10-27 2021-07-27 Nitride semiconductor light-emitting device and method for manufacturing nitride semiconductor light-emitting device

Country Status (1)

Country Link
JP (2) JP6993843B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060719A (en) 1999-08-19 2001-03-06 Nichia Chem Ind Ltd Nitride semiconductor light emitting diode
JP2001144378A (en) 1999-08-31 2001-05-25 Sharp Corp Compound semiconductor light-emitting element and method for manufacturing the same
JP2003115642A (en) 2001-03-28 2003-04-18 Nichia Chem Ind Ltd Nitride semiconductor element
JP2005197293A (en) 2003-12-26 2005-07-21 Toyoda Gosei Co Ltd Group iii nitride-based compound semiconductor light emitting element and its fabrication process
US20150083994A1 (en) 2013-09-23 2015-03-26 Sensor Electronic Technology, Inc. Group III Nitride Heterostructure for Optoelectronic Device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219231B2 (en) * 1995-08-14 2001-10-15 シャープ株式会社 Compound semiconductor light emitting device and method of manufacturing the same
JPH1168158A (en) * 1997-08-20 1999-03-09 Sanyo Electric Co Ltd Gallium nitride based compound semiconductor device
JP2013128103A (en) * 2011-11-17 2013-06-27 Sanken Electric Co Ltd Nitride semiconductor device and nitride semiconductor device manufacturing method
JP5514920B2 (en) * 2012-01-13 2014-06-04 Dowaエレクトロニクス株式会社 Group III nitride epitaxial substrate and deep ultraviolet light emitting device using the substrate
KR20140090801A (en) * 2013-01-10 2014-07-18 엘지이노텍 주식회사 Light emitting device
JP5698321B2 (en) * 2013-08-09 2015-04-08 Dowaエレクトロニクス株式会社 Group III nitride semiconductor epitaxial substrate, group III nitride semiconductor light emitting device, and method for manufacturing the same
WO2016002419A1 (en) * 2014-07-04 2016-01-07 シャープ株式会社 Nitride-semiconductor light-emitting element
KR20170015850A (en) * 2016-07-29 2017-02-09 (주)유니드엘이디 Ultra-violet nitride semiconductor light emitting device with excellent current injection efficiency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060719A (en) 1999-08-19 2001-03-06 Nichia Chem Ind Ltd Nitride semiconductor light emitting diode
JP2001144378A (en) 1999-08-31 2001-05-25 Sharp Corp Compound semiconductor light-emitting element and method for manufacturing the same
JP2003115642A (en) 2001-03-28 2003-04-18 Nichia Chem Ind Ltd Nitride semiconductor element
JP2005197293A (en) 2003-12-26 2005-07-21 Toyoda Gosei Co Ltd Group iii nitride-based compound semiconductor light emitting element and its fabrication process
US20150083994A1 (en) 2013-09-23 2015-03-26 Sensor Electronic Technology, Inc. Group III Nitride Heterostructure for Optoelectronic Device

Also Published As

Publication number Publication date
JP2019083222A (en) 2019-05-30
JP7216776B2 (en) 2023-02-01
JP2021170668A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
TWI680590B (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor light emitting element
TWI693727B (en) Nitride semiconductor light-emitting element and method of manufacturing nitride semiconductor light-emitting element
JP6698925B1 (en) Nitride semiconductor light emitting device
TWI778402B (en) Nitride semiconductor light-emitting element
JP2019083221A (en) Nitride semiconductor light-emitting element and method for manufacturing the same
JP2020202214A (en) Nitride semiconductor light-emitting element
JP7194720B2 (en) Nitride semiconductor light emitting device
JP6917953B2 (en) Nitride semiconductor light emitting device
JP6905498B2 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP7194793B2 (en) Nitride semiconductor light-emitting device and method for manufacturing nitride semiconductor light-emitting device
JP7141425B2 (en) Nitride semiconductor light emitting device
JP6993843B2 (en) Nitride semiconductor light emitting device and method for manufacturing a nitride semiconductor light emitting device
JP6691090B2 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP2021166308A (en) Manufacturing method for nitride semiconductor light-emitting element
CN111052411A (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor light emitting element
US20210296527A1 (en) Nitride semiconductor light-emitting element and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211210

R150 Certificate of patent or registration of utility model

Ref document number: 6993843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150