JP6980472B2 - Water supply structure of automatic ice maker - Google Patents

Water supply structure of automatic ice maker Download PDF

Info

Publication number
JP6980472B2
JP6980472B2 JP2017181557A JP2017181557A JP6980472B2 JP 6980472 B2 JP6980472 B2 JP 6980472B2 JP 2017181557 A JP2017181557 A JP 2017181557A JP 2017181557 A JP2017181557 A JP 2017181557A JP 6980472 B2 JP6980472 B2 JP 6980472B2
Authority
JP
Japan
Prior art keywords
water
ice
ice making
making chamber
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017181557A
Other languages
Japanese (ja)
Other versions
JP2019056526A (en
Inventor
祐真 佐藤
静馬 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHIZAKI KABUSHIKI KAISHA
Original Assignee
HOSHIZAKI KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHIZAKI KABUSHIKI KAISHA filed Critical HOSHIZAKI KABUSHIKI KAISHA
Priority to JP2017181557A priority Critical patent/JP6980472B2/en
Publication of JP2019056526A publication Critical patent/JP2019056526A/en
Application granted granted Critical
Publication of JP6980472B2 publication Critical patent/JP6980472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は自動製氷機の給水構造に関し、更に詳細には、給水管から水皿に供給された製氷水を該水皿の戻り孔を介して製氷水タンクへ回収し、該製氷水タンクに貯留された製氷水を水皿から製氷室へ噴射供給して角氷を得る自動製氷機において、給水管から水皿へ供給された製氷水が水皿の上面に滞留することがなく、速やかに戻り孔から製氷水タンクへ回収されるようにした給水構造の改良に関するものである。 The present invention relates to a water supply structure of an automatic ice maker, and more specifically, the ice making water supplied from the water supply pipe to the water tray is collected in the ice making water tank through the return hole of the water tray and stored in the ice making water tank. In an automatic ice maker that jets and supplies the ice-making water from the ice tray to the ice-making chamber to obtain ice cubes, the ice-making water supplied from the water supply pipe to the ice tray does not stay on the upper surface of the ice tray and returns quickly. It is related to the improvement of the water supply structure so that it can be collected from the hole to the ice making water tank.

レストランや喫茶店等の厨房では、多量の氷塊を製造する自動製氷機が広く使用されている。この自動製氷機としては、各種の製氷構造が実用化されているが、本発明は、製氷室の下方に開閉自在に設けた水皿から、該製氷室の各製氷小室(セル)へ製氷水を噴射供給して角氷を製造する所謂クローズドセル式自動製氷機の給水構造に関するものである。そこで、クローズドセル式自動製氷機の基本構造を簡単に説明する。 In kitchens such as restaurants and coffee shops, automatic ice makers that produce a large amount of ice blocks are widely used. Various ice-making structures have been put into practical use as this automatic ice-making machine. It relates to a water supply structure of a so-called closed cell type automatic ice maker that injects and supplies ice cubes to produce ice cubes. Therefore, the basic structure of the closed cell type automatic ice maker will be briefly described.

図6および図7は、クローズドセル式自動製氷機の製氷機構部を示すものであって、符号10は製氷機本体に水平に固定した取付ベースを指示している。前記取付ベース10の下には、下向きに開放する多数の製氷小室12を縦横に画設した製氷室14が、複数の取付部材16を介して所要間隔で取り付けられている。前記製氷室14の上面には、冷凍回路(図示せず)から導出した蒸発管18が蛇行配置され、該蒸発管18を通過する冷媒により該製氷室14を製氷水の凍結温度にまで強制冷却するようになっている。 6 and 7 show an ice making mechanism of a closed-cell automatic ice maker, and reference numeral 10 indicates a mounting base horizontally fixed to the main body of the ice maker. Under the mounting base 10, ice making chambers 14 in which a large number of ice making chambers 12 that are open downward are vertically and horizontally imaged are mounted via a plurality of mounting members 16 at required intervals. An evaporation tube 18 derived from a refrigerating circuit (not shown) is serpentinely arranged on the upper surface of the ice making chamber 14, and the ice making chamber 14 is forcibly cooled to the freezing temperature of the ice making water by the refrigerant passing through the evaporation tube 18. It is designed to do.

前記取付ベース10の下面で、かつ前記製氷室14から所要距離だけ側方へ離れた位置にブラケット20が固定され、後述する水皿24が、側方に設けたアーム25および枢支軸22を介して該ブラケット20に傾動自在に枢支されている。この水皿24は、前記製氷室14の下方開口面を下から全面的に覆い得る面積の板状部材からなり、該製氷室14における夫々の製氷小室12に対応して複数の噴水孔26および戻り孔27が開設されている。また、水皿24の下方には製氷水タンク28が設けられ、該製氷水タンク28に貯留した製氷水は、図6の製氷運転に入ると、供給ポンプ30および該水皿24の裏面に配置した給水管32、更には該給水管32に連通している前記噴水孔26を介して、各対応の製氷小室12へ噴射供給される。前記製氷小室12は前記蒸発管18で氷点下に冷却されているため、噴射供給された製氷水は該製氷小室12の内壁に氷結し、徐々に成長して角氷35になる。また、製氷小室12の内壁に氷結しなかった製氷水(未氷結水)は、前記戻り孔27から落下して前記製氷水タンク28に回収貯留される。 The bracket 20 is fixed on the lower surface of the mounting base 10 and at a position laterally separated from the ice making chamber 14 by a required distance, and the water dish 24 described later provides the arm 25 and the pivot shaft 22 provided on the side. It is pivotally supported by the bracket 20 via the bracket 20. The water dish 24 is composed of a plate-shaped member having an area that can completely cover the lower opening surface of the ice making chamber 14 from below, and has a plurality of fountain holes 26 and a plurality of fountain holes 26 corresponding to the ice making small chambers 12 in the ice making chamber 14. A return hole 27 is opened. Further, an ice making water tank 28 is provided below the water plate 24, and the ice making water stored in the ice making water tank 28 is arranged on the back surface of the supply pump 30 and the water plate 24 when the ice making operation of FIG. 6 is started. It is jetted and supplied to each corresponding ice making chamber 12 through the water supply pipe 32 and the water fountain hole 26 communicating with the water supply pipe 32. Since the ice making chamber 12 is cooled below the freezing point by the evaporation pipe 18, the ice making water jetted and supplied freezes on the inner wall of the ice making chamber 12 and gradually grows to become ice cubes 35. Further, the ice-making water (non-freezing water) that did not freeze on the inner wall of the ice-making chamber 12 falls from the return hole 27 and is collected and stored in the ice-making water tank 28.

図6および図7において、前記水皿24の上方で、かつ前記製氷室14の左側(後方側になる)には、前記製氷水タンク28へ製氷水を供給する給水管29が水平に設けられて、その給水孔を該水皿24の上面に指向させている。すなわち前記給水管29は、図8の平面図および図9の縦断面図に示すように、前記水皿24の上方でかつ前記製氷室14の後方に水平に配設された管体であって、外部給水源から給水弁(何れも図示せず)を介して供給される製氷水を、該給水管29の下部に所定間隔で穿設した給水孔(図示せず)を介して該水皿24の上面に供給し得るようになっている。 In FIGS. 6 and 7, a water supply pipe 29 for supplying ice-making water to the ice-making water tank 28 is horizontally provided above the water dish 24 and on the left side (rear side) of the ice-making chamber 14. The water supply hole is directed to the upper surface of the water pan 24. That is, the water supply pipe 29 is a pipe body horizontally arranged above the water dish 24 and behind the ice making chamber 14, as shown in the plan view of FIG. 8 and the vertical sectional view of FIG. , Ice-making water supplied from an external water supply source via a water supply valve (none of which is shown) is passed through a water supply hole (not shown) provided at a predetermined interval in the lower part of the water supply pipe 29. It can be supplied to the upper surface of 24.

ここで、前記水皿24の上面に存在する戻り孔27の穿設パターンについて、図8を参照して説明する。前記戻り孔27は、前記水皿24において前記製氷室14で塞がれる第1領域に穿設されるパターンと、該水皿24において該製氷室14では塞がれない第2領域に穿設されるパターンとに分かれたる。すなわち、前者の第1領域とは、図8および図9において、前記水皿24が前記製氷室14を下方から閉成した際に、該製氷室14により塞がれている領域を云う。この水皿24の第1領域においては、前記製氷室14における各製氷小室12に対応して、製氷水の噴水孔26および未氷結水の戻り孔27が隣接して穿設されていることは前述した通りである。また、第2領域とは、前記水皿24の上面であって、かつ前記製氷室14により塞がれていない領域を云い、図8から判明するように、該製氷室14を取り囲んだコ字状(乃至角C字型)の狭い帯域になっている。そして、前記水皿24の上面でかつ前記第2領域となるコ字状の部位にも、戻り孔27aが所要間隔で形成されている(第1領域に穿設される戻り孔27と区別するため、“27a”と表示する)。但し、第2帯域ではあっても、前記給水管29の直下になる領域に穿設される戻り孔27aの数は、製氷室14の両側面に沿った帯域に穿設される戻り孔27aの数よりも少なく設定されている。なお、前記水皿24における給水管29の直下になる領域には、前記戻り孔27aが穿設されていなくてもよい。 Here, the drilling pattern of the return hole 27 existing on the upper surface of the water dish 24 will be described with reference to FIG. The return hole 27 is formed in a pattern formed in the first region of the water dish 24 that is closed by the ice making chamber 14, and in a second region of the water dish 24 that is not closed by the ice making chamber 14. It is divided into patterns that are made. That is, the former first region refers to the region in FIGS. 8 and 9 that is blocked by the ice making chamber 14 when the water dish 24 closes the ice making chamber 14 from below. In the first region of the water dish 24, the ice-making water fountain hole 26 and the unfreezing water return hole 27 are adjacent to each other corresponding to each ice-making small chamber 12 in the ice-making chamber 14. As mentioned above. Further, the second region means a region which is the upper surface of the water dish 24 and is not blocked by the ice making chamber 14, and as can be seen from FIG. 8, a U-shape surrounding the ice making chamber 14 It has a narrow band of shape (or square C shape). Return holes 27a are also formed at required intervals on the upper surface of the water dish 24 and also in the U-shaped portion serving as the second region (distinguishing from the return holes 27 drilled in the first region). Therefore, it is displayed as "27a"). However, even in the second band, the number of return holes 27a drilled in the region directly below the water supply pipe 29 is the number of return holes 27a drilled in the band along both side surfaces of the ice making chamber 14. It is set less than the number. The return hole 27a may not be formed in the region of the water dish 24 directly below the water supply pipe 29.

この状態で、給水管29から製氷水を水皿24の上面に供給すると、製氷水は前記第2領域を流れ、該領域に穿設した多数の戻り孔27aから落下して製氷水タンク28へ回収される。また、前記水皿24を塞いでいる製氷室14の下面と該水皿24との間には若干の間隙が存在するため、水皿24に供給された製氷水の一部は該隙間を介して前記第1領域(製氷室14により塞がれている)へ進入し、該第1領域に穿設されている戻り孔27から製氷水タンク28へ落下回収される。更に、図8において、前記水皿24の前記第2領域に給水管29から供給された製氷水は、該第2領域に穿設した戻り孔27aから落下するが、この戻り孔27aから落下し切らなかった製氷水は、図9に示すように、前記水皿24の先端(図8の左側になる前方側)から落下して、製氷水タンク28へ同じく回収貯留される。 In this state, when ice-making water is supplied from the water supply pipe 29 to the upper surface of the water dish 24, the ice-making water flows through the second region and falls from a large number of return holes 27a formed in the region to the ice-making water tank 28. Will be recovered. Further, since there is a slight gap between the lower surface of the ice making chamber 14 blocking the water plate 24 and the water plate 24, a part of the ice making water supplied to the water plate 24 passes through the gap. Then, it enters the first region (closed by the ice making chamber 14), and is dropped and collected in the ice making water tank 28 from the return hole 27 drilled in the first region. Further, in FIG. 8, the ice-making water supplied from the water supply pipe 29 to the second region of the water dish 24 falls from the return hole 27a formed in the second region, but falls from the return hole 27a. As shown in FIG. 9, the uncut ice-making water falls from the tip of the water pan 24 (the front side on the left side of FIG. 8), and is also collected and stored in the ice-making water tank 28.

前記製氷機構には、モータで駆動されるアクチュエータ(図示せず)が配設されている。そして、図6の製氷工程で前記夫々の製氷小室12に角氷35が成長すると、製氷完了を温度センサ(図示せず)が検出する。これにより前記アクチュエータが駆動して、図7の除氷工程に示すように、前記水皿24を枢支軸22を中心として斜め下方へ強制的に傾動させ、該製氷小室12に成長した角氷群を落下させて下方の貯氷室(図示せず)に貯留する。なお、前記アクチュエータの作動に先立ち、冷凍回路のホットガス弁(図示せず)を切り換えてホットガスを前記蒸発管18へ供給し、前記製氷小室12を加熱することで、該製氷小室12の内壁に対する角氷35の氷結を融解させる。 The ice making mechanism is provided with an actuator (not shown) driven by a motor. Then, when the ice cubes 35 grow in the respective ice making chambers 12 in the ice making step of FIG. 6, the temperature sensor (not shown) detects the completion of ice making. As a result, the actuator is driven to forcibly tilt the water pan 24 diagonally downward with respect to the pivot shaft 22 as shown in the deicing step of FIG. 7, and the ice cubes grown in the ice making chamber 12 are forcibly tilted. Drop the swarm and store it in the lower ice storage chamber (not shown). Prior to the operation of the actuator, the hot gas valve (not shown) of the refrigeration circuit is switched to supply hot gas to the evaporation pipe 18 and heat the ice making chamber 12 to heat the inner wall of the ice making chamber 12. Thaw the freezing of the ice maker 35 against.

特開2017−58115号公報Japanese Unexamined Patent Publication No. 2017-58115

先に述べたように、前記給水管29から水皿24の上面に供給された製氷水は、(1)製氷室14により塞がれた第1領域の戻り孔27と、(2)該製氷室14により塞がれていない第2領域の戻り孔27aと、(3)該第2領域に接続している水皿24の先端とから落下して、前記製氷水タンク28に回収される。しかし、製氷室14が水皿24を塞いでいる部位(第1領域と第2領域との境目)は、両者の間に隙間があるとは云え僅かなものである。このため、製氷水は表面張力により製氷室14と水皿24との前記隙間を覆ってしまい、製氷室14に塞がれた第1領域の戻り孔27からは製氷水が落下し難くなって第2領域に滞留してしまう。 As described above, the ice-making water supplied from the water supply pipe 29 to the upper surface of the water dish 24 has (1) a return hole 27 in the first region closed by the ice-making chamber 14 and (2) the ice-making. It falls from the return hole 27a of the second region not blocked by the chamber 14 and (3) the tip of the water dish 24 connected to the second region, and is collected in the ice making water tank 28. However, the portion where the ice making chamber 14 blocks the water dish 24 (the boundary between the first region and the second region) is small even if there is a gap between the two. Therefore, the ice-making water covers the gap between the ice-making chamber 14 and the water dish 24 due to surface tension, and it becomes difficult for the ice-making water to fall from the return hole 27 of the first region blocked by the ice-making chamber 14. It stays in the second region.

このように水皿24の上面に製氷水が滞留していると、製氷運転に入って前記蒸発管18により製氷室14を冷却しようとしても、溜まった水のために該製氷室14の冷却速度が低下し製氷能力が充分発揮されない難点がある。また、前記給水管29からの給水時間が長くなる場合は、製氷運転に入り製氷水タンク28の製氷水が各製氷小室12へ噴射供給され始めても、給水が継続されていることになる。このため、氷点下にまで冷却された製氷室14と前記水皿24との境界に溜まった水が凍って、該製氷室14と水皿24とを氷結させてしまうことになる。このように、製氷室14と水皿24との境界で氷結が進行すると、除氷運転に切り換わって前記アクチュエータが水皿24を製氷室14から傾動させようとしても容易には開放せず、場合によってはアクチュエータに大きな負荷が加わって故障したり、水皿24等の周辺機器が破損する等の弊害も生じている。 When the ice making water stays on the upper surface of the water pan 24 in this way, even if the ice making operation is started and the ice making chamber 14 is cooled by the evaporation pipe 18, the cooling speed of the ice making chamber 14 is due to the accumulated water. There is a problem that the ice making ability is not fully exhibited due to the decrease. Further, when the water supply time from the water supply pipe 29 becomes long, the water supply is continued even if the ice making operation is started and the ice making water of the ice making water tank 28 starts to be jetted and supplied to each ice making small chamber 12. Therefore, the water collected at the boundary between the ice making chamber 14 cooled to below the freezing point and the water dish 24 freezes, causing the ice making room 14 and the water dish 24 to freeze. In this way, when freezing progresses at the boundary between the ice making chamber 14 and the water dish 24, even if the actuator switches to the ice removing operation and the actuator tries to tilt the water dish 24 from the ice making chamber 14, it does not easily open. In some cases, a large load is applied to the actuator to cause a failure, or peripheral devices such as the water pan 24 are damaged.

前記課題を解決し、所期の目的を達成するため請求項1に記載の発明は、
下方に開口する多数の製氷小室を画成した製氷室と、前記製氷室の直下に傾動自在に配設されて、前記製氷小室を下から閉じる閉成姿勢または該製氷小室から離間する開放姿勢をとる水皿と、前記水皿に近接配設されて、該水皿の上面に製氷水を供給する給水管とからなり、前記給水管から供給した製氷水は、前記水皿の上面でかつ前記製氷室により塞がれる領域および該製氷室により塞がれない領域に夫々穿設された戻り孔を介して、該水皿の下部に設けた製氷水タンクに回収されるよう構成した自動製氷機において、
前記水皿が前記製氷室により塞がれていない領域であって、かつ前記給水管から供給した製氷水が流れる部位に、該水皿の上面よりも掘り下げた水路が形成されており、
前記製氷室に塞がれていない領域の戻り孔は、前記水路の底面に穿設されると共に、
前記水皿が閉成姿勢にある状態では、前記給水管から前記水路に製氷水が供給され、当該水皿が開放姿勢にある状態では、当該給水管による製氷水の給水位置から水路が外れて水皿の上面に製氷水が供給されるよう構成されていることを要旨とする。
請求項1に係る発明によれば、水皿の上面でかつ製氷室により塞がれない領域に、該水皿の上面レベルより低く堀り下げた水路が形成されているので、給水管から供給された製氷水は前記水路に穿設した戻り孔や水皿の先端から製氷水タンクへ落下し易くなる。従って、製氷水が製氷室の下端縁と水皿の上面との間に滞留することが抑制され、製氷能力が低下したり、滞留水が氷結して除氷時に過大な負荷がアクチュエータ等の周辺機器に加わったりすることがなくなる。
そして、水皿が閉成姿勢にある状態では、給水管から水皿に供給された製氷水が製氷室に接触して熱を奪われるのを抑制して製氷能力の低下を抑え易くなると共に、給水管から水皿に供給された製氷水の氷結を抑制できる。また、水皿が開放姿勢にある状態では、給水管からの給水により水皿の洗浄を行い得る。
The invention according to claim 1 is for solving the above-mentioned problems and achieving the intended purpose.
An ice-making chamber that defines a large number of ice-making chambers that open downward, and a closed posture that is tiltably arranged directly under the ice-making chamber and closes the ice-making chamber from below or an open posture that separates from the ice-making chamber. It consists of a water tray to be taken and a water supply pipe that is arranged close to the water tray and supplies ice-making water to the upper surface of the water tray. An automatic ice maker configured to be collected in an ice making water tank provided at the bottom of the water pan through return holes drilled in the area blocked by the ice making chamber and the area not blocked by the ice making chamber, respectively. In
A water channel dug deeper than the upper surface of the water dish is formed in a region where the water dish is not blocked by the ice making chamber and where the ice making water supplied from the water supply pipe flows.
The return hole in the area not blocked by the ice making chamber is formed in the bottom surface of the water channel, and is also formed .
When the water pan is in the closed position, ice-making water is supplied from the water supply pipe to the water channel, and when the water pan is in the open position, the water channel is disconnected from the water supply position of the ice-making water by the water supply pipe. The gist is that the ice making water is supplied to the upper surface of the water pan.
According to the invention of claim 1, since a water channel dug lower than the upper surface level of the water dish is formed on the upper surface of the water dish and in a region not blocked by the ice making chamber, it is supplied from a water supply pipe. The ice-making water is easily dropped into the ice-making water tank from the return hole formed in the water channel or the tip of the water pan. Therefore, it is suppressed that the ice-making water stays between the lower edge of the ice-making chamber and the upper surface of the water dish, the ice-making capacity decreases, or the accumulated water freezes and an excessive load is applied around the actuator or the like during deicing. You will not be involved in the equipment.
When the water pan is in the closed position, the ice making water supplied to the water tray from the water supply pipe is prevented from coming into contact with the ice making chamber to lose heat, and it becomes easy to suppress a decrease in the ice making capacity. It is possible to suppress the freezing of the ice-making water supplied from the water supply pipe to the water dish. Further, when the water dish is in the open posture, the water dish can be washed by supplying water from the water supply pipe.

請求項2に記載の発明では、前記水路における前記製氷室と近接する側の内壁面に、底面に向け傾斜させた斜面が形成されていることを要旨とする。
請求項2に係る発明によれば、製氷運転中に製氷小室へ噴射供給され、かつ氷結するに至らなかった未氷結水が製氷室の下端縁と水皿の上面との隙間から流れ出ても、前記傾斜から水路へ流れ落ちて、両部材の境目に滞留することが抑制される。従って、製氷室と水皿との間に滞留した水が氷結し、除氷時に周辺機器に過負荷を与えることがなくなる。
The gist of the invention according to claim 2 is that a slope inclined toward the bottom surface is formed on the inner wall surface of the water channel on the side close to the ice making chamber.
According to the second aspect of the present invention, even if unfrozen water that has been jetted and supplied to the ice making chamber during the ice making operation and has not been frozen, flows out from the gap between the lower end edge of the ice making chamber and the upper surface of the water dish. It is suppressed that the slope flows down to the water channel and stays at the boundary between the two members. Therefore, the water accumulated between the ice making chamber and the water dish freezes, and the peripheral equipment is not overloaded at the time of deicing.

本発明に係る自動製氷機の給水構造によれば、製氷室が水皿の上面を塞いだ状態において、給水管から製氷水が水皿に供給された場合に、該水皿における製氷室によって塞がれていない領域には該水皿の上面レベルよりも低く掘り下げた水路が形成されているため、製氷水はこの水路に沿って流れると共に、該水路に穿設した戻り孔や水皿の先端から製氷水タンクへ落下し易くなる。すなわち、製氷室の下端面と水皿の上面との境界に製氷水が滞留することが抑制される。従って製氷能力が低下することが抑制されると共に、製氷室と水皿との間に氷結を生ずることも抑制される。 According to the water supply structure of the automatic ice maker according to the present invention, when the ice making water is supplied to the water basin from the water supply pipe in a state where the ice making chamber closes the upper surface of the water basin, it is closed by the ice making chamber in the water basin. Since a water channel dug lower than the upper surface level of the water dish is formed in the uncleared area, the ice-making water flows along this water channel, and the return hole and the tip of the water dish drilled in the water dish are formed. It becomes easy to fall into the ice making water tank. That is, it is suppressed that ice-making water stays at the boundary between the lower end surface of the ice-making chamber and the upper surface of the water dish. Therefore, the decrease in the ice making capacity is suppressed, and the formation of freezing between the ice making chamber and the water dish is also suppressed.

本発明の実施例に係る給水構造の一部切欠き平面図であって、水皿における製氷室により塞がれていないコ字状の帯域に、水皿の上面よりもレベルの下がった水路が形成されている状態を示している。It is a partially cutaway plan view of the water supply structure according to the embodiment of the present invention, and in the U-shaped band not blocked by the ice making chamber in the water dish, a water channel whose level is lower than the upper surface of the water dish is formed. It shows the formed state. 図1に示す給水構造のA−A線縦断面図であって、給水管の直下に断面が角溝状の水路が形成されている。FIG. 1 is a vertical cross-sectional view taken along the line AA of the water supply structure shown in FIG. 1, wherein a water channel having a square groove shape is formed immediately below the water supply pipe. 図2に示す実施例に係る給水構造において、製氷室に対し水皿を傾動させて該製氷室を開放した状態を示している。In the water supply structure according to the embodiment shown in FIG. 2, a state in which the water dish is tilted with respect to the ice making chamber to open the ice making chamber is shown. 図2に示す実施例に係る給水構造において、該実施例に伴って生ずる不都合を示す部分縦断面図である。FIG. 3 is a partial vertical sectional view showing inconveniences caused by the embodiment in the water supply structure according to the embodiment shown in FIG. 図4に示す不都合を解決した給水構造の一部縦断面図である。It is a partial vertical sectional view of the water supply structure which solved the inconvenience shown in FIG. クローズドセル式製氷機における製氷機構の縦断面図であって、製氷室を水皿が閉成して製氷運転中の状態を示している。It is a vertical cross-sectional view of an ice making mechanism in a closed cell type ice making machine, and shows a state in which an ice making chamber is closed with a water dish and an ice making operation is in progress. 図6に示す製氷機構の縦断面図であって、水皿が傾動して製氷室を開放した除氷運転中の状態を示している。FIG. 6 is a vertical cross-sectional view of the ice making mechanism shown in FIG. 6, showing a state in which the water dish is tilted and the ice making chamber is opened during the deicing operation. 図6に示す製氷機構の一部切欠き平面図であって、製氷室が水皿の上面を塞いだ第1領域と、製氷室が水皿の上面を塞いでいない第2領域とが存在している状態を示している。In the partially cutaway plan view of the ice making mechanism shown in FIG. 6, there is a first region in which the ice making chamber blocks the upper surface of the water dish and a second region in which the ice making chamber does not block the upper surface of the water dish. It shows the state of being. 図8のA−A線縦断面図である。FIG. 8 is a vertical cross-sectional view taken along the line AA of FIG.

本発明に係る自動製氷機の給水構造につき、好適な実施例を挙げて添付図面を参照して説明する。実施例において、図6乃至図9で既に説明した部材および構造と同じものについては、同一の符号を付して詳細な説明は省略する。また、前記給水管29から水皿24の上面に供給される水は、厳密には外部水道系からの水道水であって、最終的に製氷水タンク28に貯留されるべきものである。更に、除氷運転に際しては、前記給水管29から供給される水は、前記水皿24の上面に残留する氷片を洗い流す「除氷水」として使用される。このため、製氷水タンク28に貯留されてから供給ポンプ30により製氷小室12へ噴射供給される水だけを、厳密には「製氷水」と云うべきかも知れないが、本明細書では給水管29から供給される水を広く「製氷水」と称する。 The water supply structure of the automatic ice maker according to the present invention will be described with reference to the accompanying drawings with reference to suitable examples. In the embodiment, the same members and structures as those already described with reference to FIGS. 6 to 9 are designated by the same reference numerals, and detailed description thereof will be omitted. Strictly speaking, the water supplied from the water supply pipe 29 to the upper surface of the water dish 24 is tap water from the external water supply system, and should be finally stored in the ice making water tank 28. Further, during the deicing operation, the water supplied from the water supply pipe 29 is used as "deicing water" for washing away the ice pieces remaining on the upper surface of the water dish 24. Therefore, strictly speaking, only the water that is stored in the ice making water tank 28 and then jetted and supplied to the ice making chamber 12 by the supply pump 30 may be referred to as "ice making water", but in the present specification, the water supply pipe 29 The water supplied from is widely referred to as "ice making water".

(実施例)
図1は、本発明の実施例に係る給水構造の一部切欠き平面図であって、その基本構造は図8に示した構造と共通している。但し、本実施例では、前記水皿24の上面であって、かつ前記製氷室14には塞がれていないコ字状の部位である第2領域に、図2から判明するように、該水皿24の上面のレベルよりも低く掘り下げた水路34が形成されると共に、該水路34の底面に前記戻り孔27aが所要間隔で穿設されている。すなわち、実施例に係る前記水路34は、図2に縦断面で示す断面矩形状の角溝であって、この水路34が、図1に示す前記製氷室14の後部側(前記給水管29が上方に位置している領域)および両側面の三方を囲むコ字状の第2領域に凹設されている。
(Example)
FIG. 1 is a partially cutaway plan view of the water supply structure according to the embodiment of the present invention, and the basic structure thereof is the same as the structure shown in FIG. However, in this embodiment, as can be seen from FIG. 2, the second region, which is the upper surface of the water dish 24 and is a U-shaped portion not blocked by the ice making chamber 14, is the same. A water channel 34 dug below the level of the upper surface of the water dish 24 is formed, and the return holes 27a are formed at required intervals on the bottom surface of the water channel 34. That is, the water channel 34 according to the embodiment is a square groove having a rectangular cross section shown in a vertical cross section in FIG. 2, and the water channel 34 is the rear side (the water supply pipe 29) of the ice making chamber 14 shown in FIG. It is recessed in the upper area) and the U-shaped second area surrounding the three sides of both sides.

なお、前記給水管29からの水道水は、図7に示す除氷運転に入り水皿24が傾動して製氷室14を開放した際に、該水皿24に残留付着している氷片を洗い流す除氷水としても使われる。このとき除氷運転により水皿24が傾動した際に、前記給水管29の下方に位置している水路34へ、該給水管29から給水がなされると、供給された水はそのまま水路34を流れてしまい、前述した水皿24の洗浄をなし得ないことになる。そこで図3に示すように、給水管29が供給する製氷水(除氷水)の給水位置は、水皿24が傾動して製氷室14を開放した際に、前記水路34から外れる位置に予め設定されている。すなわち、図3において前記水路34として堀り下げた部分の上端部(白抜きの矢印で示す)は、図2に示す製氷運転時は給水管29からの給水が前記水路34に落下するが、図3に示す除氷時には、水皿24の傾動に伴い給水管29からの給水が前記水路34から外れ、専ら水皿24の洗浄にのみ供される位置になっている。 The tap water from the water supply pipe 29 enters the deicing operation shown in FIG. 7, and when the water dish 24 tilts to open the ice making chamber 14, ice pieces remaining on the water dish 24 are removed. It is also used as de-icing water to wash away. At this time, when the water pan 24 is tilted due to the deicing operation, when water is supplied from the water supply pipe 29 to the water channel 34 located below the water supply pipe 29, the supplied water directly fills the water channel 34. It will flow and the above-mentioned water dish 24 cannot be washed. Therefore, as shown in FIG. 3, the water supply position of the ice-making water (ice-removing water) supplied by the water supply pipe 29 is preset to a position where the water dish 24 is displaced from the water channel 34 when the water pan 24 is tilted to open the ice-making chamber 14. Has been done. That is, at the upper end portion (indicated by a white arrow) of the portion dug down as the water channel 34 in FIG. 3, water supplied from the water supply pipe 29 falls into the water channel 34 during the ice making operation shown in FIG. At the time of deicing shown in FIG. 3, the water supply from the water supply pipe 29 is disconnected from the water channel 34 due to the tilt of the water dish 24, and the position is exclusively used for cleaning the water dish 24.

このように、前記水皿24の上面で、かつ製氷室14により塞がれることのない第2領域に水路34を凹設し、この水路34に戻り孔27aを穿設するようにしたことで、給水管29から水皿24に供給された製氷水は、該製氷室14における三方の下端縁に接触し難くなった。このため、製氷運転に入り製氷室14を蒸発管18により冷却しても、該製氷室14に接触する製氷水により熱を奪われることが抑制され、製氷能力の低下を抑え易くなる。また、給水管29により水皿24へ供給された製氷水が製氷室14における三方の下端縁と接触しないために、氷結が抑制される結果として、除氷時に製氷室14から水皿24を剥離するのに大きな力が必要なくなり、アクチュエータや周辺機器に過負荷を与えることが抑制される。 In this way, the water channel 34 is recessed on the upper surface of the water dish 24 and in the second region that is not blocked by the ice making chamber 14, and the return hole 27a is formed in the water channel 34. The ice-making water supplied from the water supply pipe 29 to the water dish 24 is less likely to come into contact with the lower end edges of the three sides of the ice-making chamber 14. Therefore, even if the ice making operation is started and the ice making chamber 14 is cooled by the evaporation pipe 18, heat is suppressed from being taken away by the ice making water in contact with the ice making chamber 14, and it becomes easy to suppress a decrease in the ice making capacity. Further, since the ice making water supplied to the water dish 24 by the water supply pipe 29 does not come into contact with the lower end edges of the three sides of the ice making chamber 14, freezing is suppressed, and as a result, the water dish 24 is peeled off from the ice making chamber 14 at the time of deicing. It does not require a large force to do so, and overloading the actuator and peripheral devices is suppressed.

(変形例)
先に述べたように、水皿24の上面における第2領域に水路34を凹設することで、製氷能力が低下することが抑制され、また除氷運転時にアクチュエータ等の周辺機器に過負荷を与えることが抑制される。しかし、図2に示す実施例に係る水路34は、前記の如く断面が角溝になっている。このため、図4に示すように、製氷中に製氷小室12へ噴射され氷結しなかった所謂未氷結水は、基本的に戻り孔27から落下するが、落下し切らなかった残余の水は製氷室14の下端縁と水皿24の上面との間の隙間から前記水路34に流れ、前記戻り孔27aから落下する。しかし、前記未氷結水は、製氷室14と水皿24との隙間で表面張力により両者の間に滞留してしまい、前記水路34へは流れ難くなる場合がある。この状態で、滞留している水が製氷室14の側面で冷却されて氷結すると、除氷時にアクチュエータに過負荷を生じたり、周辺機器が破損したりする恐れがある。そこで図5に示すように、前記水路34における内壁面で、かつ前記製氷室14の側面に近接する側の部位を、該水路34の底面に向け傾斜させた斜面34aとすることで前記難点が抑制される。
(Variation example)
As described above, by denting the water channel 34 in the second region on the upper surface of the water dish 24, the decrease in ice making capacity is suppressed, and the peripheral equipment such as the actuator is overloaded during the deicing operation. Giving is suppressed. However, the water channel 34 according to the embodiment shown in FIG. 2 has a square groove in cross section as described above. Therefore, as shown in FIG. 4, the so-called unfrozen water that was sprayed into the ice making chamber 12 during ice making and did not freeze basically falls from the return hole 27, but the residual water that has not completely fallen is ice making. It flows into the water channel 34 from the gap between the lower end edge of the chamber 14 and the upper surface of the water dish 24, and falls from the return hole 27a. However, the unfrozen water may stay between the ice making chamber 14 and the water dish 24 due to surface tension due to surface tension, and may be difficult to flow into the water channel 34. In this state, if the stagnant water is cooled on the side surface of the ice making chamber 14 and freezes, the actuator may be overloaded or the peripheral device may be damaged during deicing. Therefore, as shown in FIG. 5, the difficulty is solved by making the portion of the inner wall surface of the water channel 34 on the side close to the side surface of the ice making chamber 14 a slope 34a inclined toward the bottom surface of the water channel 34. It is suppressed.

12 製氷小室,14 製氷室,24 水皿,27 戻り孔,28 製氷水タンク,
29 給水管,34 水路,34a 斜面
12 ice making chamber, 14 ice making chamber, 24 water pan, 27 return hole, 28 ice making water tank,
29 water supply pipe, 34 waterway, 34a slope

Claims (2)

下方に開口する多数の製氷小室(12)を画成した製氷室(14)と、前記製氷室(14)の直下に傾動自在に配設されて、前記製氷小室(12)を下から閉じる閉成姿勢または該製氷小室(12)から離間する開放姿勢をとる水皿(24)と、前記水皿(24)に近接配設されて、該水皿(24)の上面に製氷水を供給する給水管(29)とからなり、前記給水管(29)から供給した製氷水は、前記水皿(24)の上面でかつ前記製氷室(14)により塞がれる領域および該製氷室(14)により塞がれない領域に夫々穿設された戻り孔(27)を介して、該水皿(24)の下部に設けた製氷水タンク(28)に回収されるよう構成した自動製氷機において、
前記水皿(24)が前記製氷室(14)により塞がれていない領域であって、かつ前記給水管(29)から供給した製氷水が流れる部位に、該水皿(24)の上面よりも掘り下げた水路(34)が形成されており、
前記製氷室(14)に塞がれていない領域の戻り孔(27)は、前記水路(34)の底面に穿設されると共に、
前記水皿(24)が閉成姿勢にある状態では、前記給水管(29)から前記水路(34)に製氷水が供給され、当該水皿(24)が開放姿勢にある状態では、当該給水管(29)による製氷水の給水位置から水路(34)が外れて水皿(24)の上面に製氷水が供給されるよう構成されている
ことを特徴とする自動製氷機の給水構造。
An ice making chamber (14) that defines a large number of ice making chambers (12) that open downward, and an ice making chamber (12) that is tiltably arranged directly under the ice making chamber (14) and closes the ice making chamber (12) from below. A water tray (24) that takes an open posture away from the ice tray (12) and an ice tray (24) that is placed close to the ice tray (24) to supply ice water to the upper surface of the ice tray (24). The ice making water is composed of a water supply pipe (29), and the ice making water supplied from the water supply pipe (29) is an area on the upper surface of the water dish (24) and blocked by the ice making chamber (14) and the ice making chamber (14). In an automatic ice maker configured to be collected in an ice making water tank (28) provided at the bottom of the water pan (24) via return holes (27) drilled in the areas not blocked by the ice tray (24).
From the upper surface of the water dish (24) to the area where the water dish (24) is not blocked by the ice making chamber (14) and where the ice making water supplied from the water supply pipe (29) flows. A waterway (34) dug down is formed,
The return hole (27) in the area not blocked by the ice making chamber (14) is formed in the bottom surface of the water channel (34) and is also formed .
When the water pan (24) is in the closed posture, ice-making water is supplied from the water supply pipe (29) to the water channel (34), and when the water pan (24) is in the open posture, the water supply is performed. An automatic ice maker characterized in that the water channel (34) is separated from the water supply position of the ice making water by the pipe (29) and the ice making water is supplied to the upper surface of the water pan (24). Water supply structure.
前記水路(34)における前記製氷室(14)と近接する側の内壁面に、底面に向け傾斜させた斜面(34a)が形成されている請求項1記載の自動製氷機の給水構造。 The water supply structure of the automatic ice maker according to claim 1, wherein a slope (34a) inclined toward the bottom surface is formed on an inner wall surface of the water channel (34) on a side close to the ice making chamber (14).
JP2017181557A 2017-09-21 2017-09-21 Water supply structure of automatic ice maker Active JP6980472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017181557A JP6980472B2 (en) 2017-09-21 2017-09-21 Water supply structure of automatic ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017181557A JP6980472B2 (en) 2017-09-21 2017-09-21 Water supply structure of automatic ice maker

Publications (2)

Publication Number Publication Date
JP2019056526A JP2019056526A (en) 2019-04-11
JP6980472B2 true JP6980472B2 (en) 2021-12-15

Family

ID=66107284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017181557A Active JP6980472B2 (en) 2017-09-21 2017-09-21 Water supply structure of automatic ice maker

Country Status (1)

Country Link
JP (1) JP6980472B2 (en)

Also Published As

Publication number Publication date
JP2019056526A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
US7444828B2 (en) Ice discharging structure of ice making mechanism
JP2004325064A (en) Ice making mechanism for ice maker
JP5052277B2 (en) Ice making water tank of automatic ice machine
JP2013050238A (en) Refrigerator
JP6980472B2 (en) Water supply structure of automatic ice maker
KR200431862Y1 (en) Means for draining a defrosted water in a freezer
JP2011038706A (en) Ice-making unit for flow-down type ice making machine
JP5138941B2 (en) How to operate a jet ice maker
JP2002162137A (en) Automatic ice machine
JP2000193348A (en) Drain pan for automatic ice making machine
JP5055170B2 (en) Reverse cell ice machine
JP2007113905A (en) Ice making machine and solution ice manufactured by the same
JP4502897B2 (en) refrigerator
JP2957839B2 (en) Water tray structure of automatic ice machine
JP2008138974A (en) Jet type icemaker
JP4073236B2 (en) Ice machine
KR101407003B1 (en) Apparatus and method for supplying water to icemaker using the same
JP6762244B2 (en) Cell-type ice machine for half ice
JPH08193773A (en) Water pan structure of automatic ice maker
JP5138944B2 (en) Injection type automatic ice maker
JP6887835B2 (en) How to operate a flow-down ice machine
JP5000237B2 (en) Cell ice machine
JP2000329435A (en) Automatic ice machine
JP2010190525A (en) Ice-making water sprinkler of flow-down type ice making machine
JP3145365B2 (en) Vertical ice machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211117

R150 Certificate of patent or registration of utility model

Ref document number: 6980472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150