JP6046076B2 - Valve body for flow path switching valve - Google Patents

Valve body for flow path switching valve Download PDF

Info

Publication number
JP6046076B2
JP6046076B2 JP2014081195A JP2014081195A JP6046076B2 JP 6046076 B2 JP6046076 B2 JP 6046076B2 JP 2014081195 A JP2014081195 A JP 2014081195A JP 2014081195 A JP2014081195 A JP 2014081195A JP 6046076 B2 JP6046076 B2 JP 6046076B2
Authority
JP
Japan
Prior art keywords
valve
port
ratio
valve body
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014081195A
Other languages
Japanese (ja)
Other versions
JP2015200400A (en
Inventor
知之 上野
知之 上野
宏光 木村
宏光 木村
大樹 香川
大樹 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2014081195A priority Critical patent/JP6046076B2/en
Priority to CN201510142562.4A priority patent/CN104976376B/en
Publication of JP2015200400A publication Critical patent/JP2015200400A/en
Application granted granted Critical
Publication of JP6046076B2 publication Critical patent/JP6046076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/0655Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with flat slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/314Forms or constructions of slides; Attachment of the slide to the spindle

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)

Description

本発明は、空気調和機等の冷凍サイクルに用いられる流路切換弁(四方切換弁等)に内蔵される弁体に関する。   The present invention relates to a valve element built in a flow path switching valve (such as a four-way switching valve) used in a refrigeration cycle such as an air conditioner.

従来、冷凍サイクルに設けられた流路切換弁としてスライド式の流路切換弁がある。この流路切換弁は、冷凍サイクルの高圧側配管に連通される弁室内で弁座に対して弁体の椀状凹部を対向させ、弁体を移動して、椀状凹部により弁座の低圧ポートと一方の切換ポートとを連通し、他方の切換ポートを弁室を介して高圧側配管に連通して、冷媒の流れを切り換えるものである。   Conventionally, there is a slide type flow path switching valve as a flow path switching valve provided in a refrigeration cycle. In this valve switching valve, the saddle-like recess of the valve body is opposed to the valve seat in the valve chamber communicated with the high-pressure side pipe of the refrigeration cycle, the valve body is moved, and the low-pressure of the valve seat is moved by the saddle-like recess. The refrigerant and the one switching port are communicated, and the other switching port is communicated with the high-pressure side piping via the valve chamber to switch the refrigerant flow.

上記弁体の椀状凹部は低圧側の流路であり、弁体を改良して、低圧側の流量を改善するようにしたものである。この種の流路切換弁用の弁体として、例えば実開昭62−162469号公報(特許文献1)、特開2012−193855号公報(特許文献2)、特許第5175144号公報(特許文献3)及び中国実用新案公告第201963922号明細書(特許文献4)に開示されたものがある。   The saddle-like concave portion of the valve body is a low-pressure side flow path, and the valve body is improved to improve the flow rate on the low-pressure side. As a valve body for this type of flow path switching valve, for example, Japanese Utility Model Publication No. 62-162469 (Patent Document 1), Japanese Patent Application Laid-Open No. 2012-193855 (Patent Document 2), and Japanese Patent No. 5175144 (Patent Document 3). ) And Chinese Utility Model Publication No. 20963922 (Patent Document 4).

図10は上記従来の流路切換弁用の弁体を示す図である。特許文献1のものは、図10(A)に示すように、弁体(スライド弁)21の低圧側の流路21Aをパイプ形状にしたものである。特許文献2のものは、図10(B)に示すように、弁体21の低圧側の流路21A内に整流板22を設けたものである。特許文献3のものは、図10(C)に示すように、弁体21の低圧側の流路21A内に設けた補助ピン23の両端に鍔23aを設け、補助ピン23のピン自体の径を細くしたものである。特許文献4のものは、図10(D)に示すように、弁体21の低圧側の流路21A内に設けた補助ピン24の形状を断面半円形状としたものである。   FIG. 10 is a view showing a valve body for the conventional flow path switching valve. The thing of patent document 1 makes the flow path 21A of the low voltage | pressure side of the valve body (slide valve) 21 into the pipe shape, as shown to FIG. 10 (A). The thing of patent document 2 provides the rectification | straightening board 22 in the flow path 21A of the low voltage | pressure side of the valve body 21, as shown to FIG. 10 (B). As shown in FIG. 10 (C), Patent Document 3 discloses that a flange 23a is provided at both ends of the auxiliary pin 23 provided in the flow path 21A on the low pressure side of the valve body 21, and the diameter of the pin itself of the auxiliary pin 23 is provided. Is a narrowed version. The thing of patent document 4 makes the shape of the auxiliary | assistant pin 24 provided in the flow path 21A of the low pressure side of the valve body 21 into the semicircle cross section as shown in FIG.10 (D).

実開昭62−162469号公報Japanese Utility Model Publication No. 62-162469 特開2012−193855号公報JP 2012-193855 A 特許第5175144号公報Japanese Patent No. 5175144 中国実用新案公告第201963922号明細書China Utility Model Publication No. 20963392 Specification

特許文献1における弁体では、弁体を成形により製造する場合、パイプ形状を一体成形により形成することは困難であるという問題がある。また、別部品を設けてパイプ形状とすると、部品が増加するとともに組み立て工数が増加するという問題がある。   In the valve body in patent document 1, when manufacturing a valve body by shaping | molding, there exists a problem that it is difficult to form a pipe shape by integral molding. Further, when another part is provided to form a pipe, there is a problem that the number of parts increases and the number of assembling steps increases.

特許文献2における弁体では、弁体を成形により製造する場合、整流板を一体成形により形成することは困難であるという特許文献1と同様の問題がある また、整流板を別部品とすると、部品が増加するとともに組み立て工数が増加するという問題がある。   In the valve body in Patent Document 2, when the valve body is manufactured by molding, there is a problem similar to Patent Document 1 that it is difficult to form the current plate by integral molding. There is a problem that the number of assembly steps increases as the number of parts increases.

特許文献3における弁体では、弁体の種類毎に専用の補助ピンが必要となり、部品の種類が増加するとともに組み立て工数が増加するという問題がある。なお、この特許文献3の技術は補助ピンにより弁体の強度を向上させるものであるが、補助ピンのピン自体の径を小さくすることで流量も改善される。   In the valve body in Patent Document 3, a dedicated auxiliary pin is required for each type of valve body, and there is a problem that the number of parts increases and the number of assembly steps increases. The technique of Patent Document 3 is to improve the strength of the valve body with an auxiliary pin, but the flow rate is also improved by reducing the diameter of the pin of the auxiliary pin itself.

特許文献4における弁体では、弁体の補助ピンの形状が複雑になるとともに、この補助ピンの位置が流量に影響するため、高い精度で位置管理を行う必要がある。   In the valve body in Patent Document 4, the shape of the auxiliary pin of the valve body is complicated, and the position of the auxiliary pin affects the flow rate, so that it is necessary to perform position management with high accuracy.

本発明は、上述の如き問題点を解消するためになされたものであり、流路切換弁の弁体の低圧側の流路を構成する椀状凹部の形状を改良して、組み立て工数の増加や部品点数増加によるコストアップを招かずに低圧側の流量(Cv値)を改善することを課題とする。   The present invention has been made to solve the above-described problems, and has improved the shape of the bowl-shaped recess that constitutes the flow path on the low pressure side of the valve body of the flow path switching valve, thereby increasing the number of assembly steps. Another object of the present invention is to improve the flow rate (Cv value) on the low pressure side without causing an increase in cost due to an increase in the number of parts.

請求項1の流路切換弁用の弁体は、冷凍サイクルの高圧側配管に連通される弁室内で、低圧ポートと2つの切換ポートが形成された弁座に対向する椀状凹部を有する弁体であって、
前記低圧ポートと切換ポートの弁ポート径をD(mm)、
前記低圧ポートと切換ポートとのポート間ピッチをP(mm)、
前記椀状凹部の前記移動方向の凹部長さをL(mm)、
前記椀状凹部の前記移動方向と直角な方向の凹部幅をW(mm)、
前記椀状凹部の高さをH(mm)、
としたとき、
8mm≦D≦12mm…(1)
1.3≦P/D≦1.7…(2)
1.00≦L/(P+D)≦1.06…(3)
1.05≦W/D≦1.15…(4)
を満たし、
0.99≦H/D≦1.39…(5)
であることを特徴とする。
A valve body for a flow path switching valve according to claim 1 is a valve having a bowl-shaped recess facing a valve seat in which a low pressure port and two switching ports are formed in a valve chamber communicating with a high pressure side pipe of a refrigeration cycle. Body,
The valve port diameter of the low pressure port and the switching port is D (mm),
The pitch between the low-pressure port and the switching port is P (mm),
L (mm) is the length of the recess in the moving direction of the bowl-shaped recess.
The width of the concave portion in the direction perpendicular to the moving direction of the bowl-shaped concave portion is W (mm),
The height of the bowl-shaped recess is H (mm),
When
8mm ≦ D ≦ 12mm ... (1)
1.3 ≦ P / D ≦ 1.7 (2)
1.00 ≦ L / (P + D) ≦ 1.06 (3)
1.05 ≦ W / D ≦ 1.15 (4)
The filling,
0.99 ≦ H / D ≦ 1.39 (5)
It is characterized by being.

請求項2の流路切換弁用の弁体は、請求項1に記載の流路切換弁用の弁体であって、
1.00≦H/D≦1.10…(5.1)
または、
1.11≦H/D≦1.21…(5.2)
または、
1.24≦H/D≦1.34…(5.3)
であることを特徴とする。
The valve body for a flow path switching valve according to claim 2 is the valve body for a flow path switching valve according to claim 1,
1.00 ≦ H / D ≦ 1.10 (5.1)
Or
1.11 ≦ H / D ≦ 1.21 (5.2)
Or
1.24 ≦ H / D ≦ 1.34 (5.3)
It is characterized by being.

請求項1の流路切換弁用の弁体によれば、前記(1)乃至(4)の条件で、0.99≦H/D≦1.39とすることにより、低圧側の流量(Cv値)を効果的に改善できる。   According to the valve body for the flow path switching valve of the first aspect, by setting 0.99 ≦ H / D ≦ 1.39 under the conditions (1) to (4), the flow rate on the low pressure side (Cv Value) can be effectively improved.

請求項2の流路切換弁用の弁体によれば、前記(1)乃至(4)の条件で、1.00≦H/D≦1.10、または、1.11≦H/D≦1.21、または、1.24≦H/D≦1.34…(5.3)とすることにより、低圧側の流量(Cv値)をさらに効果的に改善できる。   According to the valve body for the flow path switching valve according to claim 2, 1.00 ≦ H / D ≦ 1.10 or 1.11 ≦ H / D ≦ under the conditions (1) to (4). By setting 1.21 or 1.24 ≦ H / D ≦ 1.34 (5.3), the flow rate (Cv value) on the low pressure side can be further effectively improved.

本発明の実施形態に係る流路切換弁を示す図である。It is a figure which shows the flow-path switching valve which concerns on embodiment of this invention. 実施形態の検証に用いた基準流量モデルを説明する図である。It is a figure explaining the reference | standard flow volume model used for verification of embodiment. 実施形態の弁体の椀状凹部の下面開口部のR寸法と凹部長さの関係を説明する図である。It is a figure explaining the relationship between R dimension of the lower surface opening part of the bowl-shaped recessed part of the valve body of embodiment, and recessed part length. 実施形態の弁体の椀状凹部の凹部長さ(L)を示す図である。It is a figure which shows the recessed part length (L) of the bowl-shaped recessed part of the valve body of embodiment. 実施形態における凹部長さ(L)の変化に対するCv値の変化を示す図である。It is a figure which shows the change of Cv value with respect to the change of the recessed part length (L) in embodiment. 実施形態の弁体の椀状凹部の凹部幅(W)を示す図である。It is a figure which shows the recessed part width (W) of the bowl-shaped recessed part of the valve body of embodiment. 実施形態における凹部幅(W)の変化に対するCv値の変化を示す図である。It is a figure which shows the change of Cv value with respect to the change of the recessed part width | variety (W) in embodiment. 実施形態の弁体の椀状凹部の凹部高さ(H)を示す図である。It is a figure which shows the recessed part height (H) of the bowl-shaped recessed part of the valve body of embodiment. 実施形態における凹部高さ(H)の変化に対するCv値の変化を示す図である。It is a figure which shows the change of Cv value with respect to the change of the recessed part height (H) in embodiment. 従来の弁体の一例を示す図である。It is a figure which shows an example of the conventional valve body.

次に、本発明の実施形態について説明する。図1は実施形態に係る流路切換弁を示す図である。実施形態に係る流路切換弁は四方切換弁であり、この流路切換弁にはキャピラリ(配管)により図示しないパイロット弁が接続されている。流路切換弁の弁ハウジングは円筒形状の円筒部11とその両端のキャップ部12a,12bとで構成され、その内部に、連結部材13により互いに連結された2つのピストン14a,14bが収容されている。これにより、弁ハウジングの内部は、中央部の主弁室11Aと両側の2つの副弁室11B,11Cとに仕切られている。   Next, an embodiment of the present invention will be described. FIG. 1 is a view showing a flow path switching valve according to an embodiment. The flow path switching valve according to the embodiment is a four-way switching valve, and a pilot valve (not shown) is connected to the flow path switching valve by a capillary (pipe). The valve housing of the flow path switching valve is composed of a cylindrical cylindrical portion 11 and cap portions 12a and 12b at both ends thereof, and two pistons 14a and 14b connected to each other by a connecting member 13 are accommodated therein. Yes. Thereby, the inside of the valve housing is partitioned into a main valve chamber 11A at the center and two sub valve chambers 11B and 11C on both sides.

主弁室11A内の中間部には弁座15が配設され、弁座15上には弁ハウジングの軸線X方向に摺動する実施形態の弁体10が配設されている。弁座15には、弁ハウジングの軸線X方向に一直線上に並んで「弁ポート」としてのEポート15a、Sポート15b及びCポート15cが形成されており、これらEポート15a、Sポート15b、Cポート15cには、それぞれE継手管16a、S継手管16b、C継手管16cが取り付けられている。また、弁ハウジングの中間部の弁座15と対向する位置には、D継手管16dが取り付けられている。なお、Eポート15a及びCポート15cは「切換ポート」であり、Sポート15bは「低圧ポート」である。   A valve seat 15 is disposed at an intermediate portion in the main valve chamber 11A, and a valve body 10 according to an embodiment that slides in the axis X direction of the valve housing is disposed on the valve seat 15. The valve seat 15 is formed with an E port 15a, an S port 15b, and a C port 15c as "valve ports" arranged in a straight line in the axis X direction of the valve housing. The E port 15a, the S port 15b, An E joint pipe 16a, an S joint pipe 16b, and a C joint pipe 16c are attached to the C port 15c, respectively. Further, a D joint pipe 16d is attached at a position facing the valve seat 15 in the middle part of the valve housing. The E port 15a and the C port 15c are “switching ports”, and the S port 15b is a “low pressure port”.

弁体10は連結部材13の中央に嵌め込まれており、この弁体10は連結部材13に対して軸線X方向に僅かに遊びを持って保持されている。そして、図示しないパイロット弁の切換動作により、副弁室11Bが減圧する状態と副弁室11Cが減圧する状態とが切り換えられる。これにより、弁体10は、ピストン14a,14bと連結部材13に連動して、弁座15上を軸線X方向に移動する。   The valve body 10 is fitted in the center of the connecting member 13, and the valve body 10 is held with a slight play in the axis X direction with respect to the connecting member 13. Then, a state in which the sub valve chamber 11B is depressurized and a state in which the sub valve chamber 11C is depressurized are switched by a pilot valve switching operation (not shown). Thereby, the valve body 10 moves on the valve seat 15 in the direction of the axis X in conjunction with the pistons 14a and 14b and the connecting member 13.

弁体10は合成樹脂を射出成形して形成されたものであり、内部に略半楕円体形状の椀状凹部10Aを有している。なお、この椀状凹部10Aの開口部には補強ピン101が差し渡されている。弁体10は、図1の左側の端部位置において、Sポート15bとEポート15aとを椀状凹部10Aにより連通する。このとき、Cポート15cは主弁室11Aを介してD継手管16dに連通する。これにより、図1に矢印で示すように、高圧側流路と低圧側流路が形成される。なお、図1の例では、冷房運転の時を示しているが、弁体10が図1の右側の端部位置になると暖房運転となる。   The valve body 10 is formed by injection-molding synthetic resin, and has a substantially semi-elliptical bowl-shaped recess 10A inside. A reinforcing pin 101 is passed through the opening of the bowl-shaped recess 10A. The valve body 10 communicates the S port 15b and the E port 15a with a hook-shaped recess 10A at the left end position in FIG. At this time, the C port 15c communicates with the D joint pipe 16d via the main valve chamber 11A. Thereby, as shown by the arrow in FIG. 1, a high pressure side flow path and a low pressure side flow path are formed. In addition, although the example of FIG. 1 has shown the time of air_conditionaing | cooling operation, when valve body 10 will be in the edge part position of the right side of FIG.

以上のように、冷凍サイクルが運転中には、主弁室11A内は高圧冷媒により高圧になり、弁体10の椀状凹部10A内は低圧冷媒により低圧になる。本発明は、この椀状凹部10Aを流れる流体の流量(Cv値)を改善するものであり、次に実施形態の弁体10の椀状凹部10Aの形状について説明する。   As described above, when the refrigeration cycle is in operation, the inside of the main valve chamber 11A becomes high pressure by the high-pressure refrigerant, and the inside of the bowl-shaped recess 10A of the valve body 10 becomes low pressure by the low-pressure refrigerant. The present invention improves the flow rate (Cv value) of the fluid flowing through the bowl-shaped recess 10A. Next, the shape of the bowl-shaped recess 10A of the valve body 10 of the embodiment will be described.

まず、椀状凹部10Aにおいて流量の改善に特に効果的な寸法は、図4に示す軸線X方向(弁体10の移動方向)の椀状凹部10Aの長さ(以下、「凹部長さ(L)」という。)、図6に示す軸線Xと直交する方向の椀状凹部10Aの幅(以下、「凹部幅(W)」という。)、図8に示す椀状凹部10Aの高さ(以後、「凹部高さ(H)」という。)の3つのパラメータであることが判明した。また、どのパラメータにおいても、Eポート15a、Sポート15b及びCポート15cの弁ポート径(D)と、Eポート15a、Sポート15b及びCポート15cの軸線X方向のピッチ(各ポートの中心軸線間の距離)であるポート間ピッチ(P)(図4参照)に対して、最適な割合(比)があり、この割合を下回っても上回っても改善効果は低下してしまう。   First, the dimension that is particularly effective for improving the flow rate in the bowl-shaped recess 10A is the length of the bowl-shaped recess 10A in the axis X direction (the movement direction of the valve body 10) shown in FIG. ) ”)), The width of the hook-shaped recess 10A in the direction orthogonal to the axis X shown in FIG. 6 (hereinafter referred to as“ recess width (W) ”), and the height of the hook-shaped recess 10A shown in FIG. , “Recess height (H)”). In any parameter, the valve port diameter (D) of the E port 15a, S port 15b, and C port 15c, and the pitch in the axis X direction of the E port 15a, S port 15b, and C port 15c (center axis of each port) There is an optimal ratio (ratio) with respect to the inter-port pitch (P) (see FIG. 4), which is the distance between the ports, and the improvement effect decreases if the ratio falls below or exceeds this ratio.

以下に、それぞれのパラメータにおいて、弁ポート径(D)またはポート間ピッチ(P)との比率を変化させていった時の、流量変化(Cv値の変化)について説明する。なお、Cv値の改善効果は、弁ポート径(D)がφ8mm〜12mmの範囲、ポート間ピッチ(P)と弁ポート径(D)の比率(P/D)が1.3〜1.7の範囲で確認できた。   The flow rate change (change in Cv value) when the ratio of the valve port diameter (D) or the pitch between ports (P) is changed in each parameter will be described below. The effect of improving the Cv value is that the valve port diameter (D) is in the range of φ8 mm to 12 mm, and the ratio (P / D) between the port pitch (P) and the valve port diameter (D) is 1.3 to 1.7. It was confirmed in the range.

ここで、凹部長さ、凹部幅及び凹部高さについての検証結果について説明するが、この検証に用いたCv値改善の基準流量モデル、及び弁体10の椀状凹部10Aの下面開口部のR寸法の取り方は以下のとおりである。   Here, although the verification result about a recessed part length, a recessed part width | variety, and a recessed part height is demonstrated, the reference | standard flow volume model of Cv value improvement used for this verification, and R of the lower surface opening part of the bowl-shaped recessed part 10A of the valve body 10 are demonstrated. The dimensions are as follows.

[基準流量モデル]
検証結果のCv値は、図2に示す基準流量モデルのCv値の検証結果を“Cv値=1”として算出した。図2に示すように、基準流量モデルは、弁ポート径(D)、ポート間ピッチ(P)、凹部長さ(L)、凹部幅(W)、凹部高さ(H)、椀状凹部の下面開口部のR寸法(R)として、
L=D+P
W=D
H=D
R=D/2
の条件とする。
[Standard flow rate model]
The Cv value of the verification result was calculated by setting the verification result of the Cv value of the reference flow rate model shown in FIG. 2 as “Cv value = 1”. As shown in FIG. 2, the reference flow rate model includes a valve port diameter (D), a pitch between ports (P), a recess length (L), a recess width (W), a recess height (H), and a bowl-shaped recess As the R dimension (R) of the bottom opening,
L = D + P
W = D
H = D
R = D / 2
The conditions are as follows.

[椀状凹部10Aの下面開口部のR寸法]
図3に示すように、R寸法=凹部幅(W)/2とし、凹部長さ(L)と凹部幅(W)を変化させる場合、以下のようにした。凹部長さ(L)を変化させる場合、凹部幅(W)は固定のため、R寸法も変化させずに凹部長さ(L)だけを変化させた。凹部幅(W)を変化させる場合、凹部幅(W)を変化させる毎にR寸法も凹部幅(W)に応じて変化させた。
[R dimension of the lower surface opening of the bowl-shaped recess 10A]
As shown in FIG. 3, when R dimension = recess width (W) / 2 and the recess length (L) and the recess width (W) are changed, the following is performed. When the recess length (L) was changed, the recess width (W) was fixed, so that only the recess length (L) was changed without changing the R dimension. When the recess width (W) was changed, the R dimension was also changed according to the recess width (W) each time the recess width (W) was changed.

図4は凹部長さ(L)を示す図であり、図5はこの凹部長さ(L)の変化に対するCv値(基準流量モデルのCv値比率=1)の変化を示す図である。図5に示すように、凹部長さ(L)がポート間ピッチ(P)+弁ポート径(D)より小さい場合は、弁体10の一部が流路を塞いでしまうため、Cv値は低下する傾向にある。また、凹部長さ(L)がポート間ピッチ(P)+弁ポート径(D)より過度に大きい場合は、弁ポートに流体がスムーズに流れ込まないため、Cv値は低下する傾向にある。そして、凹部長さ(L)/[ポート間ピッチ(P)+弁ポート径(D)]の比率(以下、「長さ比率」という。)が、1.00〜1.06の時にCv値が最適となることが判明した。   FIG. 4 is a diagram showing the recess length (L), and FIG. 5 is a diagram showing a change in the Cv value (Cv value ratio = 1 of the reference flow rate model) with respect to the change in the recess length (L). As shown in FIG. 5, when the recess length (L) is smaller than the inter-port pitch (P) + valve port diameter (D), a part of the valve body 10 blocks the flow path, so the Cv value is It tends to decrease. In addition, when the recess length (L) is excessively larger than the inter-port pitch (P) + the valve port diameter (D), the fluid does not smoothly flow into the valve port, so the Cv value tends to decrease. When the ratio of the recess length (L) / [port pitch (P) + valve port diameter (D)] (hereinafter referred to as “length ratio”) is 1.00 to 1.06, the Cv value Was found to be optimal.

図6は凹部幅(W)を示す図であり、図7はこの凹部幅(W)の変化に対するCv値(基準流量モデルのCv値比率=1)の変化を示す図である。図7に示すように、凹部幅(W)が弁ポート径(D)に対して所定の範囲内の比率でないと弁ポートに流体がスムーズに流れ込まなくなるため、Cv値は低下する傾向にある。そして、凹部幅(W)/弁ポート径(D)の比率(以下、「幅比率」という。)が、1.05〜1.15の時にCv値が最適となることが判明した。   FIG. 6 is a diagram illustrating the recess width (W), and FIG. 7 is a diagram illustrating a change in the Cv value (Cv value ratio = 1 of the reference flow rate model) with respect to the change in the recess width (W). As shown in FIG. 7, since the fluid does not smoothly flow into the valve port unless the recess width (W) is within a predetermined range with respect to the valve port diameter (D), the Cv value tends to decrease. It has been found that the Cv value is optimal when the ratio of the recess width (W) / valve port diameter (D) (hereinafter referred to as “width ratio”) is 1.05 to 1.15.

図8は凹部高さ(H)を示す図であり、図9はこの凹部高さ(H)の変化に対するCv値(基準流量モデルのCv値比率=1)の変化を示す図である。この図9は、図5に示す長さ比率が1.00〜1.06である最適値、及び図7に示す幅比率が1.05〜1.15である最適値について、その上限と下限の範囲において、凹部高さ(H)を変化させた場合を示している。なお、図9では、長さ比率の最小値“1.00”と幅比率の最小値“1.05”同士、長さ比率の最大値“1.06”と幅比率の最大値“1.15”同士について検証した結果だけを図示してある。   FIG. 8 is a diagram showing the recess height (H), and FIG. 9 is a diagram showing a change in the Cv value (reference flow model Cv value ratio = 1) with respect to the change in the recess height (H). FIG. 9 shows the upper and lower limits of the optimum value with the length ratio of 1.00 to 1.06 shown in FIG. 5 and the optimum value with the width ratio of 1.05 to 1.15 shown in FIG. In this range, the case where the recess height (H) is changed is shown. In FIG. 9, the minimum length ratio value “1.00” and the minimum width ratio value “1.05”, the maximum length ratio value “1.06”, and the maximum width ratio value “1. Only the results of verification for 15 ″ are shown.

また、図9に示す各曲線は以下の条件に対応する。ピークを「□」で図示した曲線は、弁ポート径(D)=φ8mmで長さ比率と幅比率が最大値の場合である。ピークを「×」で図示した曲線は弁ポート径(D)=φ8mmで長さ比率と幅比率が最小値、または弁ポート径(D)=φ12mmで長さ比率と幅比率が最大値の場合である。ピークのみを「◇」で図示した曲線は、弁ポート径(D)=φ9mmで長さ比率と幅比率が最大値の場合である。ピークのみを「◆」で図示した曲線は、弁ポート径(D)=φ9mmで長さ比率と幅比率が最小値の場合である。ピークのみを「○」で図示した曲線は、弁ポート径(D)=φ11mmで長さ比率と幅比率が最大値の場合である。ピークのみを「●」で図示した曲線は、弁ポート径(D)=φ11mmで長さ比率と幅比率が最小値の場合である。ピークを「△」で図示した曲線は、弁ポート径(D)=φ12mmで長さ比率と幅比率が最小値の場合である。   Each curve shown in FIG. 9 corresponds to the following conditions. The curve whose peak is indicated by “□” is the case where the valve port diameter (D) = φ8 mm and the length ratio and the width ratio are the maximum values. The curve with the peak indicated by “x” is when the valve port diameter (D) = φ8 mm and the length ratio and width ratio are minimum values, or the valve port diameter (D) = φ12 mm and the length ratio and width ratio are maximum values. It is. The curve with only the peak indicated by “◇” is when the valve port diameter (D) = φ9 mm and the length ratio and the width ratio are the maximum values. The curve with only the peak indicated by “♦” is the case where the valve port diameter (D) = φ9 mm and the length ratio and the width ratio are minimum values. A curve in which only the peak is indicated by “◯” is the case where the valve port diameter (D) = φ11 mm and the length ratio and the width ratio are the maximum values. A curve in which only the peak is indicated by “●” is the case where the valve port diameter (D) = φ11 mm and the length ratio and the width ratio are minimum values. The curve whose peak is indicated by “Δ” is the case where the valve port diameter (D) = φ12 mm and the length ratio and the width ratio are minimum values.

なお、図9では、各弁ポート径毎の長さ比率と幅比率の組み合わせとして、長さ比率と幅比率が共に最大値、長さ比率と幅比率が共に最小値という組み合わせの場合を図示している。しかし、長さ比率が最小値で幅比率が最大値、長さ比率が最大値で幅比率が最小値という組み合わせ、あるいは、長さ比率と幅比率が共に中間値という組み合わせを検証した結果、これらの場合でも、図示の共に最大値である組み合わせと、共に最小値である組み合わせにおける“Cv値が改善できる範囲内”に収まることが判明した。   FIG. 9 illustrates a combination of the length ratio and the width ratio for each valve port diameter in which the length ratio and the width ratio are both maximum values, and the length ratio and the width ratio are both minimum values. ing. However, as a result of verifying the combination that the length ratio is the minimum value and the width ratio is the maximum value, the length ratio is the maximum value and the width ratio is the minimum value, or the combination that the length ratio and the width ratio are both intermediate values, Even in this case, it has been found that the combination of the maximum value and the combination of the minimum value shown in the figure are both within the range in which the Cv value can be improved.

図9に示すように、全体の傾向としては、凹部高さ(H)を高くしていくと、Cv値は定期的に増減を繰り返しながら徐々に増加していく傾向にある。また、凹部高さ(H)/弁ポート径(D)の比率(以下、「高さ比率」という。)が0.99以上でCv値比率が常時“1”を上回ることが判明した。図に斜線で示す高さ比率が0.99を下回る範囲では、Cv値比率が“1”を下回る場合があることが判明した。図に斜線で示す高さ比率が1.39を超える範囲では、Cv値の改善効果は小さいことが判明した。なお、1.39を超える範囲では、弁体10の材料の使用量の増加、流路切換弁の大型化につながるため、効果的ではない。   As shown in FIG. 9, as the overall tendency, as the recess height (H) is increased, the Cv value tends to gradually increase while repeating increase and decrease periodically. It was also found that the ratio of the recess height (H) / valve port diameter (D) (hereinafter referred to as “height ratio”) was 0.99 or more, and the Cv value ratio was always higher than “1”. It was found that the Cv value ratio may be less than “1” in the range where the height ratio indicated by hatching is less than 0.99. It was found that the improvement effect of the Cv value was small in the range where the height ratio indicated by the oblique lines in the figure exceeded 1.39. In addition, in the range exceeding 1.39, since it leads to the increase in the usage-amount of the material of the valve body 10, and the enlargement of a flow-path switching valve, it is not effective.

このように、
0.99≦H/D≦1.39
の条件を満たすと、Cv値の改善効果が高い。
in this way,
0.99 ≦ H / D ≦ 1.39
If the condition is satisfied, the effect of improving the Cv value is high.

さらに、この高さ比率が0.99〜1.39の範囲内で、高さ比率が1.00〜1.10の範囲、高さ比率が1.11〜1.21の範囲、高さ比率が1.24〜1.34の範囲で、それぞれCv値のピークが現れ、特に効果的にCv値が改善できることが判る。   Furthermore, this height ratio is in the range of 0.99 to 1.39, the height ratio is in the range of 1.00 to 1.10, the height ratio is in the range of 1.11 to 1.21, and the height ratio In the range of 1.24 to 1.34, Cv value peaks appear, and it can be seen that the Cv value can be improved particularly effectively.

このように、
1.00≦H/D≦1.10…(5.1)
または、
1.11≦H/D≦1.21…(5.2)
または、
1.24≦H/D≦1.34…(5.3)
の条件を満たすと、Cv値の改善効果がさらに高い。
in this way,
1.00 ≦ H / D ≦ 1.10 (5.1)
Or
1.11 ≦ H / D ≦ 1.21 (5.2)
Or
1.24 ≦ H / D ≦ 1.34 (5.3)
If this condition is satisfied, the effect of improving the Cv value is even higher.

図9に示す高さ比率の範囲E1は、弁ポート径(D)=φ8〜9mmで最適高さ比率が1.00〜1.06の範囲である。高さ比率の範囲E2は、弁ポート径(D)=φ8〜9mmで最適高さ比率が1.11〜1.17の範囲である。高さ比率の範囲E3は、弁ポート径(D)=φ8〜9mmで最適高さ比率が1.24〜1.30の範囲である。高さ比率の範囲E4は、弁ポート径(D)=φ11〜12mmで最適高さ比率が1.03〜1.10の範囲である。高さ比率の範囲E5は、弁ポート径(D)=φ11〜12mmで最適高さ比率が1.14〜1.21の範囲である。高さ比率の範囲E6は、弁ポート径(D)=φ11〜12mmで最適高さ比率が1.27〜1.34の範囲である。   A range E1 of the height ratio shown in FIG. 9 is a range where the valve port diameter (D) = φ8 to 9 mm and the optimum height ratio is 1.00 to 1.06. The height ratio range E2 is a range in which the valve port diameter (D) = φ8 to 9 mm and the optimum height ratio is 1.11 to 1.17. The height ratio range E3 is a range in which the valve port diameter (D) = φ8 to 9 mm and the optimum height ratio is 1.24 to 1.30. The height ratio range E4 is a range in which the valve port diameter (D) = φ11 to 12 mm and the optimum height ratio is 1.03 to 1.10. The height ratio range E5 is a range in which the valve port diameter (D) = φ11 to 12 mm and the optimum height ratio is 1.14 to 1.21. The height ratio range E6 is a range in which the valve port diameter (D) = φ11 to 12 mm and the optimum height ratio is 1.27 to 1.34.

なお、流路切換弁の本体サイズと流量のバランスを考慮すると、高さ比率が1.24〜1.34の範囲が最適な寸法であるが、他の部品との兼ね合いで採用できない場合は、高さ比率を1.11〜1.21の範囲または高さ比率を1.00〜1.10の範囲とすることで効果的にCv値を改善できる。   In addition, when considering the balance between the main body size of the flow path switching valve and the flow rate, the range of the height ratio of 1.24 to 1.34 is the optimal dimension, but when it cannot be adopted in consideration of other components, The Cv value can be effectively improved by setting the height ratio in the range of 1.11 to 1.21 or the height ratio in the range of 1.00 to 1.10.

10 弁体
10A 椀状凹部
15 弁座
15a Eポート
15b Sポート
15c Cポート
X 軸線
10 Valve body 10A A bowl-shaped recess 15 Valve seat 15a E port 15b S port 15c C port X Axis

Claims (2)

冷凍サイクルの高圧側配管に連通される弁室内で、低圧ポートと2つの切換ポートが形成された弁座に対向する椀状凹部を有する弁体であって、
前記低圧ポートと切換ポートの弁ポート径をD(mm)、
前記低圧ポートと切換ポートとのポート間ピッチをP(mm)、
前記椀状凹部の前記移動方向の凹部長さをL(mm)、
前記椀状凹部の前記移動方向と直角な方向の凹部幅をW(mm)、
前記椀状凹部の高さをH(mm)、
としたとき、
8mm≦D≦12mm…(1)
1.3≦P/D≦1.7…(2)
1.00≦L/(P+D)≦1.06…(3)
1.05≦W/D≦1.15…(4)
を満たし、
0.99≦H/D≦1.39…(5)
であることを特徴とする流路切換弁用の弁体。
A valve body having a bowl-shaped recess facing a valve seat in which a low pressure port and two switching ports are formed in a valve chamber communicated with a high pressure side pipe of a refrigeration cycle,
The valve port diameter of the low pressure port and the switching port is D (mm),
The pitch between the low-pressure port and the switching port is P (mm),
L (mm) is the length of the recess in the moving direction of the bowl-shaped recess.
The width of the concave portion in the direction perpendicular to the moving direction of the bowl-shaped concave portion is W (mm),
The height of the bowl-shaped recess is H (mm),
When
8mm ≦ D ≦ 12mm ... (1)
1.3 ≦ P / D ≦ 1.7 (2)
1.00 ≦ L / (P + D) ≦ 1.06 (3)
1.05 ≦ W / D ≦ 1.15 (4)
The filling,
0.99 ≦ H / D ≦ 1.39 (5)
A valve element for a flow path switching valve.
請求項1に記載の流路切換弁用の弁体であって、
1.00≦H/D≦1.10…(5.1)
または、
1.11≦H/D≦1.21…(5.2)
または、
1.24≦H/D≦1.34…(5.3)
であることを特徴とする流路切換弁用の弁体。
A valve element for a flow path switching valve according to claim 1,
1.00 ≦ H / D ≦ 1.10 (5.1)
Or
1.11 ≦ H / D ≦ 1.21 (5.2)
Or
1.24 ≦ H / D ≦ 1.34 (5.3)
A valve element for a flow path switching valve.
JP2014081195A 2014-04-10 2014-04-10 Valve body for flow path switching valve Active JP6046076B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014081195A JP6046076B2 (en) 2014-04-10 2014-04-10 Valve body for flow path switching valve
CN201510142562.4A CN104976376B (en) 2014-04-10 2015-03-27 Flow channel switching valve valve element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014081195A JP6046076B2 (en) 2014-04-10 2014-04-10 Valve body for flow path switching valve

Publications (2)

Publication Number Publication Date
JP2015200400A JP2015200400A (en) 2015-11-12
JP6046076B2 true JP6046076B2 (en) 2016-12-14

Family

ID=54273172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014081195A Active JP6046076B2 (en) 2014-04-10 2014-04-10 Valve body for flow path switching valve

Country Status (2)

Country Link
JP (1) JP6046076B2 (en)
CN (1) CN104976376B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155887A (en) * 2016-03-03 2017-09-07 株式会社鷺宮製作所 Slide type selector valve and refrigeration cycle system
JP6602711B2 (en) * 2016-03-28 2019-11-06 株式会社鷺宮製作所 Sliding switching valve, manufacturing method of sliding switching valve, and refrigeration cycle system
JP6559100B2 (en) * 2016-07-26 2019-08-14 株式会社鷺宮製作所 Valve body, switching valve, valve body manufacturing method, and refrigeration cycle system
JP2019138445A (en) * 2018-02-15 2019-08-22 株式会社不二工機 Multi-way switching valve
JP6979705B2 (en) * 2019-05-07 2021-12-15 株式会社不二工機 Flow switching valve
JP7023525B2 (en) * 2019-05-07 2022-02-22 株式会社不二工機 Flow switching valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244760C (en) * 2000-02-10 2006-03-08 株式会社不二工机 Four-way converting valve
CN200940706Y (en) * 2006-06-08 2007-08-29 钱松平 Four-way valve for heat pump type air conditioner
JP4294683B2 (en) * 2006-12-19 2009-07-15 日立アプライアンス株式会社 Four-way switching valve and air conditioner using the same
JP2010196857A (en) * 2009-02-27 2010-09-09 Fuji Koki Corp Four-way selector valve
JP5175144B2 (en) * 2008-08-07 2013-04-03 株式会社不二工機 Four-way switching valve disc

Also Published As

Publication number Publication date
CN104976376A (en) 2015-10-14
CN104976376B (en) 2017-06-16
JP2015200400A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP6046076B2 (en) Valve body for flow path switching valve
CN205781248U (en) Fluid pressure type valve equipment
CN107816561B (en) Reversing device
US20160049230A1 (en) Magnetic armature
JP5145396B2 (en) Valve body for flow path switching valve
RU2638226C2 (en) Servo valve
JP2015048871A (en) Flow passage selector valve
JP5175144B2 (en) Four-way switching valve disc
JP4993140B2 (en) Fluid pressure equipment with low sliding packing
CN107956911B (en) A kind of solenoid valve
JP2006258183A (en) Poppet type direction control valve
CN103244498B (en) A kind of accurate voltage regulating type direct-acting overflow valve
CN104595514A (en) Slide valve
JP2015042882A (en) Changeover valve
CN104214378A (en) Safety valve
CN108884946A (en) Flow divider
CN103453203B (en) Core iron assembly and four-way reversing valve applying core iron assembly
CN104930210A (en) Slide block for slide type reversing valve, and slide type reversing valve
JP6832266B2 (en) Sliding switching valve and refrigeration cycle system
JP5144374B2 (en) Four-way switching valve disc
WO2016135823A1 (en) Fluid control valve
CN106440550A (en) Sliding switching valve and refrigeration cycle system
JP2019138445A (en) Multi-way switching valve
JP2015052389A (en) Fluid control valve
WO2017064796A1 (en) Check valve and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161116

R150 Certificate of patent or registration of utility model

Ref document number: 6046076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150