JP6986569B2 - ニューラル・ネットワークの更新管理のためのコンピュータ実装方法、コンピュータ・プログラム、およびコンピュータ処理システム - Google Patents
ニューラル・ネットワークの更新管理のためのコンピュータ実装方法、コンピュータ・プログラム、およびコンピュータ処理システム Download PDFInfo
- Publication number
- JP6986569B2 JP6986569B2 JP2019554891A JP2019554891A JP6986569B2 JP 6986569 B2 JP6986569 B2 JP 6986569B2 JP 2019554891 A JP2019554891 A JP 2019554891A JP 2019554891 A JP2019554891 A JP 2019554891A JP 6986569 B2 JP6986569 B2 JP 6986569B2
- Authority
- JP
- Japan
- Prior art keywords
- computer
- stochastic
- implementation method
- deterministic
- scaling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
- G06F7/5443—Sum of products
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F5/00—Methods or arrangements for data conversion without changing the order or content of the data handled
- G06F5/01—Methods or arrangements for data conversion without changing the order or content of the data handled for shifting, e.g. justifying, scaling, normalising
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/065—Analogue means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/38—Indexing scheme relating to groups G06F7/38 - G06F7/575
- G06F2207/48—Indexing scheme relating to groups G06F7/48 - G06F7/575
- G06F2207/4802—Special implementations
- G06F2207/4814—Non-logic devices, e.g. operational amplifiers
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/38—Indexing scheme relating to groups G06F7/38 - G06F7/575
- G06F2207/48—Indexing scheme relating to groups G06F7/48 - G06F7/575
- G06F2207/4802—Special implementations
- G06F2207/4818—Threshold devices
- G06F2207/4824—Neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/38—Indexing scheme relating to groups G06F7/38 - G06F7/575
- G06F2207/48—Indexing scheme relating to groups G06F7/48 - G06F7/575
- G06F2207/4802—Special implementations
- G06F2207/4828—Negative resistance devices, e.g. tunnel diodes, gunn effect devices
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Neurology (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Complex Calculations (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Machine Translation (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/487,701 | 2017-04-14 | ||
| US15/487,701 US10783432B2 (en) | 2017-04-14 | 2017-04-14 | Update management for RPU array |
| PCT/IB2018/051644 WO2018189600A1 (en) | 2017-04-14 | 2018-03-13 | Update management for rpu array |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2020517002A JP2020517002A (ja) | 2020-06-11 |
| JP2020517002A5 JP2020517002A5 (enExample) | 2020-07-27 |
| JP6986569B2 true JP6986569B2 (ja) | 2021-12-22 |
Family
ID=63790739
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2019554891A Active JP6986569B2 (ja) | 2017-04-14 | 2018-03-13 | ニューラル・ネットワークの更新管理のためのコンピュータ実装方法、コンピュータ・プログラム、およびコンピュータ処理システム |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US10783432B2 (enExample) |
| JP (1) | JP6986569B2 (enExample) |
| CN (1) | CN110506282B (enExample) |
| DE (1) | DE112018000723T5 (enExample) |
| GB (1) | GB2576275A (enExample) |
| WO (1) | WO2018189600A1 (enExample) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10303998B2 (en) * | 2017-09-28 | 2019-05-28 | International Business Machines Corporation | Floating gate for neural network inference |
| US11651231B2 (en) | 2019-03-01 | 2023-05-16 | Government Of The United States Of America, As Represented By The Secretary Of Commerce | Quasi-systolic processor and quasi-systolic array |
| US11562249B2 (en) * | 2019-05-01 | 2023-01-24 | International Business Machines Corporation | DNN training with asymmetric RPU devices |
| CN110750231B (zh) * | 2019-09-27 | 2021-09-28 | 东南大学 | 一种面向卷积神经网络的双相系数可调模拟乘法计算电路 |
| US11501148B2 (en) * | 2020-03-04 | 2022-11-15 | International Business Machines Corporation | Area and power efficient implementations of modified backpropagation algorithm for asymmetric RPU devices |
| US11501023B2 (en) | 2020-04-30 | 2022-11-15 | International Business Machines Corporation | Secure chip identification using resistive processing unit as a physically unclonable function |
| US11366876B2 (en) | 2020-06-24 | 2022-06-21 | International Business Machines Corporation | Eigenvalue decomposition with stochastic optimization |
| US11568217B2 (en) * | 2020-07-15 | 2023-01-31 | International Business Machines Corporation | Sparse modifiable bit length deterministic pulse generation for updating analog crossbar arrays |
| US11443171B2 (en) * | 2020-07-15 | 2022-09-13 | International Business Machines Corporation | Pulse generation for updating crossbar arrays |
| US12488250B2 (en) * | 2020-11-02 | 2025-12-02 | International Business Machines Corporation | Weight repetition on RPU crossbar arrays |
| US12165046B2 (en) * | 2021-03-16 | 2024-12-10 | International Business Machines Corporation | Enabling hierarchical data loading in a resistive processing unit (RPU) array for reduced communication cost |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5258934A (en) | 1990-05-14 | 1993-11-02 | California Institute Of Technology | Charge domain bit serial vector-matrix multiplier and method thereof |
| JPH04153827A (ja) * | 1990-10-18 | 1992-05-27 | Fujitsu Ltd | ディジタル乗算器 |
| US20040083193A1 (en) | 2002-10-29 | 2004-04-29 | Bingxue Shi | Expandable on-chip back propagation learning neural network with 4-neuron 16-synapse |
| EP1508872A1 (en) * | 2003-08-22 | 2005-02-23 | Semeion | An algorithm for recognising relationships between data of a database and a method for image pattern recognition based on the said algorithm |
| US9715655B2 (en) | 2013-12-18 | 2017-07-25 | The United States Of America As Represented By The Secretary Of The Air Force | Method and apparatus for performing close-loop programming of resistive memory devices in crossbar array based hardware circuits and systems |
| US9466362B2 (en) | 2014-08-12 | 2016-10-11 | Arizona Board Of Regents On Behalf Of Arizona State University | Resistive cross-point architecture for robust data representation with arbitrary precision |
| US20170061279A1 (en) * | 2015-01-14 | 2017-03-02 | Intel Corporation | Updating an artificial neural network using flexible fixed point representation |
| US10748064B2 (en) | 2015-08-27 | 2020-08-18 | International Business Machines Corporation | Deep neural network training with native devices |
| US10387778B2 (en) | 2015-09-29 | 2019-08-20 | International Business Machines Corporation | Scalable architecture for implementing maximization algorithms with resistive devices |
| US10325006B2 (en) | 2015-09-29 | 2019-06-18 | International Business Machines Corporation | Scalable architecture for analog matrix operations with resistive devices |
| CN105488565A (zh) * | 2015-11-17 | 2016-04-13 | 中国科学院计算技术研究所 | 加速深度神经网络算法的加速芯片的运算装置及方法 |
-
2017
- 2017-04-14 US US15/487,701 patent/US10783432B2/en active Active
- 2017-12-14 US US15/842,724 patent/US11062208B2/en active Active
-
2018
- 2018-03-13 CN CN201880023799.2A patent/CN110506282B/zh active Active
- 2018-03-13 WO PCT/IB2018/051644 patent/WO2018189600A1/en not_active Ceased
- 2018-03-13 GB GB1916146.2A patent/GB2576275A/en not_active Withdrawn
- 2018-03-13 DE DE112018000723.5T patent/DE112018000723T5/de active Pending
- 2018-03-13 JP JP2019554891A patent/JP6986569B2/ja active Active
Also Published As
| Publication number | Publication date |
|---|---|
| US20180300622A1 (en) | 2018-10-18 |
| WO2018189600A1 (en) | 2018-10-18 |
| US11062208B2 (en) | 2021-07-13 |
| US10783432B2 (en) | 2020-09-22 |
| CN110506282A (zh) | 2019-11-26 |
| US20180300627A1 (en) | 2018-10-18 |
| CN110506282B (zh) | 2023-04-28 |
| DE112018000723T5 (de) | 2019-10-24 |
| GB201916146D0 (en) | 2019-12-18 |
| JP2020517002A (ja) | 2020-06-11 |
| GB2576275A (en) | 2020-02-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6986569B2 (ja) | ニューラル・ネットワークの更新管理のためのコンピュータ実装方法、コンピュータ・プログラム、およびコンピュータ処理システム | |
| CN113826122B (zh) | 人工神经网络的训练 | |
| CN110428042B (zh) | 往复地缩放神经元的连接权重和输入值来挫败硬件限制 | |
| JP6676165B2 (ja) | 畳み込みゲート制御再帰型ニューラルネットワーク | |
| US10664745B2 (en) | Resistive processing units and neural network training methods | |
| US11010560B2 (en) | Multi-resolution convolutional neural networks for sequence modeling | |
| JP2018129033A (ja) | 人工ニューラルネットワークのクラスに基づく枝刈り | |
| US11263516B2 (en) | Neural network based acoustic models for speech recognition by grouping context-dependent targets | |
| CN109325587B (zh) | 可变历元尖峰序列滤波 | |
| JP7658697B2 (ja) | クロスバーアレイの為の、最悪のケースのノイズ及びバウンド管理 | |
| US20220366230A1 (en) | Markov processes using analog crossbar arrays | |
| Niimi | Deep learning for credit card data analysis | |
| US20250028966A1 (en) | Minimum Deep Learning with Gating Multiplier | |
| CN118095359A (zh) | 用于隐私保护的大语言模型训练方法及装置、介质、设备 | |
| US11341413B2 (en) | Leveraging class information to initialize a neural network language model | |
| CN111461862A (zh) | 为业务数据确定目标特征的方法及装置 | |
| CN117972381B (zh) | 基于扩散模型的互联网保险用户特征筛选方法及装置 | |
| US11574196B2 (en) | Dynamic management of weight update bit length | |
| WO2022018548A1 (en) | Online training of neural networks | |
| US20210133556A1 (en) | Feature-separated neural network processing of tabular data | |
| JP7275903B2 (ja) | データ分析システム、データ分析方法及びプログラム | |
| CN112750042B (zh) | 数据处理方法、装置与电子设备 | |
| JP7332193B2 (ja) | 因子グラフ上での確率伝搬 | |
| CN114678011A (zh) | 语音识别方法、装置、电子设备、存储介质及程序产品 | |
| WO2020054402A1 (ja) | ニューラルネットワーク処理装置、コンピュータプログラム、ニューラルネットワーク製造方法、ニューラルネットワークデータの製造方法、ニューラルネットワーク利用装置、及びニューラルネットワーク小規模化方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200525 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200826 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210811 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210812 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211104 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211124 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211129 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6986569 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |