JP6987758B2 - Algae growth material - Google Patents

Algae growth material Download PDF

Info

Publication number
JP6987758B2
JP6987758B2 JP2018524138A JP2018524138A JP6987758B2 JP 6987758 B2 JP6987758 B2 JP 6987758B2 JP 2018524138 A JP2018524138 A JP 2018524138A JP 2018524138 A JP2018524138 A JP 2018524138A JP 6987758 B2 JP6987758 B2 JP 6987758B2
Authority
JP
Japan
Prior art keywords
humic acid
iron
kda
algae
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018524138A
Other languages
Japanese (ja)
Other versions
JPWO2017221978A1 (en
Inventor
浩 長谷川
匡 荻野
未央 岡田
利治 一條
洋亮 楯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Kanazawa University NUC
Original Assignee
Denka Co Ltd
Kanazawa University NUC
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Kanazawa University NUC, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JPWO2017221978A1 publication Critical patent/JPWO2017221978A1/en
Application granted granted Critical
Publication of JP6987758B2 publication Critical patent/JP6987758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Seaweed (AREA)
  • Fertilizers (AREA)

Description

本発明は藻類育成資材、藻類の育成方法、及び藻類育成資材の製造方法に関する。 The present invention relates to an algae growing material, an algae growing method, and a method for producing an algae growing material.

日本沿岸で「磯焼け」と呼ばれる現象が発生している。沿岸域の鉄等の栄養成分不足が原因と考えられ、これらを改善する技術が種々提案されている(特許文献1、2、3、4、5)。 A phenomenon called "isoyake" is occurring along the coast of Japan. It is considered that the cause is a lack of nutritional components such as iron in coastal areas, and various techniques for improving these have been proposed (Patent Documents 1, 2, 3, 4, 5).

海産藻類は種々の無機塩類を吸収し生育するが、鉄は海水中で主に粒子状酸化鉄になっていると考えられている。粒子状酸化鉄は凝集、沈殿するため藻類にとって利用性が劣る場合がある。このため、上記提案では腐植物質等のキレート剤を配合している技術が多い。 Marine algae absorb various inorganic salts and grow, but iron is thought to be mainly particulate iron oxide in seawater. Particulate iron oxide aggregates and precipitates, which may make it inferior to algae. For this reason, in the above proposals, there are many techniques for blending a chelating agent such as humus.

ここで腐植物質としては、土壌中、陸水中に存在する天然高分子有機物が挙げられる。その具体例として、褐炭、泥炭中に含まれるもの、細菌群の代謝産物と動植物由来の天然腐植酸が挙げられる。また工業的に製造される腐植物質として、褐炭等の若年炭を酸化分解したもの(特許文献6)、あるいは該酸化分解物のアルカリ金属塩又はアルカリ土類金属塩等の合成物等、多くのものが挙げられる(特許文献7、8)。 Here, examples of humus include natural high molecular weight organic substances existing in soil and inland water. Specific examples thereof include lignite, those contained in peat, metabolites of bacterial groups and natural humic acid derived from animals and plants. In addition, as industrially produced rotten plant matter, there are many such as those obtained by oxidatively decomposing young charcoal such as brown charcoal (Patent Document 6), or synthetics such as alkali metal salts or alkaline earth metal salts of the oxidative decomposition products. (Patent Documents 7 and 8).

腐植物質はその溶液のpHに対する溶解性の違いから、pH1.0以下でも沈殿しないフルボ酸、pH1.0以上で溶解する腐植酸、どのpH範囲でも溶解しないヒューミンに便宜上分類されている(非特許文献1)。 Due to the difference in solubility of the solution in pH, humic acid is classified into fulvic acid that does not precipitate even at pH 1.0 or lower, humic acid that dissolves at pH 1.0 or higher, and humin that does not dissolve at any pH range (non-patentable). Document 1).

これらの腐植物質を使用する場合、腐植物質の平均分子量の制御が重要であると考えられる。腐植物質のなかでもフルボ酸に着目し、より生物活性の高い効果的なフルボ酸の分子量画分についての提案もある(特許文献9)。 When using these humus substances, it is considered important to control the average molecular weight of the humus substances. Focusing on fulvic acid among humic substances, there is also a proposal for an effective molecular weight fraction of fulvic acid with higher biological activity (Patent Document 9).

特開2006−345738号公報Japanese Unexamined Patent Publication No. 2006-345738 特開2009−179587号公報Japanese Unexamined Patent Publication No. 2009-179587 特開2015−107061号公報Japanese Unexamined Patent Publication No. 2015-107061 特開2015−154726号公報JP-A-2015-154726 特開2015−167473号公報JP-A-2015-167473A 特公昭40−14122号公報Special Publication No. 40-14122 特開昭60−18565号公報Japanese Unexamined Patent Publication No. 60-18565 特開昭51−72987号公報Japanese Unexamined Patent Publication No. 51-72987 特開2015−78155号公報Japanese Unexamined Patent Publication No. 2015-78155

藤嶽、Humic Substances Research Vol3、P1−9、2006年Fujitake, Human Substances Research Vol3, P1-9, 2006

これまで上記の様に腐植物質の効果が提案されているが、海水中でより効果を発揮する腐植物質の特徴が明確ではない。また、腐植物質が含まれる堆肥や腐植土等は天然物由来のため、腐植物質の品質が不安定となる懸念がある。 Although the effects of humus have been proposed as described above, the characteristics of humus that are more effective in seawater are not clear. In addition, since compost and humus soil containing humus are derived from natural products, there is a concern that the quality of humus may become unstable.

本発明の目的は、工業的に安定して生産された腐植物質を提供し、海水中でも安定であり、生物に対する生育促進効果が高い腐植酸画分との鉄錯体を提供することにある。 An object of the present invention is to provide an industrially stablely produced humic acid, and to provide an iron complex with a humic acid fraction which is stable in seawater and has a high growth promoting effect on living organisms.

本発明に係る腐植酸画分は、若年炭の硝酸酸化物を国際腐植物質学会法(非特許文献1)に従い抽出した腐植酸を使用し、さらに藻類に対する効果を高めるために限外ろ過にて分子量分画を行った腐植酸画分と鉄の錯体であることを特徴とする。 For the humic acid fraction according to the present invention, humic acid extracted from the nitrate oxide of juvenile charcoal according to the International Society of Hulamic Acids Method (Non-Patent Document 1) is used, and ultrafiltration is performed to further enhance the effect on algae. It is characterized by being a complex of humic acid fraction obtained by molecular weight fractionation and iron.

本発明によれば、工業的に生産された安定的な腐植物質を提供し、さらに海産藻類の生育促進効果を発揮する有効な腐植酸画分との鉄錯体を提供できる。 According to the present invention, it is possible to provide an industrially produced stable humic acid and an iron complex with an effective humic acid fraction that exerts an effect of promoting the growth of marine algae.

以下に、本発明に係る腐植酸鉄錯体の実施形態を説明する。 Hereinafter, embodiments of the humic acid iron complex according to the present invention will be described.

本実施形態に係る腐植酸は、褐炭等の若年炭を硝酸で酸化して得られる腐植酸であり、この腐植酸の抽出液を限外ろ過により分画することにより得ることができる。本実施形態に係る鉄資材として、塩化鉄等の塩、または鉱さい質肥料が利用できる。鉱さい質肥料は入手が容易な肥料であり、鉄鋼スラグ等を原料としたケイ酸質肥料であるが、その副産物として大量の鉄を含有する。これらは事前に混合する事も可能であるが、両成分を培地などへ同時添加する事も可能である。この添加成分は、鉄錯体としてふるまうが、培地成分の銅等の金属との錯体を形成し安定化させるなどの副次的な効果も期待できる。 The humic acid according to the present embodiment is humic acid obtained by oxidizing young charcoal such as lignite with nitric acid, and can be obtained by fractionating the extract of this humic acid by ultrafiltration. As the iron material according to this embodiment, salt such as iron chloride or slag fertilizer can be used. Mineral fertilizer is an easily available fertilizer and is a siliceous fertilizer made from steel slag or the like, but contains a large amount of iron as a by-product. These can be mixed in advance, but both components can be added to the medium or the like at the same time. Although this additive component behaves as an iron complex, it can also be expected to have secondary effects such as forming and stabilizing a complex with a metal such as copper as a medium component.

[全有機炭素濃度]
腐植酸溶液の全有機炭素(TOC)濃度は、全有機体炭素計(島津製作所製TOC-L)を用いて燃焼触媒酸化方式で測定した値である。
[Total organic carbon concentration]
The total organic carbon (TOC) concentration of the humic acid solution is a value measured by a combustion catalytic oxidation method using a total organic carbon meter (TOC-L manufactured by Shimadzu Corporation).

[平均分子量]
腐植酸の平均分子量は、Waters社製 Alliance HPLC System を用い、HPSEC法(GPC法)により測定した値である。カラムはSHODEX社製、 SB−803HQ、標準試料はポリスチレンスルホン酸ナトリウムとした。移動相は25%アセトニトリル含有の10mmol/Lりん酸ナトリウム緩衝液、検出波長は260nmである。
[Average molecular weight]
The average molecular weight of humic acid is a value measured by the HPSEC method (GPC method) using an Alliance HPLC System manufactured by Waters. The column was SB-803HQ manufactured by SHODEX, and the standard sample was sodium polystyrene sulfonate. The mobile phase is a 10 mmol / L sodium phosphate buffer containing 25% acetonitrile, and the detection wavelength is 260 nm.

[腐植酸の製造方法]
ここで、「若年炭」とは炭素含有量の少ない石炭であり、炭素含有率が83質量%以下と定義される。若年炭は、例えば、泥炭、亜炭、褐炭、亜瀝青炭等であり、これらの1種又は2種以上を混合したものが使用される。例えば濃度48質量%の硝酸を用いた70℃程度の水浴中で約1時間褐炭の酸化反応を行った後、適宜乾燥し腐植酸粗製物を得る。
[Manufacturing method of humic acid]
Here, "young coal" is coal having a low carbon content, and is defined as having a carbon content of 83% by mass or less. The juvenile charcoal is, for example, peat, lignite, lignite, subbituminous coal and the like, and one or a mixture of two or more of these is used. For example, after an oxidation reaction of lignite in a water bath at about 70 ° C. using nitric acid having a concentration of 48% by mass for about 1 hour, it is appropriately dried to obtain a crude humic acid product.

この腐植酸粗製物に鉱さいけい酸質肥料を混合し、圧密造粒や転動造粒を実施し造粒品を得ることも可能である。 It is also possible to mix this crude humic acid product with mineral slag acid fertilizer and perform consolidation granulation or rolling granulation to obtain granulated products.

[腐植酸の分画法]
この腐植酸粗製物から国際腐植物質学会法(非特許文献1)に従い、腐植酸を調製する。この腐植酸を0.05mol/L リン酸緩衝液(pH9)で希釈し、腐植酸溶液を得る。
[Humic acid fractionation method]
From this crude humic acid, humic acid is prepared according to the International Society for Humus and Vegetables Law (Non-Patent Document 1). This humic acid is diluted with 0.05 mol / L phosphate buffer (pH 9) to obtain a humic acid solution.

腐植酸溶液はタンジェンシャルフロー法(クロスフロー法とも言う)により限外ろ過を行い、分子量別画分を得る(ザルトリウス社技術マニュアル
https://www.sartorius.co.jp/fileadmin/fm-dam/sartorius_media/Lab-Products-and-Services/Lab-Filtration/Ultrafiltration-Devices/Vivaflow/Manuals/Manual_Vivaflow50_200_SLU6097-e.pdf P11-21、
日本腐植物質学会監修、『環境中の腐植物質〜その特徴と研究法〜』、P82〜97、三共出版、2008年を参照)
The humic acid solution is ultrafiltered by the tangential flow method (also called the cross flow method) to obtain a fraction by molecular weight (Sartorius Technical Manual).
https://www.sartorius.co.jp/fileadmin/fm-dam/sartorius_media/Lab-Products-and-Services/Lab-Filtration/Ultrafiltration-Devices/Vivaflow/Manuals/Manual_Vivaflow50_200_SLU6097-e.pdf P11-21,
Supervised by the Japanese Society of Humus, "Humus in the Environment-its Characteristics and Research Methods-", P82-97, Sankyo Publishing, 2008)

各画分の保持液は、6mol/L塩酸を加えてpHを1.0とし、遠心分離(5000×g、30分間、5℃)によって遠心洗浄する。この操作を3回繰り返し凍結乾燥する。 The holding solution of each fraction is centrifugally washed by centrifugation (5000 × g, 30 minutes, 5 ° C.) with a pH of 1.0 by adding 6 mol / L hydrochloric acid. This operation is repeated 3 times to freeze-dry.

〈作用効果〉
以下、上記実施形態に係る腐植酸分画の作用効果について説明する。
<Action effect>
Hereinafter, the action and effect of the humic acid fraction according to the above embodiment will be described.

本発明に係る腐植酸鉄錯体は、若年炭の硝酸酸化物と鉄との錯体であり、鉄の海水中での溶出や安定化が図れ、さらに生物活性を高めるため限外ろ過にて分子量分画を行うことにより得られることを特徴とする。 The humic acid iron complex according to the present invention is a complex of nitric acid oxide of juvenile charcoal and iron, and can elute and stabilize iron in seawater, and further enhances biological activity by ultrafiltration to the molecular weight. It is characterized by being obtained by performing an image.

本発明によれば、海産藻類の生育促進効果を発揮する有効な腐植酸鉄錯体を提供できる。また、藻類の活性を高めるために、より効果的な分子サイズの腐植酸画分を提供できる。 According to the present invention, it is possible to provide an effective iron humic acid complex that exerts an effect of promoting the growth of marine algae. It can also provide a more effective molecular size humic acid fraction to enhance the activity of algae.

これらのメカニズムは鋭意研究中であるが、腐植酸と鉄との化合物の分子サイズと安定度定数が重要であり、海産藻類が利用可能なサイズ分布に合致する画分が最も有効であると考えられる。これらは、鉄の吸収性に深く関与していると推察される。 Although these mechanisms are under intense research, the molecular size and stability constants of the compounds of humic acid and iron are important, and we believe that fractions that match the size distribution available to marine algae are most effective. Be done. It is inferred that these are deeply involved in the absorption of iron.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

[海水中での鉄の安定化]
炭素含有率77質量%の褐炭を粉砕し、250μmの篩を通過した粉体状褐炭500gを2Lのビーカーに入れて、濃度48質量%の硝酸630gを添加した。70℃の水浴中で約1時間酸化反応を行った後、105℃で乾燥し腐植酸粗製物を得た。
[Stabilization of iron in seawater]
Lignite having a carbon content of 77% by mass was crushed, 500 g of powdered lignite passed through a 250 μm sieve was placed in a 2 L beaker, and 630 g of nitric acid having a concentration of 48% by mass was added. An oxidation reaction was carried out in a water bath at 70 ° C. for about 1 hour, and then the mixture was dried at 105 ° C. to obtain a crude humic acid product.

この腐植酸粗製物50質量%に鉄資材として鉱さいけい酸質肥料(商品名:ミネカル、産業振興株式会社製)を45質量%、バインダーとしてポリビニルアルコール(デンカ株式会社製)を5質量%混合し適宜加水したうえで圧密造粒を行い105℃で乾燥した。1cm径、厚さ0.6cm、0.5gのタブレット造粒品を得た。 This crude humic acid product is mixed with 45% by mass of mineral acid fertilizer (trade name: Minekal, manufactured by Sangyo Shinko Co., Ltd.) as an iron material and 5% by mass of polyvinyl alcohol (manufactured by Denka Co., Ltd.) as a binder. After adding water as appropriate, compact granulation was performed and the mixture was dried at 105 ° C. A tablet granulated product having a diameter of 1 cm, a thickness of 0.6 cm, and a thickness of 0.5 g was obtained.

[実施例1]
上記タブレット品を1粒、100mL容の三角フラスコに入れ、人工海水(和光純薬工業株式会社製)60mLを入れた。30日間、120rpmで回転培養し、上澄みを採取し溶液中の鉄をICP発光分析装置にて定量した。
[Example 1]
One tablet product was placed in a 100 mL Erlenmeyer flask, and 60 mL of artificial seawater (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After culturing at 120 rpm for 30 days, the supernatant was collected and the iron in the solution was quantified by an ICP emission spectrometer.

[比較例1]
タブレットの代わりに鉱さいけい酸質肥料0.25gとした以外、実施例1と同様に実施した。尚、人工海水と鉄資材の固液比は実施例1とほぼ同等となる。
[Comparative Example 1]
The procedure was carried out in the same manner as in Example 1 except that 0.25 g of ore silicic acid fertilizer was used instead of the tablet. The solid-liquid ratio between the artificial seawater and the iron material is almost the same as that in the first embodiment.

Figure 0006987758
Figure 0006987758

表1の結果に示すように、比較例1では鉄の溶解量が少ない事に加え、溶解した鉄が凝集沈殿していると考えられる。実施例1では鉄の溶出量が増加し、30日間の長期にわたり安定的に溶解していることがわかる。以上のように、褐炭を硝酸酸化した腐植酸と鉄との錯体は海水中で安定的に存在する事がわかる。 As shown in the results of Table 1, in Comparative Example 1, in addition to the fact that the amount of dissolved iron is small, it is considered that the dissolved iron is coagulated and precipitated. It can be seen that in Example 1, the amount of iron eluted increased and the iron was stably dissolved over a long period of 30 days. As described above, it can be seen that the complex of humic acid obtained by nitric acid oxidation of lignite and iron exists stably in seawater.

[分子量分画品の栽培試験]
次に、この腐植酸粗製物から国際腐植物質学会法(非特許文献1)に従い腐植酸を調製した。この腐植酸を精製水に懸濁し、1mol/L水酸化ナトリウム溶液を用いてpHを8.0とし、TOC濃度として5000mg/Lとなるように精製水で希釈した。この溶液を0.05mol/L Na2HPO溶液(pH9)で希釈し、TOC濃度として5mg/Lとなるように腐植酸溶液を調製した。
[Cultivation test of molecular weight fraction]
Next, humic acid was prepared from this crude humic acid product according to the International Society of Huhumic Acid Society Law (Non-Patent Document 1). This humic acid was suspended in purified water, the pH was adjusted to 8.0 using a 1 mol / L sodium hydroxide solution, and the TOC concentration was diluted with purified water to 5000 mg / L. This solution was diluted with 0.05 mol / L Na 2 HPO 4 solution (pH 9) to prepare a humic acid solution so that the TOC concentration was 5 mg / L.

表2の条件で腐植酸溶液を限外ろ過し、それぞれ透過液と保持液に分画した。保持画分として、100kDa以上、30kDa以上100kDa未満、10kDa以上30kDa未満、5kDa以上10kDa未満の4つの分子量画分を得た。 The humic acid solution was ultrafiltered under the conditions shown in Table 2 and fractionated into a permeate and a holding solution, respectively. Four molecular weight fractions of 100 kDa or more, 30 kDa or more and less than 100 kDa, 10 kDa or more and less than 30 kDa, 5 kDa or more and less than 10 kDa were obtained as retained fractions.

Figure 0006987758
Figure 0006987758

ワカメを供試材料とし、250 mLポリカーボネート製容器で表3、4に示す条件で栽培試験を実施した。 A cultivation test was carried out using wakame seaweed as a test material in a 250 mL polycarbonate container under the conditions shown in Tables 3 and 4.

葉長0.5cmの胞子体を接種(移植)し、1週間毎に同じ組成の培地に植え継いで空気供給しながら28日間培養した。資材の効果をワカメの生育量(接種時の葉長を除いた葉長)で評価した。 Sporophytes with a leaf length of 0.5 cm were inoculated (transplanted), transplanted to a medium having the same composition every week, and cultured for 28 days while supplying air. The effect of the material was evaluated by the amount of wakame seaweed (leaf length excluding the leaf length at the time of inoculation).

Figure 0006987758
Figure 0006987758

Figure 0006987758
Figure 0006987758

[実施例2]
培養液に100kDa以上の腐植酸画分をTOCとして1.5mg/Lとなるように、また塩化鉄を0.3μmol/Lとなるように培地に添加して栽培した。
[Example 2]
The culture medium was cultivated by adding a humic acid fraction of 100 kDa or more to the culture medium so as to have a TOC of 1.5 mg / L and iron chloride to a concentration of 0.3 μmol / L.

[実施例3]
100kDa以上の腐植酸画分の代わりに10kDa以上30kDa未満の腐植酸画分を添加した以外、実施例2と同様に実施した。
[Example 3]
The same procedure as in Example 2 was carried out except that a humic acid fraction of 10 kDa or more and less than 30 kDa was added instead of the humic acid fraction of 100 kDa or more.

[実施例4]
100kDa以上の腐植酸画分の代わりに5kDa以上10kDa未満の腐植酸画分を添加した以外、実施例2と同様に実施した。
[Example 4]
The same procedure as in Example 2 was carried out except that a humic acid fraction of 5 kDa or more and less than 10 kDa was added instead of the humic acid fraction of 100 kDa or more.

[比較例2]
培養液に塩化鉄を0.3μmol/Lとなるように添加して栽培した。腐植酸画分等の成分は添加していない。
[Comparative Example 2]
Iron chloride was added to the culture solution so as to be 0.3 μmol / L and cultivated. No components such as humic acid fraction were added.

[比較例3]
培養期間を14日とし、100kDa以上の腐植酸画分の代わりにエチレンジアミン四酢酸(EDTA)を10mmol/Lとなるように添加した以外、実施例2と同様に実施した。尚、EDTA10mmol/Lは、ほぼTOC1.5mg/Lに相当する。
[Comparative Example 3]
The culture period was 14 days, and the same procedure as in Example 2 was carried out except that ethylenediaminetetraacetic acid (EDTA) was added at 10 mmol / L instead of the humic acid fraction of 100 kDa or more. EDTA 10 mmol / L corresponds to approximately TOC 1.5 mg / L.

[比較例4]
培養期間を14日とし、100kDa以上の腐植酸画分の代わりにジエチレントリアミン五酢酸(DTPA)を10mmol/Lとなるように添加した以外、実施例2と同様に実施した。尚、DTPA10mmol/Lは、ほぼTOC1.5mg/Lに相当する。
[Comparative Example 4]
The culture period was 14 days, and the same procedure as in Example 2 was carried out except that diethylenetriamine pentaacetic acid (DTPA) was added at 10 mmol / L instead of the humic acid fraction of 100 kDa or more. DTPA 10 mmol / L corresponds to approximately TOC 1.5 mg / L.

Figure 0006987758
Figure 0006987758

表5の結果に示すように、比較例2の鉄のみ添加したものに比べ、腐植酸画分を添加したものは生育量が増加した。また、比較例3、4で示した一般的なキレート剤であるEDTAやDTPAに比べてもその効果は大きい。腐植酸の分子量画分の中では、特に実施例3の10kDa以上30kDa未満の腐植酸画分は生育促進効果が著しく、腐植酸の分子量により生育促進効果を高めることが可能である。 As shown in the results of Table 5, the growth amount of the one to which the humic acid fraction was added increased as compared with the one to which only iron was added in Comparative Example 2. In addition, the effect is greater than that of the general chelating agents EDTA and DTPA shown in Comparative Examples 3 and 4. Among the molecular weight fractions of humic acid, the humic acid fraction of Example 3 having a humic acid fraction of 10 kDa or more and less than 30 kDa has a remarkable growth promoting effect, and the growth promoting effect can be enhanced by the molecular weight of humic acid.

本発明に係る腐植酸は工業的に生産された腐植酸であるため、これまでの堆肥などに比べ品質の安定化が可能であり、海水中でも安定な鉄錯体を供給できる。さらに分画された10kDa以上30kDa未満の腐植酸画分は、わずかな添加量にて藻類に対する生育促進効果がある。本発明に係る腐植酸はEDTA等のキレート剤に比べても効果が優り、生分解性があるため環境中に残存する等のデメリットが無い。また、本発明に係る腐植酸は沿岸域での養殖や、近年の陸上での海産物養殖の場でも利用可能である。 Since the humic acid according to the present invention is an industrially produced humic acid, it is possible to stabilize the quality as compared with conventional compost and the like, and it is possible to supply a stable iron complex even in seawater. Further, the fractionated humic acid fraction of 10 kDa or more and less than 30 kDa has a growth promoting effect on algae with a small amount of addition. The humic acid according to the present invention is more effective than a chelating agent such as EDTA, and has biodegradability, so that there is no demerit such as remaining in the environment. In addition, the humic acid according to the present invention can also be used in coastal aquaculture and in recent years on land aquaculture.

Claims (8)

若年炭を硝酸酸化した腐植酸であって、分子量画分が10kDa以上30kDa未満である腐植酸と鉄資材を含む藻類育成資材。 An algae growing material containing humic acid obtained by nitric acid oxidation of juvenile charcoal and having a molecular weight fraction of 10 kDa or more and less than 30 kDa. 腐植酸が、泥炭、亜炭、褐炭、亜瀝青炭からなる群から選択される1種以上の若年炭を硝酸酸化した腐植酸である、請求項1に記載の藻類育成資材。 The algae growing material according to claim 1, wherein the humic acid is humic acid obtained by nitric acid-oxidizing one or more kinds of juvenile coal selected from the group consisting of peat, lignite, lignite, and bituminous coal. 鉄資材が、塩化鉄、または鉱さいけい酸質肥料であることを特徴とする、請求項1または2に記載の藻類育成資材。 The algae growing material according to claim 1 or 2 , wherein the iron material is iron chloride or an ore silicic acid fertilizer. 請求項1〜3のいずれか一項に記載の藻類育成資材を用いた、藻類の育成方法。 A method for growing algae using the algae growing material according to any one of claims 1 to 3. 若年炭を硝酸酸化して分子量画分が10kDa以上30kDa未満である腐植酸を調製し、前記腐植酸と鉄資材とを混合する、藻類育成資材の製造方法。 A method for producing an algae growing material, in which humic acid having a molecular weight fraction of 10 kDa or more and less than 30 kDa is prepared by nitric acid oxidation of juvenile charcoal, and the humic acid and an iron material are mixed. 腐植酸が、泥炭、亜炭、褐炭、亜瀝青炭からなる群から選択される1種以上の若年炭を硝酸酸化した腐植酸である、請求項に記載の藻類育成資材の製造方法。 The method for producing an algae growing material according to claim 5 , wherein the humic acid is humic acid obtained by nitric acid-oxidizing one or more kinds of juvenile coal selected from the group consisting of peat, lignite, lignite, and bituminous coal. 鉄資材が、塩化鉄、または鉱さいけい酸質肥料であることを特徴とする、請求項5または6に記載の藻類育成資材の製造方法。 The method for producing an algae growing material according to claim 5 or 6 , wherein the iron material is iron chloride or an ore silicic acid fertilizer. 圧密造粒または転動造粒を用いることを特徴とする、請求項5〜7のいずれか一項に記載の藻類育成資材の製造方法。 The method for producing an algae growing material according to any one of claims 5 to 7 , wherein compact granulation or rolling granulation is used.
JP2018524138A 2016-06-24 2017-06-21 Algae growth material Active JP6987758B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016125089 2016-06-24
JP2016125089 2016-06-24
PCT/JP2017/022855 WO2017221978A1 (en) 2016-06-24 2017-06-21 Algae growing material

Publications (2)

Publication Number Publication Date
JPWO2017221978A1 JPWO2017221978A1 (en) 2019-04-11
JP6987758B2 true JP6987758B2 (en) 2022-01-05

Family

ID=60783268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018524138A Active JP6987758B2 (en) 2016-06-24 2017-06-21 Algae growth material

Country Status (2)

Country Link
JP (1) JP6987758B2 (en)
WO (1) WO2017221978A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012128B2 (en) * 2011-11-15 2016-10-25 新日鐵住金株式会社 Artificial mineral supply material for water environment conservation and its water environment conservation method
JP6182047B2 (en) * 2013-10-17 2017-08-16 国際石油開発帝石株式会社 Algae growth promoter and algae growth method
JP6307921B2 (en) * 2014-02-20 2018-04-11 新日鐵住金株式会社 Comb growth promotion method

Also Published As

Publication number Publication date
JPWO2017221978A1 (en) 2019-04-11
WO2017221978A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
Bjornsson et al. Anaerobic digestates are useful nutrient sources for microalgae cultivation: functional coupling of energy and biomass production
AU2007320856B2 (en) Structurally modified lignite with or without extraction of functionally enhanced organic molecules
Lu et al. Can biochar and phytoextractors be jointly used for cadmium remediation?
JP2020537623A (en) The process of producing humus from biomass such as wood, bark, grain straw, leaves, herbaceous plants, wood fungi, sewage sludge and other organic wastes.
Matosic et al. Tillage, manure and gypsum use in reclamation of saline-sodic soils
Yan et al. Effects of digestate-encapsulated biochar on plant growth, soil microbiome and nitrogen leaching
JP2017071522A (en) Humic acid extract
Li et al. The performance of an anaerobic ammonium oxidation upflow anaerobic sludge blanket reactor during natural periodic temperature variations
JP4945742B2 (en) Bottom quality improving material and bottom quality improving method using the same
JP6987758B2 (en) Algae growth material
JP2005089615A (en) Method for producing humic acid liquid
CN107235799A (en) A kind of soil conditioner and modification method
JP2009011197A (en) Culture medium for photosynthetic organism utilizing incineration ash and method for producing the same and method for culturing photosynthetic organism
Miki et al. Effects of preservation period of fertilized eggs and high concentrations of nitrogen in nutrient sources on germling growth of Sargassum horneri
JP6090665B2 (en) Sediment improvement and fertilizer and its usage
JP7348610B1 (en) Iron supply agent for plant growth
Fisher Urea hydrolysis in soil profile toposequences: Mechanisms relevant to nitrogen transport and water quality
Sui et al. Enhanced biomass production and harvesting efficiency of Chlamydomonas reinhardtii under high-ammonium conditions by powdered oyster shell
NL2028673B1 (en) Soil restoring fertilizer of high dry content and method for producing the same
KR20140025179A (en) Method for recovering valuable materials and treating waste water using microalgae for producing biodiesel
WO2020255900A1 (en) Method for culturing microalga
Fujimoto et al. Sea forest creation utilizing by-product slag of steelmaking process (development of technology for regeneration of seaweed bed)
PL240138B1 (en) Activating agent
Chabbi et al. Chemical Composition of Organic Matter in Extremely Acid, Lignite‐Containing Lake Sediments Impacted by Fly Ash Contamination
KR20160025746A (en) Preparation method of fulvic acid for beverage

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211201

R150 Certificate of patent or registration of utility model

Ref document number: 6987758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150