JP6991707B2 - Conductive coating liquid and conductive rough surface - Google Patents

Conductive coating liquid and conductive rough surface Download PDF

Info

Publication number
JP6991707B2
JP6991707B2 JP2016237771A JP2016237771A JP6991707B2 JP 6991707 B2 JP6991707 B2 JP 6991707B2 JP 2016237771 A JP2016237771 A JP 2016237771A JP 2016237771 A JP2016237771 A JP 2016237771A JP 6991707 B2 JP6991707 B2 JP 6991707B2
Authority
JP
Japan
Prior art keywords
conductive
conductive coating
coating liquid
weight
rough surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016237771A
Other languages
Japanese (ja)
Other versions
JP2018090746A (en
Inventor
康功 久留島
隆裕 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Chemtex Corp
Original Assignee
Nagase Chemtex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Chemtex Corp filed Critical Nagase Chemtex Corp
Priority to JP2016237771A priority Critical patent/JP6991707B2/en
Priority to CN201711257764.9A priority patent/CN108165141A/en
Publication of JP2018090746A publication Critical patent/JP2018090746A/en
Application granted granted Critical
Publication of JP6991707B2 publication Critical patent/JP6991707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、導電性塗布液及び導電性粗面体に関する。 The present invention relates to a conductive coating liquid and a conductive rough surface.

従来、導電性樹脂を含有する導電性塗布液は、凹凸のない基材上に塗布して凹凸のない導電性塗布層を形成し、導電性を付与する目的で使用されてきた。例えば特許文献1には、凹凸のない熱可塑性樹脂フィルムの少なくとも片面に、導電性樹脂を含有する組成物を用いて凹凸のない積層膜を形成し、偏光板保護用積層フィルムとすることが記載されている。また、特許文献2には、凹凸のない基材上に、ポリチオフェン系の導電性高分子を含む材料により凹凸のない中間層等を形成し、グリーンシート製造用剥離フィルムとすることが記載されている。 Conventionally, a conductive coating liquid containing a conductive resin has been used for the purpose of applying a conductive coating liquid on a substrate having no irregularities to form a conductive coating layer without irregularities and imparting conductivity. For example, Patent Document 1 describes that a laminated film having no unevenness is formed on at least one surface of a thermoplastic resin film having no unevenness by using a composition containing a conductive resin to form a laminated film for protecting a polarizing plate. Has been done. Further, Patent Document 2 describes that an intermediate layer or the like having no unevenness is formed on a base material having no unevenness with a material containing a polythiophene-based conductive polymer to form a release film for producing a green sheet. There is.

しかしながら、近年ではより高度な生産性が求められるようになり、光拡散フィルムや反射フィルムなど、凹凸を有する導電性塗布層の形成が求められている。例えば特許文献3には、凹凸のない基材フィルムの一方の面に、ポリチオフェン等の帯電防止剤及び微粒子を含み凹凸を有する帯電防止性背面保護層等を形成し、光学用光拡散フィルムとすることが記載されている。しかしながら、特許文献3に記載された光学用光拡散フィルムでは、近年の高度な帯電防止性の要求に十分に応えることができないという問題があった。この方法においては、所望の凹凸を得るために配合された多くの微粒子が導電経路を遮断してしまい、その為に十分な帯電防止性を発現させることが出来ていないと考えられる。 However, in recent years, higher productivity has been required, and formation of a conductive coating layer having irregularities such as a light diffusing film and a reflective film has been required. For example, in Patent Document 3, an antistatic agent such as polythiophene and an antistatic back surface protective layer containing fine particles and having irregularities are formed on one surface of a base film having no irregularities to form an optical light diffusion film. It is stated that. However, the optical light diffusing film described in Patent Document 3 has a problem that it cannot sufficiently meet the recent demand for high antistatic properties. In this method, it is considered that many fine particles blended in order to obtain desired unevenness block the conductive path, and therefore sufficient antistatic property cannot be exhibited.

一方、従来の導電性塗布液を凹凸を有する基材上に塗布する場合、基材の凹凸を残すために薄く塗ると、凸部分において導電性塗布層が薄くなりすぎて所望の導電性が得られず、所望の導電性を得るために厚く塗ると、凹部分が導電性塗布層により埋もれてしまい凹凸を維持出来ないという課題があった。 On the other hand, when the conventional conductive coating liquid is applied on a base material having unevenness, if it is applied thinly in order to leave the unevenness of the base material, the conductive coating layer becomes too thin in the convex portion and the desired conductivity is obtained. If the coating is thickly applied to obtain the desired conductivity, the concave portion is buried by the conductive coating layer, and there is a problem that the unevenness cannot be maintained.

特開2006-243216号公報Japanese Unexamined Patent Publication No. 2006-243216 特開2015-66908号公報JP-A-2015-66908 特開2007-206375号公報Japanese Unexamined Patent Publication No. 2007-206375

本発明は、凹凸を有する基材上に塗布した場合であっても均一な膜厚で導電性塗布層を形成することができるため基材の凹凸を維持することができ、かつ、凹凸のない基材に塗布した場合と同程度の導電性を発揮できる導電性塗布液を提供することを目的とする。 According to the present invention, the conductive coating layer can be formed with a uniform film thickness even when applied on a substrate having irregularities, so that the irregularities of the substrate can be maintained and there is no unevenness. It is an object of the present invention to provide a conductive coating liquid capable of exhibiting the same degree of conductivity as when coated on a substrate.

本発明者は、鋭意検討の結果、導電性樹脂、非導電性樹脂、及び、特定量のレベリング剤を含有する導電性塗布液が、凹凸を有する基材上に塗布した場合であっても均一な膜厚で導電性塗布層を形成することができるため基材の凹凸を維持することができ、かつ、凹凸のない基材に塗布した場合と同程度の導電性を発揮できることを見出し、本発明を完成した。 As a result of diligent studies, the present inventor has conducted a uniform application even when a conductive coating liquid containing a conductive resin, a non-conductive resin, and a specific amount of a leveling agent is applied onto a substrate having irregularities. We have found that the conductive coating layer can be formed with a uniform film thickness, so that the unevenness of the base material can be maintained, and that the same degree of conductivity as when applied to a base material without unevenness can be exhibited. Completed the invention.

即ち、本発明の導電性塗布液は、
導電性樹脂(a)を全固形分中1~20重量%、
非導電性樹脂(b)を全固形分中20~98.9重量%、及び、
レベリング剤(c)を全固形分中0.1~60重量%含有する導電性塗布液であって、
導電性樹脂(a)に対するレベリング剤(c)の固形分比は0.1~3であり、
Raが0.2μmの基材上に膜厚0.05μmで塗布した際の表面抵抗率が、Raが0.02μmの基材上に膜厚0.05μmで塗布した際の表面抵抗率の5倍以下であり、
粗面体の表面に塗布するために用いられることを特徴とする。
That is, the conductive coating liquid of the present invention is
Conductive resin (a) in an amount of 1 to 20% by weight based on the total solid content,
20 to 98.9% by weight of the non-conductive resin (b) in the total solid content, and
A conductive coating liquid containing 0.1 to 60% by weight of the leveling agent (c) in the total solid content.
The solid content ratio of the leveling agent (c) to the conductive resin (a) is 0.1 to 3.
The surface resistivity when coated on a substrate having Ra of 0.2 μm at a film thickness of 0.05 μm is 5 of the surface resistivity when coated on a substrate having Ra of 0.02 μm at a film thickness of 0.05 μm. Less than double,
It is characterized in that it is used for coating on the surface of a rough surface.

本発明の導電性塗布液において、導電性樹脂(a)が、ポリエチレンジオキシチオフェン(a1)とポリスチレンスルホン酸(a2)との複合体であり、ポリスチレンスルホン酸(a2)の重量平均分子量は20,000~1,000,000であることが好ましい。 In the conductive coating liquid of the present invention, the conductive resin (a) is a composite of polyethylene dioxythiophene (a1) and polystyrene sulfonic acid (a2), and the weight average molecular weight of polystyrene sulfonic acid (a2) is 20. It is preferably 1,000 to 1,000,000.

本発明の導電性塗布液において、レベリング剤(c)が、シロキサン骨格又はアルキレンオキシド骨格を有するポリマーであり、導電性塗布液のpHが4~10であることが好ましい。 In the conductive coating liquid of the present invention, the leveling agent (c) is preferably a polymer having a siloxane skeleton or an alkylene oxide skeleton, and the pH of the conductive coating liquid is preferably 4 to 10.

本発明の導電性粗面体は、
熱可塑性樹脂層(I)、フィラー含有層(II)、及び、本発明の導電性塗布液を用いて形成された導電性塗布層(III)を順に備え、
導電性塗布層(III)の表面のRaが0.1μm以上であり、かつ、Rzが0.5μm以上であることを特徴とする。
The conductive rough surface of the present invention is
A thermoplastic resin layer (I), a filler-containing layer (II), and a conductive coating layer (III) formed by using the conductive coating liquid of the present invention are provided in this order.
Ra on the surface of the conductive coating layer (III) is 0.1 μm or more, and Rz is 0.5 μm or more.

本発明の導電性粗面体において、フィラー含有層(II)が、平均粒子径が0.2μm以上のフィラーと、熱可塑性樹脂とを含有し、
フィラー含有層(II)の表面のRaが0.1μm以上であり、かつ、Rzが0.5μm以上であることが好ましい。
In the conductive rough surface of the present invention, the filler-containing layer (II) contains a filler having an average particle diameter of 0.2 μm or more and a thermoplastic resin.
It is preferable that Ra on the surface of the filler-containing layer (II) is 0.1 μm or more and Rz is 0.5 μm or more.

本発明の導電性粗面体において、熱可塑性樹脂層(I)が、ポリエステル、ポリウレタン、ポリエチレン、ポリプロピレン、レーヨン、ナイロン及びポリスチレンからなる群より選択される少なくとも1つを含むことが好ましい。 In the conductive rough surface of the present invention, it is preferable that the thermoplastic resin layer (I) contains at least one selected from the group consisting of polyester, polyurethane, polyethylene, polypropylene, rayon, nylon and polystyrene.

本発明の導電性光拡散フィルムは、本発明の導電性粗面体を備えたことを特徴とする。 The conductive light diffusing film of the present invention is characterized by having the conductive rough surface of the present invention.

本発明の導電性反射フィルムは、本発明の導電性粗面体を備えたことを特徴とする。 The conductive reflective film of the present invention is characterized by comprising the conductive rough surface of the present invention.

本発明の導電性塗布液は、導電性樹脂、非導電性樹脂、及び、特定量のレベリング剤を含有するため、凹凸を有する基材上に塗布した場合であっても均一な膜厚で導電性塗布層を形成することができるため基材の凹凸を維持することができ、かつ、凹凸のない基材に塗布した場合と同程度の導電性を発揮できる。 Since the conductive coating liquid of the present invention contains a conductive resin, a non-conductive resin, and a specific amount of a leveling agent, it is conductive with a uniform film thickness even when coated on a substrate having irregularities. Since the property-coated layer can be formed, the unevenness of the base material can be maintained, and the same degree of conductivity as when coated on a base material having no unevenness can be exhibited.

<<導電性塗布液>>
本発明の導電性塗布液は、
導電性樹脂(a)を全固形分中1~20重量%、
非導電性樹脂(b)を全固形分中20~98.9重量%、及び、
レベリング剤(c)を全固形分中0.1~60重量%含有する導電性塗布液であって、
導電性樹脂(a)に対するレベリング剤(c)の固形分比は0.1~3であり、
Raが0.2μmの基材上に膜厚0.05μmで塗布した際の表面抵抗率が、Raが0.02μmの基材上に膜厚0.05μmで塗布した際の表面抵抗率の5倍以下であり、
粗面体の表面に塗布するために用いられることを特徴とする。
<< Conductive coating liquid >>
The conductive coating liquid of the present invention is used.
Conductive resin (a) in an amount of 1 to 20% by weight based on the total solid content,
20 to 98.9% by weight of the non-conductive resin (b) in the total solid content, and
A conductive coating liquid containing 0.1 to 60% by weight of the leveling agent (c) in the total solid content.
The solid content ratio of the leveling agent (c) to the conductive resin (a) is 0.1 to 3.
The surface resistivity when coated on a substrate having Ra of 0.2 μm at a film thickness of 0.05 μm is 5 of the surface resistivity when coated on a substrate having Ra of 0.02 μm at a film thickness of 0.05 μm. Less than double,
It is characterized in that it is used for coating on the surface of a rough surface.

<導電性樹脂(a)>
導電性樹脂(a)は、導電性塗布液に導電性を付与するための配合物である。導電性樹脂(a)としては特に限定されず、従来公知の導電性樹脂を用いることができ、具体例としては、例えば、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリフェニレンビニレン、ポリナフタレン、及びこれらの誘導体が挙げられる。これらは単独で用いても良いし、2種以上を併用してもよい。中でも、チオフェン環を分子内に含むことで導電性が高い分子ができやすい点で、分子内にチオフェン環を少なくとも1つ含む導電性樹脂が好ましい。導電性樹脂(a)は、ポリ陰イオン等のドーパントと複合体を形成していてもよい。
<Conductive resin (a)>
The conductive resin (a) is a compound for imparting conductivity to the conductive coating liquid. The conductive resin (a) is not particularly limited, and conventionally known conductive resins can be used. Specific examples thereof include polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene vinylene, polynaphthalene, and derivatives thereof. Can be mentioned. These may be used alone or in combination of two or more. Among them, a conductive resin containing at least one thiophene ring in the molecule is preferable because a molecule having high conductivity is easily formed by containing the thiophene ring in the molecule. The conductive resin (a) may form a composite with a dopant such as a poly anion.

分子内にチオフェン環を少なくとも1つ含む導電性樹脂の中でも、導電性や化学的安定性に極めて優れている点で、ポリ(3,4-二置換チオフェン)がより好ましい。また、導電性樹脂が、ポリ(3,4-二置換チオフェン)、又は、ポリ(3,4-二置換チオフェン)とポリ陰イオン(ドーパント)との複合体である場合、低温かつ短時間で導電性塗布層(III)を形成することができ、生産性にも優れることとなる。なお、ポリ陰イオンは導電性樹脂のドーパントであり、その内容については後述する。 Among the conductive resins containing at least one thiophene ring in the molecule, poly (3,4-disubstituted thiophene) is more preferable in that it is extremely excellent in conductivity and chemical stability. When the conductive resin is poly (3,4-disubstituted thiophene) or a composite of poly (3,4-disubstituted thiophene) and a poly anion (lactone), the temperature is low and the time is short. The conductive coating layer (III) can be formed, and the productivity is also excellent. The polyanion is a dopant of a conductive resin, and its contents will be described later.

ポリ(3,4-二置換チオフェン)としては、ポリ(3,4-ジアルコキシチオフェン)又はポリ(3,4-アルキレンジオキシチオフェン)が特に好ましい。ポリ(3,4-ジアルコキシチオフェン)又はポリ(3,4-アルキレンジオキシチオフェン)としては、以下の式(I): As the poly (3,4-disubstituted thiophene), poly (3,4-dialkoxythiophene) or poly (3,4-alkylenedioxythiophene) is particularly preferable. The poly (3,4-dialkoxythiophene) or poly (3,4-alkylenedioxythiophene) has the following formula (I):

Figure 0006991707000001
Figure 0006991707000001

で示される反復構造単位からなる陽イオン形態のポリチオフェンが好ましい。
ここで、R及びRは相互に独立して水素原子又はC1-4のアルキル基を表すか、又は、R及びRが結合している場合にはC1-4のアルキレン基を表す。C1-4のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基等が挙げられる。
また、R及びRが結合している場合、C1-4のアルキレン基としては、特に限定されないが、例えば、メチレン基、1,2-エチレン基、1,3-プロピレン基、1,4-ブチレン基、1-メチル-1,2-エチレン基、1-エチル-1,2-エチレン基、1-メチル-1,3-プロピレン基、2-メチル-1,3-プロピレン基等が挙げられる。これらの中では、メチレン基、1,2-エチレン基、1,3-プロピレン基が好ましく、1,2-エチレン基がより好ましい。C1-4のアルキル基、及び、C1-4のアルキレン基は、その水素の一部が置換されていても良い。C1-4のアルキレン基を有するポリチオフェンとしては、ポリエチレンジオキシチオフェン(a1)が特に好ましい。
A cationic form of polythiophene consisting of the repeating structural units indicated by is preferred.
Here, R 1 and R 2 independently represent a hydrogen atom or an alkyl group of C 1-4 , or if R 1 and R 2 are bonded, an alkylene group of C 1-4 . Represents. The alkyl group of C 1-4 is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group. ..
When R 1 and R 2 are bonded, the alkylene group of C 1-4 is not particularly limited, but for example, a methylene group, a 1,2-ethylene group, a 1,3-propylene group, 1, 4-butylene group, 1-methyl-1,2-ethylene group, 1-ethyl-1,2-ethylene group, 1-methyl-1,3-propylene group, 2-methyl-1,3-propylene group, etc. Can be mentioned. Among these, a methylene group, a 1,2-ethylene group and a 1,3-propylene group are preferable, and a 1,2-ethylene group is more preferable. The alkyl group of C 1-4 and the alkylene group of C 1-4 may be partially substituted with hydrogen. As the polythiophene having an alkylene group of C 1-4 , polyethylene dioxythiophene (a1) is particularly preferable.

導電性樹脂(a)の重量平均分子量は、特に限定されないが、500~100000であることが好ましく、1000~50000であることがより好ましく、1500~20000であることがさらに好ましい。重量平均分子量が500未満であると、導電性塗布液とした場合に要求される粘度を確保することができないことや、導電性塗布層(III)とした場合の導電性が低下することがある。 The weight average molecular weight of the conductive resin (a) is not particularly limited, but is preferably 500 to 100,000, more preferably 1,000 to 50,000, and even more preferably 1500 to 20,000. If the weight average molecular weight is less than 500, the required viscosity cannot be secured when the conductive coating liquid is used, and the conductivity when the conductive coating layer (III) is used may be lowered. ..

ドーパントは特に限定されないが、ポリ陰イオンが好ましい。ポリ陰イオンは、ポリチオフェン(誘導体)とイオン対をなすことにより複合体を形成し、ポリチオフェン(誘導体)を水中に安定に分散させることができる。ポリ陰イオンとしては、特に限定されないが、例えば、カルボン酸ポリマー類(例えば、ポリアクリル酸、ポリマレイン酸、ポリメタクリル酸等)、スルホン酸ポリマー類(例えば、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリイソプレンスルホン酸等)等が挙げられる。これらのカルボン酸ポリマー類及びスルホン酸ポリマー類はまた、ビニルカルボン酸類及びビニルスルホン酸類と他の重合可能なモノマー類、例えば、アクリレート類、スチレン、ビニルナフタレン等の芳香族ビニル化合物との共重合体であっても良い。これらの中では、ポリスチレンスルホン酸(a2)が特に好ましい。 The dopant is not particularly limited, but a poly anion is preferable. The polyanion forms a complex by forming an ion pair with the polythiophene (derivative), and the polythiophene (derivative) can be stably dispersed in water. The polyanion is not particularly limited, and is, for example, carboxylic acid polymers (for example, polyacrylic acid, polymaleic acid, polymethacrylic acid, etc.), sulfonic acid polymers (for example, polystyrene sulfonic acid, polyvinylsulfonic acid, polyisoprene, etc.). Sulfonic acid, etc.) and the like. These carboxylic acid polymers and sulfonic acid polymers are also copolymers of vinyl carboxylic acids and vinyl sulfonic acids with other polymerizable monomers, such as acrylates, styrene, vinyl naphthalene and other aromatic vinyl compounds. It may be. Of these, polystyrene sulfonic acid (a2) is particularly preferable.

ポリスチレンスルホン酸(a2)の重量平均分子量は、特に限定されないが、20,000~1,000,000であることが好ましく、50,000~500,000であることがより好ましい。分子量がこの範囲外のポリスチレンスルホン酸(a2)を使用すると、ポリチオフェン系導電性樹脂の水に対する分散安定性が低下する場合がある。なお、重量平均分子量はゲル透過クロマトグラフィー(GPC)にて測定した値である。 The weight average molecular weight of the polystyrene sulfonic acid (a2) is not particularly limited, but is preferably 20,000 to 1,000,000, more preferably 50,000 to 500,000. If polystyrene sulfonic acid (a2) having a molecular weight outside this range is used, the dispersion stability of the polythiophene-based conductive resin in water may decrease. The weight average molecular weight is a value measured by gel permeation chromatography (GPC).

導電性樹脂(a)とポリ陰イオンとの複合体としては、導電性に特に優れることから、ポリエチレンジオキシチオフェン(a1)とポリスチレンスルホン酸(a2)との複合体であることが好ましい。 The composite of the conductive resin (a) and the polyanion is preferably a composite of polyethylene dioxythiophene (a1) and polystyrene sulfonic acid (a2) because it is particularly excellent in conductivity.

導電性樹脂(a)の導電率は、特に限定されないが、導電性塗布層(III)に十分な導電性を付与する観点からは、0.01S/cm以上であることが好ましく、1S/cm以上であることがより好ましい。 The conductivity of the conductive resin (a) is not particularly limited, but is preferably 0.01 S / cm or more, preferably 1 S / cm, from the viewpoint of imparting sufficient conductivity to the conductive coating layer (III). The above is more preferable.

本発明の導電性塗布液において、導電性樹脂(a)の含有量は、全固形分中1~20重量%である限り特に限定されないが、2~10重量%であることが好ましい。導電性樹脂(a)の含有量が全固形分中1重量%未満であると、導電性の発現が不安定となることがあり、20重量%を超えると、導電性が基材の表面粗さに依存しやすくなることがある。 In the conductive coating liquid of the present invention, the content of the conductive resin (a) is not particularly limited as long as it is 1 to 20% by weight in the total solid content, but is preferably 2 to 10% by weight. If the content of the conductive resin (a) is less than 1% by weight in the total solid content, the expression of conductivity may become unstable, and if it exceeds 20% by weight, the conductivity becomes the surface roughness of the base material. It may be easy to depend on it.

<非導電性樹脂(b)>
非導電性樹脂(b)としては、特に限定されないが、例えば、ポリエステル、ポリウレタン、メラミン、アクリル、ポリオレフィン、ポリエーテル等が挙げられる。これらの非導電性樹脂(b)は、単独で用いてもよいし、2種以上を併用してもよい。
<Non-conductive resin (b)>
The non-conductive resin (b) is not particularly limited, and examples thereof include polyester, polyurethane, melamine, acrylic, polyolefin, and polyether. These non-conductive resins (b) may be used alone or in combination of two or more.

非導電性樹脂(b)は、熱可塑性樹脂を含むことが好ましい。熱可塑性樹脂としては、特に限定されないが、ポリエステル、ポリウレタン、アクリル等が挙げられる。これらの熱可塑性樹脂は、単独で用いてもよいし、2種以上を併用してもよい。 The non-conductive resin (b) preferably contains a thermoplastic resin. The thermoplastic resin is not particularly limited, and examples thereof include polyester, polyurethane, and acrylic. These thermoplastic resins may be used alone or in combination of two or more.

熱可塑性樹脂のガラス転移温度(Tg)は、特に限定されないが、70℃以下であることが好ましく、30℃以下であることがより好ましい。熱可塑性樹脂のガラス転移温度が70℃を超えると、低温乾燥時に熱可塑性樹脂の平坦化が遅れる等の理由から、耐熱性の低い粗面体上に均一に製膜することが困難となることがある。 The glass transition temperature (Tg) of the thermoplastic resin is not particularly limited, but is preferably 70 ° C. or lower, and more preferably 30 ° C. or lower. If the glass transition temperature of the thermoplastic resin exceeds 70 ° C, it may be difficult to form a uniform film on a rough surface having low heat resistance because the flattening of the thermoplastic resin is delayed during low-temperature drying. be.

熱可塑性樹脂の平均粒子径は、特に限定されないが、100nm以下であることが好ましく、50nm以下であることがより好ましい。熱可塑性樹脂の平均粒子径が100nmを超えると、導電経路が遮断されやすくなる等の理由から、十分な帯電防止性の発現が困難となることがある。なお、熱可塑性樹脂の平均粒子径の下限は、特に限定されず、溶剤に溶解していても良い。 The average particle size of the thermoplastic resin is not particularly limited, but is preferably 100 nm or less, and more preferably 50 nm or less. If the average particle size of the thermoplastic resin exceeds 100 nm, it may be difficult to exhibit sufficient antistatic properties because the conductive path is easily blocked. The lower limit of the average particle size of the thermoplastic resin is not particularly limited and may be dissolved in a solvent.

非導電性樹脂(b)が熱可塑性樹脂を含む場合、その含有量(固形分)は、特に限定されないが、(b)成分の固形分中20重量%以上であることが好ましく、50重量%以上であることがより好ましい。熱可塑性樹脂の含有量が(b)成分の固形分中20重量%未満であると、相対的に硬化性樹脂の割合が多くなり、硬化収縮が生じやすくなる等の理由により、粗面体上に均一に製膜することが困難となることがある。 When the non-conductive resin (b) contains a thermoplastic resin, its content (solid content) is not particularly limited, but is preferably 20% by weight or more, preferably 50% by weight, based on the solid content of the component (b). The above is more preferable. When the content of the thermoplastic resin is less than 20% by weight in the solid content of the component (b), the proportion of the curable resin is relatively large, and curing shrinkage is likely to occur. It may be difficult to form a uniform film.

本発明の導電性塗布液において、非導電性樹脂(b)の含有量は、全固形分中20~98.9重量%である限り特に限定されないが、50~85重量%であることが好ましい。非導電性樹脂(b)の含有量が全固形分中20重量%未満であると、基材への密着性や導電塗布層の膜強度が不十分となることがあり、98.9重量%を超えると、相対的に導電性樹脂(a)の含有量が減るため、導電性の発現が不安定となることがある。 In the conductive coating liquid of the present invention, the content of the non-conductive resin (b) is not particularly limited as long as it is 20 to 98.9% by weight in the total solid content, but is preferably 50 to 85% by weight. .. If the content of the non-conductive resin (b) is less than 20% by weight in the total solid content, the adhesion to the substrate and the film strength of the conductive coating layer may be insufficient, and 98.9% by weight. If it exceeds, the content of the conductive resin (a) is relatively reduced, so that the development of conductivity may become unstable.

<レベリング剤(c)>
レベリング剤(c)としては、特に限定されないが、例えば、ポリシロキサン、ポリアルキレンオキシド、フッ素化合物等が挙げられる。また、界面活性剤をレベリング剤(c)として用いることもできる。これらのレベリング剤(c)は、単独で用いてもよいし、2種以上を併用してもよい。
<Leveling agent (c)>
The leveling agent (c) is not particularly limited, and examples thereof include polysiloxane, polyalkylene oxide, and fluorine compounds. Further, the surfactant can also be used as the leveling agent (c). These leveling agents (c) may be used alone or in combination of two or more.

レベリング剤(c)は、基材が有する凹凸に対する導電性塗布層の追従性の観点から、シロキサン骨格又はアルキレンオキシド骨格を有するポリマーであることが好ましい。 The leveling agent (c) is preferably a polymer having a siloxane skeleton or an alkylene oxide skeleton from the viewpoint of the followability of the conductive coating layer to the unevenness of the base material.

レベリング剤(c)は、基材が有する凹凸に対する導電性塗布層の追従性の観点から、水酸基を有することが好ましい。1分子当たりの水酸基の数は、特に限定されないが、2個以上であることが好ましく、4個以上であることがより好ましい。 The leveling agent (c) preferably has a hydroxyl group from the viewpoint of the followability of the conductive coating layer to the unevenness of the base material. The number of hydroxyl groups per molecule is not particularly limited, but is preferably 2 or more, and more preferably 4 or more.

本発明の導電性塗布液において、レベリング剤(c)の含有量は、全固形分中0.1~60重量%である限り特に限定されないが、4~20重量%であることが好ましい。レベリング剤(c)の含有量が全固形分0.1重量%未満であると、導電性が基材の表面粗さに依存しやすくなるとなることがあり、60重量%を超えると、基材への密着性や導電塗布層の膜強度が不十分となることがある。 In the conductive coating liquid of the present invention, the content of the leveling agent (c) is not particularly limited as long as it is 0.1 to 60% by weight in the total solid content, but is preferably 4 to 20% by weight. If the content of the leveling agent (c) is less than 0.1% by weight of the total solid content, the conductivity may easily depend on the surface roughness of the base material, and if it exceeds 60% by weight, the base material Adhesion to the surface and the film strength of the conductive coating layer may be insufficient.

本発明の導電性塗布液において、導電性樹脂(a)に対するレベリング剤(c)の固形分比は、0.1~3である限り特に限定されないが、1~3であることが好ましい。導電性樹脂(a)に対するレベリング剤(c)の固形分比が0.1未満であると、導電性が基材の表面粗さに依存しやすくなることがあり、3を超えると、導電性塗布層の機械強度や耐水性が不十分となることがある。 In the conductive coating liquid of the present invention, the solid content ratio of the leveling agent (c) to the conductive resin (a) is not particularly limited as long as it is 0.1 to 3, but is preferably 1 to 3. If the solid content ratio of the leveling agent (c) to the conductive resin (a) is less than 0.1, the conductivity may easily depend on the surface roughness of the base material, and if it exceeds 3, the conductivity is conductive. The mechanical strength and water resistance of the coating layer may be insufficient.

本発明の導電性塗布液は、上述の(a)~(c)成分に加えて、任意に他の成分を含有していてもよい。他の成分としては、特に限定されないが、酸化防止剤、防腐剤、溶剤、スリップ剤、剥離剤、消泡剤等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 The conductive coating liquid of the present invention may optionally contain other components in addition to the above-mentioned components (a) to (c). Examples of other components include, but are not limited to, antioxidants, preservatives, solvents, slip agents, release agents, antifoaming agents and the like. These may be used alone or in combination of two or more.

本発明の導電性塗布液は、Raが0.2μmの基材上に膜厚0.05μmで塗布した際の表面抵抗率(以下、表面抵抗率Aともいう)が、Raが0.02μmの基材上に膜厚0.05μmで塗布した際の表面抵抗率(以下、表面抵抗率Bともいう)の5倍以下である。表面抵抗率Bに対する表面抵抗率Aの倍率は、5倍以下である限り特に限定されないが、3倍以下であることが好ましく、2倍以下であることがより好ましい。表面抵抗率Bに対する表面抵抗率Aの倍率が5倍を超えると、粗面体上に塗布した際に十分な導電性が得られないことがある。 The conductive coating liquid of the present invention has a surface resistivity (hereinafter, also referred to as surface resistivity A) when coated on a substrate having a Ra of 0.2 μm with a film thickness of 0.05 μm, and has a Ra of 0.02 μm. It is 5 times or less of the surface resistivity (hereinafter, also referred to as surface resistivity B) when coated on a substrate with a film thickness of 0.05 μm. The magnification of the surface resistivity A with respect to the surface resistivity B is not particularly limited as long as it is 5 times or less, but is preferably 3 times or less, and more preferably 2 times or less. If the magnification of the surface resistivity A with respect to the surface resistivity B exceeds 5 times, sufficient conductivity may not be obtained when applied onto the rough surface body.

本発明の導電性塗布液のpHは、特に限定されないが、4~10であることが好ましく、5~9であることがより好ましい。本発明の導電性塗布液のpHが4未満であると、非導電性樹脂(b)又はレベリング剤(c)の導電性塗布液中での安定性が不十分となることがあり、10を超えると、導電性樹脂(a)の導電性塗布液中での貯蔵安定性が不十分となることがある。 The pH of the conductive coating liquid of the present invention is not particularly limited, but is preferably 4 to 10, and more preferably 5 to 9. If the pH of the conductive coating liquid of the present invention is less than 4, the stability of the non-conductive resin (b) or the leveling agent (c) in the conductive coating liquid may be insufficient. If it exceeds, the storage stability of the conductive resin (a) in the conductive coating liquid may be insufficient.

本発明の導電性塗布液は、後述する本発明の導電性粗面体において、導電性塗布層(III)を形成するために用いられる。 The conductive coating liquid of the present invention is used to form the conductive coating layer (III) in the conductive rough surface of the present invention described later.

<<導電性粗面体>>
本発明の導電性粗面体は、
熱可塑性樹脂層(I)、フィラー含有層(II)、及び、本発明の導電性塗布液を用いて形成された導電性塗布層(III)を順に備え、
導電性塗布層(III)の表面のRaが0.1μm以上であり、かつ、Rzが0.5μm以上であることを特徴とする。
<< Conductive rough surface >>
The conductive rough surface of the present invention is
A thermoplastic resin layer (I), a filler-containing layer (II), and a conductive coating layer (III) formed by using the conductive coating liquid of the present invention are provided in this order.
Ra on the surface of the conductive coating layer (III) is 0.1 μm or more, and Rz is 0.5 μm or more.

<熱可塑性樹脂層(I)>
熱可塑性樹脂層(I)の材質としては、特に限定されないが、例えば、ポリエステル、ポリウレタン、ポリエチレン、ポリプロピレン、レーヨン、ナイロン、ポリスチレン、ポリオレフィン、アクリル樹脂等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。これらの中で、易成形性の観点からは、ポリエステル、ポリウレタン、ポリエチレン、ポリプロピレン、レーヨン、ナイロン及びポリスチレンからなる群より選択される少なくとも1つであることが好ましい。
<Thermoplastic resin layer (I)>
The material of the thermoplastic resin layer (I) is not particularly limited, and examples thereof include polyester, polyurethane, polyethylene, polypropylene, rayon, nylon, polystyrene, polyolefin, and acrylic resin. These may be used alone or in combination of two or more. Among these, from the viewpoint of easy moldability, at least one selected from the group consisting of polyester, polyurethane, polyethylene, polypropylene, rayon, nylon and polystyrene is preferable.

熱可塑性樹脂層(I)の厚さは、特に限定されないが、10~1000μmであることが好ましく、20~800μmであることがより好ましい。熱可塑性樹脂層(I)の厚さが10μm未満であると、粗面体の機械強度が不十分となることがあり、1000μmを超えると、粗面体を延伸して所定の厚み、幅に調整することや、ロール状に巻き取ること、所定の大きさに切断することが困難となることがある。 The thickness of the thermoplastic resin layer (I) is not particularly limited, but is preferably 10 to 1000 μm, more preferably 20 to 800 μm. If the thickness of the thermoplastic resin layer (I) is less than 10 μm, the mechanical strength of the rough surface body may be insufficient, and if it exceeds 1000 μm, the rough surface body is stretched to adjust to a predetermined thickness and width. It may be difficult to wind it up into a roll or cut it into a predetermined size.

<フィラー含有層(II)>
熱可塑性樹脂層(I)上にフィラー含有層(II)を形成することにより、熱可塑性樹脂層(I)の表面を容易に粗面化することができ、加えて光散乱性をより高度に付与することが出来る。フィラー含有層(II)としては、フィラーを含有する限り特に限定されないが、熱可塑性樹脂層(I)との密着性及び機械強度、易成形性の観点から、フィラーと熱可塑性樹脂とを含有することが好ましい。
<Filler-containing layer (II)>
By forming the filler-containing layer (II) on the thermoplastic resin layer (I), the surface of the thermoplastic resin layer (I) can be easily roughened, and in addition, the light scattering property is further improved. Can be granted. The filler-containing layer (II) is not particularly limited as long as it contains the filler, but contains the filler and the thermoplastic resin from the viewpoint of adhesion to the thermoplastic resin layer (I), mechanical strength, and easy moldability. Is preferable.

フィラーとしては、特に限定されないが、例えば、シリカやチタニア、ジルコニア等の金属酸化物粒子、アクリルビーズ、ウレタンゴム等の有機樹脂粒子等が挙げられる。これらの中で、光散乱性の観点からは、金属酸化物粒子が好ましい。これらは単独で用いても良いし、2種以上を併用しても良い。 The filler is not particularly limited, and examples thereof include metal oxide particles such as silica, titania, and zirconia, and organic resin particles such as acrylic beads and urethane rubber. Among these, metal oxide particles are preferable from the viewpoint of light scattering property. These may be used alone or in combination of two or more.

フィラーの平均粒子径は、特に限定されないが、0.2μm以上であることが好ましく、1μm以上であることがより好ましい。フィラーの平均粒子径が0.2μm未満であると、所定の表面粗さの粗面体を形成することが困難となることがある。 The average particle size of the filler is not particularly limited, but is preferably 0.2 μm or more, and more preferably 1 μm or more. If the average particle size of the filler is less than 0.2 μm, it may be difficult to form a rough surface having a predetermined surface roughness.

熱可塑性樹脂としては、特に限定されないが、例えば、ポリエステル、ポリウレタン、ポリエチレン、ポリプロピレン、レーヨン、ナイロン、ポリスチレン、ポリオレフィン、アクリル樹脂等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 The thermoplastic resin is not particularly limited, and examples thereof include polyester, polyurethane, polyethylene, polypropylene, rayon, nylon, polystyrene, polyolefin, acrylic resin and the like. These may be used alone or in combination of two or more.

フィラー含有層(II)の表面のRaは、特に限定されないが、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましい。フィラー含有層(II)の表面のRaが0.1μm未満であると、光散乱性や耐ブロッキング性等の表面粗さに起因する特性が不十分となることがある。フィラー含有層(II)の表面のRzは、特に限定されないが、0.5μm以上であることが好ましく、1.0μm以上であることがより好ましい。フィラー含有層(II)の表面のRzが0.5μm未満であると、光散乱性や耐ブロッキング性等の表面粗さに起因する特性が不十分となることがある。 The Ra on the surface of the filler-containing layer (II) is not particularly limited, but is preferably 0.1 μm or more, and more preferably 0.2 μm or more. If the Ra on the surface of the filler-containing layer (II) is less than 0.1 μm, properties due to surface roughness such as light scattering resistance and blocking resistance may be insufficient. The Rz on the surface of the filler-containing layer (II) is not particularly limited, but is preferably 0.5 μm or more, and more preferably 1.0 μm or more. If the Rz of the surface of the filler-containing layer (II) is less than 0.5 μm, the properties due to the surface roughness such as light scattering resistance and blocking resistance may be insufficient.

フィラー含有層(II)の表面のRa及びRzは、サンドブラストや化学エッチングにより微細凹凸構造に加工された金型で処理すること等により微調整することができる。 Ra and Rz on the surface of the filler-containing layer (II) can be finely adjusted by treating with a mold processed into a fine uneven structure by sandblasting or chemical etching.

なお、本発明において、Raとは算術平均粗さを指し、Rzとは十点平均粗さを指す。これらは、JIS B0601等において規格化されている。 In the present invention, Ra refers to the arithmetic mean roughness, and Rz refers to the ten-point average roughness. These are standardized in JIS B0601 and the like.

フィラー含有層(II)の厚さは、特に限定されないが、1~500μmであることが好ましく、2~200μmであることがより好ましい。フィラー含有層(II)の厚さが1μm未満であると、摩擦等により一部のフィラーが脱離することがあり、500μmを超えると、フィラーが表面に並びにくくなること等から所定の表面粗さを得ることが難しくなることがある。 The thickness of the filler-containing layer (II) is not particularly limited, but is preferably 1 to 500 μm, more preferably 2 to 200 μm. If the thickness of the filler-containing layer (II) is less than 1 μm, some of the filler may be detached due to friction or the like, and if it exceeds 500 μm, the filler may become difficult to line up on the surface. It can be difficult to get the rust.

<導電性塗布層(III)>
導電性塗布層(III)は、フィラー含有層(II)上に、本発明の導電性塗布液を用いて形成される。本発明の導電性塗布液を用いて導電性塗布層(III)を形成する方法としては、特に限定されないが、フィラー含有層(II)上に本発明の導電性塗布液を塗布した後、乾燥させる方法等が挙げられる。
<Conductive coating layer (III)>
The conductive coating layer (III) is formed on the filler-containing layer (II) using the conductive coating liquid of the present invention. The method for forming the conductive coating layer (III) using the conductive coating liquid of the present invention is not particularly limited, but the conductive coating liquid of the present invention is applied onto the filler-containing layer (II) and then dried. There is a method of making it.

フィラー含有層(II)上に本発明の導電性塗布液を塗布する方法としては、特に限定されないが、例えば、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、スリットコート法等が挙げられる。フィラー含有層(II)上に塗布された本発明の導電性塗布液を乾燥させる方法としては、特に限定されないが、送風乾燥設備、減圧乾燥設備、IR乾燥設備、ホットプレート等を用いて、20~200℃で0.1~30分間乾燥させる方法等が挙げられる。 The method for applying the conductive coating liquid of the present invention onto the filler-containing layer (II) is not particularly limited, and is, for example, a roll coating method, a bar coating method, a dip coating method, a spin coating method, a casting method, or a die coating method. , Blade coat method, gravure coat method, curtain coat method, spray coat method, doctor coat method, slit coat method and the like. The method for drying the conductive coating liquid of the present invention coated on the filler-containing layer (II) is not particularly limited, but 20 Examples thereof include a method of drying at ~ 200 ° C. for 0.1 to 30 minutes.

導電性塗布層(III)の表面のRaは、0.1μm以上である限り特に限定されないが、0.2μm以上であることが好ましい。導電性塗布層(III)の表面のRaが0.1μm未満であると、光散乱性や耐ブロッキング性等の表面粗さに起因する特性が不十分となることがある。導電性塗布層(III)の表面のRzは、0.5μm以上である限り特に限定されないが、1.0μm以上であることが好ましい。導電性塗布層(III)の表面のRzが0.5μm未満であると、光散乱性や耐ブロッキング性等の表面粗さに起因する特性が不十分となることがある。 Ra on the surface of the conductive coating layer (III) is not particularly limited as long as it is 0.1 μm or more, but it is preferably 0.2 μm or more. If the Ra of the surface of the conductive coating layer (III) is less than 0.1 μm, the properties due to the surface roughness such as light scattering property and blocking resistance may be insufficient. The Rz on the surface of the conductive coating layer (III) is not particularly limited as long as it is 0.5 μm or more, but it is preferably 1.0 μm or more. If the Rz of the surface of the conductive coating layer (III) is less than 0.5 μm, the properties due to the surface roughness such as light scattering property and blocking resistance may be insufficient.

導電性塗布層(III)の厚さは、特に限定されないが、0.01~1μmであることが好ましく、0.02~0.5μmであることがより好ましい。導電性塗布層(III)の厚さが0.01μm未満であると、導電性が不十分となることがあり、1μmを超えると、光学特性が不十分となることがある。 The thickness of the conductive coating layer (III) is not particularly limited, but is preferably 0.01 to 1 μm, and more preferably 0.02 to 0.5 μm. If the thickness of the conductive coating layer (III) is less than 0.01 μm, the conductivity may be insufficient, and if it exceeds 1 μm, the optical characteristics may be insufficient.

<<導電性光拡散フィルム>>
本発明の導電性光拡散フィルムは、本発明の導電性粗面体を備えたことを特徴とする。
<< Conductive light diffusion film >>
The conductive light diffusing film of the present invention is characterized by having the conductive rough surface of the present invention.

<<導電性反射フィルム>>
本発明の導電性反射フィルムは、本発明の導電性粗面体を備えたことを特徴とする。
<< Conductive reflective film >>
The conductive reflective film of the present invention is characterized by comprising the conductive rough surface of the present invention.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例のみに限定されるものではない。以下、「部」又は「%」は特記ない限り、それぞれ「重量部」又は「重量%」を意味する。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples. Hereinafter, "part" or "%" means "part by weight" or "% by weight", respectively, unless otherwise specified.

1.使用材料
以下の実施例及び比較例では、下記の材料を使用した。
1-1.導電性樹脂(a)
・PEDOT:PSS(製造例1にて作製、固形分率1.3重量%)
・高導電PEDOT:PSS(製造例2にて作製、固形分率1.2重量%)
1-2.非導電性樹脂(b)
・ポリエステル(東亞合成株式会社社製、アロンメルトPES-2405A30、ガラス転移温度40℃、平均粒子径80nm、固形分率30重量%)
・ポリウレタン(第一工業製薬株式会社製、スーパーフレックス210、ガラス転移温度41℃、平均粒子径40nm、固形分率35%)
・メラミン(DIC株式会社製、ベッカミンM-3、固形分率77%)
・アクリル(DIC株式会社製、ボンコート5400EF、ガラス転移温度6℃、平均粒子径200nm、固形分率55%)
1-3.レベリング剤(c)
・ポリシロキサン(信越化学工業株式会社製、X-22-4952、1分子当たりの水酸基の数:2個)
・ポリアルキレンオキシド(第一工業製薬株式会社製、エバンU-103、1分子当たりの水酸基の数:2個)
1-4.熱可塑性樹脂層(I)及びフィラー含有層(II)
・ポリエステルベース粗面体(製造例3にて作製)
・ポリウレタンベース粗面体(製造例4にて作製)
・ポリスチレンベース粗面体(製造例5にて作製)
1. 1. Materials used In the following examples and comparative examples, the following materials were used.
1-1. Conductive resin (a)
-PEDOT: PSS (produced in Production Example 1, solid content 1.3% by weight)
Highly conductive PEDOT: PSS (produced in Production Example 2, solid content 1.2% by weight)
1-2. Non-conductive resin (b)
-Polyester (manufactured by Toagosei Co., Ltd., Aronmelt PES-2405A30, glass transition temperature 40 ° C., average particle diameter 80 nm, solid content 30% by weight)
-Polyurethane (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., Superflex 210, glass transition temperature 41 ° C, average particle size 40 nm, solid content 35%)
・ Melamine (manufactured by DIC Corporation, Beccamin M-3, solid content 77%)
-Acrylic (manufactured by DIC Corporation, Bon Coat 5400EF, glass transition temperature 6 ° C., average particle size 200 nm, solid content 55%)
1-3. Leveling agent (c)
-Polysiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., X-22-4952, number of hydroxyl groups per molecule: 2)
-Polyalkylene oxide (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., Evan U-103, number of hydroxyl groups per molecule: 2)
1-4. Thermoplastic resin layer (I) and filler-containing layer (II)
-Polyester-based rough surface (manufactured in Production Example 3)
-Polyurethane-based rough surface (manufactured in Production Example 4)
-Polystyrene-based rough surface (manufactured in Production Example 5)

(製造例1)PEDOT:PSSの作製
冷却管を備えた2000ml三口ガラスフラスコを用いて、ポリスチレンスルホン酸水溶液(アクゾノーベル社製、VERSA-TL72)92.3部と3,4-エチレンジオキシチオフェン(EDOT)7.1部を1000部のイオン交換水に加え、混合液を得た。この混合液を撹拌しながら、100部のイオン交換水に硫酸第二鉄4.0部とペルオキソ二硫酸アンモニウム14.8部を溶解させた液を加え、20℃にて24時間撹拌して酸化重合を行った。次いで、陽イオン交換樹脂(オルガノ株式会社製、アンバーライトIR120B)と陰イオン交換樹脂(オルガノ株式会社製、アンバーライトIRA67)とをそれぞれ15重量%加えた後、さらに18時間撹拌した。得られた反応混合液をガラスろ過器でろ過し、次いで高圧ホモジナイザーで100MPaにて10回均質化処理を行った後、ジメチルスルホキシドを5重量%添加することによりPEDOT:PSS水分散体を得た。
(Production Example 1) Preparation of PEDOT: Using a 2000 ml three-necked glass flask equipped with a cooling tube, 92.3 parts of an aqueous polystyrene sulfonic acid solution (VERSA-TL72, manufactured by Axonobel) and 3,4-ethylenedioxythiophene. 7.1 parts of (EDOT) was added to 1000 parts of ion-exchanged water to obtain a mixed solution. While stirring this mixture, a solution prepared by dissolving 4.0 parts of ferric sulfate and 14.8 parts of ammonium peroxodisulfate in 100 parts of ion-exchanged water is added, and the mixture is stirred at 20 ° C. for 24 hours for oxidative polymerization. Was done. Next, 15% by weight of each of a cation exchange resin (Amberlite IR120B, manufactured by Organo Corporation) and an anion exchange resin (Amberlite IRA67, manufactured by Organo Corporation) were added, and the mixture was further stirred for 18 hours. The obtained reaction mixture was filtered through a glass filter, homogenized 10 times at 100 MPa with a high-pressure homogenizer, and then 5% by weight of dimethyl sulfoxide was added to obtain a PEDOT: PSS aqueous dispersion. ..

(製造例2)高導電PEDOT:PSSの作製
ポリスチレンスルホン酸水溶液(アクゾノーベル社製、VERSA-TL72)を、限外ろ過モジュール(ミリポア社製、Biomax-50)を用いて限外ろ過した後、陽イオン交換を行い、イオン交換水で希釈することにより、ポリスチレンスルホン酸22.2部を含む1,887部の水溶液を得た。この水溶液を冷却管、窒素導入菅を備えた2000ml三口ガラスフラスコに移し、マグネチックスターラーで撹拌しながら、アスピレーター吸引と窒素導入を5回繰り返して系内を脱気した後、49部の1%硫酸第二鉄水溶液、60部の濃硝酸、8.8部の3,4-エチレンジオキシチオフェン、及び121部の10.9%のペルオキソ二硫酸水溶液を加えた。この反応混合物を18℃で、19時間攪拌した。次いで、この反応混合物に、154部の陽イオン交換樹脂(オルガノ株式会社製、アンバーライトIR120B)及び273部の陰イオン交換樹脂(オルガノ株式会社製、アンバーライトIRA67)を加えて、2時間攪拌した後、得られた反応混合液をガラスろ過器でろ過し、次いで高圧ホモジナイザーで100MPaにて10回均質化処理を行った後、エチレングリコールを5重量%添加することにより高導電PEDOT/PSS水分散体を得た。
(Production Example 2) Preparation of Highly Conductive PEDOT: PSS After ultrafiltration of a polystyrene sulfonic acid aqueous solution (Axonobel, VERSA-TL72) using an ultrafiltration module (Millipore, Biomax-50), By performing cation exchange and diluting with ion-exchanged water, an aqueous solution of 1,887 parts containing 22.2 parts of polystyrene sulfonic acid was obtained. Transfer this aqueous solution to a 2000 ml three-necked glass flask equipped with a cooling tube and a nitrogen introduction tube, and while stirring with a magnetic stirrer, repeat suction of the aspirator and introduction of nitrogen 5 times to degas the inside of the system, and then 1% of 49 parts. A ferric sulfate aqueous solution, 60 parts of concentrated nitric acid, 8.8 parts of 3,4-ethylenedioxythiophene, and 121 parts of a 10.9% peroxodisulfate aqueous solution were added. The reaction mixture was stirred at 18 ° C. for 19 hours. Next, 154 parts of a cation exchange resin (Amberlite IR120B, manufactured by Organo Co., Ltd.) and 273 parts of an anion exchange resin (Amberlite IRA67, manufactured by Organo Co., Ltd.) were added to this reaction mixture, and the mixture was stirred for 2 hours. After that, the obtained reaction mixture was filtered with a glass filter, homogenized 10 times at 100 MPa with a high-pressure homogenizer, and then 5% by weight of ethylene glycol was added to disperse the highly conductive PEDOT / PSS water. I got a body.

(製造例3)ポリエステルベース粗面体の作製
アクリルポリオール(大日本インキ化学工業株式会社製、A-807)162重量部、イソシアネート(武田薬品工業株式会社製、D110N)32重量部、ポリスチレン粒子(平均粒子径8.9μm)220重量部、メチルイソブチルケトン215重量部、酢酸ブチル215重量部を撹拌混合し、フィラー含有層(II)を形成するための組成物を得た。この組成物を、熱可塑性樹脂層(I)としてのポリエチレンテレフタレートフィルム(東レ株式会社製、T-60)の上にバーコーティング法を用いて塗布、乾燥することにより、熱可塑性樹脂層(I)(厚さ100μm)及びフィラー含有層(II)(厚さ12μm)からなるポリエステルベース粗面体を得た。形成したフィラー含有層(II)について、下記の方法により、表面のRa及びRzを評価した。結果を表1に示す。
(Production Example 3) Preparation of polyester-based rough surface Acrylic polyol (manufactured by Dainippon Ink and Chemicals Co., Ltd., A-807) 162 parts by weight, isocyanate (manufactured by Takeda Yakuhin Kogyo Co., Ltd., D110N) 32 parts by weight, polystyrene particles (average) (Particle size 8.9 μm) 220 parts by weight, 215 parts by weight of methyl isobutyl ketone, and 215 parts by weight of butyl acetate were stirred and mixed to obtain a composition for forming the filler-containing layer (II). This composition is applied onto a polyethylene terephthalate film (manufactured by Toray Industries, Inc., T-60) as a thermoplastic resin layer (I) by a bar coating method, and dried to obtain the thermoplastic resin layer (I). A polyester-based rough surface body (thickness 100 μm) and a filler-containing layer (II) (thickness 12 μm) was obtained. The surface Ra and Rz of the formed filler-containing layer (II) were evaluated by the following method. The results are shown in Table 1.

(製造例4)ポリウレタンベース粗面体の作製
ウレタン樹脂(株式会社ADEKA製、HUX-210)100重量部、エポキシ樹脂(株式会社ADEKA製、EM-0427WC)1重量部、シリカ粒子分散体(平均粒子径0.45μm、固形分率40%)100重量部、エタノール600重量部を撹拌混合し、フィラー含有層(II)を形成するための組成物を得た。この組成物を熱可塑性樹脂層(I)としてのポリウレタンフィルム(Bemis Associates社製、3914CLR)の上にバーコーティング法を用いて塗布、乾燥することにより、熱可塑性樹脂層(I)(厚さ120μm)及びフィラー含有層(II)(厚さ3μm)からなるポリウレタンベース粗面体を得た。形成したフィラー含有層(II)について、下記の方法により、表面のRa及びRzを評価した。結果を表1に示す。
(Production Example 4) Preparation of polyurethane-based rough surface body 100 parts by weight of urethane resin (made by ADEKA Co., Ltd., HUX-210), 1 part by weight of epoxy resin (manufactured by ADEKA Co., Ltd., EM-0427WC), silica particle dispersion (average particles) A composition for forming the filler-containing layer (II) was obtained by stirring and mixing 100 parts by weight (diameter 0.45 μm, solid content 40%) and 600 parts by weight of ethanol. This composition is applied onto a polyurethane film (manufactured by Bemis Associates, 3914CLR) as a thermoplastic resin layer (I) by a bar coating method, and dried to obtain a thermoplastic resin layer (I) (thickness 120 μm). ) And the filler-containing layer (II) (thickness 3 μm) to obtain a polyurethane-based rough surface. The surface Ra and Rz of the formed filler-containing layer (II) were evaluated by the following method. The results are shown in Table 1.

(製造例5)ポリスチレンベース粗面体の作製
熱可塑性樹脂層(I)を形成するための組成物としてポリスチレン樹脂(PSジャパン株式会社製、HT516)を用い、フィラー含有層(II)を形成するための組成物として、ポリスチレン樹脂(PSジャパン株式会社製、HT516)60重量部とルチル型酸化チタン粒子(平均粒子径0.28μm)40重量部との溶融混練物を用いて、マルチマニフォールドダイによる多層共押出法により、熱可塑性樹脂層(I)(厚さ100μm)及びフィラー含有層(II)(厚さ20μm)からなるポリスチレンベース粗面体を得た。形成したフィラー含有層(II)について、下記の方法により、表面のRa及びRzを評価した。結果を表1に示す。
(Production Example 5) Fabrication of Polystyrene-based Rough Surface A polystyrene resin (HT516, manufactured by PS Japan Co., Ltd.) is used as a composition for forming a thermoplastic resin layer (I) to form a filler-containing layer (II). As the composition of the above, a melt-kneaded product of 60 parts by weight of polystyrene resin (HT516 manufactured by PS Japan Co., Ltd.) and 40 parts by weight of rutile-type titanium oxide particles (average particle diameter 0.28 μm) was used, and a multilayer by a multi-manifold die was used. By the coextrusion method, a polystyrene-based rough surface composed of the thermoplastic resin layer (I) (thickness 100 μm) and the filler-containing layer (II) (thickness 20 μm) was obtained. The surface Ra and Rz of the formed filler-containing layer (II) were evaluated by the following method. The results are shown in Table 1.

2.実施例
(実施例1~4、比較例1~3)
表1に示す固形分比率となるように導電性樹脂(a)、非導電性樹脂(b)及びレベリング剤(c)、含水アルコール(純水50重量部、イソプロピルアルコール50重量部)を混合し、導電性塗布液を得た。ここで、含水アルコールの量は、導電性塗布液の固形分率が1%となるように調節した。また、pHは東京化成工業株式会社製のアンモニア水を添加することで調節した。得られた導電性塗布液について、下記の方法により、Raが0.02μmの基材上に膜厚0.05μmで塗布した際の表面抵抗率(以下、表面抵抗率Bともいう)に対する、Raが0.2μmの基材上に膜厚0.05μmで塗布した際の表面抵抗率(以下、表面抵抗率Aともいう)の倍率、及び、pHを求めた。
その後、得られた導電性塗布液を、製造例3~5で得られた粗面体のフィラー含有層(II)上にバーコーティング法を用いて乾燥膜厚が0.04μmとなるように塗布し、送風乾燥機を用いて100℃で2分間乾燥することにより導電性塗布層(III)を形成し、導電性粗面体を得た。形成した導電性塗布層(III)について、下記の方法により、表面のRa及びRzを評価した。また、得られた導電性粗面体について、下記の方法により、表面抵抗率、耐水性、密着性を評価した。以上の結果を表1に示す。
2. 2. Examples (Examples 1 to 4, Comparative Examples 1 to 3)
The conductive resin (a), the non-conductive resin (b), the leveling agent (c), and the hydrous alcohol (50 parts by weight of pure water, 50 parts by weight of isopropyl alcohol) are mixed so as to have the solid content ratio shown in Table 1. , A conductive coating liquid was obtained. Here, the amount of the hydrous alcohol was adjusted so that the solid content of the conductive coating liquid was 1%. The pH was adjusted by adding aqueous ammonia manufactured by Tokyo Chemical Industry Co., Ltd. Ra with respect to the surface resistivity (hereinafter, also referred to as surface resistivity B) when the obtained conductive coating liquid is coated on a substrate having Ra of 0.02 μm with a film thickness of 0.05 μm by the following method. The magnification and pH of the surface resistivity (hereinafter, also referred to as surface resistivity A) when coated on a substrate having a film resistivity of 0.2 μm with a film thickness of 0.05 μm were determined.
Then, the obtained conductive coating liquid is applied onto the filler-containing layer (II) of the rough surface obtained in Production Examples 3 to 5 by a bar coating method so that the dry film thickness is 0.04 μm. The conductive coating layer (III) was formed by drying at 100 ° C. for 2 minutes using a blower dryer to obtain a conductive rough surface. The surface Ra and Rz of the formed conductive coating layer (III) were evaluated by the following method. Further, the surface resistivity, water resistance, and adhesion of the obtained conductive rough surface were evaluated by the following methods. The above results are shown in Table 1.

Figure 0006991707000002
Figure 0006991707000002

3.評価方法
(表面抵抗率Bに対する表面抵抗率Aの倍率)
製造例5で得られたポリスチレンベース粗面体(Ra0.2μm)上に、No.6のワイヤーバーを用いて導電性塗布液を塗布し、70℃の送風乾燥機を用いて、乾燥膜厚0.05μmの塗膜を得た。得られた塗膜について、三菱化学株式会社製ロレスタGP MCP-T600により表面抵抗率Aを求めた。
また、ルチル型酸化チタン粒子を用いなかったこと以外は製造例5と同様にして得られたポリスチレン基材(Ra0.02μm)上に、No.6のワイヤーバーを用いて導電性塗布液を塗布し、70℃の送風乾燥機を用いて、乾燥膜厚0.05μmの塗膜を得た。得られた塗膜について、三菱化学株式会社製ロレスタGP MCP-T600により表面抵抗率Bを求めた。
表面抵抗率B(Ω/□)÷表面抵抗率A(Ω/□)の式により、表面抵抗率Bに対する表面抵抗率Aの倍率を算出した。
3. 3. Evaluation method (magnification of surface resistivity A with respect to surface resistivity B)
On the polystyrene-based rough surface (Ra 0.2 μm) obtained in Production Example 5, No. The conductive coating liquid was applied using the wire bar of No. 6, and a coating film having a dry film thickness of 0.05 μm was obtained using a blower dryer at 70 ° C. The surface resistivity A of the obtained coating film was determined by Loresta GP MCP-T600 manufactured by Mitsubishi Chemical Corporation.
Further, on a polystyrene substrate (Ra 0.02 μm) obtained in the same manner as in Production Example 5 except that rutile-type titanium oxide particles were not used, No. The conductive coating liquid was applied using the wire bar of No. 6, and a coating film having a dry film thickness of 0.05 μm was obtained using a blower dryer at 70 ° C. The surface resistivity B of the obtained coating film was determined by Loresta GP MCP-T600 manufactured by Mitsubishi Chemical Corporation.
The ratio of the surface resistivity A to the surface resistivity B was calculated by the formula of surface resistivity B (Ω / □) ÷ surface resistivity A (Ω / □).

(pH)
25℃の条件下、pHメーター(堀場製作所社製、F-55)を用いて測定した。
(PH)
It was measured using a pH meter (F-55, manufactured by HORIBA, Ltd.) under the condition of 25 ° C.

(表面のRa及びRz)
原子間力顕微鏡装置(エスアイアイ・ナノテクノロジー社製、Nanocute)を使用し、DFMモード、スキャン速度0.5Hzにて測定した。
(Ra and Rz on the surface)
Measurements were made using an atomic force microscope (Nanocut, manufactured by SII Nanotechnology) in DFM mode and a scan speed of 0.5 Hz.

(表面抵抗率)
導電性塗布層(III)の表面抵抗率と装置の測定可能レンジに応じて、下記の方法から選択し、評価した。
表面抵抗率が1.0E+06(Ω/□)未満の場合:三菱化学株式会社製ロレスタGP MCP-T600のESPプローブを用いて10Vの印加電圧にて測定した。
表面抵抗率が1.0E+06(Ω/□)~1.0E+08(Ω/□)の場合:三菱化学株式会社製ハイレスタUP(MCP-HT450型)のUAプローブを用いて10Vの印加電圧にて測定した。
表面抵抗率が1.0E+08(Ω/□)以上の場合:三菱化学株式会社製ハイレスタUP(MCP-HT450型)のUAプローブを用いて250Vの印加電圧にて測定した。
(Surface resistivity)
The following methods were selected and evaluated according to the surface resistivity of the conductive coating layer (III) and the measurable range of the apparatus.
When the surface resistivity is less than 1.0E + 06 (Ω / □): Measured at an applied voltage of 10V using an ESP probe of Loresta GP MCP-T600 manufactured by Mitsubishi Chemical Corporation.
When the surface resistivity is 1.0E + 06 (Ω / □) to 1.0E + 08 (Ω / □): Measured at an applied voltage of 10V using a UA probe of Mitsubishi Chemical Corporation High Resta UP (MCP-HT450 type). did.
When the surface resistivity is 1.0E + 08 (Ω / □) or more: Measured at an applied voltage of 250V using a UA probe of High Resta UP (MCP-HT450 type) manufactured by Mitsubishi Chemical Corporation.

(耐水性)
純水をしみ込ませた不織布を用い、500gの荷重をかけて15回擦り、導電性塗布層(III)の外観を以下の2段階で目視評価した。
○:変化なし
×:明らかな傷や剥がれが見られる
(water resistant)
Using a non-woven fabric impregnated with pure water, a load of 500 g was applied and rubbed 15 times, and the appearance of the conductive coating layer (III) was visually evaluated in the following two stages.
○: No change ×: Clear scratches and peeling are seen

(密着性)
JIS K 5400の碁盤目剥離試験に従い、以下の2段階で評価した。
○:8~10点
×:0~7点
(Adhesion)
According to the grid peeling test of JIS K 5400, it was evaluated in the following two stages.
◯: 8 to 10 points ×: 0 to 7 points

Claims (8)

導電性樹脂(a)を全固形分中1~20重量%、
非導電性樹脂(b)を全固形分中20~98.9重量%、及び、
レベリング剤(c)を全固形分中~60重量%含有する導電性塗布液であって、
導電性樹脂(a)に対するレベリング剤(c)の固形分比は1~3であり、
Raが0.2μmの基材上に膜厚0.05μmで塗布した際の表面抵抗率が、Raが0.02μmの基材上に膜厚0.05μmで塗布した際の表面抵抗率の5倍以下であり、
粗面体の表面に塗布するために用いられることを特徴とする、導電性塗布液。
Conductive resin (a) in an amount of 1 to 20% by weight based on the total solid content,
20 to 98.9% by weight of the non-conductive resin (b) in the total solid content, and
A conductive coating liquid containing 4 to 60% by weight of the leveling agent (c) in the total solid content.
The solid content ratio of the leveling agent (c) to the conductive resin (a) is 1 to 3.
The surface resistivity when coated on a substrate having Ra of 0.2 μm at a film thickness of 0.05 μm is 5 of the surface resistivity when coated on a substrate having Ra of 0.02 μm at a film thickness of 0.05 μm. Less than double,
A conductive coating liquid, which is used for coating on the surface of a rough surface.
導電性樹脂(a)が、ポリエチレンジオキシチオフェン(a1)とポリスチレンスルホン酸(a2)との複合体であり、ポリスチレンスルホン酸(a2)の重量平均分子量は20,000~1,000,000である、請求項1に記載の導電性塗布液。 The conductive resin (a) is a composite of polyethylene dioxythiophene (a1) and polystyrene sulfonic acid (a2), and the weight average molecular weight of polystyrene sulfonic acid (a2) is 20,000 to 1,000,000. The conductive coating liquid according to claim 1. レベリング剤(c)が、シロキサン骨格又はアルキレンオキシド骨格を有するポリマーであり、導電性塗布液のpHが4~10である、請求項1又は2に記載の導電性塗布液。 The conductive coating liquid according to claim 1 or 2, wherein the leveling agent (c) is a polymer having a siloxane skeleton or an alkylene oxide skeleton, and the pH of the conductive coating liquid is 4 to 10. 熱可塑性樹脂層(I)、フィラー含有層(II)、及び、請求項1~3のいずれか1項に記載の導電性塗布液を用いて形成された導電性塗布層(III)を順に備え、
導電性塗布層(III)の表面のRaが0.1μm以上であり、かつ、Rzが0.5μm以上であることを特徴とする導電性粗面体。
A thermoplastic resin layer (I), a filler-containing layer (II), and a conductive coating layer (III) formed by using the conductive coating liquid according to any one of claims 1 to 3 are provided in this order. ,
A conductive rough surface having a Ra of the surface of the conductive coating layer (III) of 0.1 μm or more and an Rz of 0.5 μm or more.
フィラー含有層(II)が、平均粒子径が0.2μm以上のフィラーと、熱可塑性樹脂とを含有し、
フィラー含有層(II)の表面のRaが0.1μm以上であり、かつ、Rzが0.5μm以上である、請求項4に記載の導電性粗面体。
The filler-containing layer (II) contains a filler having an average particle diameter of 0.2 μm or more and a thermoplastic resin.
The conductive rough surface body according to claim 4, wherein the Ra on the surface of the filler-containing layer (II) is 0.1 μm or more and the Rz is 0.5 μm or more.
熱可塑性樹脂層(I)が、ポリエステル、ポリウレタン、ポリエチレン、ポリプロピレン、レーヨン、ナイロン及びポリスチレンからなる群より選択される少なくとも1つを含む、請求項4又は5に記載の導電性粗面体。 The conductive rough surface according to claim 4 or 5, wherein the thermoplastic resin layer (I) contains at least one selected from the group consisting of polyester, polyurethane, polyethylene, polypropylene, rayon, nylon and polystyrene. 請求項4~6のいずれか1項に記載の導電性粗面体を備えたことを特徴とする導電性光拡散フィルム。 A conductive light diffusing film comprising the conductive rough surface according to any one of claims 4 to 6. 請求項4~6のいずれか1項に記載の導電性粗面体を備えたことを特徴とする導電性反射フィルム。 A conductive reflective film comprising the conductive rough surface according to any one of claims 4 to 6.
JP2016237771A 2016-12-07 2016-12-07 Conductive coating liquid and conductive rough surface Active JP6991707B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016237771A JP6991707B2 (en) 2016-12-07 2016-12-07 Conductive coating liquid and conductive rough surface
CN201711257764.9A CN108165141A (en) 2016-12-07 2017-12-04 Electric conductivity coating fluid and electric conductivity asperities body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237771A JP6991707B2 (en) 2016-12-07 2016-12-07 Conductive coating liquid and conductive rough surface

Publications (2)

Publication Number Publication Date
JP2018090746A JP2018090746A (en) 2018-06-14
JP6991707B2 true JP6991707B2 (en) 2022-01-12

Family

ID=62524275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237771A Active JP6991707B2 (en) 2016-12-07 2016-12-07 Conductive coating liquid and conductive rough surface

Country Status (2)

Country Link
JP (1) JP6991707B2 (en)
CN (1) CN108165141A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750180B1 (en) * 2019-04-19 2020-09-02 ナガセケムテックス株式会社 Laminate
JP6747545B1 (en) * 2019-04-19 2020-08-26 ナガセケムテックス株式会社 Laminate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699624B1 (en) 2005-11-16 2007-03-23 주식회사 에이스 디지텍 Method for Manufacturing Antistatic High-Resolution Anti-Glare Film and Antistatic High-Resolution Anti-Glare Film using thereof
JP2009245935A (en) 2008-03-12 2009-10-22 Jsr Corp Transparent conductive laminated film, and manufacturing method thereof
JP2010026523A (en) 2009-10-15 2010-02-04 Nitto Denko Corp Protective film for polarizing plate, method for producing the film, and polarizing plate
WO2010082648A1 (en) 2009-01-19 2010-07-22 ユニチカトレーディング株式会社 Moisture-permeable and water-proof fabric and process for the production of same
WO2011142433A1 (en) 2010-05-12 2011-11-17 大日本印刷株式会社 Optical laminate, method for manufacturing an optical laminate, polarizing plate, and image display device
JP2015032403A (en) 2013-07-31 2015-02-16 王子ホールディングス株式会社 Method of producing conductive sheet, conductive sheet and touch panel
JP2015117366A (en) 2013-11-13 2015-06-25 ナガセケムテックス株式会社 Conductive resin composition and transparent conductive laminate
US20150299476A1 (en) 2014-04-17 2015-10-22 Boe Technology Group Co., Ltd. Conductive composition and the method for producing the same, color filter and the method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5984054B2 (en) * 2011-08-17 2016-09-06 ナガセケムテックス株式会社 Organic conductive film
JP5678941B2 (en) * 2012-10-31 2015-03-04 大日本印刷株式会社 Antireflection transparent conductive film, touch panel and image display device
JP6417621B2 (en) * 2014-02-12 2018-11-07 ナガセケムテックス株式会社 Ink composition and transparent electrode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699624B1 (en) 2005-11-16 2007-03-23 주식회사 에이스 디지텍 Method for Manufacturing Antistatic High-Resolution Anti-Glare Film and Antistatic High-Resolution Anti-Glare Film using thereof
JP2009245935A (en) 2008-03-12 2009-10-22 Jsr Corp Transparent conductive laminated film, and manufacturing method thereof
WO2010082648A1 (en) 2009-01-19 2010-07-22 ユニチカトレーディング株式会社 Moisture-permeable and water-proof fabric and process for the production of same
JP2010026523A (en) 2009-10-15 2010-02-04 Nitto Denko Corp Protective film for polarizing plate, method for producing the film, and polarizing plate
WO2011142433A1 (en) 2010-05-12 2011-11-17 大日本印刷株式会社 Optical laminate, method for manufacturing an optical laminate, polarizing plate, and image display device
JP2015032403A (en) 2013-07-31 2015-02-16 王子ホールディングス株式会社 Method of producing conductive sheet, conductive sheet and touch panel
JP2015117366A (en) 2013-11-13 2015-06-25 ナガセケムテックス株式会社 Conductive resin composition and transparent conductive laminate
US20150299476A1 (en) 2014-04-17 2015-10-22 Boe Technology Group Co., Ltd. Conductive composition and the method for producing the same, color filter and the method for producing the same

Also Published As

Publication number Publication date
JP2018090746A (en) 2018-06-14
CN108165141A (en) 2018-06-15

Similar Documents

Publication Publication Date Title
KR100737182B1 (en) Antistatic coating composition
JP5444707B2 (en) Method for producing antistatic polyester film, antistatic polyester film produced by the method, and use thereof
KR100902033B1 (en) Manufacturing method of anti-static polyester film
KR102675215B1 (en) release film
TWI518154B (en) A thermosetting type conductive coating composition, an optical film, and a protective film
KR100902034B1 (en) Manufacturing method of anti-static polyester film
JP5945881B2 (en) Antistatic release agent composition and release film
JP6278327B1 (en) Transparent conductive film, transparent conductive laminate, three-dimensional display, and resin composition
KR20180003460A (en) Polyester muti-layer film
KR20180028059A (en) Method for producing antistatic molded article
JP2012183811A (en) Antistatic film
US20130017397A1 (en) Polyester film
JP6991707B2 (en) Conductive coating liquid and conductive rough surface
JP6337386B1 (en) Laminate and display
TWI686281B (en) Release film
JP5728143B2 (en) Release film
JP4621950B2 (en) Antistatic coating composition
JP2015176668A (en) Repair composition for transparent conductive film and transparent conductive film
JP2022092880A (en) Conductive polymer-containing liquid and method for producing the same, and conductive laminate and method for producing the same
JP2010083940A (en) Method for preventing electrification of polyamide film, antistatic film and manufacturing method of the same
JP2006294455A (en) Conductive film
JP6906745B1 (en) Method for producing conductive composition
JP2023032463A (en) Conductive polymer-containing liquid and conductive laminate
KR20110053938A (en) Protective film for polarizing plate and process for producing the same and polarizing plate
JP2023032019A (en) Conductive polymer-containing liquid and method of producing same, and conductive laminate and method of producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211208

R150 Certificate of patent or registration of utility model

Ref document number: 6991707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150