JP6992548B2 - Oxygen concentration measurement probe and oxygen concentration detector - Google Patents

Oxygen concentration measurement probe and oxygen concentration detector Download PDF

Info

Publication number
JP6992548B2
JP6992548B2 JP2018012952A JP2018012952A JP6992548B2 JP 6992548 B2 JP6992548 B2 JP 6992548B2 JP 2018012952 A JP2018012952 A JP 2018012952A JP 2018012952 A JP2018012952 A JP 2018012952A JP 6992548 B2 JP6992548 B2 JP 6992548B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
solid electrolyte
measuring probe
concentration measuring
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018012952A
Other languages
Japanese (ja)
Other versions
JP2019132617A (en
Inventor
隆之 辻
昌平 秦
啓輔 藤戸
洋光 黒田
亨 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2018012952A priority Critical patent/JP6992548B2/en
Publication of JP2019132617A publication Critical patent/JP2019132617A/en
Application granted granted Critical
Publication of JP6992548B2 publication Critical patent/JP6992548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、酸素濃度測定プローブ及び酸素濃度検出器に関する。 The present invention relates to an oxygen concentration measuring probe and an oxygen concentration detector.

酸素濃度測定プローブとして、例えば、特許文献1に記載されるようなものがある。この酸素濃度測定プローブは、固体酸素基準極を内包する固体電解質管の浸漬部を溶融金属、例えば、溶銅に浸漬し、内部電極と外部電極との間に発生する電位差を計測することにより、溶融金属中の酸素濃度を測定していた。 As an oxygen concentration measuring probe, for example, there is one described in Patent Document 1. This oxygen concentration measuring probe immerses the immersed portion of the solid electrolyte tube containing the solid oxygen reference electrode in a molten metal, for example, molten copper, and measures the potential difference generated between the internal electrode and the external electrode. The oxygen concentration in the molten metal was measured.

上記酸素濃度測定プローブでは、固体酸素基準極が前記固体電解質管の内側に設けられる金属/金属酸化物からなり、当該固体酸素基準極内に内部電極が埋設されている。 In the oxygen concentration measuring probe, the solid oxygen reference electrode is made of a metal / metal oxide provided inside the solid electrolyte tube, and an internal electrode is embedded in the solid oxygen reference electrode.

特開昭57-90151号公報Japanese Unexamined Patent Publication No. 57-90151

この酸素濃度測定プローブは、溶融金属中の酸素濃度を測定する場合、固体電解質管の先端部(以下、「浸漬部」ともいう)が溶融金属内に浸漬されて使用されるため、その表面に溶融金属中に存在するスラグ等が酸化物の状態で付着するおそれがある。酸素濃度測定プローブでは、スラグ等からなる酸化物が固体電解質管の浸漬部の表面に付着すると、溶融金属中の酸素濃度が高く測定されてしまう。そのため、溶融金属中の酸素濃度を精度良く測定することができない。 When measuring the oxygen concentration in the molten metal, this oxygen concentration measuring probe is used by immersing the tip of the solid electrolyte tube (hereinafter, also referred to as "immersion portion") in the molten metal, and thus is used on the surface thereof. There is a risk that slag or the like present in the molten metal will adhere in the form of an oxide. In the oxygen concentration measuring probe, if an oxide made of slag or the like adheres to the surface of the immersed portion of the solid electrolyte tube, the oxygen concentration in the molten metal is measured high. Therefore, the oxygen concentration in the molten metal cannot be measured accurately.

そこで、本発明は、溶融金属中の酸素濃度を精度良く測定することができる酸素濃度測定プローブ及び当該酸素濃度測定プローブを備えた酸素濃度検出器を提供することを目的とする。 Therefore, an object of the present invention is to provide an oxygen concentration measuring probe capable of accurately measuring the oxygen concentration in the molten metal and an oxygen concentration detector provided with the oxygen concentration measuring probe.

本発明は、上記目的を達成するために、[1]~[3]の酸素濃度測定プローブ及び[4]の酸素濃度検出器を提供する。 The present invention provides the oxygen concentration measuring probes [1] to [3] and the oxygen concentration detector of [4] in order to achieve the above object.

[1]内部電極及び外部電極と、前記内部電極と前記外部電極の間に配置され、溶融金属へ浸漬される浸漬部を有した固体電解質管と、前記外部電極の外表面に配置され、不活性ガスが流入する第1の端部と流入した不活性ガスを放出する第2の端部を有する管状部材を備える酸素濃度測定プローブ。
[2]前記管状部材の前記第2の端部は、前記固体電解質管の前記浸漬部の近傍に位置する前記[1]に記載の酸素濃度測定プローブ。
[3]前記不活性ガスは、窒素、又はアルゴンからなる前記[1]に記載の酸素濃度測定プローブ。
[4]前記[1]~[3]のいずれか1つに記載の酸素濃度測定プローブを備える酸素濃度検出器。
[1] The internal electrode and the external electrode, the solid electrolyte tube arranged between the internal electrode and the external electrode and having a dipping portion immersed in the molten metal, and the solid electrolyte tube arranged on the outer surface of the external electrode are not used. An oxygen concentration measuring probe comprising a tubular member having a first end into which the active gas flows in and a second end in which the inflowing inert gas is discharged.
[2] The oxygen concentration measuring probe according to the above [1], wherein the second end portion of the tubular member is located in the vicinity of the dipping portion of the solid electrolyte tube.
[3] The oxygen concentration measuring probe according to the above [1], wherein the inert gas is nitrogen or argon.
[4] An oxygen concentration detector comprising the oxygen concentration measuring probe according to any one of the above [1] to [3].

本発明によれば、溶融金属中の酸素濃度を精度良く測定することができる酸素濃度測定プローブ及び当該酸素濃度測定プローブを備えた酸素濃度検出器を提供することができる。 According to the present invention, it is possible to provide an oxygen concentration measuring probe capable of accurately measuring the oxygen concentration in a molten metal and an oxygen concentration detector provided with the oxygen concentration measuring probe.

(a)は本発明の実施の形態に係る酸素濃度測定プローブを備えた酸素濃度検出器の一例を示す概略断面図であり、(b)は不活性ガスを流入及び放出する管状部材の配置の位置を示す説明図である。(A) is a schematic cross-sectional view showing an example of an oxygen concentration detector provided with an oxygen concentration measuring probe according to an embodiment of the present invention, and (b) is an arrangement of tubular members for inflowing and discharging inert gas. It is explanatory drawing which shows the position. 本発明の実施の形態の変形例に係る酸素測定プローブを備えた酸素濃度検出器を示す説明図である。It is explanatory drawing which shows the oxygen concentration detector provided with the oxygen measurement probe which concerns on the modification of embodiment of this invention.

〔酸素濃度測定プローブ〕
本発明の実施形態に係る酸素濃度測定プローブを備えた酸素濃度検出器を以下に図を参照して詳細に説明する。
図1(a)は、本発明の実施の形態に係る酸素濃度測定プローブを備えた酸素濃度検出器の一例を示す概略断面図である。
[Oxygen concentration measurement probe]
The oxygen concentration detector provided with the oxygen concentration measuring probe according to the embodiment of the present invention will be described in detail below with reference to the drawings.
FIG. 1A is a schematic cross-sectional view showing an example of an oxygen concentration detector provided with an oxygen concentration measuring probe according to an embodiment of the present invention.

本発明の実施形態に係る酸素濃度測定プローブ10は、外部電極7と、外部電極7の内部に配置され、浸漬部4aを有した固体電解質管4と、固体電解質管4の管内に配置された、内部電極1及び基準極3と、外部電極7の外表面に接触して配置され、内部に不活性ガスが流入する管状部材8を備える。 The oxygen concentration measuring probe 10 according to the embodiment of the present invention is arranged inside the external electrode 7, the solid electrolyte tube 4 having the immersion portion 4a, and the tube of the solid electrolyte tube 4. A tubular member 8 is provided, which is arranged in contact with the outer surface of the external electrode 7 and the internal electrode 1 and the reference electrode 3, and an inert gas flows into the inside.

図1(a)に示す酸素濃度測定プローブ10は、基準極3を固体電解質管4の管内に封止するための封止材3Aと、固体電解質管4の外側に設けられた補強管5と、補強管5の外側に設けられた耐火物6とを更に備え、また、必要に応じて、内部電極1は、金属コーティングによって被覆されている。プローブ10の全長は、例えば500mm~800mm程度である。 The oxygen concentration measuring probe 10 shown in FIG. 1A includes a sealing material 3A for sealing the reference electrode 3 in the tube of the solid electrolyte tube 4, and a reinforcing tube 5 provided on the outside of the solid electrolyte tube 4. Further, a fireproof material 6 provided on the outside of the reinforcing pipe 5 is further provided, and if necessary, the internal electrode 1 is coated with a metal coating. The total length of the probe 10 is, for example, about 500 mm to 800 mm.

(内部電極1)
内部電極1の材質としては、測定対象である溶融金属より融点が高く、酸素濃度測定プローブとして使用できるものであれば特に限定されないが、例えばステンレス鋼(SUS)、ニッケル(Ni)、銅(Cu)、白金(Pt)が挙げられる。特に外部電極7にステンレス鋼(SUS)を用いる場合は内部電極1として同じステンレス鋼(SUS)を用いれば、異種金属を使用することによる熱起電力が発生せず、好適である。酸素濃度測定プローブ10の使用時に内部電極1の表面が1000℃程度に熱せられる。白金(Pt)電極は、1000℃程度に熱せられてもその表面に酸化膜が形成されにくい。
(Internal electrode 1)
The material of the internal electrode 1 is not particularly limited as long as it has a melting point higher than that of the molten metal to be measured and can be used as an oxygen concentration measuring probe. For example, stainless steel (SUS), nickel (Ni), and copper (Cu). ), Platinum (Pt). In particular, when stainless steel (SUS) is used for the external electrode 7, it is preferable to use the same stainless steel (SUS) as the internal electrode 1 because the thermoelectromotive force due to the use of dissimilar metals is not generated. When the oxygen concentration measuring probe 10 is used, the surface of the internal electrode 1 is heated to about 1000 ° C. Even if the platinum (Pt) electrode is heated to about 1000 ° C., an oxide film is unlikely to be formed on the surface of the platinum (Pt) electrode.

内部電極1の形状としては、図1(a)のような棒状(線状)が好適であるが、これに限られない。例えば、前述の特許文献1の第1図(先端部分が太くなっている形状)や第3図(先端部分が球状となっている形状)に記載の形状等を採用できる。 The shape of the internal electrode 1 is preferably rod-shaped (linear) as shown in FIG. 1A, but is not limited to this. For example, the shapes described in FIG. 1 (shape in which the tip portion is thick) and FIG. 3 (shape in which the tip portion is spherical) of Patent Document 1 described above can be adopted.

(金属コーティング2)
内部電極1上に金属コーティング2を必要に応じて設けてもよい。金属コーティング2は、例えば、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)からなる貴金属又は当該貴金属の合金からなる。これらの金属を使用すれば、酸素濃度測定プローブ10の使用時に内部電極1の表面が1000℃程度に熱せられた際に金属コーティング2の表面に酸化膜が形成されないため、酸化膜が形成され、それが剥がれて隙間が生じるという問題が生じない。金属コーティング2の成膜厚さは、特に限定されないが、1μm以上2000μm以下が好ましい。
(Metal coating 2)
A metal coating 2 may be provided on the internal electrode 1 as needed. The metal coating 2 is made of, for example, a noble metal composed of platinum (Pt), rhodium (Rh), palladium (Pd), iridium (Ir), or an alloy of the noble metal. When these metals are used, when the surface of the internal electrode 1 is heated to about 1000 ° C. when the oxygen concentration measuring probe 10 is used, an oxide film is not formed on the surface of the metal coating 2, so that an oxide film is formed. There is no problem that it peels off and a gap is created. The film thickness of the metal coating 2 is not particularly limited, but is preferably 1 μm or more and 2000 μm or less.

金属コーティング2の成膜範囲は、内部電極1が基準極3と直接に接触し得る部位全体であることが好ましいが、その一部であっても良い。図1(a)に示す実施形態では、基準極3と直接に接触し得る部位全体にコーティングし、更に基準極3が存在しない上方の部分まで金属コーティング2を設けている。 The film formation range of the metal coating 2 is preferably the entire portion where the internal electrode 1 can come into direct contact with the reference electrode 3, but it may be a part thereof. In the embodiment shown in FIG. 1 (a), the entire portion that can come into direct contact with the reference pole 3 is coated, and the metal coating 2 is provided up to the upper portion where the reference pole 3 does not exist.

金属コーティング2の形成方法は、種々の方法が可能である。例えば、金属めっきにより形成できる。 Various methods can be used for forming the metal coating 2. For example, it can be formed by metal plating.

なお、「内部電極1上に形成された」とは、図1(a)に示されるような内部電極1の表面に(直上に)形成される場合のほか、例えば、前述の特許文献1(3頁右欄、第4図)に記載のFe又はステンレス鋼等のスリーブが内部電極1の先端部に設けられている実施形態において当該スリーブ上に形成される場合も包含する。 In addition to the case where "formed on the internal electrode 1" is formed on the surface of the internal electrode 1 as shown in FIG. 1 (a), for example, the above-mentioned Patent Document 1 ( The case where the sleeve such as Fe or stainless steel shown in the right column of page 3, FIG. 4) is formed on the sleeve in the embodiment provided at the tip of the internal electrode 1 is also included.

(基準極3)
基準極3としては、例えばFe/FeO粉、Ni/NiO粉、Cr/CrO粉等の金属/金属酸化物が使用された固体酸素基準極、あるいは空気等の気体が使用された空気基準極(気体基準極)からなり、固体電解質管4の内部の酸素濃度を一定に保つ効果を持つ。なお、図1及び図2では、基準極3として固体酸素基準極が使用された場合を示す。
(Reference pole 3)
As the reference electrode 3, for example, a solid oxygen reference electrode using a metal / metal oxide such as Fe / FeO powder, Ni / NiO powder, Cr / CrO powder, or an air reference electrode using a gas such as air ( It is composed of a gas reference electrode) and has the effect of keeping the oxygen concentration inside the solid electrolyte tube 4 constant. Note that FIGS. 1 and 2 show a case where a solid oxygen reference electrode is used as the reference electrode 3.

基準極3は、固体電解質管4内を満たすように封入され、内部電極1の端部がその中心部に埋設されている。溶融金属と直接に接する固体電解質管4の先端部分(図1(a)の長さaで示される領域)には、内部電極1は到達しておらず、基準極3が充填されている。長さaは、例えば3mm~5mm程度が好ましい。一方、固体電解質管4の残部(補強管5等に覆われて溶融金属と直接に接しない部分)の長さ(図1(a)における長さb)は、例えば50mm~70mm程度が好ましい。 The reference electrode 3 is enclosed so as to fill the inside of the solid electrolyte tube 4, and the end portion of the internal electrode 1 is embedded in the central portion thereof. The internal electrode 1 does not reach the tip portion of the solid electrolyte tube 4 (the region shown by the length a in FIG. 1A) which is in direct contact with the molten metal, and the reference electrode 3 is filled. The length a is preferably, for example, about 3 mm to 5 mm. On the other hand, the length (length b in FIG. 1A) of the remaining portion of the solid electrolyte tube 4 (the portion covered with the reinforcing tube 5 or the like and not in direct contact with the molten metal) is preferably about 50 mm to 70 mm, for example.

なお、図示していないが、基準極3として空気基準極(気体基準極)が使用される場合は、固体電解質管4の外部から固体電解質管4の内部へ空気等の気体を導入するためのパイプを固体電解質管4の内部に設ける。このとき、固体電解質管4の内部は、このパイプを介して導入された空気等の気体が充填されており、酸素濃度が一定に保たれている。基準極3として空気基準極が使用される場合は、固体酸素基準極と比較して長時間(数十時間~数百時間)の測定ができるというメリットがある。 Although not shown, when an air reference electrode (gas reference electrode) is used as the reference electrode 3, a gas such as air is introduced from the outside of the solid electrolyte tube 4 into the inside of the solid electrolyte tube 4. The pipe is provided inside the solid electrolyte pipe 4. At this time, the inside of the solid electrolyte pipe 4 is filled with a gas such as air introduced through the pipe, and the oxygen concentration is kept constant. When the air reference electrode is used as the reference electrode 3, there is an advantage that the measurement can be performed for a long time (several tens of hours to several hundred hours) as compared with the solid oxygen reference electrode.

(固体電解質管4)
固体電解質管4は、当該固体電解質管4の先端部である浸漬部4aを有し、その材質としては、固体電解質(イオン導電性固体)の性質を持ち、選択的に酸素イオン(O2-)だけを通すものであればよく、例えば安定化ジルコニア(ZrO+MgO)が好適なものとして挙げられる。
(Solid electrolyte tube 4)
The solid electrolyte tube 4 has an immersion portion 4a which is the tip of the solid electrolyte tube 4, and as a material thereof, has the property of a solid electrolyte (ion conductive solid) and selectively oxygen ions (O 2- ), For example, stabilized zirconia (ZrO 2 + MgO) can be mentioned as a suitable one.

(補強管5)
補強管5は、固体電解質管4の割れを防止するためのものであり、例えばアルミナ管が好適である。
(Reinforcing pipe 5)
The reinforcing pipe 5 is for preventing the solid electrolyte pipe 4 from cracking, and for example, an alumina pipe is suitable.

(耐火物6)
耐火物6の材質としては、耐火セメント、が好適であり、例えばマグネシウム系セメントが好適である。
(Refractory 6)
As the material of the refractory material 6, refractory cement is suitable, and for example, magnesium-based cement is suitable.

(外部電極7)
外部電極7の材質としては、酸素濃度測定プローブ10を溶融金属中に浸漬した際に溶融しない金属であればよく、例えばステンレス鋼(SUS)が好適である。内部電極1及び外部電極7ともにステンレス鋼(SUS)を使用することが最適であり、この場合、内部電極1と外部電極7との間に測定誤差の原因となる熱起電力が発生しないため、測定誤差を補正する必要が生じないメリットがある。
(External electrode 7)
The material of the external electrode 7 may be any metal that does not melt when the oxygen concentration measuring probe 10 is immersed in the molten metal, and for example, stainless steel (SUS) is suitable. It is optimal to use stainless steel (SUS) for both the internal electrode 1 and the external electrode 7, because in this case, a thermoelectromotive force that causes a measurement error does not occur between the internal electrode 1 and the external electrode 7. There is an advantage that it is not necessary to correct the measurement error.

(管状部材8)
管状部材8の材質としては、酸素濃度測定プローブ10を溶融金属中に浸漬した際に溶融しない金属であればよく、例えばステンレス鋼(SUS)やセラミックス等からなる。管状部材8の内部には、不活性ガスが流入する。不活性ガスとしては、例えば窒素(N)やアルゴン(Ar)からなるガスが好適である。
(Tubular member 8)
The material of the tubular member 8 may be any metal that does not melt when the oxygen concentration measuring probe 10 is immersed in the molten metal, and is made of, for example, stainless steel (SUS) or ceramics. The inert gas flows into the tubular member 8. As the inert gas, for example, a gas composed of nitrogen (N 2 ) or argon (Ar) is suitable.

管状部材8は、不活性ガスが流入する第1の端部及び第1の端部から流入した不活性ガスを放出する第2の端部を有するものである。管状部材8は、酸素濃度測定プローブ10に沿わせるように溶融金属の流れに対して固体電解質管4が配置される位置よりも上流側に配置される。管状部材8は、例えば、ステンレス等の材質からなる固定部材によって外部電極7の外表面に接触するように固定されて配置される。固体電解質管4よりも上流側に配置した管状部材8の内部を流入する窒素(N)やアルゴン(Ar)等からなる不活性ガスは、連続あるいは間欠的に固体電解質管4の浸漬部4aの近傍に位置する管状部材8の第2の端部から溶融金属の流れに沿って流れ出る。流れ出た不活性ガスが固体電解質管4の溶融金属に浸漬している浸漬部4a表面に当たることになる。なお、管状部材8の第2の端部が浸漬部4aの近傍に位置するとは、外部電極7の外表面に配置された管状部材8の第2の端部が外部電極7の先端の位置と同じかそれよりも下方であって、第2の端部から放出する不活性ガスを浸漬部4aの表面に当てることが可能な位置に配置されている場合を包含する。これにより、固体電解質管4の溶融金属に浸漬している浸漬部4a表面は、スラグ等からなる酸化物が形成されにくくなるか、または、すでに形成されている酸化物を除去することができる。その結果、スラグ等からなる酸化物が固体電解質管4の表面に付着して溶融金属中の酸素濃度が高く測定されてしまうことを抑制することができるため、溶融金属中の酸素濃度を精度良く測定することができる。 The tubular member 8 has a first end into which the inert gas flows in and a second end in which the inert gas flowing in from the first end is discharged. The tubular member 8 is arranged upstream of the position where the solid electrolyte tube 4 is arranged with respect to the flow of the molten metal so as to be along the oxygen concentration measuring probe 10. The tubular member 8 is fixed and arranged so as to be in contact with the outer surface of the external electrode 7 by a fixing member made of a material such as stainless steel. The inert gas composed of nitrogen (N 2 ), argon (Ar), etc. flowing into the inside of the tubular member 8 arranged on the upstream side of the solid electrolyte pipe 4 continuously or intermittently is the immersion portion 4a of the solid electrolyte pipe 4. It flows out along the flow of the molten metal from the second end of the tubular member 8 located in the vicinity of. The flowing inert gas hits the surface of the immersion portion 4a immersed in the molten metal of the solid electrolyte tube 4. The fact that the second end of the tubular member 8 is located near the immersion portion 4a means that the second end of the tubular member 8 arranged on the outer surface of the external electrode 7 is the position of the tip of the external electrode 7. This includes the case where the inert gas emitted from the second end portion is located at the same level or below the same position so as to be able to hit the surface of the immersion portion 4a. As a result, the surface of the immersed portion 4a immersed in the molten metal of the solid electrolyte tube 4 is less likely to form an oxide made of slag or the like, or the oxide already formed can be removed. As a result, it is possible to prevent the oxide made of slag or the like from adhering to the surface of the solid electrolyte tube 4 and measuring the oxygen concentration in the molten metal to be high, so that the oxygen concentration in the molten metal can be accurately measured. Can be measured.

図1中のS領域は、空気であるが、基準極3の寿命を延ばすために窒素をフローする実施形態としてもよい。 Although the S region in FIG. 1 is air, it may be an embodiment in which nitrogen is flowed in order to extend the life of the reference electrode 3.

本発明の実施形態に係る酸素濃度測定プローブ10は、種々の溶融金属(例えば溶銅)中の酸素濃度を測定するために好適である。 The oxygen concentration measuring probe 10 according to the embodiment of the present invention is suitable for measuring the oxygen concentration in various molten metals (for example, molten copper).

図1(b)は、酸素濃度測定プローブ10において、管状部材8が放出する不活性ガスの流れの方向8aを示す。不活性ガスの流れの方向8aは、固体電解質間4の浸漬部4aが位置する中心Oに向いている。 FIG. 1B shows the direction 8a of the flow of the inert gas released by the tubular member 8 in the oxygen concentration measuring probe 10. The direction 8a of the flow of the inert gas is directed to the center O where the immersion portion 4a of the solid electrolyte-to-solid electrolyte 4 is located.

図1(a),(b)において、外部電極7に沿って設けられた管状部材8は、第1の端部に接続された接続部12を介して接続チューブ16に接続されている。接続チューブ16は、ポンプ13によって不活性ガス源14から不活性ガスを管状部材8の第1の端部へ供給する。 In FIGS. 1A and 1B, the tubular member 8 provided along the external electrode 7 is connected to the connecting tube 16 via the connecting portion 12 connected to the first end portion. The connecting tube 16 supplies the inert gas from the inert gas source 14 to the first end of the tubular member 8 by the pump 13.

ポンプ13は、制御部15によって制御され、不活性ガスの管状部材8への供給量、連続供給、間欠供給等が制御される。制御部15は、電位差計11が出力する電位差信号を入力して溶融金属中の酸素濃度を監視し、その結果を記録し、また、その結果により、ポンプ13を制御する。 The pump 13 is controlled by the control unit 15, and the supply amount, continuous supply, intermittent supply, and the like of the inert gas to the tubular member 8 are controlled. The control unit 15 inputs a potential difference signal output by the potentiometer 11 to monitor the oxygen concentration in the molten metal, records the result, and controls the pump 13 based on the result.

図2は、酸素濃度測定プローブ10において、管状部材81,82,83が3本設けられた変形例を示す。この変形例では、不活性ガスの流れの方向8aは、いずれも中心に向くように、管状部材8の不活性ガス放出端の形状を工夫してもよい。 FIG. 2 shows a modified example in which the oxygen concentration measuring probe 10 is provided with three tubular members 81, 82, and 83. In this modification, the shape of the inert gas discharge end of the tubular member 8 may be devised so that the direction 8a of the flow of the inert gas is directed toward the center.

〔酸素濃度検出器〕
本発明の実施形態に係る酸素濃度検出器は、本発明の実施形態に係る上記酸素濃度測定プローブ10を備える。
[Oxygen concentration detector]
The oxygen concentration detector according to the embodiment of the present invention includes the oxygen concentration measuring probe 10 according to the embodiment of the present invention.

内部電極1及び外部電極7にはそれぞれリード線が接続されており、各リード線は、前述した電位差計11に接続されている。内外電極間には酸素濃度比によって決まる起電力が発生しており、この電極間に発生する電圧を電位差計11で測定することにより、周知の換算式を用いて酸素濃度を求めることができる。 Lead wires are connected to the internal electrodes 1 and the external electrodes 7, and each lead wire is connected to the above-mentioned potentiometer 11. An electromotive force determined by the oxygen concentration ratio is generated between the inner and outer electrodes, and by measuring the voltage generated between the electrodes with a potentiometer 11, the oxygen concentration can be obtained using a well-known conversion formula.

なお、本発明は、上記実施の形態及び実施例に限定されず種々に変形実施が可能である。 The present invention is not limited to the above embodiments and examples, and various modifications can be made.

1…内部電極
2…金属コーティング
3…基準極
3A…封止材
4…固体電解質管
5…補強管
6…耐火物
7…外部電極
8,81,82,83…管状部材
10…酸素濃度測定プローブ
11…電位差計
12…接続部
13…ポンプ
14…不活性ガス源
15…制御部
16…接続チューブ
1 ... Internal electrode 2 ... Metal coating 3 ... Reference electrode 3A ... Encapsulant 4 ... Solid electrolyte tube 5 ... Reinforcing tube 6 ... Fireproof material 7 ... External electrode 8,81,82,83 ... Tubular member 10 ... Oxygen concentration measuring probe 11 ... Potential difference meter 12 ... Connection unit 13 ... Pump 14 ... Inert gas source 15 ... Control unit 16 ... Connection tube

Claims (3)

内部電極及び外部電極と、前記内部電極と前記外部電極の間に配置され、溶融金属へ浸漬される浸漬部を有した固体電解質管と、前記外部電極の外表面に接触して配置され、不活性ガスが流入する第1の端部と流入した不活性ガスを放出する第2の端部を有し、前記第2の端部が前記外部電極の先端の位置と同じかそれよりも下方であって、放出される前記不活性ガスを前記溶融金属の流れに沿って前記浸漬部の表面に当てることが可能な位置に配置されている管状部材と、を備える酸素濃度測定プローブ。 The internal electrode and the external electrode, the solid electrolyte tube arranged between the internal electrode and the external electrode and having a dipping portion immersed in the molten metal, and the solid electrolyte tube arranged in contact with the outer surface of the external electrode are not arranged. It has a first end into which the active gas flows in and a second end in which the inflowing inert gas is discharged, the second end being at or below the position of the tip of the external electrode. An oxygen concentration measuring probe comprising a tubular member arranged at a position where the released inert gas can be applied to the surface of the immersion portion along the flow of the molten metal . 前記不活性ガスは、窒素、又はアルゴンからなる請求項1に記載の酸素濃度測定プローブ。 The oxygen concentration measuring probe according to claim 1, wherein the inert gas is nitrogen or argon. 請求項1又は2に記載の酸素濃度測定プローブを備える酸素濃度検出器。 An oxygen concentration detector comprising the oxygen concentration measuring probe according to claim 1 or 2 .
JP2018012952A 2018-01-29 2018-01-29 Oxygen concentration measurement probe and oxygen concentration detector Active JP6992548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018012952A JP6992548B2 (en) 2018-01-29 2018-01-29 Oxygen concentration measurement probe and oxygen concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018012952A JP6992548B2 (en) 2018-01-29 2018-01-29 Oxygen concentration measurement probe and oxygen concentration detector

Publications (2)

Publication Number Publication Date
JP2019132617A JP2019132617A (en) 2019-08-08
JP6992548B2 true JP6992548B2 (en) 2022-01-13

Family

ID=67544875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018012952A Active JP6992548B2 (en) 2018-01-29 2018-01-29 Oxygen concentration measurement probe and oxygen concentration detector

Country Status (1)

Country Link
JP (1) JP6992548B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161469A (en) 2016-03-11 2017-09-14 日立金属株式会社 Oxygen concentration measurement probe and oxygen concentration detector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117060A (en) * 1984-07-03 1986-01-25 Sumitomo Metal Ind Ltd Continuous measurement for amount of oxygen in molten metal
JPH0617215A (en) * 1992-06-30 1994-01-25 Nippon Steel Corp Instrument for measuring component of hot-dipping bath
JP3073927B2 (en) * 1996-04-20 2000-08-07 株式会社フジクラ Probe for continuous measurement of oxygen in molten metal
US6083368A (en) * 1996-04-20 2000-07-04 Kawaso Electric Industrial Co., Ltd. Probe device for continuous measurements of oxygen in running molten metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161469A (en) 2016-03-11 2017-09-14 日立金属株式会社 Oxygen concentration measurement probe and oxygen concentration detector

Also Published As

Publication number Publication date
JP2019132617A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
KR970003281B1 (en) Plated sensor for monitoring corrosion or electroplating
US3468780A (en) Apparatus for determining the oxygen content of molten metal
JPS6177756A (en) Hot-gas measuring probe
WO2017080005A1 (en) Sensor and method for measuring content of hydrogen in metal melt
JP6992548B2 (en) Oxygen concentration measurement probe and oxygen concentration detector
DE1906388C3 (en) Device for the continuous determination of the oxygen content of molten metals
US3719574A (en) Apparatus for measuring in a continuous manner the oxygen in a molten metal
JP6620616B2 (en) Oxygen concentration measurement probe and oxygen concentration detector
JPH0829375A (en) Sensor for measuring quantity of hydrogen dissolved in molten metal
JP3073927B2 (en) Probe for continuous measurement of oxygen in molten metal
KR100443555B1 (en) Apparatus for making electrochemical measurements in glass or salt melts
US11505486B2 (en) Verifiable bubbler
JP4620487B2 (en) Oxygen sensor
JP3474015B2 (en) Continuous measurement of oxygen activity in molten material
JP3645439B2 (en) Thermocouple device
KR100484707B1 (en) Apparatus for making electrochemical measurements
JP2006098209A (en) Solid electrolyte type sensor probe for molten metal
US5902468A (en) Device for conducting electrochemical measurements in glass or salt melts
JP2008151709A (en) Oxygen sensor
JP2020169826A (en) Electrochemical sensor electrode, electrochemical sensor, and method for producing the same
JPH0629880B2 (en) Method and device for measuring phosphorus concentration in molten metal
CN102057262A (en) Protective cover for a sensor in aluminium melts
JP4718264B2 (en) Oxygen sensor for oxygen-free copper
JPH04166758A (en) Method and apparatus for measuring concentration of oxygen in fused metal
JP2017116315A (en) Oxygen sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6992548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350