JP6993157B2 - How to make fluorite - Google Patents

How to make fluorite Download PDF

Info

Publication number
JP6993157B2
JP6993157B2 JP2017190709A JP2017190709A JP6993157B2 JP 6993157 B2 JP6993157 B2 JP 6993157B2 JP 2017190709 A JP2017190709 A JP 2017190709A JP 2017190709 A JP2017190709 A JP 2017190709A JP 6993157 B2 JP6993157 B2 JP 6993157B2
Authority
JP
Japan
Prior art keywords
gas
reactor
raw material
fluorite
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017190709A
Other languages
Japanese (ja)
Other versions
JP2019064851A (en
Inventor
健太郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP2017190709A priority Critical patent/JP6993157B2/en
Publication of JP2019064851A publication Critical patent/JP2019064851A/en
Application granted granted Critical
Publication of JP6993157B2 publication Critical patent/JP6993157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、蛍石の製造方法に関するものである。 The present invention relates to a method for producing fluorite.

フッ化カルシウム(蛍石(CaF))は、その純度に応じて種々の用途がある。純度の高い蛍石は、低屈折率、および低分散性を有するため、主に蛍石レンズやガラス添加用といった光学原料向けとして高価格で取引されている。 Calcium fluoride (fluorite (CaF 2 )) has various uses depending on its purity. Since high-purity fluorite has a low refractive index and low dispersibility, it is mainly traded at a high price for optical raw materials such as fluorite lenses and glass additions.

このような高純度の蛍石については、従来、鉱山から産出されるものを用いていた。しかし、品質の安定性や入手ルートの確実性等の観点から、高純度の蛍石を合成により製造することが求められている。 Conventionally, such high-purity fluorite produced from mines has been used. However, from the viewpoint of quality stability and certainty of acquisition route, it is required to synthetically produce high-purity fluorite.

ここで、フッ化カルシウム粉末の焼結体からなるフッ化カルシウム製るつぼの製造方法に関する技術が、特開2004-123417号公報(特許文献1)に開示されている。 Here, a technique relating to a method for producing a calcium fluoride crucible made of a sintered body of calcium fluoride powder is disclosed in Japanese Patent Application Laid-Open No. 2004-123417 (Patent Document 1).

特開2004-123417号公報Japanese Unexamined Patent Publication No. 2004-123417

特許文献1に開示の技術では、カルシウム塩とフッ化水素酸とを水中にて反応させてフッ化カルシウムを合成し、得られたフッ化カルシウムを乾燥して粉末状にした後、フッ化カルシウム粉末をるつぼ状にプレス成形することとしている。ここで、カルシウム塩とフッ化水素酸とを反応させる際に、水にフッ化水素酸が溶解すれば、フッ酸が生じることとなる。このようなフッ酸は腐食性が極めて高いため、金属部分、例えば、反応器の内壁を腐食させることとなる。そうすると、得られた蛍石中に腐食した金属の不純物、すなわち、金属のコンタミネーションを多く発生させることとなる。その結果、得られた蛍石の純度が低くなってしまうこととなる。特に、上記した光学原料向けに用いられる蛍石の合成においては、このような金属の不純物をできるだけ含まない、高純度の蛍石を効率的に製造することが求められる。 In the technique disclosed in Patent Document 1, a calcium salt and hydrofluoric acid are reacted in water to synthesize calcium fluoride, and the obtained calcium fluoride is dried into a powder and then calcium fluoride. The powder is press-molded into a pot shape. Here, when hydrofluoric acid is dissolved in water when the calcium salt and hydrofluoric acid are reacted, hydrofluoric acid is generated. Since such hydrofluoric acid is extremely corrosive, it corrodes metal parts, for example, the inner wall of the reactor. Then, a large amount of corroded metal impurities, that is, metal contamination, is generated in the obtained fluorite. As a result, the purity of the obtained fluorite will be low. In particular, in the synthesis of fluorite used for the above-mentioned optical raw materials, it is required to efficiently produce high-purity fluorite containing as little metal impurities as possible.

この発明の目的は、高純度の蛍石を効率的に製造することができる蛍石の製造方法を提供することである。 An object of the present invention is to provide a method for producing fluorite capable of efficiently producing high-purity fluorite.

この発明に従った蛍石の製造方法は、カルシウムの炭酸塩、硝酸塩、硫酸塩、蓚酸塩、水酸化物、および酸化物からなる群から選択される少なくとも一種を含むカルシウム化合物を、内壁の少なくとも一部が金属からなる反応器内に配置する工程と、内壁を110℃以上の温度に維持しつつ、反応器内にフッ化水素を含む原料ガスを導入してカルシウム化合物と原料ガスとを反応させることにより蛍石を得る工程とを含む。 A method for producing fluorite according to the present invention comprises at least an inner wall of a calcium compound containing at least one selected from the group consisting of carbonates, nitrates, sulfates, oxalates, hydroxides, and oxides of calcium. A process of arranging a part in a reactor made of metal and a raw material gas containing hydrogen fluoride are introduced into the reactor while maintaining the inner wall at a temperature of 110 ° C. or higher to react the calcium compound and the raw material gas. Includes the process of obtaining calcium by allowing it to grow.

このような構成の蛍石の製造方法によれば、内壁の少なくとも一部が金属からなる反応器内にカルシウム化合物を配置させて、内壁を110℃以上の温度に維持しつつ、フッ化水素を含む原料ガスを導入してカルシウム化合物と原料ガスとを反応させ、蛍石を得ることとしている。ここで、反応生成物として水が生じた場合や反応系、例えば原料ガス中において水分が含まれていた場合においては、反応器の内壁が110℃以上に維持されているため、水が液体ではなく気体の状態で存在することとなる。そうすると、液状の水にフッ化水素が溶解してフッ酸が生成されるおそれを大きく低減することができる。したがって、反応器の内壁のフッ酸による腐食を抑制して、カルシウム化合物と原料ガスとの反応によって合成される蛍石に、内壁の腐食に起因した金属の不純物が含有されるおそれを大きく低減することができる。また、反応器の内壁の腐食が抑制されるため、反応器の長寿命化を図ることもできる。その結果、このような蛍石の製造方法によると、高純度の蛍石を効率的に製造することができる。 According to the method for producing fluorite having such a structure, a calcium compound is placed in a reactor in which at least a part of the inner wall is made of metal, and hydrogen fluoride is produced while maintaining the inner wall at a temperature of 110 ° C. or higher. It is decided to introduce the contained raw material gas and react the calcium compound with the raw material gas to obtain fluorite. Here, when water is generated as a reaction product or when water is contained in the reaction system, for example, the raw material gas, the inner wall of the reactor is maintained at 110 ° C. or higher, so that the water is a liquid. It will exist in a gaseous state. Then, the possibility that hydrogen fluoride is dissolved in liquid water to generate hydrofluoric acid can be greatly reduced. Therefore, the corrosion of the inner wall of the reactor due to hydrofluoric acid is suppressed, and the possibility that the fluorite synthesized by the reaction between the calcium compound and the raw material gas contains metal impurities due to the corrosion of the inner wall is greatly reduced. be able to. Further, since the corrosion of the inner wall of the reactor is suppressed, the life of the reactor can be extended. As a result, according to such a method for producing fluorite, high-purity fluorite can be efficiently produced.

なお、上記蛍石の製造方法により製造される高純度の蛍石とは、全体に占めるCaF(フッ化カルシウム)の割合が99.95質量%以上のものをいう。また、高純度の蛍石については、例えば、金属元素として含有されるFe(鉄)、Cr(クロム)、およびNi(ニッケル)といった各金属元素の含有割合がそれぞれ100質量ppm以下である。なお、フッ化水素を含む原料ガスについては、ハロゲン元素をできるだけ含まないものとすることが好ましい。また、上記蛍石の製造方法により製造される蛍石については、反応器の内壁の腐食に起因した金属の不純物の含有のおそれを大きく低減して高純度の蛍石を得るものである。したがって、蛍石の原料となるカルシウム化合物については、Fe、Cr、およびNiといった各金属元素の含有割合が最終的に得られる蛍石の含有割合の目標値以下のもの、具体的には、例えば、Fe、Cr、Niのそれぞれの含有割合が原料となるカルシウム化合物の50質量ppm以下、好ましくは20ppm以下、さらに好ましくは10ppm以下のものを準備する必要がある。なお、原料ガスについても同様に、Fe、Cr、およびNiといった各金属元素の含有割合が小さいもの、もしくは全く含まれないものが用いられる。 The high-purity fluorite produced by the above-mentioned method for producing fluorite means that the ratio of CaF 2 (calcium fluoride) to the whole is 99.95% by mass or more. For high-purity fluorite, for example, the content ratio of each metal element such as Fe (iron), Cr (chromium), and Ni (nickel) contained as a metal element is 100 mass ppm or less. The raw material gas containing hydrogen fluoride preferably contains as little halogen element as possible. Further, with respect to the fluorite produced by the above-mentioned method for producing fluorite, the possibility of containing metal impurities due to the corrosion of the inner wall of the reactor is greatly reduced to obtain high-purity fluorite. Therefore, regarding the calcium compound that is the raw material of fluorite, the content ratio of each metal element such as Fe, Cr, and Ni is less than the target value of the content ratio of fluorite to be finally obtained, specifically, for example. It is necessary to prepare a calcium compound having a content ratio of Fe, Cr, and Ni of 50 mass ppm or less, preferably 20 ppm or less, and more preferably 10 ppm or less of the calcium compound as a raw material. Similarly, as the raw material gas, one having a small content ratio of each metal element such as Fe, Cr, and Ni, or one having no content ratio is used.

上記蛍石の製造方法は、蛍石が得られた反応器内のガスを非腐食性ガスおよび空気の少なくともいずれか一つに置換する工程をさらに含むこととしてもよい。こうすることにより、反応が終了して蛍石が得られた後に、反応に利用されずに残った原料ガス等により反応器の内壁が腐食され、反応器内に金属の腐食物が生じるおそれを低減することができる。したがって、例えば、繰り返し反応器を用いて蛍石を製造する際に、高純度の蛍石を効率的に製造することができる。 The method for producing fluorite may further include a step of replacing the gas in the reactor from which the fluorite is obtained with at least one of non-corrosive gas and air. By doing so, after the reaction is completed and fluorite is obtained, the inner wall of the reactor may be corroded by the raw material gas remaining unutilized in the reaction, and metal corrosive substances may be generated in the reactor. Can be reduced. Therefore, for example, when producing fluorite using a repeating reactor, high-purity fluorite can be efficiently produced.

ここで、本明細書中において「非腐食性ガスおよび空気の少なくともいずれか一つ」とは、非腐食性ガスの単体、空気の単体、そして非腐食性ガスおよび空気を所定の割合で混合した混合ガスを含む概念である。また、本明細書中において「非腐食性ガス」とは、110~200℃程度でSUS等の配管材料やカルシウム原料、蛍石と反応しないガスを指し、非腐食性ガスとして、具体的には、例えば、窒素ガス、アルゴンガス、ヘリウムガス、その他の不活性ガスを用いることができる。 Here, in the present specification, "at least one of non-corrosive gas and air" means a simple substance of non-corrosive gas, a simple substance of air, and a mixture of non-corrosive gas and air in a predetermined ratio. It is a concept that includes a mixed gas. Further, in the present specification, the "non-corrosive gas" refers to a gas that does not react with piping materials such as SUS, calcium raw materials, and fluorite at about 110 to 200 ° C., and is specifically referred to as a non-corrosive gas. For example, nitrogen gas, argon gas, helium gas, or other inert gas can be used.

上記反応器には、反応器内に原料ガスを導入する前に原料ガスを110℃以上に加熱する予備加熱部が接続されている構成としてもよい。こうすることにより、反応器内に原料ガスを導入する前に予備加熱部により原料ガスの温度を110℃以上とすることができる。したがって、反応器に原料ガスが導入された直後から110℃以上の温度を確保することができるので、反応生成物として水が生じたとしても、予備加熱部による110℃以上の加熱により水を気体、すなわち、水蒸気とすることができ、フッ化水素が液状の水に溶解して生成されるフッ酸が生じるおそれを低減することができる。 The reactor may be connected to a preheating unit that heats the raw material gas to 110 ° C. or higher before introducing the raw material gas into the reactor. By doing so, the temperature of the raw material gas can be set to 110 ° C. or higher by the preheating unit before the raw material gas is introduced into the reactor. Therefore, since the temperature of 110 ° C. or higher can be secured immediately after the raw material gas is introduced into the reactor, even if water is generated as a reaction product, the water is gasified by heating at 110 ° C. or higher by the preheating unit. That is, it can be made into water vapor, and the possibility that hydrofluoric acid produced by dissolving hydrogen fluoride in liquid water can be reduced.

上記反応器には、反応器内のガスを排出する排出部材が接続されており、排出部材は、110℃以上の温度に維持されていてもよい。こうすることにより、反応器内のガスを排出する際にも、排出部材内においてフッ酸が生じるおそれを低減することができ、排出部材のフッ酸による腐食を抑制することができる。特に、排出部材に金属製の配管が含まれていた場合には、この金属製の配管の腐食を抑制することができ、設備装置の長寿命化を図ることができる。 A discharge member for discharging the gas in the reactor is connected to the reactor, and the discharge member may be maintained at a temperature of 110 ° C. or higher. By doing so, it is possible to reduce the possibility that hydrofluoric acid is generated in the discharge member even when the gas in the reactor is discharged, and it is possible to suppress the corrosion of the discharge member due to hydrofluoric acid. In particular, when the discharge member includes a metal pipe, corrosion of the metal pipe can be suppressed, and the life of the equipment can be extended.

上記配置する工程は、排出部材内のガスを非腐食性ガスおよび空気の少なくともいずれか一つに置換する工程を含むこととしてもよい。こうすることにより、より確実に排出部材の腐食を抑制することができる。 The above-mentioned step of arranging may include a step of replacing the gas in the discharge member with at least one of non-corrosive gas and air. By doing so, it is possible to more reliably suppress the corrosion of the discharge member.

上記反応器には、予備加熱部を経由して反応器内へ原料ガスを導入する導入部材が接続されており、導入部材は、110℃以上の温度に維持されていることとしてもよい。こうすることにより、反応器内に原料ガスを導入する際に、原料ガスの温度を110℃以上に維持して、原料ガスを反応器内に導入することができる。この場合、原料ガス中に水が含まれていたとしても、導入部材が110℃以上の温度に維持されているため、原料ガス中の水は気体の状態で存在することとなる。そうすると、液体としての水にフッ化水素が溶解してフッ酸が生じるおそれを低減することができ、反応器の内壁等におけるフッ酸による腐食を抑制することができる。 An introduction member for introducing the raw material gas into the reactor via the preheating unit is connected to the reactor, and the introduction member may be maintained at a temperature of 110 ° C. or higher. By doing so, when the raw material gas is introduced into the reactor, the temperature of the raw material gas can be maintained at 110 ° C. or higher, and the raw material gas can be introduced into the reactor. In this case, even if water is contained in the raw material gas, the water in the raw material gas exists in a gaseous state because the introduction member is maintained at a temperature of 110 ° C. or higher. Then, it is possible to reduce the possibility that hydrogen fluoride is dissolved in water as a liquid to generate hydrofluoric acid, and it is possible to suppress corrosion due to hydrofluoric acid on the inner wall of the reactor and the like.

上記置換する工程は、導入部材内のガスを非腐食性ガスおよび空気の少なくともいずれか一つに置換する工程を含むこととしてもよい。こうすることにより、より確実に導入部材の腐食を抑制することができる。したがって、より高純度の蛍石を確実に得ることができる。 The replacement step may include a step of replacing the gas in the introduction member with at least one of non-corrosive gas and air. By doing so, it is possible to more reliably suppress the corrosion of the introduced member. Therefore, higher purity fluorite can be surely obtained.

上記原料ガスは、排ガスを含むこととしてもよい。このような排ガスは、例えば半導体製造装置において廃棄物として処理されるものであり、フッ素原料としては比較的安価である。したがって、こうすることにより、より安価に高純度の蛍石を効率的に製造することができる。この場合、導入部材は、110℃以上の温度に維持されているため、排ガス中に含まれる水については、液体ではなく気体の状態で存在することとなる。したがって、フッ酸が生成されるおそれを低減して、フッ酸による腐食の低減、および高純度の蛍石の効率的な製造を図ることができる。 The raw material gas may contain exhaust gas. Such exhaust gas is treated as waste in, for example, a semiconductor manufacturing apparatus, and is relatively inexpensive as a fluorine raw material. Therefore, by doing so, it is possible to efficiently produce high-purity fluorite at a lower cost. In this case, since the introduction member is maintained at a temperature of 110 ° C. or higher, the water contained in the exhaust gas exists in a gaseous state instead of a liquid state. Therefore, it is possible to reduce the possibility of hydrofluoric acid being generated, reduce the corrosion caused by hydrofluoric acid, and efficiently produce high-purity fluorite.

上記蛍石を得る工程は、原料ガスを反応器内に導入して原料ガスを流通させる工程と、原料ガスを流通させる工程の後に、原料ガスの導入を停止して原料ガスを反応器内に封入する工程とを含むこととしてもよい。こうすることにより、特に反応途中からは封入された原料ガスを有効に使用して反応を進めることができ、よりコストダウンを図ることができる。 In the process of obtaining the fluorite, after the process of introducing the raw material gas into the reactor and distributing the raw material gas and the process of distributing the raw material gas, the introduction of the raw material gas is stopped and the raw material gas is introduced into the reactor. It may include a step of encapsulation. By doing so, the reaction can be promoted by effectively using the enclosed raw material gas, especially from the middle of the reaction, and the cost can be further reduced.

反応器の内壁の材質は、ステンレスであるようにしてもよい。このように、反応器の内壁の材質を、耐腐食性が良好な金属として、合成される蛍石に腐食物が含まれるおそれを低減することができる。したがって、より高純度の蛍石を製造することができる。 The material of the inner wall of the reactor may be stainless steel. As described above, the material of the inner wall of the reactor is made of a metal having good corrosion resistance, and the possibility that corrosive substances are contained in the synthesized fluorite can be reduced. Therefore, higher purity fluorite can be produced.

カルシウム化合物は、粉体状であるよう構成してもよい。こうすることにより、いわゆる気-固反応における固体としてのカルシウム化合物と気体としての原料ガスとを効率的に接触させることができる。したがって、蛍石の合成を効率的に進めることができ、蛍石を効率的に製造することができる。 The calcium compound may be configured to be in the form of powder. By doing so, the calcium compound as a solid in the so-called gas-solid reaction and the raw material gas as a gas can be efficiently brought into contact with each other. Therefore, the synthesis of fluorite can be efficiently promoted, and the fluorite can be efficiently produced.

このような構成の蛍石の製造方法によれば、高純度の蛍石を効率的に製造することができる。 According to the method for producing fluorite having such a structure, high-purity fluorite can be efficiently produced.

この発明の一実施形態に係る蛍石の製造方法に用いられる製造装置の一例を概略的に示す図である。It is a figure which shows typically an example of the manufacturing apparatus used in the manufacturing method of fluorite which concerns on one Embodiment of this invention. この発明の一実施形態に係る蛍石の製造方法における代表的な工程を示すフローチャートである。It is a flowchart which shows the typical process in the manufacturing method of the fluorite which concerns on one Embodiment of this invention.

以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are given the same reference numbers, and the description thereof will not be repeated.

図1は、この発明の一実施形態に係る蛍石の製造方法に用いられる蛍石の製造装置の一例を概略的に示す図である。図1を参照して、この発明の一実施形態に係る蛍石の製造方法に用いられる蛍石の製造装置11は、原料ガスとしてフッ素を含むガスであるフッ化水素ガスを供給するHF(フッ化水素)ガス供給装置12と、パージ(排気)用の空気を供給するパージ用空気供給装置13と、カルシウム化合物としての炭酸カルシウムを供給する炭酸カルシウム供給部14と、炭酸カルシウムとフッ化水素ガスとを反応させる反応器15と、反応器15において炭酸カルシウムとフッ化水素ガスとの反応により得られた蛍石を取り出す蛍石取り出し部16と、反応により生成されたガスや反応に用いられなかった未反応のガスを処理する排ガス処理装置17とを含む。これらの構成部材は、配管等によって接続されている。HFガス供給装置12には、反応器15に供給するHFガスが格納されている。パージ用空気供給装置13には、反応器15に供給するパージ用の空気が格納されている。炭酸カルシウム供給部14には、反応器15に供給する炭酸カルシウムが格納されている。 FIG. 1 is a diagram schematically showing an example of an apparatus for producing fluorite used in the method for producing fluorite according to an embodiment of the present invention. With reference to FIG. 1, the fluorite manufacturing apparatus 11 used in the fluorite manufacturing method according to the embodiment of the present invention supplies HF (hydrogen fluoride gas) which is a gas containing fluorine as a raw material gas. Hydrogen fluoride gas supply device 12, purge air supply device 13 that supplies air for purging (exhaust), calcium carbonate supply unit 14 that supplies calcium carbonate as a calcium compound, calcium carbonate and hydrogen fluoride gas. The reactor 15 that reacts with, the fluorite take-out unit 16 that takes out the fluorite obtained by the reaction of calcium carbonate and hydrogen fluoride gas in the reactor 15, and the gas generated by the reaction and not used for the reaction. It includes an exhaust gas treatment device 17 for treating unreacted gas. These components are connected by pipes or the like. The HF gas supply device 12 stores the HF gas to be supplied to the reactor 15. The purging air supply device 13 stores purging air to be supplied to the reactor 15. The calcium carbonate supply unit 14 stores calcium carbonate to be supplied to the reactor 15.

なお、上記した蛍石の製造装置11においては、原料ガスであるフッ化水素(HF)ガスと、カルシウム化合物であるカルシウムの炭酸塩の炭酸カルシウム(CaCO)とを反応させて蛍石(CaF)を得る。この反応は、いわゆる気-固反応である。この場合の主な反応式は以下となり、反応生成物として水(HO)が生じる。 In the above-mentioned fluorite production apparatus 11, fluorite (CaF) is reacted with hydrogen fluoride (HF) gas, which is a raw material gas, and calcium carbonate (CaCO 3 ), which is a carbonate of calcium which is a calcium compound. 2 ) is obtained. This reaction is a so-called ki-solid reaction. The main reaction formula in this case is as follows, and water (H 2 O) is produced as a reaction product.

2HF+CaCO→CaF+HO+CO 2HF + CaCO 3 → CaF 2 + H 2 O + CO 2

ここで、HFガス供給装置12においては、排ガスが用いられる。すなわち、HFガス供給装置12は、排ガスを、HFを含む原料ガスとして供給する。排ガスは、例えば半導体製造装置において廃棄物として処理されるものであり、フッ素原料としては比較的安価である。このような排ガスは、例えば、水分を予め含むものである。なお、以下においてはHFガス供給装置12において供給される排ガスを単に原料ガスやHFガスという。 Here, the exhaust gas is used in the HF gas supply device 12. That is, the HF gas supply device 12 supplies the exhaust gas as a raw material gas containing HF. Exhaust gas is treated as waste in, for example, a semiconductor manufacturing apparatus, and is relatively inexpensive as a fluorine raw material. Such exhaust gas contains, for example, water in advance. In the following, the exhaust gas supplied by the HF gas supply device 12 is simply referred to as a raw material gas or an HF gas.

HFガス供給装置12と反応器15との間には、反応器15内へHFガスを導入する導入部材としての第一の配管21が接続されている。すなわち、HFガス供給装置12と反応器15は、第一の配管21により接続されている。第一の配管21は、いわゆる管状の部材であり、その内部をHFガスが通過することができる。第一の配管21は、SUS304等に代表されるステンレス製である。なお、第一の配管21の材質としては、他に例えば、鉄、銅、真鍮、ニッケル、さらには、耐腐食性の強いハステロイ(登録商標)やインコネル(登録商標)等が挙げられる。また、図1中において、第一の配管21については、単なる矢印で示している。 A first pipe 21 as an introduction member for introducing HF gas into the reactor 15 is connected between the HF gas supply device 12 and the reactor 15. That is, the HF gas supply device 12 and the reactor 15 are connected by the first pipe 21. The first pipe 21 is a so-called tubular member, through which HF gas can pass. The first pipe 21 is made of stainless steel typified by SUS304 or the like. Other examples of the material of the first pipe 21 include iron, copper, brass, nickel, Hastelloy (registered trademark) and Inconel (registered trademark) having strong corrosion resistance. Further, in FIG. 1, the first pipe 21 is indicated by a simple arrow.

第一の配管21の途中、すなわち、HFガス供給装置12から反応器15に至るHFガスの流路の途中には、反応器15内へ導入するHFガスの流入量等を調整するための弁としての第一のバルブ22が設けられている。 A valve for adjusting the inflow amount of HF gas to be introduced into the reactor 15 in the middle of the first pipe 21, that is, in the middle of the flow path of the HF gas from the HF gas supply device 12 to the reactor 15. The first valve 22 is provided.

第一の配管21において、HFガス供給装置12と第一のバルブ22との間には、HFガス供給装置12から供給されるHFガスを加熱する第一の加熱部23が設けられている。この第一の加熱部23により、HFガス供給装置12から供給されるHFガスは、110℃以上の温度に加熱される。この場合、具体的には、例えば、HFガスは120℃に加熱される。 In the first pipe 21, a first heating unit 23 for heating the HF gas supplied from the HF gas supply device 12 is provided between the HF gas supply device 12 and the first valve 22. The HF gas supplied from the HF gas supply device 12 is heated to a temperature of 110 ° C. or higher by the first heating unit 23. In this case, specifically, for example, the HF gas is heated to 120 ° C.

第一の配管21は、第一の加熱部23が設けられた位置から第一のバルブ22に至るまで、ヒーター24によって覆われている。そして、ヒーター24により、導入部材としての第一の配管21は、その温度が110℃以上の温度に維持されている。この場合、第一の配管21は、ヒーター24により120℃の温度に維持されている。したがって、第一の加熱部23により120℃の温度に加熱されたHFガスは、第一の配管21を通過する際に、基本的に120℃の温度を維持したまま、反応器15内へ導入される。なお、ヒーター24については、図1中において、太線で示している。 The first pipe 21 is covered with a heater 24 from the position where the first heating unit 23 is provided to the first valve 22. The temperature of the first pipe 21 as an introduction member is maintained at a temperature of 110 ° C. or higher by the heater 24. In this case, the first pipe 21 is maintained at a temperature of 120 ° C. by the heater 24. Therefore, the HF gas heated to a temperature of 120 ° C. by the first heating unit 23 is introduced into the reactor 15 while basically maintaining the temperature of 120 ° C. when passing through the first pipe 21. Will be done. The heater 24 is shown by a thick line in FIG.

第一の配管21において、第一のバルブ22と反応器15との間には、予備加熱部30が設けられている。すなわち、反応器15には、予備加熱部30を経由して反応器15内へ原料ガスを導入する導入部材としての第一の配管21が接続されている構成である。このような構成として、反応器15に原料ガスが導入された直後から110℃以上の温度を確保することができる。この場合、具体的には、原料ガスを120℃に加熱して第一の配管21から原料ガスを反応器15内に導入することができる。なお、第一の加熱部23により原料ガスが120℃に加熱され、ヒーター24により120℃の温度に維持された第一の配管21を通ってきた原料ガスについて、120℃よりも温度が下がる部分があったとしても、この予備加熱部30により、より確実に反応器15に導入する前に110℃以上として導入することができる。 In the first pipe 21, a preheating unit 30 is provided between the first valve 22 and the reactor 15. That is, the reactor 15 is connected to the first pipe 21 as an introduction member for introducing the raw material gas into the reactor 15 via the preheating unit 30. With such a configuration, it is possible to secure a temperature of 110 ° C. or higher immediately after the raw material gas is introduced into the reactor 15. In this case, specifically, the raw material gas can be heated to 120 ° C. and the raw material gas can be introduced into the reactor 15 from the first pipe 21. The raw material gas is heated to 120 ° C. by the first heating unit 23, and the temperature of the raw material gas passing through the first pipe 21 maintained at 120 ° C. by the heater 24 is lower than 120 ° C. Even if there is, the preheating unit 30 can more reliably introduce it at 110 ° C. or higher before it is introduced into the reactor 15.

パージ用空気供給装置13は、第一の配管21に接続されている。具体的には、第一の配管21において、第一のバルブ22よりも上流側、すなわち、第一の配管21において第一のバルブ22よりもHFガス供給装置12が位置する側の途中において、第一の配管21を分岐するようにして接続されている。第一の配管21において、パージ用空気供給装置13と第一のバルブ22との間には、パージ用空気供給装置13から供給されるパージ用の空気を加熱する第二の加熱部25が設けられている。この第二の加熱部25により、パージ用空気供給装置13から供給されるパージ用の空気は、110℃以上の温度に加熱される。この場合、具体的には、例えば、パージ用の空気は120℃に加熱される。第一の配管21において、第二の加熱部25が設けられた位置から分岐26に至るまでもヒーター24によって覆われている。したがって、第二の加熱部25により120℃の温度に加熱されたパージ用の空気は、第一の配管21を通過する際に、120℃の温度を維持したまま、反応器15内へ導入される。 The purging air supply device 13 is connected to the first pipe 21. Specifically, in the first pipe 21, on the upstream side of the first valve 22, that is, in the middle of the side of the first pipe 21 where the HF gas supply device 12 is located from the first valve 22. The first pipe 21 is connected so as to branch off. In the first pipe 21, a second heating unit 25 for heating the purging air supplied from the purging air supply device 13 is provided between the purging air supply device 13 and the first valve 22. Has been done. The purging air supplied from the purging air supply device 13 is heated to a temperature of 110 ° C. or higher by the second heating unit 25. In this case, specifically, for example, the purging air is heated to 120 ° C. In the first pipe 21, the heater 24 covers from the position where the second heating portion 25 is provided to the branch 26. Therefore, the purging air heated to a temperature of 120 ° C. by the second heating unit 25 is introduced into the reactor 15 while maintaining the temperature of 120 ° C. when passing through the first pipe 21. To.

炭酸カルシウム供給部14は、反応器15の上部に設けられている。炭酸カルシウム供給部14は、所定の形状の容器27と、容器27の下部に設けられた回転体28とから構成されている。容器27内には、反応に要する粉体状の炭酸カルシウム29が格納されている。容器27の下部には開口が設けられており、炭酸カルシウム供給部14は、回転体28を回転させることにより容器27内に格納された炭酸カルシウム29を所定量落下させ、反応器15内に炭酸カルシウム29を供給することができる。 The calcium carbonate supply unit 14 is provided on the upper part of the reactor 15. The calcium carbonate supply unit 14 is composed of a container 27 having a predetermined shape and a rotating body 28 provided at the lower part of the container 27. The powdered calcium carbonate 29 required for the reaction is stored in the container 27. An opening is provided in the lower part of the container 27, and the calcium carbonate supply unit 14 causes the rotating body 28 to rotate to drop a predetermined amount of calcium carbonate 29 stored in the container 27, and carbonic acid in the reactor 15. Calcium 29 can be supplied.

ここで、炭酸カルシウム供給部14により供給される原料物質としての炭酸カルシウム29について、高純度の蛍石を得る観点から、金属不純物の含有割合が小さいものが炭酸カルシウム供給部14に格納される。具体的には、例えば、原料となる炭酸カルシウム29に含まれるFe、Cr、Niはそれぞれ50質量ppm以下のものが採用される。後述する他のカルシウム化合物を用いる場合についても同様である。 Here, with respect to the calcium carbonate 29 as a raw material supplied by the calcium carbonate supply unit 14, one having a small content ratio of metal impurities is stored in the calcium carbonate supply unit 14 from the viewpoint of obtaining high-purity fluorite. Specifically, for example, Fe, Cr, and Ni contained in calcium carbonate 29, which is a raw material, each have a mass of 50 mass ppm or less. The same applies to the case where other calcium compounds described later are used.

炭酸カルシウム供給部14のうち、容器27の一部、および回転体28は、ヒーター24によって覆われている。そして、これらの部分についても、ヒーター24により、120℃の温度に維持されている。すなわち、反応器15への供給前の段階において、炭酸カルシウム29はある程度ヒーター24により加熱される。 A part of the container 27 and the rotating body 28 of the calcium carbonate supply unit 14 are covered with the heater 24. The temperature of these portions is also maintained at 120 ° C. by the heater 24. That is, the calcium carbonate 29 is heated by the heater 24 to some extent before the supply to the reactor 15.

反応器15は、円錐形であって、頂部を下側に位置するよう配置される。反応器15は、内壁31を含む全体が金属で構成されている。反応器15は、具体的には、SUS等のステンレス製である。反応器15の内部には、反応に使用される空洞32が設けられており、この空洞32の領域にカルシウム化合物である炭酸カルシウム29がまず供給され、配置される。反応器15は、密封可能な構成である。反応器15には、その内部に供給された炭酸カルシウム29を撹拌する撹拌棒33が設けられている。この撹拌棒33には、反応器15の上部側に位置する蓋部34の一部に取り付けられて撹拌棒33の回転運動を支持する支持部35が設けられており、支持部35を回転中心として反応器15の空洞32内を図1中の矢印36に示すように回転させることができる。撹拌棒33を所定の速度で回転させることにより、反応器15内に配置された炭酸カルシウム29を撹拌することができ、この撹拌棒33による撹拌により、反応を促進させることができる。 The reactor 15 has a conical shape and is arranged so that the top is located on the lower side. The entire reactor 15, including the inner wall 31, is made of metal. Specifically, the reactor 15 is made of stainless steel such as SUS. Inside the reactor 15, a cavity 32 used for the reaction is provided, and calcium carbonate 29, which is a calcium compound, is first supplied and arranged in the region of the cavity 32. The reactor 15 has a sealable configuration. The reactor 15 is provided with a stirring rod 33 for stirring the calcium carbonate 29 supplied therein. The stirring rod 33 is provided with a support portion 35 which is attached to a part of a lid portion 34 located on the upper side of the reactor 15 to support the rotational movement of the stirring rod 33, and the support portion 35 is centered on rotation. As shown by the arrow 36 in FIG. 1, the inside of the cavity 32 of the reactor 15 can be rotated. The calcium carbonate 29 arranged in the reactor 15 can be agitated by rotating the stirring rod 33 at a predetermined speed, and the reaction can be promoted by the agitation by the stirring rod 33.

反応器15は、その全体がヒーター24によって覆われている構成である。すなわち、反応器15全体を、ヒーター24により110℃以上の温度に維持することができる。この場合、反応器15全体が、ヒーター24により120℃の温度に維持されている。 The reactor 15 has a configuration in which the entire reactor 15 is covered with the heater 24. That is, the entire reactor 15 can be maintained at a temperature of 110 ° C. or higher by the heater 24. In this case, the entire reactor 15 is maintained at a temperature of 120 ° C. by the heater 24.

第一の配管21は、上記したように反応器15に接続されている。具体的には、第一の配管21は、反応器15の下部側であって、炭酸カルシウム29を反応器15内に配置させた際に炭酸カルシウム29が位置する領域に第一の配管21における原料ガスの開口が位置するように接続されている。このような位置に第一の配管21の開口を設けることにより、より効率的にHFガスと炭酸カルシウム29とを接触させて、反応を促進することができる。 The first pipe 21 is connected to the reactor 15 as described above. Specifically, the first pipe 21 is on the lower side of the reactor 15, and in the first pipe 21 in the region where the calcium carbonate 29 is located when the calcium carbonate 29 is arranged in the reactor 15. It is connected so that the opening of the raw material gas is located. By providing the opening of the first pipe 21 at such a position, the HF gas and the calcium carbonate 29 can be brought into contact with each other more efficiently to promote the reaction.

反応器15の底、すなわち、円錐形状の反応器15の頂部には、反応器15内において反応によって得られた蛍石を取り出す蛍石取り出し部16が設けられている。蛍石取り出し部16は、反応により得られた蛍石37を溜めておく容器38と、容器38の上部に設けられた回転体39とから構成されている。蛍石取り出し部16は、反応が終了した後に回転体39を回転させることにより反応器15の底に溜まった蛍石37を反応器15から排出させて容器38内に取り出すことができる。 The bottom of the reactor 15, that is, the top of the conical reactor 15, is provided with a fluorite take-out portion 16 for taking out the fluorite obtained by the reaction in the reactor 15. The fluorite take-out unit 16 is composed of a container 38 for storing the fluorite 37 obtained by the reaction and a rotating body 39 provided on the upper portion of the container 38. The fluorite take-out unit 16 can discharge the fluorite 37 accumulated at the bottom of the reactor 15 from the reactor 15 and take it out into the container 38 by rotating the rotating body 39 after the reaction is completed.

蛍石取り出し部16のうち、容器38の一部、および回転体39は、ヒーター24によって覆われている。そして、これらの部分についても、ヒーター24により、120℃の温度に維持されている。 A part of the container 38 and the rotating body 39 of the fluorite take-out portion 16 are covered with the heater 24. The temperature of these portions is also maintained at 120 ° C. by the heater 24.

排ガス処理装置17は、炭酸カルシウム29とフッ化水素ガスとの反応により生成されたガス、この場合、主に二酸化炭素と水蒸気や反応に用いられなかった未反応のガスを処理することができる。具体的には、反応により生じた排ガス等の温度を調整しながら、無害化することができる。排ガス処理装置17により無害化されたガスが排出される。 The exhaust gas treatment device 17 can treat a gas generated by the reaction of calcium carbonate 29 and hydrogen fluoride gas, in this case mainly carbon dioxide and steam, or unreacted gas not used in the reaction. Specifically, it can be detoxified while adjusting the temperature of the exhaust gas or the like generated by the reaction. The detoxified gas is discharged by the exhaust gas treatment device 17.

排ガス処理装置17は、排出部材としての第二の配管41によって反応器15と接続されている。第二の配管41についても、ステンレス製である。また、第二の配管41についても、第二の配管41の途中、すなわち、反応器15から排ガス処理装置17に至るガスの流路の途中には、排ガス処理装置17内へ流入させる排ガスの流入量等を調整するための弁としての第二のバルブ42が設けられている。 The exhaust gas treatment device 17 is connected to the reactor 15 by a second pipe 41 as a discharge member. The second pipe 41 is also made of stainless steel. Further, regarding the second pipe 41, the inflow of the exhaust gas to be flowed into the exhaust gas treatment device 17 is also in the middle of the second pipe 41, that is, in the middle of the gas flow path from the reactor 15 to the exhaust gas treatment device 17. A second valve 42 is provided as a valve for adjusting the amount and the like.

第二の配管41は、反応器15が設けられた位置から第二のバルブ42に至るまで、ヒーター24によって覆われている。そして、ヒーター24により、排出部材としての第二の配管41は、その温度が110℃以上の温度に維持されている。この場合、第二の配管41は、ヒーター24により120℃の温度に維持されている。したがって、反応により生じた排ガスは、第二のバルブ42が設けられた位置に至るまで120℃の温度を維持したまま、第二の配管41内を通過する。 The second pipe 41 is covered by the heater 24 from the position where the reactor 15 is provided to the second valve 42. The temperature of the second pipe 41 as a discharge member is maintained at a temperature of 110 ° C. or higher by the heater 24. In this case, the second pipe 41 is maintained at a temperature of 120 ° C. by the heater 24. Therefore, the exhaust gas generated by the reaction passes through the second pipe 41 while maintaining the temperature of 120 ° C. until the position where the second valve 42 is provided.

すなわち、ヒーター24は、第一の配管21の一部、第一のバルブ22、第一の加熱部23、第二の加熱部25、炭酸カルシウム供給部14の一部、反応器15の全体、蛍石取り出し部16の一部、第二の配管41の一部、第二のバルブ42を覆う構成である。そして、ヒーター24により、上記した第一の配管21等が120℃に維持されている。 That is, the heater 24 is a part of the first pipe 21, a first valve 22, a first heating part 23, a second heating part 25, a part of the calcium carbonate supply part 14, and the whole reactor 15. It is configured to cover a part of the fluorite take-out part 16, a part of the second pipe 41, and the second valve 42. The heater 24 keeps the first pipe 21 and the like at 120 ° C.

ここで、上記した蛍石の製造装置11を用いて蛍石を製造する際の蛍石の製造方法について説明する。図2は、この発明の一実施形態に係る蛍石の製造方法における代表的な工程を示すフローチャートである。 Here, a method for producing fluorite when producing fluorite using the above-mentioned fluorite producing apparatus 11 will be described. FIG. 2 is a flowchart showing a typical process in the method for producing fluorite according to the embodiment of the present invention.

併せて図2を参照して、まず、反応器15内に炭酸カルシウム供給部14から炭酸カルシウムを所定量投入する(図2において、ステップS11、以下、「ステップ」を省略する。)。この場合、炭酸カルシウム供給部14に設けられた回転体28の回転を制御して炭酸カルシウム29の投入量を調整しながら投入する。このようにして、炭酸カルシウム29を反応器15内に配置させる。 At the same time, with reference to FIG. 2, first, a predetermined amount of calcium carbonate is charged into the reactor 15 from the calcium carbonate supply unit 14 (in FIG. 2, step S11, hereinafter, “step” is omitted). In this case, the calcium carbonate 29 is charged while controlling the rotation of the rotating body 28 provided in the calcium carbonate supply unit 14. In this way, the calcium carbonate 29 is placed in the reactor 15.

次に、投入された炭酸カルシウム29を加熱する(S12)。この場合、反応器15を覆うようにして設けられたヒーター24により反応器15ごと加熱を行い、炭酸カルシウム29を加熱する。ここでは、反応器15内の炭酸カルシウム29を120℃となるまで加熱する。 Next, the added calcium carbonate 29 is heated (S12). In this case, the entire reactor 15 is heated by the heater 24 provided so as to cover the reactor 15, and the calcium carbonate 29 is heated. Here, the calcium carbonate 29 in the reactor 15 is heated to 120 ° C.

120℃に炭酸カルシウム29を加熱した後、炭酸カルシウム29を120℃の温度に維持しつつ、原料ガスを反応器15内に導入する(S13)。この場合、第一の配管21から導入される原料ガスは、120℃の温度に維持されている。すなわち、この場合、炭酸カルシウム29および原料ガスの双方とも、120℃の温度に維持された状態で混合されることとなる。 After heating the calcium carbonate 29 to 120 ° C., the raw material gas is introduced into the reactor 15 while maintaining the calcium carbonate 29 at a temperature of 120 ° C. (S13). In this case, the raw material gas introduced from the first pipe 21 is maintained at a temperature of 120 ° C. That is, in this case, both the calcium carbonate 29 and the raw material gas are mixed while being maintained at a temperature of 120 ° C.

そして、反応器15内において撹拌棒33を回転させながら炭酸カルシウム29を撹拌し、上記した反応式に基づく反応を進める。すなわち、炭酸カルシウム29と原料ガスとにより、気-固反応で蛍石を合成する。 Then, the calcium carbonate 29 is stirred while rotating the stirring rod 33 in the reactor 15, and the reaction based on the above reaction formula is advanced. That is, fluorite is synthesized by a gas-solid reaction with calcium carbonate 29 and a raw material gas.

ここで、導入する原料ガスについては、反応途中までは、反応器15内に原料ガスを流通させ、反応途中からは原料ガスを反応器15内に封入するようにする。すなわち、原料ガスを反応器15内に導入して原料ガスを流通させ、原料ガスを流通させた後に、原料ガスの導入を停止して原料ガスを反応器15内に封入する。具体的には、反応量の全体を100%とした場合に、始めから50%の反応量までは反応器15内に原料ガスを流通させながら反応を行い、50%の反応の経過後から終わりまでは原料ガスを反応器15内に封入させた状態で反応を行う。すなわち、始めから50%の反応量までは、第一のバルブ22をあけた状態として、HFガス供給装置12から反応器15内への原料ガスの供給を続ける。この場合、第二のバルブ42もあけた状態としておき、反応器15内を原料ガスによって流通させるようにする。そして、50%の反応量に達すれば、第一のバルブ22および第二のバルブ42を双方とも閉じた状態として反応器15を密封状態とし、原料ガスを反応器15内に封入して反応を進める。 Here, with respect to the raw material gas to be introduced, the raw material gas is circulated in the reactor 15 until the middle of the reaction, and the raw material gas is sealed in the reactor 15 from the middle of the reaction. That is, the raw material gas is introduced into the reactor 15 to circulate the raw material gas, and after the raw material gas is circulated, the introduction of the raw material gas is stopped and the raw material gas is sealed in the reactor 15. Specifically, when the total reaction amount is 100%, the reaction is carried out while the raw material gas is circulated in the reactor 15 from the beginning to the reaction amount of 50%, and the reaction is completed after the 50% reaction has elapsed. Until then, the reaction is carried out with the raw material gas sealed in the reactor 15. That is, from the beginning until the reaction amount is 50%, the supply of the raw material gas from the HF gas supply device 12 into the reactor 15 is continued with the first valve 22 open. In this case, the second valve 42 is also left open so that the inside of the reactor 15 is circulated by the raw material gas. When the reaction amount reaches 50%, the reactor 15 is sealed with both the first valve 22 and the second valve 42 closed, and the raw material gas is sealed in the reactor 15 to carry out the reaction. Proceed.

反応終了後、反応器15内にパージ用空気供給装置13から反応器15内にパージ用の空気を供給し、反応器15内のパージ(排気)を行う(S14)。すなわち、第一のバルブ22および第二のバルブ42を再びあけ、蛍石37が得られた反応器15内の残った原料ガスおよび反応により生成されたガスをパージ用の空気に置換する。 After the reaction is completed, purging air is supplied from the purging air supply device 13 into the reactor 15 into the reactor 15 to perform purging (exhaust) in the reactor 15 (S14). That is, the first valve 22 and the second valve 42 are opened again, and the remaining raw material gas and the gas generated by the reaction in the reactor 15 in which the fluorite 37 is obtained are replaced with air for purging.

その後、蛍石取り出し部16に設けられた回転体39を回転させ、反応器15の底に溜まった蛍石37を蛍石取り出し部16に設けられた容器38に取り出して、蛍石37を得る(S15)。なお、引き続き、蛍石37の製造を行う際には、蛍石取り出し部16によって製造された蛍石37を回収した後、また、S11に戻って作業を行う。このような作業は、いわゆるバッチ処理により行われる。 After that, the rotating body 39 provided in the fluorite taking-out section 16 is rotated, and the fluorite 37 collected at the bottom of the reactor 15 is taken out into the container 38 provided in the fluorite taking-out section 16 to obtain the fluorite 37. (S15). In addition, when the fluorite 37 is continuously manufactured, after the fluorite 37 manufactured by the fluorite taking-out unit 16 is collected, the work is performed again by returning to S11. Such work is performed by so-called batch processing.

このような蛍石37の製造方法によれば、内壁31が金属からなる反応器15内に炭酸カルシウム29を配置させて、内壁31を110℃以上の温度である120℃に維持しつつ、原料ガスとしてのHFガスを導入して炭酸カルシウム29とHFガスとを反応させ、蛍石37を得ることとしている。ここで、原料ガスとして水分が含まれる排ガスを用いており、反応生成物として水が生じることとなる。しかし、反応器15の内壁31が110℃以上である120℃に維持されているため、水が液体ではなく気体の状態で存在することとなる。そうすると、液状の水にフッ化水素が溶解してフッ酸が生成されるおそれを大きく低減することができる。したがって、反応器15の内壁31のフッ酸による腐食を抑制して、炭酸カルシウム29とHFガスとの反応によって合成される蛍石37に、内壁31の腐食に起因した金属の不純物が含有されるおそれを大きく低減することができる。また、反応器15の内壁31の腐食が抑制されるため、反応器15の長寿命化を図ることもできる。その結果、このような蛍石37の製造方法によると、高純度の蛍石37を効率的に製造することができる。 According to such a method for producing fluorite 37, calcium carbonate 29 is arranged in a reactor 15 in which the inner wall 31 is made of metal, and the inner wall 31 is maintained at 120 ° C., which is a temperature of 110 ° C. or higher, as a raw material. HF gas as a gas is introduced to react calcium carbonate 29 with HF gas to obtain fluorite 37. Here, the exhaust gas containing water is used as the raw material gas, and water is generated as the reaction product. However, since the inner wall 31 of the reactor 15 is maintained at 120 ° C., which is 110 ° C. or higher, water exists in a gaseous state rather than a liquid state. Then, the possibility that hydrogen fluoride is dissolved in liquid water to generate hydrofluoric acid can be greatly reduced. Therefore, the fluorite 37 synthesized by the reaction between the calcium carbonate 29 and the HF gas by suppressing the corrosion of the inner wall 31 of the reactor 15 by hydrofluoric acid contains metal impurities caused by the corrosion of the inner wall 31. The risk can be greatly reduced. Further, since the corrosion of the inner wall 31 of the reactor 15 is suppressed, the life of the reactor 15 can be extended. As a result, according to such a method for producing fluorite 37, high-purity fluorite 37 can be efficiently produced.

上記の実施の形態においては、予備加熱部で原料ガスを加熱しているため、反応器15に原料ガスを供給する直前に原料ガスの温度を高い状態で供給して、確実にフッ酸の生成を抑制することができる。 In the above embodiment, since the raw material gas is heated by the preheating unit, the raw material gas is supplied in a high temperature immediately before the raw material gas is supplied to the reactor 15 to surely generate hydrofluoric acid. Can be suppressed.

また、上記の形態においては、HFガス供給装置12は、排ガスを供給することとしているため、より安価に高純度の蛍石37を効率的に製造することができる。この場合、第一の加熱部23で排ガスを加熱すると共に、導入部材としての第一の配管21は、110℃以上の温度に維持されているため、排ガス中に含まれる水については、液体ではなく気体の状態で存在することとなる。したがって、フッ酸が生成されるおそれを低減して、フッ酸による腐食の低減、および高純度の蛍石37の効率的な製造を図ることができる。 Further, in the above embodiment, since the HF gas supply device 12 supplies the exhaust gas, it is possible to efficiently produce the high-purity fluorite 37 at a lower cost. In this case, the exhaust gas is heated by the first heating unit 23, and the first pipe 21 as an introduction member is maintained at a temperature of 110 ° C. or higher. Therefore, the water contained in the exhaust gas is not liquid. It will exist in the state of gas without. Therefore, it is possible to reduce the possibility that hydrofluoric acid is generated, reduce the corrosion caused by hydrofluoric acid, and efficiently produce high-purity fluorite 37.

また、上記の実施の形態においては、反応途中までは、反応器15内に原料ガスを流通させ、反応途中からは原料ガスを反応器15内に封入するようにしているため、特に反応途中からは封入された原料ガスを有効に使用して反応を進めることができる。したがって、封入された原料ガスを効率的に利用して、よりコストダウンを図ることができる。 Further, in the above embodiment, since the raw material gas is circulated in the reactor 15 until the middle of the reaction and the raw material gas is sealed in the reactor 15 from the middle of the reaction, particularly from the middle of the reaction. Can proceed with the reaction by effectively using the enclosed raw material gas. Therefore, the enclosed raw material gas can be efficiently used to further reduce the cost.

なお、排出部材としての第二の配管41および第二のバルブ42についても、110℃以上の温度に維持されているため、反応器15内のガスを排出する際にも、フッ酸が生成されるおそれを低減することができ、第二の配管41および第二のバルブ42のフッ酸による腐食を抑制することができる。特に、第二の配管41が金属製であった場合には、この金属製の配管の腐食を抑制することができ、設備装置の長寿命化を図ることができる。 Since the second pipe 41 and the second valve 42 as discharge members are also maintained at a temperature of 110 ° C. or higher, hydrofluoric acid is also generated when the gas in the reactor 15 is discharged. It is possible to reduce the risk of hydrofluoric acid in the second pipe 41 and the second valve 42. In particular, when the second pipe 41 is made of metal, corrosion of the metal pipe can be suppressed, and the life of the equipment can be extended.

ここで、上記の実施の形態においては、フッ素を含む原料ガスとしてHFガス供給装置によりフッ化水素ガスを供給することとしたが、これに限らず、フロンを破壊する装置であるフロン破壊装置を準備し、フロン破壊装置によりフロンを破壊したガスを、フッ化水素を含む原料ガスとして供給することにしてもよい。 Here, in the above embodiment, hydrogen fluoride gas is supplied by an HF gas supply device as a raw material gas containing fluorine, but the present invention is not limited to this, and a fluorocarbon destruction device which is a device for destroying fluorocarbons is used. The gas prepared and destroyed by the fluorocarbon destruction device may be supplied as a raw material gas containing hydrogen fluoride.

また、第二の配管41および第二のバルブ42について、空気に置換することとしてもよい。すなわち、置換する工程は、第二の配管41および第二のバルブ42内のガスを空気に置換するようにしてもよい。こうすることにより、より確実に第二の配管41および第二のバルブ42の腐食を抑制することができる。 Further, the second pipe 41 and the second valve 42 may be replaced with air. That is, in the replacement step, the gas in the second pipe 41 and the second valve 42 may be replaced with air. By doing so, it is possible to more reliably suppress the corrosion of the second pipe 41 and the second valve 42.

なお、上記の実施の形態において、カルシウム化合物としてカルシウムの炭酸塩である炭酸カルシウムを用いることとしたが、これに限らない。例えば、CaSOといったカルシウムの硫酸塩やCaCといったカルシウムの蓚酸塩、Ca(OH)といったカルシウムの水酸化物、CaOといったカルシウムの酸化物等を用いてもよく、カルシウム化合物は、カルシウムの炭酸塩、硝酸塩、硫酸塩、蓚酸塩、水酸化物、および酸化物からなる群から選択される少なくとも一種を含むよう構成してもよい。また、用いるカルシウム化合物の性状についても粉体状に限られず、例えば、ペレット状や粒状であっても構わない。 In the above embodiment, calcium carbonate, which is a carbonate of calcium, is used as the calcium compound, but the present invention is not limited to this. For example, a calcium sulfate such as CaSO 4 , a calcium hydrate such as CaC 2 O 4 , a calcium hydroxide such as Ca (OH) 2 , a calcium oxide such as CaO, or the like may be used, and the calcium compound may be calcium. It may be configured to contain at least one selected from the group consisting of calcium carbonate, nitrate, sulfate, oxalate, hydroxide, and oxide. Further, the properties of the calcium compound used are not limited to powder, and may be, for example, pellets or granules.

また、上記の実施の形態においては、空気でパージ、すなわち、置換するガスとして空気を用いることとしたが、これに限らず、置換するガスとして上記した非腐食性ガスを用いることとしてもよく、非腐食性ガスと空気とを混合した混合ガスを置換するガスとして用いることとしてもよい。非腐食性ガスとしては、上記したように、例えば、窒素ガス、アルゴンガス、ヘリウムガス、その他の不活性ガスを用いることができる。 Further, in the above embodiment, the gas is purged with air, that is, air is used as the replacement gas, but the present invention is not limited to this, and the above-mentioned non-corrosive gas may be used as the replacement gas. It may be used as a gas for replacing a mixed gas in which a non-corrosive gas and air are mixed. As the non-corrosive gas, for example, nitrogen gas, argon gas, helium gas, or other inert gas can be used as described above.

なお、上記の実施の形態において、第一の加熱部23、第二の加熱部25、導入部材を覆うヒーター24、および予備加熱部を設けることとしたが、これに限らず、これらの一部もしくは全部を設けない構成としてもよい。例えば、第一の加熱部23および第二の加熱部25を省略した構成とする。こうすることにより、設備装置の簡略化を図ることができる。 In the above embodiment, the first heating unit 23, the second heating unit 25, the heater 24 covering the introduction member, and the preheating unit are provided, but the present invention is not limited to this, and some of them are provided. Alternatively, it may be configured not to provide all of them. For example, the first heating unit 23 and the second heating unit 25 are omitted. By doing so, it is possible to simplify the equipment.

また、上記の実施の形態において、原料ガスとして排ガスを供給することとしたが、これに限らず、原料ガスとして高純度のフッ化水素ガスを用いることとしてもよい。この場合、例えば、フッ化水素ガス中の水分の含有量が極めて少ない場合には、反応前の水分を考慮する必要は低くなり、第一の配管21におけるヒーター24を小型のものに置換したり、ヒーター24自体を省略することもできる。 Further, in the above embodiment, the exhaust gas is supplied as the raw material gas, but the present invention is not limited to this, and high-purity hydrogen fluoride gas may be used as the raw material gas. In this case, for example, when the water content in the hydrogen fluoride gas is extremely low, it becomes less necessary to consider the water content before the reaction, and the heater 24 in the first pipe 21 may be replaced with a smaller one. , The heater 24 itself can be omitted.

なお、上記の実施の形態において、蛍石を得る工程は、原料ガスを反応器15内に導入して流通させる工程と、流通させる工程の後に、原料ガスの導入を停止して原料ガスを反応器15内に封入する工程とを含むこととしたが、これに限らず、反応が終了するまで原料ガスを反応器15内にずっと導入し続けることにしてもよいし、数サイクルに亘って原料ガスの流通および原料ガスの封入を行うこととしてもよい。 In the above embodiment, the step of obtaining the fluorite is a step of introducing the raw material gas into the reactor 15 and distributing it, and after the step of distributing the raw material gas, the introduction of the raw material gas is stopped and the raw material gas is reacted. Although it is decided to include the step of encapsulating in the vessel 15, the process is not limited to this, and the raw material gas may be continuously introduced into the reactor 15 until the reaction is completed, or the raw material may be introduced over several cycles. It may be possible to distribute the gas and fill the raw material gas.

また、蛍石37が得られた反応器15内のガスを置換する工程については、必要に応じて省略することとしてもよい。 Further, the step of replacing the gas in the reactor 15 in which the fluorite 37 is obtained may be omitted if necessary.

なお、上記の実施の形態においては、反応器15の内壁31は、金属からなることとしたが、これに限らず、反応器15の内壁31については、一部が金属であって、他の部分が金属以外で構成されていてもよい。すなわち、反応器15の内壁31の少なくとも一部が金属であればよい。この場合、金属として、ステンレス以外の材質のものを用いることとしてもよい。 In the above embodiment, the inner wall 31 of the reactor 15 is made of metal, but the present invention is not limited to this, and the inner wall 31 of the reactor 15 is partially made of metal and is not limited to this. The portion may be made of a material other than metal. That is, at least a part of the inner wall 31 of the reactor 15 may be made of metal. In this case, a material other than stainless steel may be used as the metal.

また、上記の実施の形態において、第一の配管21および第二の配管41は、ステンレス製とすることとしたが、これに限らず、他の金属から構成されていてもよい。また、金属以外の材質により第一の配管21および第二の配管41を構成することにしてもよい。 Further, in the above embodiment, the first pipe 21 and the second pipe 41 are made of stainless steel, but the present invention is not limited to this, and the first pipe 21 and the second pipe 41 may be made of other metals. Further, the first pipe 21 and the second pipe 41 may be configured by a material other than metal.

なお、上記の実施の形態において、反応器15の内壁31等の温度について、110℃以上の温度として120℃を採用することとしたが、これに限らず、例えば150℃を採用してもよく、さらには110℃~200℃の間の温度、特に120℃~150℃の間の温度を採用してもよい。 In the above embodiment, 120 ° C. is adopted as the temperature of 110 ° C. or higher for the temperature of the inner wall 31 and the like of the reactor 15, but the temperature is not limited to this, and for example, 150 ° C. may be adopted. Further, a temperature between 110 ° C. and 200 ° C., particularly a temperature between 120 ° C. and 150 ° C. may be adopted.

以下、実施例および比較例について説明する。本願発明の一実施形態に係る蛍石の製造方法を使用して、金属の含有割合を確認した。試験方法については、以下のように行った。炭酸カルシウム(CaCO)を約1g準備し、SUS304製の管状の反応器(内容積20ml)内にセットした。そして、恒温槽で所定の温度に反応器を加熱した状態で、100質量%のHFガスを流量100ccm(cc/minutes)で5分間流通させた。なお、HFガスを流量100ccmで5分間流す流通量は、炭酸カルシウム1gを全量CaFに反応させることができる量である。しかし、この条件では、50質量%程度が反応するのみであり、残りは排気される。 Hereinafter, Examples and Comparative Examples will be described. The metal content was confirmed using the method for producing fluorite according to the embodiment of the present invention. The test method was as follows. Approximately 1 g of calcium carbonate (CaCO 3 ) was prepared and set in a tubular reactor (internal volume 20 ml) made of SUS304. Then, in a state where the reactor was heated to a predetermined temperature in a constant temperature bath, 100% by mass of HF gas was circulated at a flow rate of 100 ccm (cc / minutes) for 5 minutes. The flow rate of HF gas flowing at a flow rate of 100 ccm for 5 minutes is such that 1 g of calcium carbonate can react with CaF 2 in its entirety. However, under this condition, only about 50% by mass reacts, and the rest is exhausted.

そして、HFガスを流通した後、反応器の前後のバルブを閉じて、HFガスを封入した。封入したHFガスのほとんど全量を反応に寄与させるため、数時間この状態を維持した。この場合、反応器内には、HFガス、反応により生じた水、および炭酸ガスが封入されることとなる。 Then, after the HF gas was circulated, the valves before and after the reactor were closed to fill the HF gas. This state was maintained for several hours in order to contribute almost all of the encapsulated HF gas to the reaction. In this case, the reactor is filled with HF gas, water generated by the reaction, and carbon dioxide gas.

封入後、反応により得られた蛍石(CaF)を取り出し、蛍石中に含まれているFe、Cr、Niといった各元素の成分の含有割合を分析した。具体的には、得られた蛍石の全量を酸で分解し、ICPにより分析を行った。このような実験について、恒温槽の温度を80℃、100℃、120℃、および150℃の状況下でそれぞれ行った。結果を表1に示す。比較例は80℃の場合、および100℃の場合であり、実施例は120℃の場合、および150℃の場合である。なお、処理前の含有割合、すなわち、原料段階における金属各元素の成分の含有割合も示している。 After encapsulation, the fluorite (CaF 2 ) obtained by the reaction was taken out, and the content ratio of each element such as Fe, Cr, and Ni contained in the fluorite was analyzed. Specifically, the entire amount of the obtained fluorite was decomposed with an acid and analyzed by ICP. Such experiments were performed under constant temperature bath temperatures of 80 ° C, 100 ° C, 120 ° C, and 150 ° C, respectively. The results are shown in Table 1. Comparative examples are for 80 ° C. and 100 ° C., and Examples are for 120 ° C. and 150 ° C. The content ratio before the treatment, that is, the content ratio of the components of each metal element at the raw material stage is also shown.

Figure 0006993157000001
Figure 0006993157000001

表1を参照して、温度が80℃の場合は、Feの含有割合は、3930質量ppmであり、非常に多い含有割合となっている。また、Crの含有割合についても1417質量ppm、Niの含有割合についても807質量ppmであり、非常に多いものとなっている。そして、100℃の場合についても、基本的に各元素の含有割合について、ほぼ同程度となっている。すなわち、80℃の場合、および100℃の場合については、Fe、Cr、Niの含有割合は非常に多い。これに対し、120℃の場合は、Feの含有割合が45質量ppm、Crの含有割合が10質量ppm、Niの含有割合が8質量ppmとなっており、非常に少ないことが把握できる。さらに、150℃の場合は、Feの含有割合が14質量ppm、Crの含有割合、およびNiの含有割合が共に1質量ppmとなっており、極めて少ないことが把握できる。すなわち、反応器の内壁が110℃以上であれば、金属のコンタミネーションを非常に少ないものとし、高純度の蛍石を製造することができる。 With reference to Table 1, when the temperature is 80 ° C., the Fe content is 3930 mass ppm, which is a very large content. Further, the Cr content is 1417 mass ppm and the Ni content is 807 mass ppm, which are very high. And even in the case of 100 ° C., the content ratio of each element is basically about the same. That is, in the case of 80 ° C. and the case of 100 ° C., the content ratios of Fe, Cr and Ni are very large. On the other hand, at 120 ° C., the Fe content is 45 mass ppm, the Cr content is 10 mass ppm, and the Ni content is 8 mass ppm, which can be understood to be very small. Further, at 150 ° C., the Fe content is 14 mass ppm, the Cr content is 1 mass ppm, and the Ni content is 1 mass ppm, which can be understood to be extremely small. That is, if the inner wall of the reactor is 110 ° C. or higher, metal contamination can be made very small, and high-purity fluorite can be produced.

今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって規定され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed here are exemplary in all respects and are not restrictive in any way. The scope of the present invention is defined by the scope of claims, not the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

本発明の蛍石の製造方法は、高純度の蛍石の効率的な製造が求められる場合に、特に有利に適用され得る。 The method for producing fluorite of the present invention may be particularly advantageously applied when efficient production of high-purity fluorite is required.

11 蛍石の製造装置、12 HFガス供給装置、13 パージ用空気供給装置、14 炭酸カルシウム供給部、15 反応器、16 蛍石取り出し部、17 排ガス処理装置、21 第一の配管、22 第一のバルブ、23 第一の加熱部、24 ヒーター、25 第二の加熱部、26 分岐、27,38 容器、28,39 回転体、29 炭酸カルシウム、30 予備加熱部、31 内壁、32 空洞、33 撹拌棒、34 蓋部、35 支持部、36 矢印、37 蛍石、41 第二の配管、42 第二のバルブ。 11 Fluorite production equipment, 12 HF gas supply equipment, 13 purge air supply equipment, 14 calcium carbonate supply unit, 15 reactor, 16 fluorite extraction unit, 17 exhaust gas treatment equipment, 21 first piping, 22 first Valve, 23 1st heating part, 24 heater, 25 2nd heating part, 26 branches, 27,38 container, 28,39 rotating body, 29 calcium carbonate, 30 preheating part, 31 inner wall, 32 cavity, 33 Stirring rod, 34 lid, 35 support, 36 arrow, 37 fluorite, 41 second pipe, 42 second valve.

Claims (9)

カルシウムの炭酸塩、硝酸塩、硫酸塩、蓚酸塩、水酸化物、および酸化物からなる群から選択される少なくとも一種を含むカルシウム化合物を、内壁の少なくとも一部が金属からなる反応器内に配置する工程と、
前記内壁を110℃以上の温度に維持しつつ、前記反応器内にフッ化水素を含む原料ガスを導入して前記カルシウム化合物と前記原料ガスとを反応させることにより蛍石を得る工程とを含み、
前記原料ガスを供給するガス供給装置と前記反応器との間を接続する第一の配管において、前記ガス供給装置と前記反応器との間に第一のバルブが設けられ、
前記ガス供給装置と前記第一のバルブとの間に第一の加熱部が設けられ、
前記第一のバルブと前記反応器との間に予備加熱部が設けられ、
前記予備加熱部において前記原料ガスが110℃以上に加熱される、
蛍石の製造方法。
A calcium compound containing at least one selected from the group consisting of carbonates, nitrates, sulfates, oxalates, hydroxides, and oxides of calcium is placed in a reactor in which at least a portion of the inner wall is made of metal. Process and
Including a step of introducing a raw material gas containing hydrogen fluoride into the reactor and reacting the calcium compound with the raw material gas to obtain fluorite while maintaining the inner wall at a temperature of 110 ° C. or higher. fruit,
In the first pipe connecting the gas supply device for supplying the raw material gas and the reactor, a first valve is provided between the gas supply device and the reactor.
A first heating unit is provided between the gas supply device and the first valve.
A preheating section is provided between the first valve and the reactor.
The raw material gas is heated to 110 ° C. or higher in the preheating section.
How to make fluorite.
前記蛍石が得られた前記反応器内のガスを非腐食性ガスおよび空気の少なくともいずれか一つに置換する工程をさらに備える、請求項1に記載の蛍石の製造方法。 The method for producing fluorite according to claim 1, further comprising a step of replacing the gas in the reactor from which the fluorite is obtained with at least one of non-corrosive gas and air. 前記反応器には、前記反応器内のガスを排出する排出部材が接続されており、
前記排出部材は、110℃以上の温度に維持されている、請求項に記載の蛍石の製造方法。
A discharge member for discharging the gas in the reactor is connected to the reactor.
The method for producing fluorite according to claim 2 , wherein the discharge member is maintained at a temperature of 110 ° C. or higher.
前記置換する工程は、前記排出部材内のガスを非腐食性ガスおよび空気の少なくともいずれか一つに置換する工程を含む、請求項に記載の蛍石の製造方法。 The method for producing fluorite according to claim 3 , wherein the replacement step comprises a step of replacing the gas in the discharge member with at least one of non-corrosive gas and air. 前記置換する工程は、前記第一の配管内のガスを非腐食性ガスおよび空気の少なくともいずれか一つに置換する工程を含む、請求項に記載の蛍石の製造方法。 The method for producing fluorite according to claim 2 , wherein the replacement step comprises a step of replacing the gas in the first pipe with at least one of non-corrosive gas and air. 前記原料ガスは、排ガスを含む、請求項または請求項に記載の蛍石の製造方法。 The method for producing fluorite according to claim 4 or 5 , wherein the raw material gas contains exhaust gas. 前記蛍石を得る工程は、前記原料ガスを前記反応器内に導入して前記原料ガスを流通させる工程と、前記原料ガスを流通させる工程の後に、前記原料ガスの導入を停止して前記原料ガスを前記反応器内に封入する工程とを含む、請求項1~請求項のいずれか1項に記載の蛍石の製造方法。 In the step of obtaining the fluorite, after the step of introducing the raw material gas into the reactor and circulating the raw material gas and the step of circulating the raw material gas, the introduction of the raw material gas is stopped and the raw material is distributed. The method for producing a fluorite according to any one of claims 1 to 6 , which comprises a step of encapsulating the gas in the reactor. 前記反応器の内壁の材質は、ステンレスである、請求項1~請求項のいずれか1項に記載の蛍石の製造方法。 The method for producing fluorite according to any one of claims 1 to 7 , wherein the material of the inner wall of the reactor is stainless steel. 前記カルシウム化合物は、粉体状である、請求項1~請求項のいずれか1項に記載の蛍石の製造方法。
The method for producing fluorite according to any one of claims 1 to 8 , wherein the calcium compound is in the form of powder.
JP2017190709A 2017-09-29 2017-09-29 How to make fluorite Active JP6993157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017190709A JP6993157B2 (en) 2017-09-29 2017-09-29 How to make fluorite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017190709A JP6993157B2 (en) 2017-09-29 2017-09-29 How to make fluorite

Publications (2)

Publication Number Publication Date
JP2019064851A JP2019064851A (en) 2019-04-25
JP6993157B2 true JP6993157B2 (en) 2022-01-13

Family

ID=66337771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017190709A Active JP6993157B2 (en) 2017-09-29 2017-09-29 How to make fluorite

Country Status (1)

Country Link
JP (1) JP6993157B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293538A (en) 2001-03-29 2002-10-09 National Institute Of Advanced Industrial & Technology Porous calcium fluoride, its producing method, catalyst for hydrogenation reaction and method for producing trihydrofluorocarbon
JP2015157734A (en) 2014-02-25 2015-09-03 旭硝子株式会社 Method for producing calcium fluoride and method for removing hydrogen fluoride in exhaust gas
JP2019521940A (en) 2016-05-19 2019-08-08 スリーエム イノベイティブ プロパティズ カンパニー Production of calcium fluoride from HF gas stream

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293538A (en) 2001-03-29 2002-10-09 National Institute Of Advanced Industrial & Technology Porous calcium fluoride, its producing method, catalyst for hydrogenation reaction and method for producing trihydrofluorocarbon
JP2015157734A (en) 2014-02-25 2015-09-03 旭硝子株式会社 Method for producing calcium fluoride and method for removing hydrogen fluoride in exhaust gas
JP2019521940A (en) 2016-05-19 2019-08-08 スリーエム イノベイティブ プロパティズ カンパニー Production of calcium fluoride from HF gas stream

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shinji, YASUI et al.,Gas-Solid Reaction Properties of Fluorine Compounds and Solid Adsorbents for Off-Gas Treatment from Semiconductor Facility,International Journal of Chemical Engineering,Article ID 329419,2012年,pp.1-9,https://doi.org/10.1155/2012/329419

Also Published As

Publication number Publication date
JP2019064851A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
US6902601B2 (en) Method of making elemental materials and alloys
KR102136391B1 (en) Method for purifying fluorine compound gas
US4668287A (en) Process for producing high purity zirconium and hafnium
JP5231155B2 (en) Liquid phase compound purification equipment
JP2011068545A (en) Method for producing nitride crystal, nitride crystal and apparatus for producing the same
JP6867581B2 (en) Fluorine gas purification method
CN111918839A (en) Method and apparatus for producing molybdenum hexafluoride
JP6993157B2 (en) How to make fluorite
JP2014159630A (en) System and method for recovering and reusing tungsten hexafluoride
CN109313945B (en) Nuclear fuel salt
US2924508A (en) Method of production of stannous fluoride
JP2020033259A (en) Lithium sulfide production apparatus
JPWO2006098199A1 (en) Separation and recovery method for refractory metals
CN112533873A (en) Method for producing tungsten hexafluoride
JP5757168B2 (en) Fluorine gas generator
JP2021127273A (en) Method for producing molybdenum hexafluoride and method for removing oxide film on the surface of molybdenum
D’yachenko et al. Processing oxide-sulfide copper ores using ammonium chloride
US5746993A (en) Process for manufacture of ultra-high purity ammonium hydroxide
US5348723A (en) Synthesis of semiconductor grade tungsten hexafluoride
US6036937A (en) Method for producing zinc bromide
KR20220035201A (en) Method for producing bromine pentafluoride
JP2019019016A (en) Aqueous sodium hypochlorite solution, sodium hypochlorite pentahydrate crystal for giving the same, and method for producing aqueous sodium hypochlorite solution
JP5567880B2 (en) Reaction control method
WO2017138367A1 (en) Method for purifying fluorine gas
JP2007176768A (en) Method for producing fluorine gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211209

R150 Certificate of patent or registration of utility model

Ref document number: 6993157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150