JP6979705B2 - Flow switching valve - Google Patents

Flow switching valve Download PDF

Info

Publication number
JP6979705B2
JP6979705B2 JP2019087432A JP2019087432A JP6979705B2 JP 6979705 B2 JP6979705 B2 JP 6979705B2 JP 2019087432 A JP2019087432 A JP 2019087432A JP 2019087432 A JP2019087432 A JP 2019087432A JP 6979705 B2 JP6979705 B2 JP 6979705B2
Authority
JP
Japan
Prior art keywords
port
valve body
flow path
valve
ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019087432A
Other languages
Japanese (ja)
Other versions
JP2020183777A (en
Inventor
仁志 木船
聡志 後藤
卓 市川
尚敬 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2019087432A priority Critical patent/JP6979705B2/en
Priority to CN202010155380.1A priority patent/CN111911660B/en
Publication of JP2020183777A publication Critical patent/JP2020183777A/en
Application granted granted Critical
Publication of JP6979705B2 publication Critical patent/JP6979705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)

Description

本発明は、Uターン形状の連通空間からなるUターン連通路が形成された弁体がハウジング内に配在された流路切換弁に係り、特に、ヒートポンプ式冷暖房システム等において流路切換を行うのに好適な流路切換弁に関する。 The present invention relates to a flow path switching valve in which a valve body having a U-turn communication path formed of a U-turn-shaped communication space is arranged in a housing, and particularly performs flow path switching in a heat pump type heating / cooling system or the like. The present invention relates to a flow path switching valve suitable for the above.

従来より、ヒートポンプ式冷暖房システムの流路(流れ方向)切換手段として、四方切換弁や六方切換弁等の流路切換弁はよく知られている。この種の流路切換弁としては、シリンダ型のハウジング内にスライド弁体がスライド可能に配在されたスライド式のものと、円筒状のハウジング内に回転弁体が回動可能に配在されたロータリー式のものとがある。また、この流路切換弁に、ハウジングに設けられたポート間を選択的に連通すべく、隣り合うポートを連通させるUターン形状の連通空間(以下、Uターン連通路という)が形成された弁体を用いることも既知である(例えば、下記特許文献1参照)。 Conventionally, a flow path switching valve such as a four-way switching valve or a six-way switching valve has been well known as a flow path (flow direction) switching means of a heat pump type heating / cooling system. As this type of flow path switching valve, a slide type valve body in which a slide valve body is slidably arranged in a cylinder type housing and a rotary valve body in which a rotary valve body is rotatably arranged in a cylindrical housing are arranged. There is a rotary type. Further, a valve in which a U-turn-shaped communication space (hereinafter referred to as a U-turn communication passage) for communicating adjacent ports is formed in this flow path switching valve so as to selectively communicate between ports provided in the housing. It is also known to use a body (see, for example, Patent Document 1 below).

図7に、従来例の流路切換弁を示す。図示従来例の流路切換弁は、例えばヒートポンプ式冷暖房システムにおいて流路切換用として使用されるスライド式の四方切換弁1'であり、シリンダ型のハウジング80、該ハウジング80内に設けられた弁シート部材81、該弁シート部材81の上面に形成された弁シート面82に開口する、左右方向に横並びに設けられたポートpC、ポートpS(低圧ポート)、及びポートpE、並びに、弁シート面82上を左右方向に摺動可能に配在された断面逆立椀形状の弁体(スライド弁体)10を有する。 FIG. 7 shows a conventional flow path switching valve. The flow path switching valve of the conventional example shown is, for example, a slide type four-way switching valve 1'used for flow path switching in a heat pump type heating / cooling system, and is a cylinder type housing 80 and a valve provided in the housing 80. Port pC, port pS (low pressure port), port pE, and valve seat surface provided laterally in the left-right direction, which are opened in the seat member 81 and the valve seat surface 82 formed on the upper surface of the valve seat member 81. It has a valve body (slide valve body) 10 having an inverted bowl-shaped cross section and is slidably arranged on the 82 in the left-right direction.

弁体10は、前記弁シート面82に対接するシール面12を有し、弁体10内には、前記3つのポートpC、pS、pEを選択的に連通させるべく、言い換えれば、ポートpSとポートpEとを連通させる第1の連通状態と、ポートpSとポートpCとを連通させる第2の連通状態とを作り出すべく、Uターン連通路15が設けられている。 The valve body 10 has a sealing surface 12 facing the valve seat surface 82, and in the valve body 10, the three ports pC, pS, and pE are selectively communicated with each other, in other words, with the port pS. A U-turn communication passage 15 is provided in order to create a first communication state in which the port pE is communicated and a second communication state in which the port pS and the port pC are communicated with each other.

ハウジング80の両端には、蓋部材87A、87Bが気密的に固着され、ハウジング80内は、左右2つのパッキン付きピストン84A、84Bにより気密的に仕切られて、弁室83と、2つの作動室86A、86Bとが画成されている。弁室83には、圧縮機の吐出側に接続されるポートpD(高圧ポート)が開口せしめられている。 The lid members 87A and 87B are airtightly fixed to both ends of the housing 80, and the inside of the housing 80 is airtightly partitioned by two pistons 84A and 84B with packings on the left and right, and a valve chamber 83 and two operating chambers. 86A and 86B are defined. A port pD (high pressure port) connected to the discharge side of the compressor is opened in the valve chamber 83.

2つのピストン84A、84Bは、横長矩形板状の連結体70により一体移動可能に連結されている。連結体70には、弁体10が下側から摺動自在に嵌合せしめられる開口72が形成されており、弁体10は、2つのピストン84A、84Bの往復移動に伴って連結体70の開口72部分に押動され、その内部に形成されたUターン連通路15を介してポートpEとポートpSとを連通させる右端位置(第1の連通状態)と、ポートpCとポートpSとを連通させる左端位置(第2の連通状態)との間を摺動するようにされている。なお、図7は、第2の連通状態を示している。 The two pistons 84A and 84B are integrally movably connected by a horizontally long rectangular plate-shaped connecting body 70. The connecting body 70 is formed with an opening 72 into which the valve body 10 is slidably fitted from below, and the valve body 10 is formed by the reciprocating movement of the two pistons 84A and 84B. The right end position (first communication state) in which the port pE and the port pS are communicated via the U-turn communication passage 15 pushed by the opening 72 portion and formed inside the opening, and the port pC and the port pS are communicated with each other. It is designed to slide between the left end position (second communication state) and the left end position. Note that FIG. 7 shows the second communication state.

また、連結体70には、前記開口72の左右に円形開口75が形成されている。 Further, the connecting body 70 is formed with circular openings 75 on the left and right sides of the opening 72.

前記2つの作動室86A、86Bは、四方パイロット弁(図7では不図示、図1に図示)を介して選択的に圧縮機吐出側と圧縮機吸入側とに接続され、2つの作動室86A、86Bの圧力差を利用してピストン84A、84Bを移動させ、それに伴って弁体10を弁シート面82上で摺動させて流路の切り換えを行うようにされている。 The two operating chambers 86A and 86B are selectively connected to the compressor discharge side and the compressor suction side via a four-way pilot valve (not shown in FIG. 7, shown in FIG. 1), and the two operating chambers 86A are connected. , 86B is used to move the pistons 84A and 84B, and the valve body 10 is slid on the valve seat surface 82 to switch the flow path.

また、上記のようなUターン連通路15が形成された弁体10(のシール面12)は、その外側(弁室83内)を流通する高圧流体とその内側(Uターン連通路15内)を流通する低圧流体との圧力差により弁シート面82に強く押し付けられ、これによって、Uターン連通路15のシールがなされる(シール性が確保される)ようになっている。 Further, the valve body 10 (seal surface 12) on which the U-turn communication passage 15 is formed as described above has a high-pressure fluid flowing on the outside (inside the valve chamber 83) and the inside thereof (inside the U-turn communication passage 15). It is strongly pressed against the valve seat surface 82 by the pressure difference with the low-pressure fluid flowing through the U-turn, whereby the U-turn communication passage 15 is sealed (sealing property is ensured).

特開2013−227989号公報Japanese Unexamined Patent Publication No. 2013-227989 特開2017−155887号公報Japanese Unexamined Patent Publication No. 2017-155887

ところで、例えば通常のスライド式の流路切換弁においては、弁口としてのポートの一部を塞ぐと流路の開口面積(流体通過面積)が減少するため、図7に示す如くに、弁口としてのポートを塞がないように弁体を配置し、これによってCv値(流量に相当)が確保しやすくなると考えられてきた(例えば上記特許文献2も併せて参照)。 By the way, for example, in a normal slide type flow path switching valve, if a part of the port as a valve port is closed, the opening area (fluid passage area) of the flow path decreases. Therefore, as shown in FIG. 7, the valve port It has been considered that the valve body is arranged so as not to block the port, which makes it easier to secure the Cv value (corresponding to the flow rate) (see also Patent Document 2 above).

また、通常、ポートの周縁(内周縁)と弁体の内径部としてのUターン連通路の開口縁部がほぼ面一に重なったときが、最適な流路と考えられてきた。 Further, it has been considered that the optimum flow path is usually when the peripheral edge (inner peripheral edge) of the port and the opening edge of the U-turn communication path as the inner diameter portion of the valve body overlap almost flush with each other.

そのため、さらに、Cv値を上げる際には、Uターン連通路の高さを高くし、より綺麗なUターン形状(ターン部分が完全なR形状)にする、あるいは、ポート径(弁口径)を大きくする必要があり、ハウジング外径や配管ピッチの拡大・拡張が必要となり、全体体格の大型化、コストアップの要因となっていた。 Therefore, when further increasing the Cv value, the height of the U-turn communication passage is increased to make a more beautiful U-turn shape (turn part is a perfect R shape), or the port diameter (valve diameter) is changed. It was necessary to increase the size, and it was necessary to expand and expand the outer diameter of the housing and the piping pitch, which was a factor in increasing the overall size and cost.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、体格の大型化、コストアップを要することなく、Cv値を効果的に向上させることのできる流路切換弁を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a flow path switching valve capable of effectively improving a Cv value without requiring an increase in body size and cost. To do.

前記の目的を達成すべく、本発明に係る流路切換弁は、基本的に、シリンダ型のハウジングと、該ハウジング内に軸線方向に移動可能に配在された弁体と、該弁体が対接せしめられるとともに複数のポートが軸線方向に並んで開口せしめられた弁シート面と、を備え、前記弁体は、前記複数のポートのうち隣り合うポートを連通させる大きさのUターン連通路を有し、該Uターン連通路を介して前記ポート間を選択的に連通させる複数の連通状態をとり得るようにされ、前記弁体が所定の連通状態をとるとき、前記隣り合うポートのうち少なくとも出口側となるポートの一部を塞ぐように、前記Uターン連通路の開口縁部の軸線方向端部が前記ポートの周縁よりも内側に配置されるとともに、前記ポートの全開口に対する塞ぎ率は、13%までであり、前記弁体によって前記隣り合うポートの出口側となるポートの一部のみが塞がれるようにされていることを特徴としている。 In order to achieve the above object, the flow path switching valve according to the present invention basically includes a cylinder type housing, a valve body movably arranged in the housing in the axial direction, and the valve body. The valve body is provided with a valve seat surface that is face-to-face and has a plurality of ports opened side by side in the axial direction, and the valve body is a U-turn communication passage having a size for communicating adjacent ports among the plurality of ports. And can take a plurality of communication states that selectively communicate between the ports via the U-turn communication path, and when the valve body takes a predetermined communication state, among the adjacent ports. The axial end of the opening edge of the U-turn communication passage is arranged inside the peripheral edge of the port so as to block at least a part of the port on the exit side, and the blocking rate with respect to the entire opening of the port. the state, and are up to 13%, is characterized that you have been so that only a part of the port to which the outlet side port adjacent said is closed by the valve body.

前記塞ぎ率は、好ましくは、9%までである。 The blockage rate is preferably up to 9%.

前記塞ぎ率は、より好ましくは、5%である。 The blockage rate is more preferably 5%.

別の好ましい態様では、前記Uターン連通路の開口縁部は、軸線方向端部に位置する一対の半円部と、軸線方向に垂直な方向の端部に位置して軸線方向に沿って延びる一対の直線部とで構成される。 In another preferred embodiment, the opening edge of the U-turn passage is located at a pair of semicircular portions located at the axial end and at the end perpendicular to the axial direction and extends along the axial direction. It is composed of a pair of straight sections.

別の好ましい態様では、前記Uターン連通路の開口縁部の軸線方向端部は、前記弁シート面に摺接するシール面に垂直な面で構成される。 In another preferred embodiment, the axial end of the opening edge of the U-turn communication passage is configured with a surface perpendicular to the sealing surface that is in sliding contact with the valve seat surface.

また、本発明に係る流路切換弁は、基本的に、筒状のハウジングと、該ハウジング内に移動可能に配在された弁体と、該弁体が対接せしめられるとともに複数のポートが並んで開口せしめられた弁シート面と、を備え、前記弁体は、前記複数のポートのうち隣り合うポートを連通させる大きさのUターン連通路を有し、該Uターン連通路を介して前記ポート間を選択的に連通させる複数の連通状態をとり得るようにされ、前記弁体が所定の連通状態をとるとき、前記隣り合うポートのうち少なくとも出口側となるポートの一部を塞ぐように、前記Uターン連通路の開口縁部の前記隣り合うポートの並設方向端部が前記ポートの周縁よりも内側に配置されるとともに、前記ポートの全開口に対する塞ぎ率は、13%までであり、前記弁体によって前記隣り合うポートの出口側となるポートの一部のみが塞がれるようにされており、前記弁体として、前記ハウジングの軸線と平行な回転軸線周りに回動可能に配在される回転弁体を備えることを特徴としている。 Further, the flow path switching valve according to the present invention basically has a tubular housing, a valve body movably arranged in the housing, and the valve body is brought into contact with each other and has a plurality of ports. The valve body comprises a valve seat surface which is opened side by side, and the valve body has a U-turn communication passage having a size for communicating adjacent ports among the plurality of ports, and the valve body has a U-turn communication passage through the U-turn communication passage. It is possible to take a plurality of communication states for selectively communicating between the ports, and when the valve body takes a predetermined communication state, at least a part of the adjacent ports on the exit side is blocked. In addition, the parallel end of the adjacent port of the opening edge of the U-turn communication passage is arranged inside the peripheral edge of the port, and the blockage rate for the entire opening of the port is up to 13%. The valve body is configured to block only a part of the port on the exit side of the adjacent ports, and the valve body can rotate around a rotation axis parallel to the axis of the housing. It is characterized by having a rotating valve body distributed.

かかる構成の流路切換弁においては、Uターン連通路の入口側流路に対して出口側流路の方がポート内の圧力バランスに差異が見られ、出口側流路のポート及びその近傍では、内側(つまり、隣り合うポート側)は圧力損失し、外側(つまり、隣り合うポート側とは反対側)よりも若干低圧となる。 In the flow path switching valve having such a configuration, a difference in pressure balance in the port is seen in the outlet side flow path with respect to the inlet side flow path of the U-turn continuous passage, and in the port of the outlet side flow path and its vicinity. , The inside (that is, the adjacent port side) loses pressure, and the pressure is slightly lower than the outside (that is, the side opposite to the adjacent port side).

前記した如くの従来の流路切換弁においては、Uターン連通路の開口縁部の軸線方向端部がポートの周縁と一致する位置もしくはポートの周縁よりも外側に配置され、弁口としてのポートを塞がないように弁体が配置されており、Uターン連通路の出口側端部とポートとは、断面積(流体通過面積)が基本的に変わらない、あるいは、ポート側の方が若干小さいので、入口側流路となるポートから流入してUターン連通路を通過した流体(冷媒)は、出口側流路となるポート内に流出した直後に全体的に(つまり、ポートの内側と外側とで)圧力が低下し始める。すなわち、外側の高圧も、出口側流路となるポート内に流出した直後に圧力損失するため、実際にCv値(流量)を大きくすることは難しくなる。 In the conventional flow path switching valve as described above, the axial end of the opening edge of the U-turn continuous passage is arranged at a position corresponding to the peripheral edge of the port or outside the peripheral edge of the port, and the port as a valve port. The valve body is arranged so as not to block the U-turn, and the cross-sectional area (fluid passage area) is basically the same between the exit side end of the U-turn passage and the port, or the port side is slightly. Since it is small, the fluid (refrigerant) that has flowed in from the port that is the inlet side flow path and has passed through the U-turn communication passage is totally (that is, inside the port) immediately after flowing out into the port that is the outlet side flow path. The pressure begins to drop (on the outside). That is, it is difficult to actually increase the Cv value (flow rate) because the pressure loss also occurs immediately after the high voltage on the outside flows out into the port which is the outlet side flow path.

本発明の流路切換弁では、Uターン連通路の開口縁部の軸線方向端部(隣り合うポートの並設方向端部)がポートの周縁よりも内側に配置され、少なくとも出口側流路となるポートの一部を弁体で塞ぐとともに、そのポートの全開口に対する塞ぎ率は、例えば13%まで、好ましくは9%まで、より好ましくは5%とされるので、入口側流路となるポートから流入してUターン連通路を通過した流体(冷媒)は、出口側流路となるポート内に流出した後も圧力低下(特にポートの外側の圧力低下)が少なくて済む。すなわち、外側の高圧は、出口側流路となるポート内に流出した後も圧力損失し難くなるため、前記した従来の流路切換弁と比べて、Cv値(流量)を格段に大きくすることができる。 In the flow path switching valve of the present invention, the axial end of the opening edge of the U-turn continuous passage (the end in the parallel direction of adjacent ports) is arranged inside the peripheral edge of the port, and at least the outlet side flow path. A part of the port is closed with a valve body, and the closing rate for the entire opening of the port is, for example, up to 13%, preferably up to 9%, and more preferably 5%. The fluid (refrigerant) that has flowed in from the U-turn and passed through the U-turn communication passage has a small pressure drop (particularly, a pressure drop outside the port) even after flowing out into the port that is the outlet side flow path. That is, since the high pressure on the outside is less likely to cause pressure loss even after flowing out into the port that is the outlet side flow path, the Cv value (flow rate) should be significantly increased as compared with the conventional flow path switching valve described above. Can be done.

また、本発明の流路切換弁では、ポートの一部を弁体で塞ぐようにすればよく、ハウジング外径や配管ピッチを拡大・拡張する必要はないため、体格の大型化、コストアップを招くことはない。 Further, in the flow path switching valve of the present invention, it is sufficient to block a part of the port with a valve body, and it is not necessary to expand or expand the outer diameter of the housing or the piping pitch. I won't invite you.

本発明に係る流路切換弁の一実施形態を示す全体縦断面図。The whole vertical sectional view which shows one Embodiment of the flow path switching valve which concerns on this invention. 図1に示される弁体の下面図。The bottom view of the valve body shown in FIG. 本実施形態における弁体及びポートの内部の圧力分布の説明に供される要部拡大縦断面図。An enlarged vertical sectional view of a main part provided for explaining the pressure distribution inside the valve body and the port in the present embodiment. 従来品における弁体及びポートの内部の圧力分布の説明に供される要部拡大縦断面図。An enlarged vertical sectional view of a main part provided for explaining the pressure distribution inside the valve body and the port in the conventional product. 塞ぎ率とCv値(相対値)との関係を示す特性図。A characteristic diagram showing the relationship between the blockage rate and the Cv value (relative value). 本発明に係る流路切換弁の他の実施形態を示す要部拡大縦断面図。An enlarged vertical sectional view of a main part showing another embodiment of the flow path switching valve according to the present invention. 従来の流路切換弁を示す縦断面図。A vertical sectional view showing a conventional flow path switching valve.

以下、本発明の実施形態を図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る流路切換弁の一実施形態を示す全体縦断面図である。図2は、図1に示される弁体の下面図である。なお、図2では、シート部材に設けられたポートpC、pS、pEの位置を仮想線で図示している。 FIG. 1 is an overall vertical sectional view showing an embodiment of a flow path switching valve according to the present invention. FIG. 2 is a bottom view of the valve body shown in FIG. In FIG. 2, the positions of the ports pC, pS, and pE provided on the seat member are illustrated by virtual lines.

なお、本明細書において、上下、左右、前後等の位置、方向を表わす記述は、説明が煩瑣になるのを避けるために図面に従って便宜上付けたものであり、実際に冷暖房システム等に組み込まれた状態での位置、方向を指すとは限らない。 In addition, in this specification, the description indicating the position and direction such as up / down, left / right, front / back, etc. is added for convenience according to the drawing in order to avoid complicated explanation, and is actually incorporated in the air conditioning system or the like. It does not always point to the position or direction in the state.

また、各図において、部材間に形成される隙間や部材間の離隔距離等は、発明の理解を容易にするため、また、作図上の便宜を図るため、各構成部材の寸法に比べて大きくあるいは小さく描かれている場合がある。 Further, in each drawing, the gap formed between the members, the separation distance between the members, etc. are larger than the dimensions of each constituent member in order to facilitate understanding of the invention and for convenience in drawing. Or it may be drawn small.

図示実施形態の流路切換弁は、例えばヒートポンプ式冷暖房システムにおいて流路切換用として使用されるスライド式の四方切換弁1であり、弁体(スライド弁体)10を内蔵する主弁9と、四方パイロット弁8とを備える。 The flow path switching valve of the illustrated embodiment is, for example, a slide type four-way switching valve 1 used for flow path switching in a heat pump type heating / cooling system, and includes a main valve 9 having a valve body (slide valve body) 10 built therein. It is equipped with a four-way pilot valve 8.

主弁9は、シリンダ型(円筒状)のハウジング80、該ハウジング80内に設けられた弁シート部材81、該弁シート部材81の上面に形成された平坦で滑らかな弁シート面82に開口する、左右方向(ハウジング80の長さ又は軸線O方向)に横並びに設けられたポートpC、ポートpS(低圧ポート)、及びポートpE、並びに、弁シート面82上を左右方向に摺動可能に配在された断面逆立椀形状の弁体10を有する。 The main valve 9 opens into a cylinder-shaped (cylindrical) housing 80, a valve seat member 81 provided in the housing 80, and a flat and smooth valve seat surface 82 formed on the upper surface of the valve seat member 81. , Port pC, port pS (low pressure port), and port pE provided side by side in the left-right direction (length of housing 80 or axis O direction), and slidably arranged on the valve seat surface 82 in the left-right direction. It has a valve body 10 having an inverted bowl-shaped cross section.

弁体10は、例えば合成樹脂製とされ、前記弁シート面82に対接(対面)するシール面12を有し、弁体10内、つまり、シール面12の内側には、前記3つのポートpC、pS、pEを選択的に連通させるべく、言い換えれば、ポートpSとポートpEとを連通させる第1の連通状態と、ポートpSとポートpCとを連通させる第2の連通状態とを作り出すべく、Uターン連通路15が設けられている。 The valve body 10 is made of, for example, a synthetic resin, and has a sealing surface 12 that faces (faces) the valve seat surface 82, and the three ports are inside the valve body 10, that is, inside the sealing surface 12. To selectively communicate pC, pS, and pE, in other words, to create a first communication state in which port pS and port pE communicate with each other, and a second communication state in which port pS and port pC communicate with each other. , U-turn communication passage 15 is provided.

ハウジング80の両端には、蓋部材87A、87Bが気密的に固着され、ハウジング80内は、左右2つの(一対の)パッキン付きピストン84A、84Bにより気密的に仕切られて、弁室83と、2つの作動室86A、86Bとが画成されている。弁室83(図示例では、中央のポートpSに対向する位置)には、圧縮機の吐出側に接続されるポートpD(高圧ポート)が開口せしめられている。 The lid members 87A and 87B are airtightly fixed to both ends of the housing 80, and the inside of the housing 80 is airtightly partitioned by two (pair) packing pistons 84A and 84B on the left and right. Two working chambers 86A and 86B are defined. A port pD (high pressure port) connected to the discharge side of the compressor is opened in the valve chamber 83 (in the illustrated example, a position facing the central port pS).

2つのピストン84A、84Bは、横長矩形板状の連結体70により一体移動可能に連結されている。連結体70には、弁体10が下側から摺動自在に嵌合せしめられる矩形状の開口72が形成されており、弁体10は、2つのピストン84A、84Bの往復移動に伴って連結体70の開口72部分に押動され、その内部に形成されたUターン連通路15を介してポートpEとポートpS(低圧ポート)とを連通させる右端位置(第1の連通状態)と、ポートpCとポートpS(低圧ポート)とを連通させる左端位置(第2の連通状態)との間を摺動するようにされている。なお、図1は、第2の連通状態を示している。 The two pistons 84A and 84B are integrally movably connected by a horizontally long rectangular plate-shaped connecting body 70. The connecting body 70 is formed with a rectangular opening 72 into which the valve body 10 is slidably fitted from below, and the valve body 10 is connected as the two pistons 84A and 84B reciprocate. The right end position (first communication state) that is pushed by the opening 72 portion of the body 70 and communicates the port pE and the port pS (low pressure port) via the U-turn communication passage 15 formed inside the body 70, and the port. It is made to slide between the left end position (second communication state) in which the pC and the port pS (low pressure port) are communicated with each other. Note that FIG. 1 shows the second communication state.

また、連結体70には、前記開口72の左右、すなわち、弁体10が右端位置(第1の連通状態)をとるとき左側のポートpCの略真上に位置する部位に円形開口75が形成されるとともに、弁体10が左端位置(第2の連通状態)をとるとき右側のポートpEの略真上に位置する部位に円形開口75が形成されている。 Further, in the connecting body 70, a circular opening 75 is formed on the left and right sides of the opening 72, that is, at a portion located substantially directly above the port pC on the left side when the valve body 10 takes the right end position (first communication state). At the same time, when the valve body 10 takes the left end position (second communication state), a circular opening 75 is formed in a portion located substantially directly above the port pE on the right side.

かかる主弁9において、前記2つの作動室86A、86Bは、四方パイロット弁8及び細管#1〜#4を介して選択的に圧縮機吐出側と圧縮機吸入側とに接続され、2つの作動室86A、86Bの圧力差を利用してピストン84A、84Bを移動させ、それに伴って弁体10を弁シート面82上で摺動させて流路の切り換えを行うようにされている。 In the main valve 9, the two operating chambers 86A and 86B are selectively connected to the compressor discharge side and the compressor suction side via the four-way pilot valve 8 and the thin tubes # 1 to # 4, and the two actuation chambers 86A and 86B are operated. The pistons 84A and 84B are moved by utilizing the pressure difference between the chambers 86A and 86B, and the valve body 10 is slid on the valve seat surface 82 accordingly to switch the flow path.

また、上記のようなUターン連通路15が形成された弁体10(のシール面12)は、その外側(弁室83内)を流通する高圧流体とその内側(Uターン連通路15内)を流通する低圧流体との圧力差により弁シート面82に強く押し付けられ、これによって、Uターン連通路15のシールがなされる(シール性が確保される)ようになっている。 Further, the valve body 10 (seal surface 12) on which the U-turn communication passage 15 is formed as described above has a high-pressure fluid flowing on the outside (inside the valve chamber 83) and the inside thereof (inside the U-turn communication passage 15). It is strongly pressed against the valve seat surface 82 by the pressure difference with the low-pressure fluid flowing through the U-turn, whereby the U-turn communication passage 15 is sealed (sealing property is ensured).

次に、上記実施形態の四方切換弁(流路切換弁)1の要部である弁体10周りについて詳細に説明する。 Next, the circumference of the valve body 10, which is the main part of the four-way switching valve (flow path switching valve) 1 of the above embodiment, will be described in detail.

本実施形態においては、図2を参照すればよく分かるように、弁体10の環状のシール面12の内縁部12Cは、左右方向(長手方向)両端部に位置する左右一対の半円部13A、13Bと、前後方向(短手方向)両端部に位置して長手方向に沿って延びており、前記左右一対の半円部13A、13B(の端部同士)を繋ぐ前後一対の直線部14A、14Bとを備える、平面視概略レーストラック形状を有する。 In the present embodiment, as can be clearly seen with reference to FIG. 2, the inner edge portions 12C of the annular sealing surface 12 of the valve body 10 are a pair of left and right semicircular portions 13A located at both ends in the left-right direction (longitudinal direction). , 13B, which are located at both ends in the front-rear direction (short direction) and extend along the longitudinal direction, and a pair of front-rear straight lines 14A connecting the pair of left and right semi-circular portions 13A and 13B (ends). , 14B and has a schematic race track shape in plan view.

前記左右一対の半円部13A、13Bの直径及び前記前後一対の直線部14A、14B同士の間隔は、弁シート面82に開口せしめられたポートpC、pS、pEの口径(内径)よりも若干大きくされている。 The diameters of the pair of left and right semicircular portions 13A and 13B and the distance between the pair of front and rear straight portions 14A and 14B are slightly larger than the diameters (inner diameters) of the ports pC, pS and pE opened in the valve seat surface 82. It has been enlarged.

また、弁体10のシール面12の内側に設けられたUターン連通路15は、下側(つまり、ポートpC、pS、pEが開口した弁シート面82側)が開口した、隣り合うポート(pC−pS、又は、pS−pE)を連通させる大きさの側面視概略逆U字状ないし凹状を有する。 Further, the U-turn communication passage 15 provided inside the seal surface 12 of the valve body 10 is an adjacent port (that is, the valve seat surface 82 side where the ports pC, pS, and pE are opened) is open. It has a substantially inverted U-shape or concave shape in a side view having a size that allows pC-pS or pS-pE) to communicate with each other.

このUターン連通路15の開口縁部15Cは、前記したシール面12の内縁部12Cと同様に、左右方向(長手方向)両端部に位置する左右一対の半円部16A、16Bと、前後方向(短手方向)両端部に位置して長手方向に沿って延びており、前記左右一対の半円部16A、16B(の端部同士)を繋ぐ前後一対の直線部17A、17Bとを備える、平面視概略レーストラック形状を有する。 The opening edge portion 15C of the U-turn continuous passage 15 has a pair of left and right semicircular portions 16A and 16B located at both ends in the left-right direction (longitudinal direction) in the front-rear direction, similarly to the inner edge portion 12C of the sealing surface 12 described above. (Short side direction) It is located at both ends and extends along the longitudinal direction, and includes a pair of front and rear straight portions 17A and 17B connecting the pair of left and right semicircular portions 16A and 16B (ends). It has a roughly race track shape in plan view.

前記左右一対の半円部16A、16Bの直径及び前記前後一対の直線部17A、17B同士の間隔は、弁シート面82に開口せしめられたポートpC、pS、pEの口径(内径)よりも若干大きくされているが、左右一対の半円部16A、16B同士の(左右方向の)間隔は、左右一対の半円部13A、13Bの(左右方向の)間隔よりも若干短くされ、前後一対の直線部17A、17Bの(前後方向の)間隔は、前後一対の直線部14A、14B同士の間隔の(前後方向の)間隔よりも若干短くされており、Uターン連通路15の開口縁部15Cは、シール面12の内縁部12Cよりも左右方向(長手方向)長さが若干短くされている。 The diameters of the pair of left and right semicircular portions 16A and 16B and the distance between the pair of front and rear straight portions 17A and 17B are slightly larger than the diameters (inner diameters) of the ports pC, pS and pE opened in the valve seat surface 82. Although it is made larger, the distance between the pair of left and right half circles 16A and 16B (in the left-right direction) is slightly shorter than the distance between the pair of left and right half circles 13A and 13B (in the left-right direction). The distance between the straight portions 17A and 17B (in the front-rear direction) is slightly shorter than the distance between the pair of front-rear straight portions 14A and 14B (in the front-rear direction), and the opening edge portion 15C of the U-turn continuous passage 15 Is slightly shorter in the left-right direction (longitudinal direction) than the inner edge portion 12C of the sealing surface 12.

また、本例では、Uターン連通路15の開口縁部15Cの両端部に位置する前記左右一対の半円部16A、16Bは、前記シール面12に略垂直な面で構成されている。 Further, in this example, the pair of left and right semicircular portions 16A and 16B located at both ends of the opening edge portion 15C of the U-turn continuous passage 15 are configured with a surface substantially perpendicular to the sealing surface 12.

前記シール面12の内縁部12Cと前記Uターン連通路15の開口縁部15Cとの間には、テーパ面(面取りともいう)18が設けられている。図示例では、前記テーパ面18は、シール面12に対して略45°傾いた傾斜面で形成されている。 A tapered surface (also referred to as chamfer) 18 is provided between the inner edge portion 12C of the sealing surface 12 and the opening edge portion 15C of the U-turn communication passage 15. In the illustrated example, the tapered surface 18 is formed as an inclined surface inclined by approximately 45 ° with respect to the sealing surface 12.

なお、本例では、前記Uターン連通路15(の内部空間)は、(テーパ面18が設けられた端部を除いて)一端から他端まで全長にわたって略等しい断面積(通路断面積)を有するように形成されている。 In this example, the U-turn continuous passage 15 (internal space) has a substantially equal cross-sectional area (passage cross-sectional area) over the entire length from one end to the other end (excluding the end provided with the tapered surface 18). It is formed to have.

弁体10が右端位置をとるとき、シール面12の内縁部12Cにおける左側の半円部13A及びUターン連通路15の開口縁部15Cにおける左側の半円部16Aは出口側となるポートpSの周縁の右側(内側)に位置し、シール面12の内縁部12Cにおける右側の半円部13B及びUターン連通路15の開口縁部15Cにおける右側の半円部16Bは入口側となるポートpEの周縁の左側(内側)に位置する。また、弁体10が左端位置をとるとき、シール面12の内縁部12Cにおける左側の半円部13A及びUターン連通路15の開口縁部15Cにおける左側の半円部16Aは入口側となるポートpCの周縁の右側(内側)に位置し、シール面12の内縁部12Cにおける右側の半円部13B及びUターン連通路15の開口縁部15Cにおける右側の半円部16Bは出口側となるポートpSの周縁の左側(内側)に位置する。また、シール面12の内縁部12Cにおける前後の直線部14A、14B及びUターン連通路15の開口縁部15Cにおける前後の直線部17A、17Bはそれぞれ、3個のポートpC、pS、pEの前側及び後側に位置する。 When the valve body 10 takes the right end position, the left semicircular portion 13A at the inner edge portion 12C of the sealing surface 12 and the left semicircular portion 16A at the opening edge portion 15C of the U-turn continuous passage 15 are port pS on the outlet side. Located on the right side (inside) of the peripheral edge, the right semicircular portion 13B at the inner edge portion 12C of the sealing surface 12 and the right semicircular portion 16B at the opening edge portion 15C of the U-turn communication passage 15 are the inlet side port pE. It is located on the left side (inside) of the periphery. Further, when the valve body 10 takes the left end position, the left semicircular portion 13A at the inner edge portion 12C of the sealing surface 12 and the left semicircular portion 16A at the opening edge portion 15C of the U-turn continuous passage 15 are ports on the inlet side. A port located on the right side (inside) of the peripheral edge of the pC, where the right semicircular portion 13B on the inner edge portion 12C of the sealing surface 12 and the right semicircular portion 16B on the opening edge portion 15C of the U-turn communication passage 15 are on the exit side. It is located on the left side (inside) of the periphery of pS. Further, the front and rear straight portions 14A and 14B on the inner edge portion 12C of the sealing surface 12 and the front and rear straight portions 17A and 17B on the opening edge portion 15C of the U-turn continuous passage 15 are the front sides of the three ports pC, pS and pE, respectively. And located on the back side.

本実施形態では、前記した如くの配置構成をとることにより、弁体10が右端位置(第1の連通状態)及び左端位置(第2の連通状態)をとるとき、Uターン連通路15を介して連通せしめられる(入口側流路及び出口側流路となる)両ポートの一部(外縁部分)が(平面視で視たときに)塞がれることになる(特に、図2参照)。すなわち、弁体10が右端位置をとるとき、Uターン連通路15の入口側流路となるポートpEの右端部分及び出口側流路となるポートpSの左端部分が塞がれ、弁体10が左端位置をとるとき、Uターン連通路15の入口側流路となるポートpCの左端部分及び出口側流路となるポートpSの右端部分が塞がれる。 In the present embodiment, by adopting the arrangement configuration as described above, when the valve body 10 takes the right end position (first communication state) and the left end position (second communication state), it passes through the U-turn communication passage 15. A part (outer edge portion) of both ports (which become the inlet side flow path and the outlet side flow path) that communicate with each other will be blocked (when viewed in a plan view) (particularly, see FIG. 2). That is, when the valve body 10 takes the right end position, the right end portion of the port pE which is the inlet side flow path of the U-turn continuous passage 15 and the left end portion of the port pS which is the outlet side flow path are closed, and the valve body 10 is closed. When the left end position is taken, the left end portion of the port pC which is the inlet side flow path of the U-turn continuous passage 15 and the right end portion of the port pS which is the exit side flow path are closed.

このような構成の四方切換弁1においては、図3、図4に示される如くに、Uターン連通路15の入口側流路に対して出口側流路の方がポート内の圧力バランスに差異が見られ、出口側流路のポート及びその近傍では、内側(つまり、隣り合うポート側)は圧力損失し、外側(つまり、隣り合うポート側とは反対側)よりも若干低圧となり、その後、ポート内を通過するに従って次第に圧力が低下していく。なお、図3、図4において、矢印の向きが流れ方向、その矢印の太さが圧力の大きさを表しており、太線矢印の領域が高圧、細線矢印の領域が低圧、その中間太さの矢印の領域が中圧を意味している。 In the four-way switching valve 1 having such a configuration, as shown in FIGS. 3 and 4, the outlet side flow path differs from the inlet side flow path of the U-turn continuous passage 15 in the pressure balance in the port. At the port of the outlet side flow path and its vicinity, pressure loss occurs on the inside (that is, on the adjacent port side), and the pressure becomes slightly lower than that on the outside (that is, on the side opposite to the adjacent port side), and then. The pressure gradually decreases as it passes through the port. In FIGS. 3 and 4, the direction of the arrow indicates the flow direction, the thickness of the arrow indicates the magnitude of the pressure, the area of the thick line arrow is the high pressure, the area of the thin line arrow is the low pressure, and the intermediate thickness thereof. The area of the arrow means medium pressure.

従来のように、弁口としてのポートを塞がないように弁体を配置する場合、Uターン連通路の出口側端部とポートとは、断面積(流体通過面積)が基本的に変わらない、あるいは、ポート側の方が若干小さいので、図4に示される如くに、入口側流路となるポートから流入してUターン連通路を通過した流体(冷媒)は、出口側流路となるポート内に流出した直後に全体的に(つまり、ポートの内側と外側とで)圧力が低下し始める。すなわち、外側の高圧も、出口側流路となるポート内に流出した直後に圧力損失し、その結果、実際にCv値(流量)を大きくすることは難しくなる。 When the valve body is arranged so as not to block the port as the valve port as in the conventional case, the cross-sectional area (fluid passage area) is basically the same between the outlet side end of the U-turn communication passage and the port. Or, since the port side is slightly smaller, as shown in FIG. 4, the fluid (refrigerant) that has flowed in from the port that is the inlet side flow path and has passed through the U-turn communication passage becomes the outlet side flow path. Immediately after spilling into the port, the pressure begins to drop overall (ie, inside and outside the port). That is, the high voltage on the outside also loses pressure immediately after flowing out into the port that becomes the outlet side flow path, and as a result, it becomes difficult to actually increase the Cv value (flow rate).

一方、本実施形態のように、少なくとも出口側流路となるポート(本例では、弁体10が右端位置をとるときも左端位置をとるときも同じポートpS)の一部を弁体10で塞ぐことにより、図3に示される如くに、入口側流路となるポート(本例では、弁体10が右端位置をとるときポートpE、左端位置をとるときポートpC)から流入してUターン連通路15を通過した流体(冷媒)は、出口側流路となるポートpS内に流出した後も圧力低下(特にポートpSの外側の圧力低下)が少なくて済む。すなわち、外側の高圧は、出口側流路となるポートpS内に流出した後も圧力損失し難くなり、その結果、Cv値(流量)を格段に大きくすることができる。 On the other hand, as in the present embodiment, at least a part of the port that becomes the outlet side flow path (in this example, the same port pS when the valve body 10 takes the right end position and the left end position) is partly formed by the valve body 10. By closing, as shown in FIG. 3, as shown in FIG. 3, the fluid flows in from the port that becomes the inlet side flow path (in this example, the port pE when the valve body 10 takes the right end position and the port pC when the valve body 10 takes the left end position) and makes a U-turn. The fluid (refrigerant) that has passed through the communication passage 15 can have a small pressure drop (particularly, a pressure drop outside the port pS) even after flowing out into the port pS that is the outlet side flow path. That is, the high pressure on the outside is less likely to cause pressure loss even after flowing out into the port pS which is the outlet side flow path, and as a result, the Cv value (flow rate) can be significantly increased.

図5は、弁体10によるポートpSの全開口(ここでは、ポート径(口径)はφ20mm)に対する塞ぎ率とCv値(相対値)との関係を示したものである。なお、本明細書において、塞ぎ率は、以下の数式(1)により算出される割合ないし比率である(数式(1)における閉塞量L及びポート径φDについては図3参照)。図5において、塞ぎ率が正の値であるときは、弁体10のUターン連通路15の開口縁部15C(の半円部16A、16B)が出口側となるポート(の周縁)の内側に位置してポートの一部が塞がれている状態、塞ぎ率が負の値であるときは、弁体10のUターン連通路15の開口縁部15C(の半円部16A、16B)がポート(の周縁)の外側に位置している(つまり、ポートは塞がれていない)状態を意味している。なお、図5におけるCv値は、塞ぎ率が−5%のときのCv値を基準にして(100%として)示している。
[数1]
塞ぎ率(%)=(弁体によるポートの閉塞量L)/(ポート径φD)×100
・・・(1)
FIG. 5 shows the relationship between the blockage rate and the Cv value (relative value) with respect to the full opening of the port pS by the valve body 10 (here, the port diameter (diameter) is φ20 mm). In the present specification, the blockage rate is a ratio or ratio calculated by the following formula (1) (see FIG. 3 for the blockage amount L and the port diameter φD in the formula (1)). In FIG. 5, when the closing rate is a positive value, the inside of the port (periphery) where the opening edge portion 15C (semicircular portions 16A, 16B) of the U-turn communication passage 15 of the valve body 10 is on the exit side. When a part of the port is blocked at the position of, and the blocking rate is a negative value, the opening edge portion 15C (semicircular portion 16A, 16B) of the U-turn communication passage 15 of the valve body 10 is used. Means that is located outside (that is, the perimeter of) the port (that is, the port is unblocked). The Cv value in FIG. 5 is shown (as 100%) based on the Cv value when the blockage rate is −5%.
[Number 1]
Closure rate (%) = (port blockage amount L by valve body) / (port diameter φD) × 100
... (1)

図5に示されるように、Cv値は、塞ぎ率が0〜5%程度で次第に大きくなり、塞ぎ率が5%程度で最大となり、塞ぎ率が5〜13%程度で次第に小さくなり、塞ぎ率が約13%を超えると基準以下(100%以下)となる。つまり、塞ぎ率が約13%まで(約13%以内)は、外側の高圧は圧力損失し難く(5%程度で最も圧力損失が少ない)、塞ぎ率が約13%を超えると、外側の高圧の損失が大きくなると考えられる。また、塞ぎ率が9%程度で、塞ぎ率が0%のとき(Uターン連通路15の開口縁部15Cにおける両端部に位置する半円部16A、16Bがポートの周縁に一致する位置であって、出口側となるポートの開口面積の減少がないとき)のCv値とほぼ同等となる。 As shown in FIG. 5, the Cv value gradually increases when the blockage rate is about 0 to 5%, reaches the maximum when the blockage rate is about 5%, and gradually decreases when the blockage rate is about 5 to 13%, and the blockage rate gradually decreases. When it exceeds about 13%, it becomes below the standard (100% or less). That is, when the blockage rate is up to about 13% (within about 13%), the pressure loss on the outside is hard to occur (the pressure loss is the smallest at about 5%), and when the blockage rate exceeds about 13%, the pressure loss on the outside is high. It is thought that the loss will increase. Further, when the closing rate is about 9% and the closing rate is 0% (the semicircular portions 16A and 16B located at both ends of the opening edge portion 15C of the U-turn continuous passage 15 are positions corresponding to the peripheral edge of the port. Therefore, it is almost the same as the Cv value (when there is no decrease in the opening area of the port on the exit side).

すなわち、図3、図4、図5から、弁体10による所定の閉塞状況までは、弁体10に設けられたUターン連通路15によるUターン形状の流れに起因する損失の方が、ポートpSの一部を塞いだことに起因する損失よりも影響が大きくなることが分かった。 That is, from FIGS. 3, 4, and 5, until a predetermined blockage condition by the valve body 10, the loss due to the U-turn shape flow by the U-turn communication passage 15 provided in the valve body 10 is the port. It was found that the effect was greater than the loss caused by blocking part of the pS.

以上で説明したように、かかる構成の四方切換弁(流路切換弁)1においては、Uターン連通路の入口側流路に対して出口側流路の方がポート内の圧力バランスに差異が見られ、出口側流路のポート及びその近傍では、内側(つまり、隣り合うポート側)は圧力損失し、外側(つまり、隣り合うポート側とは反対側)よりも若干低圧となる。 As described above, in the four-way switching valve (flow path switching valve) 1 having such a configuration, there is a difference in the pressure balance in the port between the outlet side flow path and the inlet side flow path of the U-turn continuous passage. As can be seen, in and near the port of the outlet side flow path, the inside (that is, the adjacent port side) loses pressure, and the pressure is slightly lower than the outside (that is, the side opposite to the adjacent port side).

前記した如くの従来の流路切換弁においては、Uターン連通路の開口縁部の軸線方向端部がポートの周縁と一致する位置もしくはポートの周縁よりも外側に配置され、弁口としてのポートを塞がないように弁体が配置されており、Uターン連通路の出口側端部とポートとは、断面積(流体通過面積)が基本的に変わらない、あるいは、ポート側の方が若干小さいので、入口側流路となるポートから流入してUターン連通路を通過した流体(冷媒)は、出口側流路となるポート内に流出した直後に全体的に(つまり、ポートの内側と外側とで)圧力が低下し始める。すなわち、外側の高圧も、出口側流路となるポート内に流出した直後に圧力損失するため、実際にCv値(流量)を大きくすることは難しくなる。 In the conventional flow path switching valve as described above, the axial end of the opening edge of the U-turn continuous passage is arranged at a position corresponding to the peripheral edge of the port or outside the peripheral edge of the port, and the port as a valve port. The valve body is arranged so as not to block the U-turn, and the cross-sectional area (fluid passage area) is basically the same between the exit side end of the U-turn passage and the port, or the port side is slightly. Since it is small, the fluid (refrigerant) that has flowed in from the port that is the inlet side flow path and has passed through the U-turn communication passage is totally (that is, inside the port) immediately after flowing out into the port that is the outlet side flow path. The pressure begins to drop (on the outside). That is, it is difficult to actually increase the Cv value (flow rate) because the pressure loss also occurs immediately after the high voltage on the outside flows out into the port which is the outlet side flow path.

本実施形態の四方切換弁(流路切換弁)1では、Uターン連通路15の開口縁部15Cの軸線O方向端部(半円部16A、16B)がポートpSの周縁よりも内側に配置され、少なくとも出口側流路となるポートpSの一部を弁体10で塞ぐとともに、そのポートpSの全開口に対する塞ぎ率は、例えば13%まで、好ましくは9%まで、より好ましくは5%とされるので、入口側流路となるポート(ポートpE又はポートpC)から流入してUターン連通路15を通過した流体(冷媒)は、出口側流路となるポートpS内に流出した後も圧力低下(特にポートpSの外側の圧力低下)が少なくて済む。すなわち、外側の高圧は、出口側流路となるポートpS内に流出した後も圧力損失し難くなるため、前記した従来の流路切換弁と比べて、Cv値(流量)を格段に大きくすることができる。 In the four-way switching valve (flow path switching valve) 1 of the present embodiment, the axial O-direction ends (semicircular portions 16A and 16B) of the opening edge portion 15C of the U-turn continuous passage 15 are arranged inside the peripheral edge of the port pS. At least a part of the port pS that becomes the outlet side flow path is closed by the valve body 10, and the closing rate of the port pS with respect to the entire opening is, for example, up to 13%, preferably up to 9%, and more preferably up to 5%. Therefore, the fluid (refrigerant) that has flowed in from the port (port pE or port pC) that is the inlet side flow path and has passed through the U-turn continuous passage 15 has flowed out into the port pS that is the outlet side flow path. The pressure drop (particularly the pressure drop outside the port pS) is small. That is, since the high pressure on the outside is less likely to cause pressure loss even after flowing out into the port pS which is the outlet side flow path, the Cv value (flow rate) is significantly increased as compared with the conventional flow path switching valve described above. be able to.

また、本実施形態の四方切換弁(流路切換弁)1では、ポートpSの一部を弁体10で塞ぐようにすればよく、ハウジング外径や配管ピッチを拡大・拡張する必要はないため、体格の大型化、コストアップを招くことはない。 Further, in the four-way switching valve (flow path switching valve) 1 of the present embodiment, it is sufficient to block a part of the port pS with the valve body 10, and it is not necessary to expand or expand the outer diameter of the housing or the piping pitch. , It does not lead to an increase in physique and cost.

なお、上述した実施形態では、弁体10が右端位置又は左端位置をとるときに、弁体10によって隣り合うポートの両方のポートの一部が塞がれるようにされているが、例えば図6に示される如くに、弁体10によって隣り合うポートのうち出口側流路となるポートpSの一部(隣り合うポート側とは反対側)のみが塞がれるようにした場合でも、上述した実施形態と同様の作用効果が得られることは詳述するまでも無い。 In the above-described embodiment, when the valve body 10 takes the right end position or the left end position, a part of both ports of the adjacent ports is blocked by the valve body 10, for example, FIG. As shown in the above-mentioned implementation, even when the valve body 10 blocks only a part of the port pS (the side opposite to the adjacent port side) which is the outlet side flow path among the adjacent ports. It is needless to say in detail that the same action and effect as the morphology can be obtained.

なお、上記実施形態では、流路切換弁として四方切換弁を例示して説明したが、本発明は、弁体(スライド弁体)により流路の切り換えを行う二方弁や、三方切換弁、五方以上の多方切換弁にも適用できることは勿論である。 In the above embodiment, the four-way switching valve has been exemplified as the flow path switching valve, but the present invention has a two-way valve for switching the flow path by a valve body (slide valve body), a three-way switching valve, and the like. Of course, it can also be applied to a multi-way switching valve with five or more directions.

また、上記実施形態では、流路切換弁としてスライド式のものを例示して説明したが、本発明は、円筒状のハウジング内に(ハウジングの軸線と平行な回転軸線周りに)回動可能に配在され、内部に(1本又は複数本の)Uターン連通路が設けられた弁体(回転弁体)により流路の切り換えを行うロータリー式のものにも適用できることは勿論である。 Further, in the above embodiment, a slide type valve is exemplified and described, but the present invention can rotate in a cylindrical housing (around a rotation axis parallel to the axis of the housing). Of course, it can also be applied to a rotary type that is arranged and switches the flow path by a valve body (rotary valve body) provided with (one or a plurality of) U-turn communication passages inside.

また、本実施形態の四方切換弁1は、ヒートポンプ式冷暖房システムのみならず、他のシステム、装置、機器類にも組み込めることは勿論である。 Further, it goes without saying that the four-way switching valve 1 of the present embodiment can be incorporated not only into a heat pump type air-conditioning system but also into other systems, devices, and devices.

1 四方切換弁(流路切換弁)
8 四方パイロット弁
9 主弁
10 弁体
12 シール面
12C シール面の内縁部
13A、13B 半円部
14A、14B 直線部
15 Uターン連通路
15C Uターン連通路の開口縁部
16A、16B 半円部
17A、17B 直線部
18 テーパ面
70 連結体
72 開口
75 円形開口
80 ハウジング
81 弁シート部材
82 弁シート面
83 弁室
84A、84B ピストン
86A、86B 作動室
87A、87B 蓋部材
1 Four-way switching valve (flow path switching valve)
8 Four-way pilot valve 9 Main valve 10 Valve body 12 Sealed surface 12C Sealed surface inner edge 13A, 13B Semicircular 14A, 14B Straight line 15 U-turn continuous passage 15C U-turn continuous passage opening edge 16A, 16B Semicircular 17A, 17B Straight part 18 Tapered surface 70 Connecting body 72 Opening 75 Circular opening 80 Housing 81 Valve seat member 82 Valve seat surface 83 Valve chamber 84A, 84B Piston 86A, 86B Actuating chamber 87A, 87B Lid member

Claims (6)

シリンダ型のハウジングと、該ハウジング内に軸線方向に移動可能に配在された弁体と、該弁体が対接せしめられるとともに複数のポートが軸線方向に並んで開口せしめられた弁シート面と、を備え、
前記弁体は、前記複数のポートのうち隣り合うポートを連通させる大きさのUターン連通路を有し、該Uターン連通路を介して前記ポート間を選択的に連通させる複数の連通状態をとり得るようにされている流路切換弁であって、
前記弁体が所定の連通状態をとるとき、前記隣り合うポートのうち少なくとも出口側となるポートの一部を塞ぐように、前記Uターン連通路の開口縁部の軸線方向端部が前記ポートの周縁よりも内側に配置されるとともに、前記ポートの全開口に対する塞ぎ率は、13%までであり、
前記弁体によって前記隣り合うポートの出口側となるポートの一部のみが塞がれるようにされていることを特徴とする流路切換弁。
A cylinder-type housing, a valve body movably arranged in the housing in the axial direction, and a valve seat surface in which the valve bodies are brought into contact with each other and a plurality of ports are opened side by side in the axial direction. , Equipped with
The valve body has a U-turn communication passage having a size for communicating adjacent ports among the plurality of ports, and a plurality of communication states for selectively communicating between the ports via the U-turn communication passage. It is a flow switching valve that can be taken.
When the valve body takes a predetermined communication state, the axial end of the opening edge of the U-turn communication passage is the port so as to block at least a part of the port on the exit side of the adjacent ports. It is placed inside the periphery, and the blockage rate for the entire opening of the port is up to 13%.
A flow path switching valve characterized in that only a part of a port on the outlet side of the adjacent ports is blocked by the valve body.
前記塞ぎ率は、9%までであることを特徴とする請求項1に記載の流路切換弁。 The flow path switching valve according to claim 1, wherein the blockage rate is up to 9%. 前記塞ぎ率は、5%であることを特徴とする請求項2に記載の流路切換弁。 The flow path switching valve according to claim 2, wherein the blockage rate is 5%. 前記Uターン連通路の開口縁部は、軸線方向端部に位置する一対の半円部と、軸線方向に垂直な方向の端部に位置して軸線方向に沿って延びる一対の直線部とで構成されていることを特徴とする請求項1から3のいずれか一項に記載の流路切換弁。 The opening edge of the U-turn passage is composed of a pair of semicircular portions located at the end in the axial direction and a pair of straight portions located at the end in the direction perpendicular to the axial direction and extending along the axial direction. The flow path switching valve according to any one of claims 1 to 3, wherein the flow path switching valve is configured. 前記Uターン連通路の開口縁部の軸線方向端部は、前記弁シート面に摺接するシール面に垂直な面で構成されていることを特徴とする請求項1から4のいずれか一項に記載の流路切換弁。 The aspect according to any one of claims 1 to 4, wherein the axial end portion of the opening edge portion of the U-turn continuous passage is formed of a surface perpendicular to the sealing surface that is in sliding contact with the valve seat surface. The flow path switching valve described. 筒状のハウジングと、該ハウジング内に移動可能に配在された弁体と、該弁体が対接せしめられるとともに複数のポートが並んで開口せしめられた弁シート面と、を備え、
前記弁体は、前記複数のポートのうち隣り合うポートを連通させる大きさのUターン連通路を有し、該Uターン連通路を介して前記ポート間を選択的に連通させる複数の連通状態をとり得るようにされている流路切換弁であって、
前記弁体が所定の連通状態をとるとき、前記隣り合うポートのうち少なくとも出口側となるポートの一部を塞ぐように、前記Uターン連通路の開口縁部の前記隣り合うポートの並設方向端部が前記ポートの周縁よりも内側に配置されるとともに、前記ポートの全開口に対する塞ぎ率は、13%までであり、
前記弁体によって前記隣り合うポートの出口側となるポートの一部のみが塞がれるようにされており、
前記弁体として、前記ハウジングの軸線と平行な回転軸線周りに回動可能に配在される回転弁体を備えることを特徴とする流路切換弁。
It is provided with a cylindrical housing, a valve body movably arranged in the housing, and a valve seat surface to which the valve bodies are opposed to each other and a plurality of ports are opened side by side.
The valve body has a U-turn communication passage having a size for communicating adjacent ports among the plurality of ports, and a plurality of communication states for selectively communicating between the ports via the U-turn communication passage. It is a flow switching valve that can be taken.
When the valve body takes a predetermined communication state, the adjacent ports at the opening edge of the U-turn communication passage are arranged side by side so as to block at least a part of the ports on the exit side of the adjacent ports. The ends are located inside the perimeter of the port and the blockage rate for the full opening of the port is up to 13%.
Only a part of the port on the exit side of the adjacent port is blocked by the valve body.
The flow path switching valve is provided with a rotary valve body rotatably arranged around a rotary axis parallel to the axis of the housing as the valve body.
JP2019087432A 2019-05-07 2019-05-07 Flow switching valve Active JP6979705B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019087432A JP6979705B2 (en) 2019-05-07 2019-05-07 Flow switching valve
CN202010155380.1A CN111911660B (en) 2019-05-07 2020-03-09 Flow path switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019087432A JP6979705B2 (en) 2019-05-07 2019-05-07 Flow switching valve

Publications (2)

Publication Number Publication Date
JP2020183777A JP2020183777A (en) 2020-11-12
JP6979705B2 true JP6979705B2 (en) 2021-12-15

Family

ID=73044837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019087432A Active JP6979705B2 (en) 2019-05-07 2019-05-07 Flow switching valve

Country Status (2)

Country Link
JP (1) JP6979705B2 (en)
CN (1) CN111911660B (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221375A (en) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd Four-way valve of air conditioner
JP2009041636A (en) * 2007-08-08 2009-02-26 Fuji Koki Corp Valve element for four-way switching valve
JP2011169390A (en) * 2010-02-18 2011-09-01 Mitsubishi Materials Cmi Corp Four-way valve
JP6046076B2 (en) * 2014-04-10 2016-12-14 株式会社鷺宮製作所 Valve body for flow path switching valve
JP6254980B2 (en) * 2015-08-07 2017-12-27 株式会社鷺宮製作所 Sliding switching valve and refrigeration cycle system
JP2017075675A (en) * 2015-10-16 2017-04-20 株式会社鷺宮製作所 Slide type selector valve and refrigeration cycle system
JP2017155887A (en) * 2016-03-03 2017-09-07 株式会社鷺宮製作所 Slide type selector valve and refrigeration cycle system
JP6476152B2 (en) * 2016-06-13 2019-02-27 株式会社鷺宮製作所 Sliding switching valve and refrigeration cycle system
JP6449196B2 (en) * 2016-06-14 2019-01-09 株式会社鷺宮製作所 Sliding switching valve and refrigeration cycle system
JP6625584B2 (en) * 2017-05-12 2019-12-25 株式会社不二工機 Flow switching valve
JP6515163B2 (en) * 2017-09-29 2019-05-15 株式会社不二工機 Six-way switching valve

Also Published As

Publication number Publication date
JP2020183777A (en) 2020-11-12
CN111911660B (en) 2024-04-26
CN111911660A (en) 2020-11-10

Similar Documents

Publication Publication Date Title
CN108869795B (en) Flow path switching valve
CN112324947B (en) Rotary reversing valve
KR101094552B1 (en) Three-way ball valve
CN105570498B (en) Flow path switching valve
CN108869794B (en) Flow path switching valve
JP2011196400A5 (en)
JP5927913B2 (en) Rotary valve
CN109424765B (en) Rotary reversing valve
JP5997491B2 (en) Four-way selector valve
JP2015048871A (en) Flow passage selector valve
US20210048233A1 (en) Flow path switching valve and air conditioner
JP6539470B2 (en) Flow path switching valve
JP6461589B2 (en) Flow path switching valve
JP5275948B2 (en) Four-way selector valve
JP6979705B2 (en) Flow switching valve
CN107355563B (en) Reversal valve and refrigeration system with it
CN1340670A (en) Fluid reversing valve
JP2017223303A (en) Flow passage selector valve
JP6478586B2 (en) Flow path switching valve
JP6933388B2 (en) Flow path switching valve
JP7023525B2 (en) Flow switching valve
CN101691867B (en) Gas discharging structure of double-ring type rotary type compressor cylinder
JP6689418B2 (en) Flow path switching valve
CN109469747B (en) Self-sealing two-position four-way reversing valve
JP2000170643A (en) Multiple reciprocating pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211109

R150 Certificate of patent or registration of utility model

Ref document number: 6979705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150