JP6989375B2 - Gate pin inspection device and inspection method as a bearing member for radial gates - Google Patents
Gate pin inspection device and inspection method as a bearing member for radial gates Download PDFInfo
- Publication number
- JP6989375B2 JP6989375B2 JP2017248123A JP2017248123A JP6989375B2 JP 6989375 B2 JP6989375 B2 JP 6989375B2 JP 2017248123 A JP2017248123 A JP 2017248123A JP 2017248123 A JP2017248123 A JP 2017248123A JP 6989375 B2 JP6989375 B2 JP 6989375B2
- Authority
- JP
- Japan
- Prior art keywords
- waveform
- value
- gate
- bearing member
- gate pin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Description
この発明はゲートピンの検査装置および検査方法に関し、特に、AE(アコーステックエミッション)波形を用いたゲートピンの検査装置および検査方法に関する。 The present invention relates to a gate pin inspection device and an inspection method, and more particularly to a gate pin inspection device and an inspection method using an AE (acoustic emission) waveform.
従来から、構造設計の技術基準(例えば、水門鉄管技術基準)においてラジアルゲート支承部材(以下、「ゲートピン」という)の摩擦力が検査対象とされている。図11は、ラジアルゲート100の全体構成を示す図である。図11を参照して、ラジアルゲート100は、川の上流と下流とを閉鎖する水門等に設けられ、扉体103と、扉体103と回転ピン(支承部)101とを接続する脚102とを含む。扉体103には巻き取りワイヤ(図示無し)が接続されこれを巻き上げることによって扉体103が回転ピン101を中心に回転する。しかしながら、扉体103は通常閉じられているため、経年的に回転ピン101の摩擦が大きくなり、動きが悪くなる。結果的に、開閉動作時に脚102の抵抗モーメントが大きくなり、脚102が座屈し、ラジアルゲート100全体の崩壊につながるおそれがある。そこで、この回転ピン101の摩擦力を定期的に検査する必要がある。この摩擦力を評価するためには、脚にひずみゲージを貼付し、抵抗モーメントを直接計測する必要がある。また、支承部の摩擦は経年的に変化することから、その変化を定期的にモニタリングする必要がある。
Conventionally, the frictional force of a radial gate bearing member (hereinafter referred to as "gate pin") has been the subject of inspection in the technical standard of structural design (for example, the technical standard of sluice steel pipe). FIG. 11 is a diagram showing the overall configuration of the
一方、AEセンサを用いた摩擦部材の摩擦摩耗現象を解析する装置が、例えば、特開2015−25713号公報(特許文献1)に開示されている。同公報によれば、摩擦摩耗現象解析装置は、摩擦部材を回転部材に摩擦接触させる押圧装置、およびAEセンサを摩擦部材2当接させる付勢部材を別系統で備えることにより、摩擦部材の摩擦接触を確実に行って摩擦部材で発生するAEを感度良く検出する、という記載がある。
On the other hand, an apparatus for analyzing a frictional wear phenomenon of a friction member using an AE sensor is disclosed in, for example, Japanese Patent Application Laid-Open No. 2015-25713 (Patent Document 1). According to the same publication, the friction and wear phenomenon analysis device is provided with a pressing device for frictionally contacting the friction member with the rotating member and an urging member for contacting the AE sensor with the
従来のゲートピン材部の摩擦力の検査を行うには、人件費、足場代等が発生し、手間とコストがかかるという問題があった。一方、従来はAEセンサを用いて、ゲートピンを評価するという発想はなかった。 Inspecting the frictional force of the conventional gate pin material has a problem that labor cost, scaffolding cost, etc. are incurred, and it takes time and cost. On the other hand, in the past, there was no idea of evaluating a gate pin using an AE sensor.
この発明は上記のような問題点を解消するためになされたもので、安価で容易にAE波形を用いたゲートピンの検査装置および方法を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide an inexpensive and easily gate pin inspection device and method using an AE waveform.
この発明に係るゲートピンの検査装置は、ゲートピンに取り付けられたAEセンサと、AEセンサからAE波形を取得する波形取得部と、波形取得部が取得した波形に基づいて得られた所定のDA値を用いてゲートピンの摩擦力を評価する評価部と、評価部の評価結果を出力する出力部とを含む。 The gate pin inspection device according to the present invention has an AE sensor attached to the gate pin, a waveform acquisition unit that acquires an AE waveform from the AE sensor, and a predetermined DA value obtained based on the waveform acquired by the waveform acquisition unit. It includes an evaluation unit that evaluates the frictional force of the gate pin by using it, and an output unit that outputs the evaluation result of the evaluation unit.
好ましくは、評価部は、波形取得部が取得した波形のRMS値を用いてゲートピンの摩擦力を評価する。 Preferably, the evaluation unit evaluates the frictional force of the gate pin using the RMS value of the waveform acquired by the waveform acquisition unit.
さらに好ましくは、評価部は、波形取得部が取得したAE波形と、AE波形のRMS値を用いてゲートピンの摩擦力を複数の領域に識別する。 More preferably, the evaluation unit discriminates the frictional force of the gate pin into a plurality of regions by using the AE waveform acquired by the waveform acquisition unit and the RMS value of the AE waveform.
この発明の他の局面においては、ゲートピンの検査方法は、ゲートピンに取り付けられたAEセンサからAE波形を取得するステップと、取得した波形に基づいて所定のDA値を用いてゲートピンの摩擦力を評価するステップと、評価結果を出力する出力ステップとを含む。 In another aspect of the invention, the gate pin inspection method evaluates the frictional force of the gate pin using a step of acquiring an AE waveform from an AE sensor attached to the gate pin and a predetermined DA value based on the acquired waveform. A step to output an evaluation result and an output step to output the evaluation result are included.
この発明によれば、摩擦に起因するAE波形を取得し、それに基づいて、評価値を求めて支承部の評価を行う。従来のように、人手や足場を設ける必要がない。その結果、安価に且つ簡単にゲートピンの検査が可能なゲートピン検査装置および検査方法を提供できる。 According to the present invention, an AE waveform caused by friction is acquired, and an evaluation value is obtained based on the AE waveform, and the bearing portion is evaluated. There is no need to provide manpower or scaffolding as in the past. As a result, it is possible to provide a gate pin inspection device and an inspection method capable of inspecting the gate pin inexpensively and easily.
以下、この発明の一実施の形態を図面を参照して説明する。図1は、この発明の一実施の形態に係るゲートピン検査装置の全体構成を示すブロック図である。図1を参照して、ゲートピン検査装置10は、ゲートピンに取り付けられてAEデータを検出するAEセンサ15と、AEセンサ15からのAE波形データを取得する波形取得部12と、波形取得部12が取得したAE波形から摩擦の程度を評価する評価部13と、評価部13の評価結果を出力する出力部14と、波形取得部12、評価部13、および出力部14を制御する制御部(CPU)とを含む。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an overall configuration of a gate pin inspection device according to an embodiment of the present invention. With reference to FIG. 1, the gate
次に、評価部13の評価内容を説明する。図2は、波形取得部12が取得したAE波形を説明するための図である。図2を参照して、X軸が時間(ms)でY軸が振幅(電圧V)を示す。ここで、AE波形は、図に示すように振幅が徐々に大きくなり、一定の最大振幅になった後、減衰する波形である。AE波形が入力したとき、最初に所定の閾値を越えて最大振幅値に至るまでの時間を信号立ち上がり時間という。
Next, the evaluation contents of the
ここで振幅値は、AEを生じた事象が変換子に与える振動の大きさ、すなわち地震の震度に相当する情報を与える。統計的処理を施すことにより振幅分布が得られ、発生したAE事象間の相対的エネルギーレベルの比較が行うことができる。これを用い、異なるAE発生機構を識別できる場合がある。また、振幅分布上において、直線部を外れる領域に見られる高振幅事象の連続発生は、有害な欠陥の成長に対応している可能性がある。このように最大振幅値はAE事象の危険度を知る重要な尺度である。 Here, the amplitude value gives information corresponding to the magnitude of vibration given to the converter by the event that caused AE, that is, the seismic intensity of the earthquake. Amplitude distribution can be obtained by performing statistical processing, and the relative energy levels between the AE events that have occurred can be compared. This may be used to identify different AE generation mechanisms. In addition, the continuous occurrence of high-amplitude events seen in the region off the straight line on the amplitude distribution may correspond to the growth of harmful defects. Thus, the maximum amplitude value is an important measure of the risk of an AE event.
AE波形が最初に閾値を越えて最大振幅を経由し閾値を下回るまでの時間を信号継続時間という。すなわち、信号継続時間は、信号入力時、最初のしきい値クロス時から最後のしきい値クロス時までの時間、すなわち1ヒットの触続時間と定義される。この値と信号立上り時間および最大振幅値を総合して、入力した信号のおおまかな波形に関する情報を得ることができる。この情報をもとに、異なるAE発生源を識別できる場合がある。 The time until the AE waveform first exceeds the threshold value, passes through the maximum amplitude, and falls below the threshold value is called the signal duration. That is, the signal duration is defined as the time from the first threshold crossing to the last threshold crossing at the time of signal input, that is, the tactile duration of one hit. By integrating this value with the signal rise time and the maximum amplitude value, it is possible to obtain information on the rough waveform of the input signal. Based on this information, it may be possible to identify different AE sources.
この実施の形態においては、所定のDA値を用いる。ここでDA値は次の式で求められる。 In this embodiment, a predetermined DA value is used. Here, the DA value is calculated by the following formula.
DA値=(信号持続時間-立ち上がり時間)/最大振幅値
この値は波形が最大振幅値を示してから閾値を下回るまでの傾きの逆数を表している。すなわち、この値はAE波形が連続的に発生する度合いを評価するのに使用できる。
DA value = (Signal duration-Rise time) / Maximum amplitude value This value represents the reciprocal of the slope from when the waveform shows the maximum amplitude value to when it falls below the threshold value. That is, this value can be used to evaluate the degree to which the AE waveform is continuously generated.
この実施の形態においては、DA値だけでなく、AE波形のRMS値も使用するのが好ましい。 In this embodiment, it is preferable to use not only the DA value but also the RMS value of the AE waveform.
ここで、RMS値(Root Mean Square Value)(実効値電圧)とは、AE活動度の大まかな変化を知るのに用いられる。時定数が約100〜200ms と大きいために、突発型AEのように早い現象には対応できないが、金属の変形やリーク検出など、連続型信号が発生する場合には適している。RMS値は次の式で求められる。次式におけるTdは周期であり、x(t)はAE波形の関数系である。 Here, the RMS value (Root Mean Square Value) (effective value voltage) is used to know a rough change in AE activity. Since the time constant is as large as about 100 to 200 ms, it cannot cope with rapid phenomena such as sudden AE, but it is suitable when continuous signals such as metal deformation and leak detection are generated. The RMS value is calculated by the following formula. In the following equation, Td is a period and x (t) is a function system of the AE waveform.
すなわち、この実施の形態では、波形連続度を測るパラメータとしてDA値を用い、さらにRMSを用いて連続型AEの信号の強さについて評価することにより、ノイズや高頻度で発生していない信号と区別している。 That is, in this embodiment, the DA value is used as a parameter for measuring the waveform continuity, and the signal strength of the continuous AE is evaluated by using RMS to obtain a signal that does not generate noise or frequently. I make a distinction.
次に、この実施の形態において行った、具体的なデータの取得方法について説明する。グラインダ処理されたS50Cの平板上に重さと接触面の材質の異なる4種類の直方体の構造体を移動させ、AEの計測を行った。 Next, a specific data acquisition method performed in this embodiment will be described. Four types of rectangular parallelepiped structures having different weights and contact surface materials were moved onto a grinded S50C flat plate, and AE was measured.
鋼材計測項目として図3に測定方法の概略を示す。鋼材20の右端中央から100mmの箇所に移動体21を設置し、400mmの距離を移動範囲22として移動させる。移動時間は8秒に固定し、移動速度を一定にした。移動の際に起きる摩擦、摩耗による弾性波をAEセンサで信号として取得する。AEセンサは移動体21の移動開始箇所を挟むように鋼材20の裏面に設置した(図中円形の点線23,23bで示す)。
FIG. 3 shows an outline of the measurement method as a steel material measurement item. The moving body 21 is installed at a
計測データであるが、400mmの距離を4種の移動体が移動した際の弾性波を用いる。なお、1つの移動体につき計6回移動させ、40dBを越えた波形を1ヒットとしてデータの取得を行った。結果に用いたデータはAEエネルギーが0、AEカウント値が1の波形をノイズとして削除したデータに加えて、移動体が移動を開始した際に発生した波形のみである。本計測において、移動開始時に発生したデータとはフォースゲージにより計測された摩擦力の最大値を確認し、その瞬間に発生しているデータから0.5s間において計測されたものである。それらのAEを摩擦切れ時のAEとし、パラメータ解析を行った。 As for the measurement data, elastic waves when four types of moving objects move over a distance of 400 mm are used. In addition, one moving body was moved a total of 6 times, and data was acquired with a waveform exceeding 40 dB as one hit. The data used for the result is only the waveform generated when the moving body starts to move, in addition to the data in which the waveform having the AE energy of 0 and the AE count value of 1 is deleted as noise. In this measurement, the data generated at the start of movement is the data measured within 0.5 s from the data generated at that moment after confirming the maximum value of the frictional force measured by the force gauge. Parameter analysis was performed using those AEs as the AEs at the time of friction breakage.
摩擦係数の算出過程を以下に示す。台車に固定したフォースゲージにより、移動体21を移動させる。その際に発生する摩擦力の時刻歴を計測する。最大摩擦力(静止摩擦力)から摩擦係数の算出を行った。摩擦係数の算出にはクーロンアモントンの法則であるF/P(摩擦力Fを垂直荷重Pで除した値)を用いた。垂直荷重は各移動体21の質量より求めた。摩擦係数の結果を図4に示す。 The calculation process of the coefficient of friction is shown below. The moving body 21 is moved by the force gauge fixed to the trolley. The time history of the frictional force generated at that time is measured. The coefficient of friction was calculated from the maximum frictional force (static frictional force). The coefficient of friction was calculated using F / P (the value obtained by dividing the frictional force F by the vertical load P), which is Coulomb Amonton's law. The vertical load was obtained from the mass of each moving body 21. The result of the coefficient of friction is shown in FIG.
次に、測定結果について説明する。各移動体21のAEのDA値とRMS値を摩擦係数別に示す。摩擦係数は図4で示している。摩擦係数別にプロットを変えている。□は摩擦係数が0.17の場合を示し、△は摩擦係数が0.27の場合を示し、×は摩擦係数が0.2の場合を示し、◇は摩擦係数が0.27の場合を示す。 Next, the measurement result will be described. The DA value and RMS value of AE of each moving body 21 are shown by friction coefficient. The coefficient of friction is shown in FIG. The plot is changed according to the coefficient of friction. □ indicates the case where the friction coefficient is 0.17, △ indicates the case where the friction coefficient is 0.27, × indicates the case where the friction coefficient is 0.2, and ◇ indicates the case where the friction coefficient is 0.27. show.
摩擦係数が0.2以下の移動体において発生したAEに比べ、摩擦係数が0.27の移動体で発生したAEはDA値が2000以上で、RMS値が0.003以上の高い値を示し、連続的に強い信号の波形が計測されていることが確認できる。摩擦係数が高い方が低い場合に比べ、摩擦、摩耗に伴う変形、破壊が多く発生し、それにともないAEが頻繁に発生する。その結果、密な連続的な波形となり、DA値、RMS値が高いAEが計測された。 Compared to the AE generated in a moving body with a friction coefficient of 0.2 or less, the AE generated in a moving body with a friction coefficient of 0.27 shows a DA value of 2000 or more and a high RMS value of 0.003 or more. , It can be confirmed that the waveform of a strong signal is continuously measured. Compared to the case where the coefficient of friction is high, the one with a high coefficient of friction causes more friction, deformation and breakage due to wear, and AE occurs more frequently with it. As a result, a dense continuous waveform was obtained, and AE with a high DA value and RMS value was measured.
これらの結果より、摩擦係数とDA値-RMS値において関係性が見られ、摩擦係数推定にDA値-RMS値を適用することは効果的であると考えられる。 From these results, a relationship was found between the friction coefficient and the DA value-RMS value, and it is considered effective to apply the DA value-RMS value to the friction coefficient estimation.
ゲートピンの劣化度を評価する目安として、摩擦係数の設計値が0.2と設定されている。その設計値を目安として、図5の結果を基に、RMS値(V)とDA値(ms/V)の座標において、図6のように区分けを行った。摩擦係数0.27においてのみ確認されたAEの領域を危険側とした。計測されたAEがDA値2000以上でRMS値0.003の値を示す範囲にプロットされた場合、摩擦係数0.27に近い接触面にて発生したと推測することができる。 As a guideline for evaluating the degree of deterioration of the gate pin, the design value of the friction coefficient is set to 0.2. Using the design value as a guide, the coordinates of the RMS value (V) and the DA value (ms / V) were classified as shown in FIG. 6 based on the result of FIG. The region of AE confirmed only with a friction coefficient of 0.27 was set as the dangerous side. When the measured AE is plotted in a range showing a DA value of 2000 or more and an RMS value of 0.003, it can be inferred that the measured AE occurred on the contact surface close to the friction coefficient of 0.27.
一方、摩擦係数が0.2の接触面にて発生しているAEにおいて、RMS値が0.003以上の値を示しているが、危険領域に入っていないAEが確認できる。危険領域に入るAEと同等の強い信号を示しているが、連続的に発生していないAEである。連続的な波形ではないため、摩擦、摩耗は強く発生していないと考えられる。 On the other hand, in the AE generated on the contact surface having a friction coefficient of 0.2, the RMS value shows a value of 0.003 or more, but the AE that is not in the dangerous region can be confirmed. It shows a strong signal equivalent to that of an AE that enters the danger zone, but is an AE that does not occur continuously. Since it is not a continuous waveform, it is considered that friction and wear are not strongly generated.
DA値が2000以上の連続型の波形を示すためには、RMS値0.003以上の信号強さを持つ波形が頻繁に出現する必要があり、危険領域に入る可能性は低いと考えられる。一方で、DA値が2000以上の危険領域に入るが、RMS値は入っていない波形は、DA値が高いため、連続型波形である。RMS値が低いため、摩擦、摩耗は強く発生していないが、今後、密な波形へ変化することで強い信号へ変化する可能性はある。 In order to show a continuous waveform with a DA value of 2000 or more, a waveform having a signal strength of RMS value of 0.003 or more needs to appear frequently, and it is considered unlikely that the waveform will enter the dangerous region. On the other hand, a waveform having a DA value of 2000 or more in a dangerous region but not having an RMS value is a continuous waveform because the DA value is high. Since the RMS value is low, friction and wear do not occur strongly, but there is a possibility that the signal will change to a stronger signal by changing to a denser waveform in the future.
密な波形への変化は数μの間に同様の波形が数個出現すると密に変化する可能性があり、危険領域に入りうるデータである。そのため、DA値が危険領域に入り、RMS値が入っていない領域について今後注意して検査を続ける必要があるAEの領域として注意領域とする。DA値とRMS値がともに危険領域外の場合であるが、これは安全と評価する。以上より、図7のような識別指標が作成できる。 The change to a dense waveform may change densely when several similar waveforms appear in a few μ, and it is data that can enter the dangerous area. Therefore, the area where the DA value enters the dangerous area and the area where the RMS value does not enter is designated as the caution area as the AE area where it is necessary to continue the inspection with caution in the future. The case where both the DA value and the RMS value are outside the dangerous area is evaluated as safe. From the above, the identification index as shown in FIG. 7 can be created.
以上のような、ゲートピン検査装置10の制御部(CPU)11の動作のフローチャートを図8に示す。図8に示すように、制御部11は、AEデータを取得し(S11)、DA値を算出し(S12)、RMS値を算出し(S13)、摩擦係数と対応付け(S14)、その結果評価して(S15)、安全領域か、注意領域か、あるいは、危険領域かを判定する(S16〜S18)。
FIG. 8 shows a flowchart of the operation of the control unit (CPU) 11 of the gate
次に、異なる実施の形態として、腐食平板における場合についてデータを得た。グラインダ処理された平板の結果より作成した識別指標を腐食平板に適用した。腐食平板と各移動体の接触面で発生したAEのDA値とRMS値の関係を摩擦係数で示し、DA値2000,RMS値0.003を境に安全領域、注意領域、危険領域に区分けした。危険領域にプロットされているAEは摩擦係数が0.27に近い値で発生するAEは危険領域にプロットされ、識別指標を満たす結果となった。その結果を図9に示す。 Next, as a different embodiment, data were obtained for the case of a corroded flat plate. The identification index created from the results of the grinded plate was applied to the corroded plate. The relationship between the DA value and RMS value of AE generated on the contact surface between the corroded flat plate and each moving body is shown by the friction coefficient, and it is divided into a safety area, a caution area, and a danger area with a DA value of 2000 and an RMS value of 0.003 as boundaries. .. The AEs plotted in the dangerous area have a friction coefficient close to 0.27. The AEs plotted in the dangerous area are plotted in the dangerous area, and the result is that the discrimination index is satisfied. The results are shown in FIG.
次に、現地計測を行ったので、その結果について説明する。実際に供用中のラジアルゲートの健全性評価を行うために、AE法を用い現地計測を行った。その際に計測されたAEに対して、識別指標の適用を行った。 Next, since the on-site measurement was performed, the results will be explained. In order to evaluate the soundness of the radial gate in service, on-site measurement was performed using the AE method. The identification index was applied to the AE measured at that time.
室内実験と同様に、摩擦切れのAEに限定する。ゲート変位のデータによるとワイヤー巻き上げ開始から26s付近でゲートの変位が確認できた。しかし、脚柱のたわみなどにより、変位した可能性があり、支承部内の特定することは困難である。そのため、余裕を持って25〜28s間で計測されたAEを摩擦切れとする。また、AEエネルギーが0,AEカウント数が1の波形をノイズとして削除した。また、ch.1,2、ch.3,4ペアで検出された信号のうち、EDT(イベント定義時間)を設け、AEイベントの選定を行った。EDTは鋼板を伝わる弾性波速度(5,500m/s)でセンサ間(400mm)を除して算出した。 As in the laboratory experiment, it is limited to AE with no friction. According to the gate displacement data, the displacement of the gate was confirmed around 26s from the start of wire winding. However, it may be displaced due to the deflection of the pedestal, and it is difficult to identify the inside of the bearing. Therefore, the AE measured between 25 and 28 s with a margin is regarded as the friction cutoff. In addition, the waveform with AE energy of 0 and AE count number of 1 was deleted as noise. In addition, ch. 1, 2, ch. Among the signals detected in 3 or 4 pairs, an EDT (event definition time) was set and an AE event was selected. The EDT was calculated by dividing the distance between the sensors (400 mm) by the elastic wave velocity (5,500 m / s) transmitted through the steel plate.
その結果について説明する。ゲートピンにおけるAEのDA値とRMS値の関係に対し、識別指標を適用した結果を図10に示す。 The result will be described. FIG. 10 shows the result of applying the identification index to the relationship between the DA value and the RMS value of AE in the gate pin.
DA値、RMS値ともに危険領域に入る高い値を示すAEは確認されなかった。算出された摩擦係数は非常に小さな値を示しており、連続的に振幅の高いAEが発生する環境でなかったと考えられる。現地計測においても室内実験により作成された識別指標である程度の識別が可能であった。 No AE showing a high value that entered the dangerous region was confirmed in both the DA value and the RMS value. The calculated friction coefficient shows a very small value, and it is considered that the environment was not such that AE with high amplitude was continuously generated. Even in the field measurement, it was possible to identify to some extent by the identification index created by the laboratory experiment.
指標を用いて評価を行う場合、3回計測のうち、いずれかの計測結果が危険領域に入るAEを計測した場合、それは危険であると判定することが好ましい。理由は、室内実験で摩擦係数を各移動体につき、6回行ったが、摩擦係数の高い移動体において、危険領域に入るAEが確認できない結果も存在した。そのため、複数回試験を行う必要がある。 When the evaluation is performed using the index, it is preferable to judge that it is dangerous when the AE in which one of the measurement results falls into the dangerous area is measured out of the three measurements. The reason is that the coefficient of friction was performed 6 times for each moving body in the laboratory experiment, but there was a result that AE entering the dangerous area could not be confirmed in the moving body having a high friction coefficient. Therefore, it is necessary to perform the test multiple times.
現地計測においても室内実験により作成された識別指標である程度の識別が可能であった。今後、区分けを細かくし、さらに詳細に摩擦係数を推定できる識別指標を提案する。 Even in the field measurement, it was possible to identify to some extent by the identification index created by the laboratory experiment. In the future, we will propose an identification index that can estimate the friction coefficient in more detail by making the classification finer.
なお、上記実施の形態においては、ゲートピンの摩擦力を検出する場合について説明したが、これに限らず、他の機械設備における同様の摩擦や磨耗による劣化をAE信号の変化で推定可能な回転機械等にも使用可能である。 In the above embodiment, the case where the frictional force of the gate pin is detected has been described, but the present invention is not limited to this. It can also be used for such purposes.
図面を参照してこの発明の実施形態を説明したが、本発明は、図示した実施形態に限定されるものではない。本発明と同一の範囲内において、または均等の範囲内において、図示した実施形態に対して種々の変更を加えることが可能である。 Although embodiments of the present invention have been described with reference to the drawings, the invention is not limited to the illustrated embodiments. It is possible to make various modifications to the illustrated embodiments within the same scope as the present invention or within the equivalent scope.
この発明によれば、安価に且つ簡単にゲートピンの検査が可能なゲートピン検査装置を提供できるため、ゲートピンの検査装置として有利に利用される。 According to the present invention, since it is possible to provide a gate pin inspection device capable of inspecting a gate pin inexpensively and easily, it is advantageously used as a gate pin inspection device.
10 ゲートピン検査装置、11 制御部(CPU)、12 波形取得部、13 評価部、14出力部、15 AEセンサ。 10 Gate pin inspection device, 11 Control unit (CPU), 12 Waveform acquisition unit, 13 Evaluation unit, 14 Output unit, 15 AE sensor.
Claims (4)
前記AEセンサからAE波形を取得する波形取得部と、前記波形取得部が取得した波形に基づいて得られた所定のDA値を用いてラジアルゲートの支承部材としてのゲートピンの摩擦力を評価する評価部と、前記評価部の評価結果を出力する出力部とを含み、
前記DA値は、前記AE波形が最大振幅値を示してから所定の閾値を下回るまでの傾きの逆数で表される、ラジアルゲートの支承部材としてのゲートピン検査装置。 The AE sensor attached to the gate pin as a bearing member of the radial gate,
Evaluation for evaluating the frictional force of a gate pin as a bearing member of a radial gate using a waveform acquisition unit that acquires an AE waveform from the AE sensor and a predetermined DA value obtained based on the waveform acquired by the waveform acquisition unit. A unit and an output unit that outputs the evaluation result of the evaluation unit are included.
The DA value is a gate pin inspection device as a bearing member of a radial gate , which is represented by the reciprocal of the slope from when the AE waveform shows the maximum amplitude value to when it falls below a predetermined threshold value.
ラジアルゲートの支承部材としてのゲートピンに取り付けられたAEセンサからAE波形を取得するステップと
取得した波形に基づいて所定のDA値を用いてゲートピンの摩擦力を評価するステップと、評価結果を出力する出力ステップとを含み、前記DA値は、前記AE波形が最大振幅値を示してから所定の閾値を下回るまでの傾きの逆数で表される、ラジアルゲートの支承部材としてのゲートピン検査方法。 This is a gate pin inspection method for a radial gate bearing member that inspects the frictional force of the gate pin as a radial gate bearing member using an AE sensor.
A step of acquiring an AE waveform from an AE sensor attached to a gate pin as a bearing member of a radial gate, a step of evaluating the frictional force of the gate pin using a predetermined DA value based on the acquired waveform, and an evaluation result are output. A gate pin inspection method as a bearing member of a radial gate , wherein the DA value includes an output step and is represented by the inverse of the slope from when the AE waveform shows the maximum amplitude value to when it falls below a predetermined threshold value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017248123A JP6989375B2 (en) | 2017-12-25 | 2017-12-25 | Gate pin inspection device and inspection method as a bearing member for radial gates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017248123A JP6989375B2 (en) | 2017-12-25 | 2017-12-25 | Gate pin inspection device and inspection method as a bearing member for radial gates |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019113453A JP2019113453A (en) | 2019-07-11 |
JP6989375B2 true JP6989375B2 (en) | 2022-01-05 |
Family
ID=67222542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017248123A Active JP6989375B2 (en) | 2017-12-25 | 2017-12-25 | Gate pin inspection device and inspection method as a bearing member for radial gates |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6989375B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7525436B2 (en) | 2021-04-13 | 2024-07-30 | 日立造船株式会社 | Anomaly detection device and anomaly detection method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2839623B2 (en) * | 1990-02-22 | 1998-12-16 | 光洋精工株式会社 | Abnormal diagnosis device for rocking bearings |
JP2015025713A (en) * | 2013-07-25 | 2015-02-05 | 株式会社アドヴィックス | Frictional wear phenomenon analysis device of friction member |
JP6646401B2 (en) * | 2015-10-26 | 2020-02-14 | 株式会社小糸製作所 | Mold equipment |
US10648948B2 (en) * | 2016-02-29 | 2020-05-12 | Mitsubishi Heavy Industries, Ltd. | Method for diagnosing performance degradation of machine element, and system for same |
-
2017
- 2017-12-25 JP JP2017248123A patent/JP6989375B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019113453A (en) | 2019-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI449883B (en) | Method for analyzing structure safety | |
Tandon et al. | A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings | |
US8826738B2 (en) | Method and apparatus for measuring the structural integrity of a safe-life aircraft component | |
Rogers | The application of vibration signature analysis and acoustic emission source location to on-line condition monitoring of anti-friction bearings | |
Kaphle | Analysis of acoustic emission data for accurate damage assessment for structural health monitoring applications | |
Ohtsu et al. | Principles of the acoustic emission (AE) method and signal processing | |
Sun et al. | Acoustic emission sound source localization for crack in the pipeline | |
Nazarko et al. | Application of artificial neural networks in the damage identification of structural elements | |
JP6236413B2 (en) | Deformation monitoring method for road bridge deck | |
JP6989375B2 (en) | Gate pin inspection device and inspection method as a bearing member for radial gates | |
Sofi et al. | Assessment of a pedestrian bridge dynamics using interferometric radar system IBIS-FS | |
Abdulkareem et al. | Experimental damage assessment of support condition for plate structures using wavelet transform | |
JP5714493B2 (en) | Field strength test apparatus and method for installed specially designed material stop system | |
AU674237B2 (en) | Continuous monitoring of reinforcements in structures | |
Szeleziński et al. | Analysis concerning changes of structure damping in welded joints diagnostics | |
RU2498263C1 (en) | Method for detection of microcracks in metal | |
Padzi et al. | Evaluating ultrasound signals of carbon steel fatigue testing using signal analysis approaches | |
JP6554065B2 (en) | Method and system for evaluating deterioration state of metal structure | |
RU2816129C1 (en) | Method for differential evaluation of damage stages of article made from composite material | |
Gordon et al. | Multisensor monitoring of gear tooth fatigue for predictive diagnostics | |
Krampikowska et al. | Acoustic emission for diagnosing cable way steel support towers | |
Shiotani et al. | Practical AE testing, data recording and analysis | |
Barontini et al. | Application of a classification algorithm to the early-stage damage detection of a masonry arch | |
CN103792280B (en) | Magnetic nondestructive testing method for contact damage inversion of ferromagnetic material | |
Gagar et al. | Development of probability of detection data for structural health monitoring damage detection techniques based on acoustic emission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200309 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6989375 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |