JP6905498B2 - Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device Download PDF

Info

Publication number
JP6905498B2
JP6905498B2 JP2018172339A JP2018172339A JP6905498B2 JP 6905498 B2 JP6905498 B2 JP 6905498B2 JP 2018172339 A JP2018172339 A JP 2018172339A JP 2018172339 A JP2018172339 A JP 2018172339A JP 6905498 B2 JP6905498 B2 JP 6905498B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
nitride semiconductor
type clad
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018172339A
Other languages
Japanese (ja)
Other versions
JP2019054247A (en
JP2019054247A5 (en
Inventor
シリル ペルノ
シリル ペルノ
勇介 松倉
勇介 松倉
優太 古澤
優太 古澤
和田 貢
貢 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017177659A external-priority patent/JP6405430B1/en
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2018172339A priority Critical patent/JP6905498B2/en
Publication of JP2019054247A publication Critical patent/JP2019054247A/en
Publication of JP2019054247A5 publication Critical patent/JP2019054247A5/ja
Application granted granted Critical
Publication of JP6905498B2 publication Critical patent/JP6905498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、窒化物半導体発光素子及び窒化物半導体発光素子の製造方法に関する。 The present invention relates to a nitride semiconductor light emitting device and a method for manufacturing a nitride semiconductor light emitting device.

近年、青色光を出力する発光ダイオードやレーザダイオード等の窒化物半導体発光素子が実用化されており、発光出力を向上させた窒化物半導体発光素子の開発が進められている(特許文献1参照。)。 In recent years, nitride semiconductor light emitting devices such as light emitting diodes and laser diodes that output blue light have been put into practical use, and development of nitride semiconductor light emitting devices with improved light emitting output is underway (see Patent Document 1). ).

特許文献1に記載の窒化物半導体発光素子は、n型窒化物半導体層と、トリガ層と、Vピット拡大層と、発光層を形成する多重量子井戸層と、p型窒化物半導体層とがこの順で設けられて構成された窒化物半導体発光素子であって、前記多重量子井戸層には、Vピットが形成されており、前記トリガ層は、前記n型窒化物半導体層の上面を構成する材料とは異なる格子定数を有する窒化物半導体材料からなり、前記Vピット拡大層は、前記n型窒化物半導体層の上面を構成する材料とは実質的に同一の格子定数を有する窒化物半導体材料からなり、5nm以上5000nm以下の厚みを有している。 The nitride semiconductor light emitting element described in Patent Document 1 includes an n-type nitride semiconductor layer, a trigger layer, a V-pit expansion layer, a multiple quantum well layer forming a light emitting layer, and a p-type nitride semiconductor layer. It is a nitride semiconductor light emitting element provided in this order, and V pits are formed in the multiple quantum well layer, and the trigger layer constitutes the upper surface of the n-type nitride semiconductor layer. The V-pit expansion layer is made of a nitride semiconductor material having a lattice constant different from that of the material to be used, and the V-pit expansion layer is a nitride semiconductor having substantially the same lattice constant as the material constituting the upper surface of the n-type nitride semiconductor layer. It is made of a material and has a thickness of 5 nm or more and 5000 nm or less.

ところで、非特許文献1には、多重量子井戸層におけるVピットの作用が記載されている。具体的には、非特許文献1には、多重量子井戸層内にVピットがあると、Vピットの斜面における量子井戸幅が狭くなるため、量子準位のエネルギーが大きくなるなどの効果により、実効的なバンドギャップが大きくなり、量子井戸における電子・ホールがVピット内部に到達することが妨げられ、結果として多重量子井戸層内における非発光再結合が抑制されることが記載されている。特許文献1に記載の窒化物半導体発光素子は、この多重量子井戸層におけるVピットの作用に関わる技術思想に基づいてなされた発明に係るものである。 By the way, Non-Patent Document 1 describes the action of V-pits in the multiple quantum well layer. Specifically, in Non-Patent Document 1, if there is a V pit in the multiple quantum well layer, the width of the quantum well on the slope of the V pit becomes narrow, so that the energy of the quantum level increases. It is stated that the effective bandgap is increased, preventing electron holes in the quantum well from reaching the inside of the V pit, and as a result, non-emission recombination in the multiple quantum well layer is suppressed. The nitride semiconductor light emitting device described in Patent Document 1 relates to an invention made based on a technical idea relating to the action of V pits in the multiple quantum well layer.

特許第5881393号公報Japanese Patent No. 5881393

A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, “Suppression of Nonradiative Recombination by V-Shaped Pits in GaInN/GaN Quantum Wells Produces a Large Increase in the Light Emission Efficiency”, Physical Review Letters 95, 127402 (2005)A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, “Suppression of Nonradiative Recombination by V-Shaped Pits in GaInN / GaN Quantum Wells Produces a Large Increase in the Light Emission Efficiency ”, Physical Review Letters 95, 127402 (2005)

特許文献1に記載の窒化物半導体発光素子では、トリガ層としてのn型窒化物半導体層の他に、Vピット拡大層としての窒化物半導体材料を含む層をさらに形成する必要があり、窒化物半導体発光素子を形成する工程が多くなるとともに、製造コストの上昇を招いていた。 In the nitride semiconductor light emitting device described in Patent Document 1, in addition to the n-type nitride semiconductor layer as the trigger layer, it is necessary to further form a layer containing the nitride semiconductor material as the V-pit expansion layer, and the nitride The number of steps for forming a semiconductor light emitting device has increased, and the manufacturing cost has increased.

そこで、本発明は、Vピットを形成することにより発光出力を向上させつつ、トリガ拡大層を不要とすることにより製造コストを低減することができる窒化物半導体発光素子及び窒化物半導体発光素子の製造方法を提供することを目的とする。 The present invention, while improving the luminous output by forming a V pit, the nitride semiconductor light emitting device and a nitride semiconductor light emitting device capable you to reduce the manufacturing cost by eliminating the need for trigger spreading layer It is an object of the present invention to provide a manufacturing method.

本発明は、上記課題を解決することを目的として、n型AlGaNによって形成されたn型クラッド層と、AlGaNによって形成された障壁層を前記n型クラッド層側に有する多重量子井戸層と、を含む窒化物半導体発光素子であって、前記n型クラッド層及び前記障壁層の間に位置する、Siを含んで形成されたトリガ層をさらに備え、前記n型クラッド層及び前記多重量子井戸層は、複数の、前記n型クラッド層中の転位を始端とするVピットが形成されており、前記トリガ層は、一つの層からなるとともに、前記n型クラッド層と前記障壁層との双方に接しており、前記トリガ層における前記Siの濃度は、前記n型クラッド層中の前記転位の密度の5.0×10〜5.0×1010倍である、窒化物半導体発光素子を提供する。また、本発明は、基板上にn型AlGaNを有するn型クラッド層を形成する工程と、AlGaNを有する障壁層を前記n型クラッド層側に有する多重量子井戸層を形成する工程と、前記n型クラッド層前記障壁層との双方に接するよう、Siが含まれた一つの層からなるトリガ層を形成する工程とを備え、前記トリガ層を形成する工程は、前記トリガ層のSi濃度が前記n型クラッド層中の転位の密度の5.0×10〜5.0×1010倍となるように前記Siの供給量を調整しながら形成する、窒化物半導体発光素子の製造方法を提供する。
An object of the present invention is to provide an n-type clad layer formed of n-type AlGaN and a multiple quantum well layer having a barrier layer formed of AlGaN on the n-type clad layer side, for the purpose of solving the above problems. A nitride semiconductor light emitting device including the n-type clad layer and a trigger layer formed containing Si located between the n-type clad layer and the barrier layer, the n-type clad layer and the multiple quantum well layer. A plurality of V pits starting from the rearrangement in the n-type clad layer are formed, and the trigger layer is composed of one layer and is in contact with both the n-type clad layer and the barrier layer. and it has a concentration of said Si in said trigger layer, said a 5.0 × 10 9 ~5.0 × 10 10 times the density of the dislocations in the n-type cladding layer, to provide a nitride semiconductor light emitting device .. Further, the present invention includes a step of forming an n-type clad layer having n-type AlGaN on a substrate, a step of forming a multiple quantum well layer having a barrier layer having AlGaN on the n-type clad layer side, and the n. The step of forming a trigger layer composed of one layer containing Si so as to be in contact with both the mold clad layer and the barrier layer is provided, and in the step of forming the trigger layer, the Si concentration of the trigger layer is high. you formed while adjusting the supply amount of 5.0 × 10 9 ~5.0 × 10 10 times become as the Si density of dislocations of the n-type cladding layer, the manufacturing method of the nitride semiconductor light emitting device I will provide a.

本発明によれば、Vピットを形成することにより発光出力を向上させつつ、トリガ拡大層を不要とすることにより製造コストを低減することができる窒化物半導体発光素子及び窒化物半導体発光素子の製造方法を提供することができる。 According to the present invention, while improving the luminous output by forming a V pit, the nitride semiconductor light emitting device and a nitride semiconductor light emitting device capable you to reduce the manufacturing cost by eliminating the need for trigger spreading layer A manufacturing method can be provided.

図1は、本発明の実施の形態に係る窒化物半導体発光素子の構成を概略的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a configuration of a nitride semiconductor light emitting device according to an embodiment of the present invention. 図2は、Vピットを示す画像であり、(a)は、Vピットが形成された窒化物半導体発光素子の縦断面を示す画像であり、(b)は、(a)の一部を拡大して示すVピットの拡大画像である。2A and 2B are images showing V pits, FIG. 2A is an image showing a vertical cross section of a nitride semiconductor light emitting device in which Vpits are formed, and FIG. 2B is an enlarged part of FIG. 2A. It is an enlarged image of the V pit shown by. 図3は、実施例及び比較例の発光波長と発光出力との関係を示す図である。FIG. 3 is a diagram showing the relationship between the emission wavelength and the emission output of Examples and Comparative Examples. 図4は、図3に示す実施例及び比較例の順方向に供給される電流及び発光出力のデータを示す表である。FIG. 4 is a table showing data of current and light emission output supplied in the forward direction of Examples and Comparative Examples shown in FIG.

[実施の形態]
本発明の実施の形態について、図1から図4を参照して説明する。なお、以下に説明する実施の形態は、本発明を実施する上での好適な具体例として示すものであり、技術的に好ましい種々の技術的事項を具体的に例示している部分もあるが、本発明の技術的範囲は、この具体的態様に限定されるものではない。また、各図面における各構成要素の寸法比は、必ずしも実際の窒化物半導体発光素子の寸法比と一致するものではない。
[Embodiment]
Embodiments of the present invention will be described with reference to FIGS. 1 to 4. It should be noted that the embodiments described below are shown as suitable specific examples for carrying out the present invention, and there are some parts that specifically exemplify various technically preferable technical matters. , The technical scope of the present invention is not limited to this specific aspect. Further, the dimensional ratio of each component in each drawing does not necessarily match the dimensional ratio of the actual nitride semiconductor light emitting device.

図1は、本発明の実施の形態に係る窒化物半導体発光素子の構成を概略的に示す断面図である。窒化物半導体発光素子1(以下、単に「発光素子1」ともいう。)は、紫外領域の波長の光を発する発光ダイオード(Light Emitting Diode:LED)である。本実施の形態では、特に、中心波長が250nm〜350nmの深紫外光を発する発光素子1を例に挙げて説明する。 FIG. 1 is a cross-sectional view schematically showing a configuration of a nitride semiconductor light emitting device according to an embodiment of the present invention. The nitride semiconductor light emitting device 1 (hereinafter, also simply referred to as “light emitting device 1”) is a light emitting diode (LED) that emits light having a wavelength in the ultraviolet region. In the present embodiment, in particular, the light emitting element 1 that emits deep ultraviolet light having a center wavelength of 250 nm to 350 nm will be described as an example.

図1に示すように、発光素子1は、基板10と、バッファ層20と、n型クラッド層30と、トリガ層40と、多重量子井戸層50と、電子ブロック層60と、p型クラッド層70と、p型コンタクト層80と、n側電極90と、p側電極92とを含んで構成されている。 As shown in FIG. 1, the light emitting element 1 includes a substrate 10, a buffer layer 20, an n-type clad layer 30, a trigger layer 40, a multiple quantum well layer 50, an electron block layer 60, and a p-type clad layer. It includes 70, a p-type contact layer 80, an n-side electrode 90, and a p-side electrode 92.

発光素子1を構成する半導体には、例えば、AlGa1−xN(0≦x≦1)にて表されるIII族窒化物半導体を用いることができる。また、これらのIII族元素の一部は、インジウム(In)、ホウ素(B)、タリウム(Tl)等で置き換えても良く、また、Nの一部をリン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)等で置き換えても良い。 As the semiconductor constituting the light emitting device 1, for example, a group III nitride semiconductor represented by Al x Ga 1-x N (0 ≦ x ≦ 1) can be used. Further, some of these Group III elements may be replaced with indium (In), boron (B), thallium (Tl), etc., and a part of N may be replaced with phosphorus (P), arsenic (As), etc. It may be replaced with antimony (Sb), bismuth (Bi) or the like.

基板10は、発光素子1が発する深紫外光に対して透光性を有している。基板10は、例えば、サファイア(Al)を含むサファイア(Al)基板である。基板10には、サファイア(Al)基板の他に、例えば、窒化アルミニウム(AlN)基板や、窒化アルミニウムガリウム(AlGaN)基板を用いてもよい。 The substrate 10 has translucency with respect to the deep ultraviolet light emitted by the light emitting element 1. The substrate 10, for example, sapphire including sapphire (Al 2 O 3) (Al 2 O 3) is a substrate. As the substrate 10, in addition to the sapphire (Al 2 O 3 ) substrate, for example, an aluminum nitride (AlN) substrate or an aluminum gallium nitride (AlGaN) substrate may be used.

バッファ層20は、基板10上に形成されている。バッファ層20は、AlN層22と、AlN層22上に形成されるアンドープのu−AlGa1−pN層24(0≦p≦1)を含んで構成されている。また、基板10及びバッファ層20は、下地構造部2を構成する。なお、u−AlGa1−pN層24は、必ずしも設けなくてもよい。 The buffer layer 20 is formed on the substrate 10. The buffer layer 20 includes an AlN layer 22 and an undoped u-Al p Ga 1-p N layer 24 (0 ≦ p ≦ 1) formed on the AlN layer 22. Further, the substrate 10 and the buffer layer 20 form a base structure portion 2. The u-Al p Ga 1-p N layer 24 does not necessarily have to be provided.

n型クラッド層30は、下地構造部2上に形成されている。n型クラッド層30は、n型のAlGaN(以下、単に「n型AlGaN」ともいう。)により形成された層であり、例えば、n型の不純物としてシリコン(Si)がドープされたAlGa1−qN層(0≦q≦1)である。なお、n型の不純物としては、ゲルマニウム(Ge)、セレン(Se)、テルル(Te)、炭素(C)等を用いてもよい。n型クラッド層30は、1μm〜3μm程度の厚さを有し、例えば、2μm程度の厚さを有している。n型クラッド層30は、単層でもよく、多層構造でもよい。 The n-type clad layer 30 is formed on the base structure portion 2. The n-type clad layer 30 is a layer formed of n-type AlGaN (hereinafter, also simply referred to as “n-type AlGaN”), and is, for example, Al q Ga doped with silicon (Si) as an n-type impurity. It is a 1-q N layer (0 ≦ q ≦ 1). As the n-type impurity, germanium (Ge), selenium (Se), tellurium (Te), carbon (C) and the like may be used. The n-type clad layer 30 has a thickness of about 1 μm to 3 μm, and has a thickness of, for example, about 2 μm. The n-type clad layer 30 may be a single layer or a multi-layer structure.

トリガ層40は、n型クラッド層30上に形成されている。トリガ層40は、後述する多重量子井戸層50に形成されるVピット100(図2(a)参照)を発生させる役割を担う層である。トリガ層40は、1〜100nm程度の厚さを有し、例えば、25nm程度の厚さを有している。 The trigger layer 40 is formed on the n-type clad layer 30. The trigger layer 40 is a layer that plays a role of generating V pits 100 (see FIG. 2A) formed in the multiple quantum well layer 50 described later. The trigger layer 40 has a thickness of about 1 to 100 nm, for example, a thickness of about 25 nm.

トリガ層40は、シリコン(Si)を含んで形成される層である。トリガ層40のSiの濃度は、n型クラッド層30内に生じる転位等の欠陥の密度に応じて適宜調整される。一例として、n型クラッド層30に1.0×10個/cmの転位が存在する場合、トリガ層40のSiの濃度は、例えば、5.0×1018cm−3〜5.0×1019cm−3である。 The trigger layer 40 is a layer formed containing silicon (Si). The concentration of Si in the trigger layer 40 is appropriately adjusted according to the density of defects such as dislocations occurring in the n-type clad layer 30. As an example, when the n-type clad layer 30 has 1.0 × 10 9 / cm 3 dislocations, the concentration of Si in the trigger layer 40 is, for example, 5.0 × 10 18 cm -3 to 5.0. × 10 19 cm -3 .

発光層を形成する多重量子井戸層50は、トリガ層40上に形成されている。多重量子井戸層50は、AlGa1−rNを含んで構成される多重量子井戸層のn型クラッド層30側の障壁層52aを含む3層の障壁層52a,52b,52cとAlGa1−sNを含んで構成される3層の井戸層54a,54b,54c(0≦r≦1、0≦s≦1、r>s)とを交互に積層したものである。多重量子井戸層50は、波長350nm以下の深紫外光を出力するためにバンドギャップが3.4eV以上となるように構成される。なお、本実施の形態では、多重量子井戸層50に3つの障壁層52a,52b,52c及び井戸層54a,54b,54cを設けたが、層の数は3つに限定されるものではなく、2つでもよく、4つ以上でもよい。 The multiple quantum well layer 50 forming the light emitting layer is formed on the trigger layer 40. The multiple quantum well layer 50 includes three barrier layers 52a, 52b, 52c and Al s including a barrier layer 52a on the n-type clad layer 30 side of the multiple quantum well layer composed of Al r Ga 1-r N. Three well layers 54a, 54b, 54c (0 ≦ r ≦ 1, 0 ≦ s ≦ 1, r> s) composed of Ga 1-s N are alternately laminated. The multiple quantum well layer 50 is configured to have a band gap of 3.4 eV or more in order to output deep ultraviolet light having a wavelength of 350 nm or less. In the present embodiment, the multiple quantum well layer 50 is provided with three barrier layers 52a, 52b, 52c and well layers 54a, 54b, 54c, but the number of layers is not limited to three. It may be two or four or more.

次に、図2を参照して、Vピット100について説明する。図2は、Vピット100を示す画像であり、(a)は、Vピット100が形成された窒化物半導体発光素子の縦断面を示す画像であり、(b)は、(a)の一部(図2(a)の円枠部分)を拡大して示すVピット100の拡大画像である。なお、図2に示す画像は、いずれもSEM(Scanning Electron Microscope)観察画像である。 Next, the V pit 100 will be described with reference to FIG. FIG. 2 is an image showing the V pit 100, FIG. 2A is an image showing a vertical cross section of the nitride semiconductor light emitting device on which the V pit 100 is formed, and FIG. 2B is a part of (a). It is an enlarged image of the V pit 100 which shows (the circular frame part of FIG. 2A) enlarged. The images shown in FIG. 2 are SEM (Scanning Electron Microscope) observation images.

図2(a)に示すように、多重量子井戸層50には、複数のVピット100が形成されている。Vピット100とは、例えば、成長中に生じ得る結晶のズレ等により発生する結晶欠陥の一種である。これら複数のVピット100は、トリガ層40を設けたことにより、n型クラッド層30に存在する転位等の欠陥から発生する。図2(b)に示すように、Vピット100は、発光素子1の厚み方向に複数の障壁層52a,52b,52c及び井戸層54a,54b,54cを介して伸び、頂点100aがn型クラッド層30側(図示下側)を向くように配置された略逆円錐形の形状を有している(図2(b)点線参照)。 As shown in FIG. 2A, a plurality of V pits 100 are formed in the multiple quantum well layer 50. The V pit 100 is a kind of crystal defect generated by, for example, a crystal shift that may occur during growth. The plurality of V pits 100 are generated from defects such as dislocations existing in the n-type clad layer 30 by providing the trigger layer 40. As shown in FIG. 2B, the V pit 100 extends in the thickness direction of the light emitting element 1 via the plurality of barrier layers 52a, 52b, 52c and well layers 54a, 54b, 54c, and the apex 100a is an n-type cladding. It has a substantially inverted conical shape arranged so as to face the layer 30 side (lower side in the drawing) (see the dotted line in FIG. 2B).

換言すれば、Vピット100の縦断面は、図2(b)に示すように、電子ブロック層60側(図示上側)に向かって開く略V字型の形状を有し、横断面は、略円形状を有している。ここで、縦断面とは、発光素子1の厚み方向に平行な断面をいい、横断面とは、発光素子1の厚み方向に垂直な断面をいう。なお、Vピット100の形状は、略円錐形に限られるものではなく、六角錐形状、多角錐形状、楕円錐形状、円柱状、多角柱状等でもよい。 In other words, as shown in FIG. 2B, the vertical cross section of the V pit 100 has a substantially V-shaped shape that opens toward the electron block layer 60 side (upper side in the drawing), and the cross section is substantially V-shaped. It has a circular shape. Here, the vertical cross section means a cross section parallel to the thickness direction of the light emitting element 1, and the cross section means a cross section perpendicular to the thickness direction of the light emitting element 1. The shape of the V pit 100 is not limited to a substantially conical shape, and may be a hexagonal pyramid shape, a polygonal pyramid shape, an elliptical pyramid shape, a columnar shape, a polygonal columnar shape, or the like.

Vピット100の頂点100aは、n型クラッド層30中の転位から発生し、Vピット100の底面100bは、多重量子井戸層50内で終端する。好ましくは、Vピット100の底面100bの直径は、100nm以下である。なお、Vピット100の底面100bが円形状を有していない場合、Vピット100の直径とは、Vピット100の底面100bの形状を、例えば、外接円等で円形に近似したときの直径をいう。また、Vピット100は、10nm〜30nm程度の厚さを有し、例えば、20nm程度の厚さを有する。ここで、Vピットの厚さとは、Vピット100の縦断面における発光素子1の厚み方向の長さをいう。 The apex 100a of the V-pit 100 is generated from a dislocation in the n-type clad layer 30, and the bottom surface 100b of the V-pit 100 is terminated in the multiple quantum well layer 50. Preferably, the diameter of the bottom surface 100b of the V pit 100 is 100 nm or less. When the bottom surface 100b of the V pit 100 does not have a circular shape, the diameter of the V pit 100 is the diameter when the shape of the bottom surface 100b of the V pit 100 is approximated to a circle by, for example, an circumscribed circle. say. Further, the V pit 100 has a thickness of about 10 nm to 30 nm, and has a thickness of, for example, about 20 nm. Here, the thickness of the V pit means the length in the thickness direction of the light emitting element 1 in the vertical cross section of the V pit 100.

電子ブロック層60は、多重量子井戸層50上に形成されている。電子ブロック層60は、p型のAlGaN(以下、単に「p型AlGaN」ともいう。)により形成された層である。電子ブロック層60は、1nm〜10nm程度の厚さを有している。なお、電子ブロック層60は、AlNにより形成された層を含んでもよい。また、電子ブロック層60は、必ずしもp型の半導体層に限られず、アンドープの半導体層でもよい。 The electron block layer 60 is formed on the multiple quantum well layer 50. The electron block layer 60 is a layer formed of p-type AlGaN (hereinafter, also simply referred to as “p-type AlGaN”). The electron block layer 60 has a thickness of about 1 nm to 10 nm. The electron block layer 60 may include a layer formed of AlN. Further, the electron block layer 60 is not necessarily limited to the p-type semiconductor layer, and may be an undoped semiconductor layer.

p型クラッド層70は、電子ブロック層60上に形成されている。p型クラッド層70は、p型AlGaNにより形成される層であり、例えば、p型の不純物としてマグネシウム(Mg)がドープされたAlGa1−tNクラッド層(0≦t≦1)である。なお、p型の不純物としては、亜鉛(Zn)、ベリリウム(Be)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を用いてもよい。p型クラッド層70は、300nm〜700nm程度の厚さを有し、例えば、400nm〜600nm程度の厚さを有する。 The p-type clad layer 70 is formed on the electron block layer 60. p-type cladding layer 70 is a layer formed by p-type AlGaN, for example, a p-type Al t Ga 1-t N cladding layer of magnesium as an impurity (Mg) is doped (0 ≦ t ≦ 1) be. As the p-type impurity, zinc (Zn), beryllium (Be), calcium (Ca), strontium (Sr), barium (Ba) and the like may be used. The p-type clad layer 70 has a thickness of about 300 nm to 700 nm, and has a thickness of, for example, about 400 nm to 600 nm.

p型コンタクト層80は、p型クラッド層70上に形成されている。p型コンタクト層80は、例えば、Mg等の不純物が高濃度にドープされたp型のGaN層である。 The p-type contact layer 80 is formed on the p-type clad layer 70. The p-type contact layer 80 is, for example, a p-type GaN layer doped with impurities such as Mg at a high concentration.

n側電極90は、n型クラッド層30の一部の領域上に形成されている。n側電極90は、例えば、n型クラッド層30の上に順にチタン(Ti)/アルミニウム(Al)/Ti/金(Au)が順に積層された多層膜で形成される。 The n-side electrode 90 is formed on a part of the n-type clad layer 30. The n-side electrode 90 is formed of, for example, a multilayer film in which titanium (Ti) / aluminum (Al) / Ti / gold (Au) are sequentially laminated on the n-type clad layer 30.

p側電極92は、p型コンタクト層80の上に形成されている。p側電極92は、例えば、p型コンタクト層80の上に順に積層されるニッケル(Ni)/金(Au)の多層膜で形成される。 The p-side electrode 92 is formed on the p-type contact layer 80. The p-side electrode 92 is formed of, for example, a nickel (Ni) / gold (Au) multilayer film that is sequentially laminated on the p-type contact layer 80.

次に、発光素子1の製造方法について説明する。基板10上にバッファ層20を形成する。具体的には、基板10上に、AlN層22と、アンドープのu−Al1−pGaN層24を高温成長させる。次に、バッファ層20上にn型クラッド層30を高温成長させる。 Next, a method of manufacturing the light emitting element 1 will be described. The buffer layer 20 is formed on the substrate 10. Specifically, on the substrate 10, the AlN layer 22, the u-Al 1-p Ga p N layer 24 of undoped to high temperature growth. Next, the n-type clad layer 30 is grown at a high temperature on the buffer layer 20.

次に、高温n型クラッド層30内に含まれる転位等の欠陥密度に応じてSiのドープ量を適宜調整しながら、n型クラッド層30上にトリガ層40を高温成長させる。例えば、Siの濃度が上述の5.0×1018cm−3〜5.0×1019cm−3になるように、Siのドープ量を調整する。次に、トリガ層40上に、多重量子井戸層50、電子ブロック層60、及びp型クラッド層70を順に高温成長させる。 Next, the trigger layer 40 is grown at a high temperature on the n-type clad layer 30 while appropriately adjusting the doping amount of Si according to the defect density such as dislocations contained in the high-temperature n-type clad layer 30. For example, the doping amount of Si is adjusted so that the concentration of Si becomes the above-mentioned 5.0 × 10 18 cm -3 to 5.0 × 10 19 cm -3. Next, the multiple quantum well layer 50, the electron block layer 60, and the p-type clad layer 70 are sequentially grown at high temperature on the trigger layer 40.

n型クラッド層30、トリガ層40、多重量子井戸層50、電子ブロック層60、及びp型クラッド層70は、有機金属化学気相成長法(Metal Organic Chemical Vapor Deposition:MOCVD)、分子線エピタキシ法(Molecular Beam Epitaxy:MBE)、ハライド気相エピタキシ法(Halide Vapor Phase Epitaxy:NVPE)等の周知のエピタキシャル成長法を用いて形成することができる。 The n-type clad layer 30, the trigger layer 40, the multiple quantum well layer 50, the electron block layer 60, and the p-type clad layer 70 are formed by a metal organic chemical vapor deposition (MOCVD) method or a molecular beam epitaxy method. It can be formed by using a well-known epitaxial growth method such as (Molecular Beam Epitaxy: MBE) and Halide Vapor Phase Epitaxy (NVPE).

次に、p型クラッド層70の上にマスクを形成し、マスクが形成されていない露出領域のトリガ層40、多重量子井戸層50、電子ブロック層60、及びp型クラッド層70を除去する。トリガ層40、多重量子井戸層50、電子ブロック層60、及びp型クラッド層70の除去は、例えば、プラズマエッチングにより行うことができる。n型クラッド層30の露出面30a(図1参照)上にn側電極90を形成し、マスクを除去したp型コンタクト層80上にp側電極92を形成する。n側電極90及びp側電極92は、例えば、電子ビーム蒸着法やスパッタリング法などの周知の方法により形成することができる。以上により、図1に示す発光素子1が形成される。 Next, a mask is formed on the p-type clad layer 70, and the trigger layer 40, the multiple quantum well layer 50, the electron block layer 60, and the p-type clad layer 70 in the exposed region where the mask is not formed are removed. The trigger layer 40, the multiple quantum well layer 50, the electron block layer 60, and the p-type clad layer 70 can be removed by, for example, plasma etching. The n-side electrode 90 is formed on the exposed surface 30a (see FIG. 1) of the n-type clad layer 30, and the p-side electrode 92 is formed on the p-type contact layer 80 from which the mask has been removed. The n-side electrode 90 and the p-side electrode 92 can be formed by a well-known method such as an electron beam deposition method or a sputtering method. As a result, the light emitting element 1 shown in FIG. 1 is formed.

(実施例)
上述したように、トリガ層40は、n型クラッド層30の転位等の欠陥密度に応じたドープ量のSiを含んでいる。このトリガ層40は、前記n型クラウド層30と前記n型クラッド層30側の最外層にAlGaNによって形成された障壁層52aを有する多重量子井戸層50との間に配置されている。この構成により、前記n型クラッド層30の転位等の欠陥を始端とし、前記多重量子井戸層50の複数の障壁層52a,52b,52cと井戸層54a,54b,54cとを介して伸びる略逆円錐状の前記欠陥密度に応じた複数のVピット100が、前記多重量子井戸層50の、例えば、前記電子ブロック層60側(前記n型クラッド層30と反対側)の最外層のAlGaNによって形成された井戸層54cを終端として形成される。この複数のVピット100が発光素子1の発光出力を向上することを確認した。
(Example)
As described above, the trigger layer 40 contains a doping amount of Si according to the defect density such as dislocations of the n-type clad layer 30. The trigger layer 40 is arranged between the n-type cloud layer 30 and the multiple quantum well layer 50 having a barrier layer 52a formed of AlGaN on the outermost layer on the n-type clad layer 30 side. With this configuration, starting from a defect such as a dislocation of the n-type clad layer 30, the multiple quantum well layer 50 extends through the plurality of barrier layers 52a, 52b, 52c and the well layers 54a, 54b, 54c. A plurality of conical V pits 100 according to the defect density are formed by AlGaN of the outermost layer of the multiple quantum well layer 50, for example, the electron block layer 60 side (opposite side to the n-type clad layer 30). The well layer 54c is formed as a terminal. It was confirmed that the plurality of V pits 100 improve the light emitting output of the light emitting element 1.

次に、発光出力を向上することを確認した実験について図3を参照して説明する。図3は、実施例及び比較例の順方向に供給される電流と発光出力との関係を示す図である。図3の横軸は、発光素子1に印加する電流(mA)を示し、縦軸は、発光出力(任意単位)を示す。記号Aは、実施例の場合を示し、記号Bは、比較例の場合を示している。図4は、図3に示す実施例及び比較例の順方向に供給される電流及び発光出力のデータを示す表である。なお、比較例として、上述した発光素子1からトリガ層40を除いた構成を有する発光素子を用いた。 Next, an experiment confirmed to improve the light emission output will be described with reference to FIG. FIG. 3 is a diagram showing the relationship between the directional current supplied in the examples and the comparative examples and the light emission output. The horizontal axis of FIG. 3 indicates the current (mA) applied to the light emitting element 1, and the vertical axis indicates the light emission output (arbitrary unit). The symbol A indicates the case of the embodiment, and the symbol B indicates the case of the comparative example. FIG. 4 is a table showing data of current and light emission output supplied in the forward direction of Examples and Comparative Examples shown in FIG. As a comparative example, a light emitting element having a configuration in which the trigger layer 40 was removed from the above-mentioned light emitting element 1 was used.

図3及び図4に示すように、実施例では、約20mAの電流を印加したとき、おおよそ1700の発光出力が得られ、約60mAの電流を印加したとき、およそ5000の発光出力が得られ、100mAの電流を印加したとき、およそ7800の発光出力が得られ、150mAの電流を印加したとき、およそ11000の発光出力が得られた。これらに対し、比較例では、約20mAの電流を印加したとき、おおよそ1300の発光出力が得られ、約60mAの電流を印加したとき、およそ3500の発光出力が得られ、100mAの電流を印加したとき、およそ5000の発光出力が得られ、150mAの電流を印加したとき、およそ7400の発光出力が得られた。 As shown in FIGS. 3 and 4, in the embodiment, when a current of about 20 mA is applied, an emission output of about 1700 is obtained, and when a current of about 60 mA is applied, an emission output of about 5000 is obtained. When a current of 100 mA was applied, a light emission output of about 7800 was obtained, and when a current of 150 mA was applied, a light emission output of about 11000 was obtained. On the other hand, in the comparative example, when a current of about 20 mA was applied, an emission output of about 1300 was obtained, and when a current of about 60 mA was applied, an emission output of about 3500 was obtained, and a current of 100 mA was applied. At that time, about 5000 light emitting outputs were obtained, and when a current of 150 mA was applied, about 7400 light emitting outputs were obtained.

以上をまとめると、実施例の発光出力は、20mAの電流を印加したとき、比較例の発光出力の約1.31倍となり、60mAの電流を印加したとき、比較例の発光出力の約1.43倍となり、100mAの電流を印加したとき、比較例の発光出力の約1.56倍となり、150mAの電流を印加したとき、実施例の発光出力は、比較例の発光出力の約1.49倍となった。以上のように、実施例の発光出力は、印加した電流の範囲においては、少なくとも20%以上向上している。これらの結果から、本発明により、発光素子1の発光出力が上昇することが明らかになった。 Summarizing the above, the light emitting output of the example is about 1.31 times the light emitting output of the comparative example when a current of 20 mA is applied, and is about 1.1 of the light emitting output of the comparative example when a current of 60 mA is applied. It becomes 43 times, and when a current of 100 mA is applied, it becomes about 1.56 times the emission output of the comparative example, and when a current of 150 mA is applied, the emission output of the example is about 1.49 of the emission output of the comparative example. It has doubled. As described above, the light emission output of the embodiment is improved by at least 20% or more in the range of the applied current. From these results, it was clarified that the light emitting output of the light emitting element 1 is increased by the present invention.

(実施の形態の作用及び効果)
以上説明したように、本発明の実施の形態に係る発光素子1は、n型クラッド層30
と多重量子井戸層のn型クラッド層30側の障壁層52aとの間に、Vピット100を発生させるトリガ層40を備えている。また、このトリガ層40におけるSiの濃度は、n型クラッド層中の転位の密度の5.0×10〜5.0×1010倍に調整されている。このようにして、特許文献1に記載されているようなトリガ層40の他にトリガ拡大層を設けることなくVピッドを形成することができる。このため、Vピットを形成することにより発光出力を向上させつつ、トリガ拡大層を不要とすることにより製造コストを低減することができる。
(Actions and effects of embodiments)
As described above, the light emitting element 1 according to the embodiment of the present invention is the n-type clad layer 30.
A trigger layer 40 for generating a V pit 100 is provided between the multiple quantum well layer and the barrier layer 52a on the n-type clad layer 30 side of the multiple quantum well layer. The concentration of Si in the trigger layer 40 is adjusted to 5.0 × 10 9 ~5.0 × 10 10 times the density of dislocations in the n-type cladding layer. In this way, the V-pid can be formed without providing the trigger expansion layer in addition to the trigger layer 40 as described in Patent Document 1. Therefore, it is possible to improve the light emitting output by forming the V pit and reduce the manufacturing cost by eliminating the need for the trigger expansion layer.

(実施形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号等は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of Embodiment)
Next, the technical idea grasped from the above-described embodiment will be described with reference to the reference numerals and the like in the embodiment. However, the respective reference numerals and the like in the following description are not limited to the members and the like in which the components in the claims are specifically shown in the embodiment.

[1]n型AlGaNによって形成されたn型クラッド層(30)と、AlGaNによって形成された障壁層(52a,52b,52c)を前記n型クラッド層(30)側に有する多重量子井戸層と、を含む窒化物半導体発光素子(1)であって、前記n型クラッド層(30)及び前記障壁層(52a)の間に位置する、Siを含んで形成されたトリガ層(40)をさらに備え、前記n型クラッド層(30)及び前記多重量子井戸層は、複数の、前記n型クラッド層(30)中の転位を始端とするVピット(100)が形成されており、前記トリガ層(40)における前記Siの濃度は、前記n型クラッド層(30)中の前記転位の密度の5.0×10〜5.0×1010倍である、窒化物半導体発光素子(1)。
[2]前記トリガ層は、前記障壁層に接している、前記[1]に記載の窒化物半導体発光素子(1)。
]前記Vピット(100)は、前記窒化物半導体発光素子(1)の厚み方向に伸びる略逆円錐状の形状を有する、前記[1]又は[2]に記載の窒化物半導体発光素子(1)。
]略逆円錐状の形状を有する前記Vピット(100)の頂点(100a)は、前記n型クラッド層(30)中の前記転位から発生し、前記Vピット(100)の底面(100b)は、前記多重量子井戸層(50)内で終端する、前記[]に記載の窒化物半導体発光素子(1)。
]前記Vピット(100)は、前記多重量子井戸層(50)の前記n型クラッド層(30)と反対側の最外層のAlGaNによって形成された井戸層(54c)を終端として形成されている、前記[]に記載の窒化物半導体発光素子(1)。
]前記トリガ層(40)の前記Si濃度は、5.0×1018cm−3〜5.0×1019cm−3である、前記[1]から[]のいずれか1つに記載の窒化物半導体発光素子(1)。
]基板(10)上にn型AlGaNを有するn型クラッド層(30)を形成する工程と、AlGaNを有する障壁層(52a,52b,52c)を前記n型クラッド層(30)側に有する多重量子井戸層を形成する工程と、前記n型クラッド層(30)及び前記障壁層(52a)の間に位置する、Siを含んで形成されたトリガ層(40)を形成する工程とを備え、前記トリガ層(40)を形成する工程は、前記トリガ層(40)のSi濃度が前記n型クラッド層(30)中の転の密度の5.0×10〜5.0×1010倍となるように前記Siの供給量を調整しながら形成することを特徴とする、窒化物半導体発光素子(1)の製造方法。
[1] An n-type clad layer (30) formed of n-type AlGaN and a multiple quantum well layer having barrier layers (52a, 52b, 52c) formed of AlGaN on the n-type clad layer (30) side. A nitride semiconductor light emitting device (1) containing the above, further comprising a trigger layer (40) formed containing Si, which is located between the n-type clad layer (30) and the barrier layer (52a). The n-type clad layer (30) and the multiple quantum well layer are formed with a plurality of V-pits (100) starting from a rearrangement in the n-type clad layer (30), and the trigger layer is formed. the concentration of the Si in (40), the n-type cladding layer (30) is the 5.0 × 10 9 ~5.0 × 10 10 times the density of dislocations in the nitride semiconductor light emitting device (1 ).
[2] The nitride semiconductor light emitting device (1) according to the above [1], wherein the trigger layer is in contact with the barrier layer.
[ 3 ] The nitride semiconductor light emitting device according to the above [1] or [2] , wherein the V pit (100) has a substantially inverted conical shape extending in the thickness direction of the nitride semiconductor light emitting device (1). (1).
[4] the apex of the V-pit (100) having a substantially inverted conical shape (100a) is generated from the dislocation of the n-type cladding layer (30) in the V bottom (100b pit (100) ) Is the nitride semiconductor light emitting device (1) according to the above [3 ], which is terminated in the multiple quantum well layer (50).
[5] The V-pit (100) is formed before Symbol multiple quantum well layer (50) said n-type cladding layer (30) opposite the well layer formed by an outermost layer of AlGaN of the (54c) as an end The nitride semiconductor light emitting device (1) according to the above [ 4].
[6] The concentration of the Si of the trigger layer (40) is a 5.0 × 10 18 cm -3 ~5.0 × 10 19 cm -3, either the [1] [5] 1 The nitride semiconductor light emitting device (1) according to the above.
[ 7 ] A step of forming an n-type clad layer (30) having an n-type AlGaN on a substrate (10) and a barrier layer (52a, 52b, 52c) having an AlGaN on the n-type clad layer (30) side. The step of forming the multiple quantum well layer having the structure and the step of forming the trigger layer (40) formed containing Si, which is located between the n-type clad layer (30) and the barrier layer (52a). comprising the step of forming said trigger layer (40), said trigger layer (40) Si concentration the n-type cladding layer (30) density of 5.0 × 10 9 of dislocations in 5.0 × 10 A method for manufacturing a nitride semiconductor light emitting device (1), characterized in that the Si is formed while adjusting the supply amount of Si so as to be 10 times larger.

1…窒化物半導体発光素子(発光素子)
2…下地構造部
10…基板
20…バッファ層
22…AlN層
24…u−AlGa1−pN層
30…n型クラッド層
30a…露出面
40…トリガ層
50…多重量子井戸層
52,52a,52b,52c…障壁層
54,54a,54b,54c…井戸層
60…電子ブロック層
70…p型クラッド層
80…p型コンタクト層
90…n側電極
92…p側電極
100…Vピット
100a…頂点
100b…底面
1 ... Nitride semiconductor light emitting element (light emitting element)
2 ... Underlayer structure 10 ... Substrate 20 ... Buffer layer 22 ... AlN layer 24 ... u-Al p Ga 1-p N layer 30 ... n-type clad layer 30a ... Exposed surface 40 ... Trigger layer 50 ... Multiple quantum well layer 52, 52a, 52b, 52c ... Barrier layer 54, 54a, 54b, 54c ... Well layer 60 ... Electronic block layer 70 ... p-type clad layer 80 ... p-type contact layer 90 ... n-side electrode 92 ... p-side electrode 100 ... V pit 100a ... Top 100b ... Bottom

Claims (6)

n型AlGaNによって形成されたn型クラッド層と、
AlGaNによって形成された障壁層を前記n型クラッド層側に有する多重量子井戸層と、を含む窒化物半導体発光素子であって、
前記n型クラッド層及び前記障壁層の間に位置する、Siを含んで形成されたトリガ層をさらに備え、
前記n型クラッド層及び前記多重量子井戸層は、複数の、前記n型クラッド層中の転位を始端とするVピットが形成されており、
前記トリガ層は、一つの層からなるとともに、前記n型クラッド層と前記障壁層との双方に接しており、
前記トリガ層における前記Siの濃度は、前記n型クラッド層中の前記転位の密度の5.0×10〜5.0×1010倍である、
窒化物半導体発光素子。
An n-type clad layer formed by n-type AlGaN and
A nitride semiconductor light emitting device including a multiple quantum well layer having a barrier layer formed of AlGaN on the n-type clad layer side.
A trigger layer formed containing Si, which is located between the n-type clad layer and the barrier layer, is further provided.
The n-type clad layer and the multiple quantum well layer are formed with a plurality of V-pits starting from dislocations in the n-type clad layer.
The trigger layer is composed of one layer and is in contact with both the n-type clad layer and the barrier layer.
The concentration of the Si in the trigger layer is 5.0 × 10 9 to 5.0 × 10 10 times the density of the dislocations in the n-type clad layer.
Nitride semiconductor light emitting device.
前記Vピットは、前記窒化物半導体発光素子の厚み方向に伸びる略逆円錐状の形状を有する、
請求項に記載の窒化物半導体発光素子。
The V-pit has a substantially inverted conical shape extending in the thickness direction of the nitride semiconductor light emitting device.
The nitride semiconductor light emitting device according to claim 1.
略逆円錐状の形状を有する前記Vピットの頂点は、前記n型クラッド層中の前記転位から発生し、前記Vピットの底面は、前記多重量子井戸層内で終端する、
請求項に記載の窒化物半導体発光素子。
The apex of the V-pit having a substantially inverted conical shape is generated from the dislocation in the n-type clad layer, and the bottom surface of the V-pit is terminated in the multiple quantum well layer.
The nitride semiconductor light emitting device according to claim 2.
前記Vピットは、前記多重量子井戸層の前記n型クラッド層と反対側の最外層のAlGaNによって形成された井戸層を終端として形成されている、
請求項に記載の窒化物半導体発光素子。
The V pit is formed with a well layer formed by AlGaN as the outermost layer on the opposite side of the n-type clad layer of the multiple quantum well layer as a terminal.
The nitride semiconductor light emitting device according to claim 3.
前記トリガ層の前記Siの濃度は、5.0×1018cm−3〜5.0×1019cm−3である、
請求項1からのいずれか1項に記載の窒化物半導体発光素子。
The concentration of the Si in the trigger layer is 5.0 × 10 18 cm -3 to 5.0 × 10 19 cm -3 .
The nitride semiconductor light emitting device according to any one of claims 1 to 4.
基板上にn型AlGaNを有するn型クラッド層を形成する工程と、
AlGaNを有する障壁層を前記n型クラッド層側に有する多重量子井戸層を形成する工程と、
前記n型クラッド層前記障壁層との双方に接するよう、Siが含まれた一つの層からなるトリガ層を形成する工程とを備え、
前記トリガ層を形成する工程は、前記トリガ層のSi濃度が前記n型クラッド層中の転位の密度の5.0×10〜5.0×1010倍となるように前記Siの供給量を調整しながら形成する、
窒化物半導体発光素子の製造方法。
A step of forming an n-type clad layer having n-type AlGaN on a substrate, and
A step of forming a multiple quantum well layer having a barrier layer having AlGaN on the n-type clad layer side, and
A step of forming a trigger layer composed of one layer containing Si so as to be in contact with both the n-type clad layer and the barrier layer is provided.
In the step of forming the trigger layer, the amount of Si supplied is such that the Si concentration of the trigger layer is 5.0 × 10 9 to 5.0 × 10 10 times the density of dislocations in the n-type clad layer. you form while adjusting the,
A method for manufacturing a nitride semiconductor light emitting device.
JP2018172339A 2017-09-15 2018-09-14 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device Active JP6905498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018172339A JP6905498B2 (en) 2017-09-15 2018-09-14 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017177659A JP6405430B1 (en) 2017-09-15 2017-09-15 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP2018172339A JP6905498B2 (en) 2017-09-15 2018-09-14 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017177659A Division JP6405430B1 (en) 2017-09-15 2017-09-15 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device

Publications (3)

Publication Number Publication Date
JP2019054247A JP2019054247A (en) 2019-04-04
JP2019054247A5 JP2019054247A5 (en) 2019-11-07
JP6905498B2 true JP6905498B2 (en) 2021-07-21

Family

ID=66015300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018172339A Active JP6905498B2 (en) 2017-09-15 2018-09-14 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP6905498B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097359B (en) * 2021-03-29 2022-08-26 厦门士兰明镓化合物半导体有限公司 Semiconductor light emitting element
JP7434416B2 (en) * 2022-05-31 2024-02-20 日機装株式会社 Nitride semiconductor light emitting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594826B2 (en) * 1999-02-09 2004-12-02 パイオニア株式会社 Nitride semiconductor light emitting device and method of manufacturing the same
JP4895587B2 (en) * 2005-11-29 2012-03-14 ローム株式会社 Nitride semiconductor light emitting device
US8525221B2 (en) * 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
JP5881393B2 (en) * 2011-12-06 2016-03-09 国立大学法人山口大学 Nitride semiconductor light emitting device and manufacturing method thereof
JP6026116B2 (en) * 2012-03-09 2016-11-16 シャープ株式会社 Nitride semiconductor light emitting device and manufacturing method thereof
KR102075987B1 (en) * 2014-02-04 2020-02-12 삼성전자주식회사 Nitride semiconductor light emitting device
JP6306200B2 (en) * 2014-09-22 2018-04-04 シャープ株式会社 Nitride semiconductor light emitting device
JP6616126B2 (en) * 2015-08-25 2019-12-04 シャープ株式会社 Nitride semiconductor light emitting device

Also Published As

Publication number Publication date
JP2019054247A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
US9024294B2 (en) Group III nitride nanorod light emitting device
TWI693727B (en) Nitride semiconductor light-emitting element and method of manufacturing nitride semiconductor light-emitting element
JP6641335B2 (en) Nitride semiconductor light emitting device and method of manufacturing nitride semiconductor light emitting device
JP6392960B1 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP6727385B1 (en) Nitride semiconductor light emitting device
JP2009510763A (en) Light emitting diode
JP6905498B2 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP6405430B1 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP6917953B2 (en) Nitride semiconductor light emitting device
JP7194793B2 (en) Nitride semiconductor light-emitting device and method for manufacturing nitride semiconductor light-emitting device
JP2008294018A (en) Method of manufacturing group iii nitride-based compound semiconductor light emitting element
WO2020026567A1 (en) Nitride semiconductor light-emitting element and method for manufacturing same
JP7216776B2 (en) Nitride semiconductor light-emitting device and method for manufacturing nitride semiconductor light-emitting device
JP2019102470A (en) Nitride semiconductor light emitting device and method of manufacturing the same
JP7434416B2 (en) Nitride semiconductor light emitting device
JP2004134787A (en) Group iii nitride compound semiconductor light-emitting device
JP2008277356A (en) Semiconductor element
JP2008166399A (en) Light-emitting element, epitaxial wafer for light-emitting element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210625

R150 Certificate of patent or registration of utility model

Ref document number: 6905498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150