JP6979171B2 - Casting and packaging members and their manufacturing methods - Google Patents

Casting and packaging members and their manufacturing methods Download PDF

Info

Publication number
JP6979171B2
JP6979171B2 JP2017220946A JP2017220946A JP6979171B2 JP 6979171 B2 JP6979171 B2 JP 6979171B2 JP 2017220946 A JP2017220946 A JP 2017220946A JP 2017220946 A JP2017220946 A JP 2017220946A JP 6979171 B2 JP6979171 B2 JP 6979171B2
Authority
JP
Japan
Prior art keywords
casting
convex portion
region
mold
wrapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017220946A
Other languages
Japanese (ja)
Other versions
JP2019089115A (en
Inventor
諒 長澤
昭人 山元
未来 久岡
雄一 水村
延明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2017220946A priority Critical patent/JP6979171B2/en
Priority to DE102018125395.8A priority patent/DE102018125395B4/en
Priority to FR1859763A priority patent/FR3073434B1/en
Priority to CN201811347787.3A priority patent/CN109794593B/en
Publication of JP2019089115A publication Critical patent/JP2019089115A/en
Application granted granted Critical
Publication of JP6979171B2 publication Critical patent/JP6979171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C23/00Tools; Devices not mentioned before for moulding
    • B22C23/02Devices for coating moulds or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • B22D13/023Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis the longitudinal axis being horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/10Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
    • B22D13/101Moulds
    • B22D13/102Linings for moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0009Cylinders, pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/08Casting in, on, or around objects which form part of the product for building-up linings or coverings, e.g. of anti-frictional metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

本発明は、鋳包み用部材及びその製造方法に関する。 The present invention relates to a member for casting and wrapping and a method for manufacturing the same.

ダイカスト鋳造技術などの発展に伴い、先に鋳造しておいた部材を鋳型にセットし、該部品と鋳型との間に溶かしたアルミニウム等の金属を流し込んで、該部品に接着又は密着させる鋳包み鋳造と呼ばれる手法が用いられるようになってきた。この手法により鋳込まれる部材は、鋳包み用部材(鋳ぐるみ用部材ともいう)と呼ばれる。 With the development of die-casting technology, etc., a previously cast member is set in a mold, and a metal such as molten aluminum is poured between the part and the mold, and the casting package is adhered or adhered to the part. A technique called casting has come to be used. The member cast by this method is called a casting / wrapping member (also referred to as a casting member).

鋳包み用部材としては、例えば、内燃機関のシリンダブロックに鋳込まれるシリンダスリーブ(シリンダライナ又はスリーブともいう)や、ダイカストホイールハブのボスやドラム、さらにはシリンダブロックやロアケース等の軸受部、その他、ミッションケース内軸受部に鋳込まれる軸受け部材などがある。特に上記の用途に用いられる場合、鋳包み用部材に熱負荷や大きな外力が作用することが多く、鋳包み用部材とこの部材を鋳包む金属との密着性を向上させて放熱性や伝熱性や、さらには剛性を改善することが求められている。 Examples of the casting and wrapping member include a cylinder sleeve (also referred to as a cylinder liner or sleeve) cast into a cylinder block of an internal combustion engine, a boss or drum of a die cast wheel hub, a bearing portion such as a cylinder block or a lower case, and the like. , There are bearing members cast into the bearings inside the mission case. In particular, when used for the above purposes, a heat load or a large external force often acts on the casting and wrapping member, which improves the adhesion between the casting and wrapping member and the metal that wraps the member, and has heat dissipation and heat transfer properties. Furthermore, it is required to improve the rigidity.

特許文献1〜3には、ダイカストで鋳包まれるスリーブにおいて、スリーブ外周面に先端が括れた単独の針状の凸部を有し、且つスリーブの上部と下部で密着性ないし熱伝導性を変える処理を施したスリーブが記載されている。 In Patent Documents 1 to 3, in a sleeve cast and wrapped by die casting, the sleeve has a single needle-shaped convex portion whose tip is constricted on the outer peripheral surface of the sleeve, and the adhesion or thermal conductivity is changed between the upper part and the lower part of the sleeve. The treated sleeve is described.

特開2007−016736号公報Japanese Unexamined Patent Publication No. 2007-016736 特開2007−016734号公報Japanese Unexamined Patent Publication No. 2007-016734 特開2007−016735号公報Japanese Unexamined Patent Publication No. 2007-016735

スリーブにおける鋳包み用部材のうちの異なる2つの領域で、異なる特性が求められる場合がある。例えば、エンジン用のシリンダブロックにおいて、デッキ側のピストン摺動領域では、鋳包み用部材と鋳包む金属との間の高い密着性および高い熱伝導性が求められるのに対し、ピストン摺動領域ではないクランクケース側の領域では、相対的に低い密着性および低い熱伝導性が求められる。このような鋳包み部材の異なる2つの領域で密着性および熱伝導性を変えるためには、鋳包み用部材の粗面化処理や皮膜成形処理を行うという方法もあるが、これらの方法では製造工程が煩雑になるという問題がある。 Different properties may be required in two different regions of the casting and wrapping member in the sleeve. For example, in a cylinder block for an engine, in the piston sliding region on the deck side, high adhesion and high thermal conductivity between the casting member and the metal to be cast are required, whereas in the piston sliding region. In the area on the crankcase side, relatively low adhesion and low thermal conductivity are required. In order to change the adhesion and thermal conductivity in these two different regions of the casting and packaging member, there is also a method of roughening the surface of the casting and packaging member and forming a film, but these methods are used for manufacturing. There is a problem that the process becomes complicated.

そこで本発明は、上記の課題に鑑み、スリーブにおける鋳包み用部材の異なる2つの領域において密着性や熱伝導性等の特性を容易に大きく変えることができる、鋳包み用部材及びその製造方法を提供することを目的とする。 Therefore, in view of the above problems, the present invention provides a casting and packaging member and a method for manufacturing the same, which can easily and significantly change the characteristics such as adhesion and thermal conductivity in two different regions of the casting and packaging member in the sleeve. The purpose is to provide.

上記目的を達成するため、本発明は、その一態様によれば、鋳包まれる面上に網目状の凸部と平坦面とを有する鋳包み用部材であって、前記網目状の凸部は、線状部分と、少なくとも2つの線状部分が合流している集合部分とを備え、前記凸部は、前記平坦面から立ち上がる縦壁部分を備え、前記線状部分の凸部の前記平坦面からの高さが相対的に高い、高凸部領域と、前記線状部分の凸部の前記平坦面からの高さが相対的に低い、低凸部領域とを備えるものである。 In order to achieve the above object, according to one aspect of the present invention, the present invention is a casting and wrapping member having a mesh-like convex portion and a flat surface on the surface to be cast, and the mesh-like convex portion is , A linear portion and an aggregated portion where at least two linear portions meet, the convex portion comprising a vertical wall portion rising from the flat surface, and the flat surface of the convex portion of the linear portion. It is provided with a high convex portion region having a relatively high height from the above and a low convex portion region having a relatively low height from the flat surface of the convex portion of the linear portion.

前記高凸部領域と前記低凸部領域は、それぞれ複数の領域が形成されていてもよい。また、高凸部領域と低凸部領域の中間の高さの凸部が存在してもよい。前記線状部分の凸部の縦壁部分としては、平坦面に対して垂直であることに限定されず、傾きがあってもよい。また、前記凸部は、前記縦壁部分に加え、頂部を備え、前記凸部は、前記縦壁部分の幅と比較して前記頂部の幅が大きい形状を備えてもよい。 A plurality of regions may be formed in each of the high convex region and the low convex region. Further, there may be a convex portion having a height intermediate between the high convex portion region and the low convex portion region. The vertical wall portion of the convex portion of the linear portion is not limited to being perpendicular to the flat surface, and may have an inclination. Further, the convex portion may include a top portion in addition to the vertical wall portion, and the convex portion may have a shape in which the width of the top portion is larger than the width of the vertical wall portion.

前記鋳包み用部材は円筒形状を有してもよく、この場合、この円筒形状の軸方向または周方向に沿って前記高凸部領域と前記低凸部領域とを備えることが好ましい。 The casting and wrapping member may have a cylindrical shape, and in this case, it is preferable to include the high convex portion region and the low convex portion region along the axial direction or the circumferential direction of the cylindrical shape.

前記鋳包み用部材は、エンジンシリンダブロックに鋳込まれるシリンダスリーブであってもよく、この場合、デッキ面側に前記高凸部領域を備え、クランクケース側に前記低凸部領域を備えることが好ましい。また、この場合、吸排方向に前記高凸部領域を備え、前後方向に前記低凸部領域を備えることも好ましい。 The casting / wrapping member may be a cylinder sleeve cast into an engine cylinder block. In this case, the deck surface side may be provided with the high convex portion region, and the crankcase side may be provided with the low convex portion region. preferable. Further, in this case, it is also preferable to provide the high convex portion region in the suction / exhaust direction and the low convex portion region in the front-rear direction.

前記高凸部領域における前記凸部の高さと前記低凸部領域における前記凸部の高さとの差は、0.1mm以上であることが好ましく、0.2mm以上がより好ましい。また、この差の上限は、1.0mm以下が好ましく、0.5mm以下がより好ましい。なお、ここでの凸部の高さの差とは、高凸部領域における平均の凸部の高さと低凸部領域における平均の凸部の高さの差をいう。 The difference between the height of the convex portion in the high convex portion region and the height of the convex portion in the low convex portion region is preferably 0.1 mm or more, and more preferably 0.2 mm or more. The upper limit of this difference is preferably 1.0 mm or less, more preferably 0.5 mm or less. The difference in the height of the convex portion here means the difference in the height of the average convex portion in the high convex portion region and the average height of the convex portion in the low convex portion region.

本発明は、また別の態様として、鋳包み用部材の製造方法であって、鋳型の溶湯を流し込もうとする面に塗型剤を塗布する工程と、前記塗布した塗型剤を乾燥させて、表面にひび割れの形状を有する塗型層を形成する工程と、前記塗型層上から溶湯を流しこみ、前記鋳型を回転させながら鋳造する工程とを少なくとも含み、前記鋳型の溶湯を流し込もうとする面は、少なくとも2つの異なる高さの領域を有しており、これによって、前記塗型層は、厚さが相対的に厚い領域と薄い領域とを有し、前記ひび割れは、前記厚い領域において、相対的にひび割れの幅が大きく深さが深く、前記薄い領域において、相対的にひび割れの幅が小さく深さが浅いものが形成される。 The present invention is another aspect of the method for manufacturing a member for casting and wrapping, in which a step of applying a mold coating agent to a surface on which a molten metal of a mold is to be poured and a step of applying the coating agent are dried. The process includes at least a step of forming a coating layer having a cracked shape on the surface and a step of pouring molten metal from the coating layer and casting while rotating the mold, and pouring the molten metal of the mold. The surface to be attempted has at least two different height regions, whereby the coating layer has a relatively thick region and a thin region, and the cracks are said to be said. In the thick region, the width of the crack is relatively large and the depth is deep, and in the thin region, the width of the crack is relatively small and the depth is shallow.

前記塗型層の前記厚い領域に形成される前記幅が大きく深さが深くいひび割れは、前記薄い領域の前記塗型層の厚さよりも、ひび割れの深さを浅くするように制御することが好ましい。特に、前記鋳型が円筒形状を有し、前記溶湯を流し込もうとする面がその内周面である場合、前記鋳型は、前記薄い領域として、相対的に内径の小さい基準内径からなる基準内径領域と、前記厚い領域として、相対的に内径の大きい非基準内径領域とを備え、前記幅が大きく深さが深いひび割れは、その深さが、前記基準内径の領域内に留まるように制御することが好ましい。前記基準内径領域と前記非基準内径領域との内径差は、0.1mm以上であることが好ましく、0.2mm以上がより好ましい。また、この内径差の上限は、1.0mm以下が好ましく、0.5mm以下がより好ましい。 The wide and deep cracks formed in the thick region of the coating layer can be controlled so that the crack depth is shallower than the thickness of the coating layer in the thin region. preferable. In particular, when the mold has a cylindrical shape and the surface on which the molten metal is to be poured is the inner peripheral surface thereof, the mold has a reference inner diameter consisting of a reference inner diameter having a relatively small inner diameter as the thin region. A region and a non-reference inner diameter region having a relatively large inner diameter are provided as the thick region, and a crack having a large width and a deep depth is controlled so that its depth stays within the region of the reference inner diameter. Is preferable. The inner diameter difference between the reference inner diameter region and the non-reference inner diameter region is preferably 0.1 mm or more, more preferably 0.2 mm or more. Further, the upper limit of the inner diameter difference is preferably 1.0 mm or less, more preferably 0.5 mm or less.

本発明によれば、鋳包み用部材の鋳包まれる面上に、網目状の凸部であって、その内の線状部分の凸部の高さが相対的に高い、高凸部領域と、凸部の高さが相対的に低い、低凸部領域とを備えることによって、この鋳包み用部材を用いて鋳包み鋳造した部材は、高凸部領域の部分において鋳包み用部材と鋳包む金属との間の高い密着性および高い熱伝導性が得られる一方、低凸部領域の部分においては、相対的に低い密着性および低い熱伝導性が得られる。このように単一の鋳包み用部材を用いて、鋳包み部材の異なる2つの領域において密着性および熱伝導性を容易に大きく変えることができる。 According to the present invention, there is a highly convex region on the surface of the casting member to be cast and wrapped, which is a mesh-like convex portion in which the height of the convex portion of the linear portion is relatively high. By providing a low convex portion region in which the height of the convex portion is relatively low, the member cast and cast using this casting and wrapping member is cast with the casting and wrapping member in the portion of the high convex portion region. High adhesion and high thermal conductivity with the wrapping metal can be obtained, while relatively low adhesion and low thermal conductivity can be obtained in the low convex region portion. As described above, by using a single casting / wrapping member, the adhesion and the thermal conductivity can be easily and greatly changed in two different regions of the casting / wrapping member.

特に、この鋳包み用部材を、エンジンシリンダブロックに鋳込まれるシリンダスリーブとして用いる場合、デッキ面側に高凸部領域を備え、クランクケース側に低凸部領域を備えるようにすることで、鋳包み鋳造によって得られるシリンダブロックは、デッキ面側のピストン摺動領域では、鋳鉄とアルミとの間の高い密着性および高い熱伝導性を得ることができ、エンジン実稼働時のボア歪を抑制できる。一方で、クランクケース側のピストン摺動領域以外の領域では、熱伝導性が低いことから、スリーブからシリンダバレル(アルミ側)への熱放散を抑制し、スリーブ全体の温度を均一にすることが可能となるため、全体的にボア歪を抑制可能となる。これにより、メカロスやブローバイガスの低減により燃費を向上させることができる。 In particular, when this casting / wrapping member is used as a cylinder sleeve to be cast into an engine cylinder block, it is cast by providing a high convex region on the deck surface side and a low convex region on the crankcase side. The cylinder block obtained by wrapping casting can obtain high adhesion and high thermal conductivity between cast iron and aluminum in the piston sliding region on the deck surface side, and can suppress bore distortion during actual engine operation. .. On the other hand, since the thermal conductivity is low in the region other than the piston sliding region on the crankcase side, it is possible to suppress heat dissipation from the sleeve to the cylinder barrel (aluminum side) and make the temperature of the entire sleeve uniform. Since it is possible, it is possible to suppress bore distortion as a whole. As a result, fuel efficiency can be improved by reducing mechanical loss and blow-by gas.

また、エンジンのF−R方向とスリーブの低凸部領域を一致させて鋳包むことで、アルミの肉厚を確保しつつスリーブ同士を近づけることが可能となり、ボア間ピッチを短縮できるので、エンジンの軽量化またはダウンサイジング化が可能となる。さらに、凸部を形成することで、アンカー効果によりスリーブとアルミの接触界面における部分的な隙間の発生がなくなるため、スリーブ壁温も安定化する。これにより、スリーブからシリンダバレルへの熱伝導性が向上かつ均一化し、エンジン燃焼熱の放散性を改善できるため、筒内温度上昇にも対応できるため、エンジンの高圧縮化を達成できる。 In addition, by casting and wrapping the sleeve so that the FR direction of the engine and the low convex region of the sleeve match, it is possible to bring the sleeves closer to each other while ensuring the thickness of the aluminum, and the pitch between the bores can be shortened. Can be made lighter or downsized. Further, by forming the convex portion, the anchor effect eliminates the generation of a partial gap at the contact interface between the sleeve and aluminum, so that the sleeve wall temperature is also stabilized. As a result, the thermal conductivity from the sleeve to the cylinder barrel is improved and made uniform, and the heat dissipation of the engine combustion heat can be improved. Therefore, it is possible to cope with the rise in the temperature inside the cylinder, and it is possible to achieve high compression of the engine.

本発明に係る鋳包み用部材の一例であるシリンダスリーブを模式的に示す斜視図である。It is a perspective view which shows typically the cylinder sleeve which is an example of the casting and wrapping member which concerns on this invention. 図1のシリンダスリーブの表面を拡大して模式的に示す平面図である。FIG. 3 is an enlarged plan view schematically showing the surface of the cylinder sleeve of FIG. 1. 図1のIII−III線に沿ってシリンダスリーブを示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing a cylinder sleeve along lines III-III of FIG. 図1のシリンダスリーブを一構成要素とするシリンダブロックの一例を示す断面図を示す。A cross-sectional view showing an example of a cylinder block having the cylinder sleeve of FIG. 1 as a component is shown. 図4においてシリンダスリーブ周辺を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing the periphery of the cylinder sleeve in FIG. (A)、(B)それぞれ、図9〜図11に示す鋳型に適用した場合の、本発明に係る鋳包み用部材の表面の線状の凸部の一例を模式的に示す断面図である。(A) and (B) are cross-sectional views schematically showing an example of a linear convex portion on the surface of a casting and wrapping member according to the present invention when applied to the molds shown in FIGS. 9 to 11, respectively. .. (A)、(B)それぞれ、図11に示す鋳型に適用した場合の、本発明に係る鋳包み用部材の表面の線状の凸部の略Γ型の一例を模式的に示す断面図である。(A) and (B) are cross-sectional views schematically showing an example of a substantially Γ type of a linear convex portion on the surface of the casting and wrapping member according to the present invention when applied to the mold shown in FIG. be. (A)、(B)、(C)それぞれ、図11に示す鋳型に適用した場合の、本発明に係る鋳包み用部材の表面の線状の凸部の略T型の一例を模式的に示す断面図である。(A), (B), and (C) are schematically examples of a substantially T-shaped linear convex portion on the surface of the casting and wrapping member according to the present invention when applied to the mold shown in FIG. It is sectional drawing which shows. 本発明に係る鋳包み用部材の製造方法に用い得る鋳型の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the mold which can be used in the manufacturing method of the casting and wrapping member which concerns on this invention. 本発明に係る鋳包み用部材の製造方法に用い得る鋳型の別の例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the mold which can be used in the manufacturing method of the casting and wrapping member which concerns on this invention. 本発明に係る鋳包み用部材の製造方法に用い得る鋳型の更に別の例を模式的に示す断面図である。It is sectional drawing which shows still another example of the mold which can be used in the manufacturing method of the casting and wrapping member which concerns on this invention. 本発明に係る鋳包み用部材の製造方法の一実施の形態を説明する模式的なフロー図である。It is a schematic flow chart explaining one Embodiment of the manufacturing method of the casting and wrapping member which concerns on this invention. 本発明に係る鋳包み用部材の製造方法における塗型層の形成メカニズムを説明する模式的なフロー図である。It is a schematic flow chart explaining the formation mechanism of the coating type layer in the manufacturing method of the casting and wrapping member which concerns on this invention.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明するが、本発明の範囲は、この形態に限定されるものではない。なお、図面は、本発明の理解を優先し、必ずしも縮尺通りに描いたものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings, but the scope of the present invention is not limited to this embodiment. It should be noted that the drawings are not necessarily drawn to scale, giving priority to the understanding of the present invention.

先ず、本発明に係る鋳包み用部材の一実施の形態については説明する。本実施形態の鋳包み用部材は、鋳包まれる面上に網目状の凸部を有する。鋳包み用部材の素材としては、鋳鉄、銅合金、錫又は亜鉛合金などの比重が大きく自己摺動性を有する金属が挙げられる。鋳鉄は、一般的に鉄と炭素とケイ素を含む三元合金であり、用途によって他の元素を含んでいてもよい。例えば、鋳鉄は、Fe以外に、鋳鉄全体の質量に対して、3.1〜3.8質量%のT.C(Total Carbon)、1.9〜2.5質量%のSi、0.5〜1.0質量%のMn、0.01〜0.5質量%のP、0.02〜0.1質量%のSを含んでいてもよい。鋳包み用部材の粗材の肉厚が大きい場合や溶湯の鋳込み量が多い場合は、最適な硬さや金属組織を得るために、場合によって、0.01〜1.0質量%のCu、0.01〜0.10質量%のSn、0.01〜0.4質量%のCr、及び他の不可避不純物を含んでいてもよい。 First, an embodiment of the casting and wrapping member according to the present invention will be described. The casting and wrapping member of the present embodiment has a mesh-like convex portion on the surface to be cast and wrapped. Examples of the material for the casting and wrapping member include metals having a large specific gravity and self-sliding properties such as cast iron, copper alloys, tin or zinc alloys. Cast iron is generally a ternary alloy containing iron, carbon and silicon, and may contain other elements depending on the application. For example, in addition to Fe, cast iron has a T.I. C (Total Carbon), 1.9 to 2.5% by mass of Si, 0.5 to 1.0% by mass of Mn, 0.01 to 0.5% by mass of P, 0.02 to 0.1% by mass. May contain% S. In some cases, 0.01 to 1.0% by mass of Cu, 0, in order to obtain the optimum hardness and metallographic structure, when the thickness of the rough material of the casting and wrapping member is large or when the amount of molten metal cast is large. It may contain 0.01 to 0.10% by weight Sn, 0.01 to 0.4% by weight Cr, and other unavoidable impurities.

鋳包み用部材本体の形状は、特に限定されるものではなく、用途に合わせて適宜選定することが可能である。例えば筒状、半円筒状、断面がコの字状や⊥の字状となる形状、曲面又は略平面の板状等の形状が挙げられる。鋳包み用部材の例としては、エンジンシリンダブロックに鋳込まれるシリンダスリーブ、電気自動車等の回生ブレーキにおけるアルミ製のドラムブレーキに鋳込まれるブレーキシューと接する摺動部材やブレーキシューのバックプレート、二輪車及び特殊機械用のダイカストホイールハブのボス、さらにはシリンダブロックやロアケースのクランクジャーナル部、ミッションケース等のハウジングの軸受部などの何らかのダイカスト部品に鋳込まれるものが挙げられる。以下、筒状のシリンダスリーブを例示して本発明を説明するが、本発明は特定の形状の鋳包み用部材や特定の製品に限定されるものではない。 The shape of the main body of the casting and wrapping member is not particularly limited, and can be appropriately selected according to the intended use. For example, a cylindrical shape, a semi-cylindrical shape, a U-shaped cross section or a ⊥-shaped cross section, a curved surface or a substantially flat plate shape can be mentioned. Examples of casting and wrapping members include cylinder sleeves cast into engine cylinder blocks, sliding members in contact with brake shoes cast into aluminum drum brakes in regenerative brakes of electric vehicles, brake shoe back plates, and two-wheeled vehicles. And the boss of the die cast wheel hub for special machinery, and also those cast into some die cast parts such as the crank journal part of the cylinder block and the lower case, and the bearing part of the housing such as the mission case. Hereinafter, the present invention will be described by exemplifying a cylindrical cylinder sleeve, but the present invention is not limited to a cast-wrapping member having a specific shape or a specific product.

図1は、鋳包み用部材の一例であるシリンダスリーブ11の斜視図である。シリンダスリーブの形状としては、筒状形状が挙げられる。シリンダスリーブ11は、外側の表面11sが鋳包まれる面である。図2に、図1のd1で表す領域を拡大した模式的な平面図を示す。シリンダスリーブは、鋳包まれる面11sに、網目状の凸部3を有する。網目状の凸部3は、シリンダスリーブを構成する略平坦な面Fから突出した部分であり、連続した線状の突起構造を有しており、鋳包まれる面の全体にわたって存在している。網目状の凸部3は、線状部分1と、該線状部分が複数合流して形成される集合部分2を備える。 FIG. 1 is a perspective view of a cylinder sleeve 11 which is an example of a casting and wrapping member. Examples of the shape of the cylinder sleeve include a cylindrical shape. The cylinder sleeve 11 is a surface on which the outer surface 11s is cast and wrapped. FIG. 2 shows a schematic plan view in which the region represented by d1 in FIG. 1 is enlarged. The cylinder sleeve has a mesh-like convex portion 3 on the surface 11s to be cast and wrapped. The mesh-like convex portion 3 is a portion protruding from a substantially flat surface F constituting the cylinder sleeve, has a continuous linear protrusion structure, and exists over the entire surface to be cast and wrapped. The mesh-like convex portion 3 includes a linear portion 1 and an aggregate portion 2 formed by merging a plurality of the linear portions.

網目状の凸部は、鋳包み用部材の表面において、連続的に形成されており、「連続的に」は、全ての線状部分が繋がっている態様に限定されるものではなく、一部の線状部分のみが繋がっている態様も含む。 The mesh-like convex portion is continuously formed on the surface of the casting and wrapping member, and "continuously" is not limited to the mode in which all the linear portions are connected, but a part thereof. It also includes a mode in which only the linear portion of is connected.

図2において、線状部分1は、鋳包み用部材の鋳包まれる面を当該面の鉛直方向から平面視した場合に、凸部が、連続した線状又は帯状の形態で確認できる部分をいう。線状部分は、直線であっても曲線であってもよく、幅や長さ、高さが不均一であっても不定形であってもよい。つまり、凸部の高さがランダムに異なる、線状部分と、集合部分とを備えていてもよい。これにより、凸部間やボア間に金属の溶湯が充填される際、凸部の高さが一様の場合と比べて、凸部の高さの低い部位同士が対面する箇所が存在するようになり凸部間やボア間へ溶湯がより通り易くなり、金属の充填性が向上する。さらに、ボアピッチを従来より更に狭く設定することができ、エンジンのダウンサイジングが可能となる。線状部分の長手方向Laの長さ、及び線状部分の頂部の幅方向の長さLbは、特に限定されるものではない。なお、線状部分の頂部の上面の幅方向の長さは、例えばデジタルマイクロスコープを用いて測定することができ、例えば1〜50点測定し、その平均値又は最小値と最大値に基づいてその測定値が含まれる範囲、好ましくはその測定値全てが含まれる範囲として求めてもよい。 In FIG. 2, the linear portion 1 refers to a portion where the convex portion can be confirmed in a continuous linear or strip shape when the surface to be cast and wrapped of the casting and wrapping member is viewed in a plan view from the vertical direction of the surface. .. The linear portion may be a straight line or a curved line, and may have a non-uniform width, length, or height, or may have an irregular shape. That is, it may have a linear portion and an aggregate portion in which the heights of the convex portions are randomly different. As a result, when the molten metal is filled between the convex portions and between the bores, there are places where the portions with lower convex portions face each other as compared with the case where the heights of the convex portions are uniform. This makes it easier for the molten metal to pass between the protrusions and the bores, improving the metal filling property. Furthermore, the bore pitch can be set narrower than before, and the engine can be downsized. The length La in the longitudinal direction of the linear portion and the length Lb in the width direction of the top of the linear portion are not particularly limited. The length of the upper surface of the top surface of the linear portion in the width direction can be measured using, for example, a digital microscope. For example, 1 to 50 points are measured, and the average value or the minimum value and the maximum value are used. It may be obtained as a range including the measured value, preferably a range including all the measured values.

図2において集合部分2は、集合部分2a、2b、2c、及び2dからなる。集合部分2aは、3つの線状部分1a、1b、1cが合流して形成される。集合部分に合流している線状部分の本数は、特に限定されるものではなく、少なくとも2つであり、好ましくは2つ以上6つ以下である。網目状の凸部は、少なくとも2つの集合部分を備えることが好ましい。網目状の凸部に集合部分が2つ以上ある場合、各々の集合部分で合流している線状部分の本数は、同じであっても異なっていてもよい。外周面に形成した網目状の凸部は、鋳包み用部材の剛性を向上させる補強リブの効果をもたらす。かつ、集合部分は、鋳包まれた際に外力により発生する応力を分散させる点から、線状部分が互いにランダムな方向で合流していることが好ましい。線状部分が互いにランダムな方向で合流しているとは、例えば2つの線状部分が平行ではなく異なる向きで集合部分に合流していることである。 In FIG. 2, the set portion 2 is composed of the set portions 2a, 2b, 2c, and 2d. The assembly portion 2a is formed by merging three linear portions 1a, 1b, and 1c. The number of linear portions merging into the gathering portion is not particularly limited, and is at least two, preferably two or more and six or less. The mesh-like convex portion preferably includes at least two gathering portions. When there are two or more aggregated portions in the mesh-like convex portion, the number of linear portions merging in each aggregated portion may be the same or different. The mesh-like convex portion formed on the outer peripheral surface brings about the effect of a reinforcing rib that improves the rigidity of the casting and wrapping member. Moreover, in the aggregated portion, it is preferable that the linear portions merge with each other in random directions from the viewpoint of dispersing the stress generated by the external force when the assembled portion is cast and wrapped. The fact that the linear portions merge in random directions means that, for example, the two linear portions merge into the aggregate portion in different directions rather than in parallel.

図3は、鋳包み用部材の表面の構成を拡大して示す模式的な断面図である。この断面は、鋳包み用部材であるシリンダスリーブの表面に対して軸方向の、線状部分の断面である。凸部3は、高さが相対的に高い高凸部領域3aと、前記凸部の高さが相対的に低い低凸部領域3bとを鋳包まれる面上に部分的に備える。例えば、高凸部領域3aと低凸部領域3bを、鋳包み用部材の軸方向又は周方向に備えることが好ましい。用途、目的に応じて適切な部分に高凸部領域を備えることによって、例えば、エンジン用シリンダブロックにおいて、デッキ面側、吸排方向、ピストンの摺動領域等に適用することによって、鋳包み用部材と鋳包むアルミとの密着性や熱伝導性を向上させ、ボア歪を抑制できる。同様に、適切な部分に低凸部領域を備えることによって、例えば、エンジン用シリンダブロックにおいて、クランクケース側、前後方向、ピストンの摺動領域以外の領域等に適用することによって、スリーブからシリンダバレル(アルミ側)への熱放散を抑制し、スリーブ全体の温度を均一にすることが可能となるため、ボア歪を抑制可能となる。これにより、メカロスやブローバイガスの低減により燃費を向上させることができる。また、エンジンのF−R方向とスリーブの低凸部領域を一致させて鋳包むことで、アルミの肉厚を確保しつつスリーブ同士を近づけることが可能となり、ボア間ピッチを短縮できるので、エンジンの軽量化またはダウンサイジング化が可能となる。 FIG. 3 is a schematic cross-sectional view showing an enlarged surface configuration of a casting and wrapping member. This cross section is a cross section of a linear portion in the axial direction with respect to the surface of the cylinder sleeve which is a member for casting and wrapping. The convex portion 3 is partially provided with a high convex portion region 3a having a relatively high height and a low convex portion region 3b having a relatively low height of the convex portion on a surface to be cast. For example, it is preferable to provide the high convex portion region 3a and the low convex portion region 3b in the axial direction or the circumferential direction of the casting and wrapping member. By providing a highly convex region in an appropriate portion according to the application and purpose, for example, in an engine cylinder block, by applying it to the deck surface side, suction / exhaust direction, sliding region of a piston, etc., a casting and wrapping member. It is possible to improve the adhesion and thermal conductivity with the aluminum to be cast and wrapped, and suppress bore distortion. Similarly, by providing a low convex region in an appropriate portion, for example, in an engine cylinder block, by applying it to a region other than the crankcase side, the front-rear direction, the sliding region of the piston, etc., the sleeve to the cylinder barrel Since heat dissipation to (aluminum side) can be suppressed and the temperature of the entire sleeve can be made uniform, bore distortion can be suppressed. As a result, fuel efficiency can be improved by reducing mechanical loss and blow-by gas. In addition, by casting and wrapping the sleeve so that the FR direction of the engine and the low convex region of the sleeve match, it is possible to bring the sleeves closer to each other while ensuring the thickness of the aluminum, and the pitch between the bores can be shortened. Can be made lighter or downsized.

凸部3は、平坦面6から略垂直に立ち上がっている。高凸部領域3aの凸部の高さhaは、好ましくは0.5mm以上2.0mm以下、より好ましくは0.5mm〜1.5mm、さらにより好ましくは0.8〜1.2mmである。0.5mm未満では、鋳包むアルミに対するアンカー効果が不十分となる場合があり、また、剛性を向上させる補強リブの効果を低下させる場合がある。さらに、熱を拡散させるために必要なアルミとの接触面積も不足する場合がある。2.0mmを超えると、遠心鋳造による形成は困難となる場合がある。凸部の高さを上記の範囲とすることで、鋳包む金属と接触する有効面積が増加し、密着性及び熱伝導性を向上させ、ボア歪を抑制でき、かつ、エンジン等の高圧縮化に伴う筒内温度上昇にも対応できる。低凸部領域3bの凸部の高さhbは、凸部の高さhaよりも0.1mm〜1.0mm低く、好ましくは0.2〜0.5mm低い。hbとhaの差が0.1mmよりも小さいと、クランクケース側等に適用される低凸部領域で、鋳包むアルミへの熱放散が過剰になり、全体の温度が不均一になりボア歪が生じやすくなる。hbとhaの差が1.0mmよりも大きいと、特に低凸部領域で、鋳包むアルミに対するアンカー効果が不十分となる場合があり、また、剛性を向上させる補強リブの効果を低下させる場合がある。高凸部領域3aと低凸部領域3bのそれぞれの凸部の高さの差を上記の範囲とすることで、鋳包み用部材から鋳包む金属への熱伝導性が全体的に均一化し、ボア歪を抑制できる。さらに、低凸部領域同士を一致させて鋳包むことによりボア間ピッチを短縮できる。 The convex portion 3 rises substantially vertically from the flat surface 6. The height ha of the convex portion of the high convex portion region 3a is preferably 0.5 mm or more and 2.0 mm or less, more preferably 0.5 mm to 1.5 mm, and even more preferably 0.8 to 1.2 mm. If it is less than 0.5 mm, the anchor effect on the aluminum to be cast may be insufficient, and the effect of the reinforcing ribs for improving the rigidity may be reduced. In addition, the contact area with aluminum required to diffuse heat may be insufficient. If it exceeds 2.0 mm, it may be difficult to form by centrifugal casting. By setting the height of the convex portion within the above range, the effective area in contact with the metal to be cast increases, the adhesion and thermal conductivity are improved, the bore strain can be suppressed, and the engine and the like are highly compressed. It can also cope with the rise in in-cylinder temperature that accompanies this. The height hb of the convex portion of the low convex portion region 3b is 0.1 mm to 1.0 mm lower than the height ha of the convex portion, preferably 0.2 to 0.5 mm lower. When the difference between hb and ha is smaller than 0.1 mm, heat is excessively dissipated to the aluminum to be cast and wrapped in the low convex region applied to the crankcase side, etc., and the overall temperature becomes non-uniform and the bore distortion occurs. Is likely to occur. If the difference between hb and ha is larger than 1.0 mm, the anchor effect on the aluminum to be cast may be insufficient, especially in the low convex region region, and the effect of the reinforcing ribs for improving the rigidity may be reduced. There is. By setting the difference in height between the high-convex region 3a and the low-convex region 3b to the above range, the thermal conductivity from the casting member to the metal to be cast is made uniform as a whole. Bore distortion can be suppressed. Furthermore, the pitch between bores can be shortened by wrapping the low-convex regions in the same manner.

なお、凸部の高さは、例えばデジタルマイクロスコープの計測機能と画像解析ソフトWinROOF2013を用いて、鋳包み用部材の任意の表面をライン分析して平均値で求めてもよい。または、デジタルマイクロスコープにて断面観察し、任意の計測エリア内において、平坦面6からの各凸部の最小高さと最大高さに基づいてその測定値が含まれる範囲、好ましくはその測定値全てが含まれる範囲として求めてもよい。 The height of the convex portion may be obtained by line analysis of an arbitrary surface of the casting and packaging member using, for example, a measurement function of a digital microscope and the image analysis software WinROOF2013, and an average value. Alternatively, observe the cross section with a digital microscope, and within an arbitrary measurement area, the range including the measured value based on the minimum height and the maximum height of each convex portion from the flat surface 6, preferably all the measured values. May be obtained as a range including.

ここで、本発明の鋳包み用部材の一用途であるシリンダスリーブについて簡単に説明する。図4に示すように、シリンダブロック10は、シリンダスリーブを一構成要素とするものであり、シリンダブロック10は、鋳包み用部材11をアルミ12で鋳包むことで鋳造される。図5は、図4のシリンダスリーブ周辺の拡大図である。図4、図5に示すように、シリンダブロック10において、デッキ13側のピストンの摺動領域に高凸部領域を、クランクケース14側のピストンの摺動領域以外の領域に低凸部領域を備えることができる。 Here, a cylinder sleeve, which is one of the uses of the casting and wrapping member of the present invention, will be briefly described. As shown in FIG. 4, the cylinder block 10 has a cylinder sleeve as one component, and the cylinder block 10 is cast by casting and wrapping a casting member 11 with aluminum 12. FIG. 5 is an enlarged view of the vicinity of the cylinder sleeve of FIG. As shown in FIGS. 4 and 5, in the cylinder block 10, a high convex region is provided in the sliding region of the piston on the deck 13 side, and a low convex region is provided in a region other than the sliding region of the piston on the crankcase 14 side. Can be prepared.

図6は、線状の凸部の断面の模式的な拡大図である。凸部3が平坦面に対する垂直線に対し傾きを有する形状を含んでもよい。凸部は、線状の突起構造の他に、図6(A)のように、その側面22に凹凸を有していてもよい。また、図6(B)のように、凸部は、平坦面に対する垂直線20に対し、ある程度の角度θで傾斜21して延びていてもよい。図6に示す形状を、凸部3が平坦面に対する垂直線に対し傾きを有する形状ということができる。 FIG. 6 is a schematic enlarged view of a cross section of a linear convex portion. The convex portion 3 may include a shape having an inclination with respect to a vertical line with respect to a flat surface. In addition to the linear protrusion structure, the convex portion may have irregularities on its side surface 22 as shown in FIG. 6A. Further, as shown in FIG. 6B, the convex portion may extend at an inclination 21 with respect to the vertical line 20 with respect to the flat surface at a certain angle θ. The shape shown in FIG. 6 can be said to be a shape in which the convex portion 3 has an inclination with respect to a vertical line with respect to a flat surface.

線状の凸部を長手方向に対して垂直に切断した際の断面形状は、鋳包み用部材の製造方法によっては、線状の突起構造の他に、略T型や略Γ型の形状となる場合がある。これらの断面形状は、例えば、鋳包まれた際に、鋳包む金属との密着強さや熱伝導性を向上させる観点からは好ましい。略Γ型は、L字を逆さまにしたような形状をしたものである。図7(A)及び(B)は、略Γ型の断面を有する線状部分の一例である。図7(A)において、凸部の頂部は端部になるにつれて細くなっており、図7(B)においては、凸部の頂部は端部まで一定の厚みを有する。略T型は、T字のような形状をしたものである。図8(A)、(B)及び(C)は、略T型の断面を有する線状部分の一例である。 Depending on the manufacturing method of the casting and wrapping member, the cross-sectional shape when the linear convex portion is cut perpendicular to the longitudinal direction may be a substantially T-shaped or substantially Γ-shaped shape in addition to the linear protrusion structure. May be. These cross-sectional shapes are preferable from the viewpoint of improving the adhesion strength and thermal conductivity with the metal to be cast, for example, when they are cast and wrapped. The approximately Γ type is shaped like an inverted L-shape. 7 (A) and 7 (B) are examples of linear portions having a substantially Γ-shaped cross section. In FIG. 7 (A), the top of the convex portion becomes thinner toward the end, and in FIG. 7 (B), the top of the convex portion has a constant thickness up to the end. The substantially T-shape has a shape like a T-shape. 8 (A), (B) and (C) are examples of linear portions having a substantially T-shaped cross section.

図2に示すように、線状部分1a、1b、1d、1eと集合部分2a、2b、2c、2dによって囲まれた平坦面Fに、内接円Icを描くことができる。この内接円の直径は、好ましくは0.5mm以上30mm以下、より好ましくは1.0〜15mm、さらにより好ましくは1.5mm〜5.0mmである。0.5mm未満では、鋳包み時のアルミと接する有効面積が不十分であり、鋳包むアルミに対する有効なアンカー効果を保ちにくく、また、熱伝導性も不十分となる場合がある。30mmを超えると、鋳包み後にアルミと接する有効面積が不足する場合があり、さらに外力により発生する応力の分散に寄与する有効な網状構造とならない場合がある。内接円の直径を上記範囲とすることにより、鋳包み時のアルミと接する有効面積が十分となり、鋳包み部材として使用された際に熱伝導性が良好となり、また、網状構造が応力を分散し得る。なお、内接円の直径は、例えば鋳包み用部材が筒状の形状である場合、例えばデジタルマイクロスコープを用いて曲面上の凸部の撮影画像を平面上に補正した画像に基づいて、その平坦面に内接円を作成し、例えば1〜50点の内接円から平均値で求めてもよいし、又は、最小径と最大径に基づいてその測定値が含まれる範囲、好ましくはその測定値全てが含まれる範囲として求めてもよい。なお、本発明は、全ての平坦部分が線状部分に周囲全体を囲まれている態様には限定されない。この場合は、いくつかの線状部分に沿った内接円を描き、その直径を上記同様に取り扱うことができる。 As shown in FIG. 2 , an inscribed circle Ic can be drawn on the flat surface F surrounded by the linear portions 1a, 1b, 1d, 1e and the gathering portions 2a, 2b, 2c, and 2d. The diameter of the inscribed circle is preferably 0.5 mm or more and 30 mm or less, more preferably 1.0 to 15 mm, and even more preferably 1.5 mm to 5.0 mm. If it is less than 0.5 mm, the effective area in contact with the aluminum during casting is insufficient, it is difficult to maintain the effective anchoring effect on the aluminum to be cast and wrapped, and the thermal conductivity may be insufficient. If it exceeds 30 mm, the effective area in contact with the aluminum after casting may be insufficient, and the effective network structure that contributes to the dispersion of stress generated by the external force may not be obtained. By setting the diameter of the inscribed circle within the above range, the effective area in contact with aluminum during casting is sufficient, the thermal conductivity is improved when used as a casting member, and the network structure disperses stress. Can be. The diameter of the inscribed circle is determined based on, for example, when the casting member has a cylindrical shape, for example, an image obtained by correcting a photographed image of a convex portion on a curved surface onto a plane using a digital microscope. An inscribed circle may be created on a flat surface, and may be obtained by an average value from, for example, 1 to 50 inscribed circles, or a range including the measured value based on the minimum diameter and the maximum diameter, preferably the inscribed circle. It may be obtained as a range in which all the measured values are included. The present invention is not limited to the embodiment in which all the flat portions are surrounded by the linear portions. In this case, an inscribed circle along some linear portions can be drawn and its diameter can be treated in the same manner as described above.

また、鋳包み用部材の鋳包まれる面を平面上に投影した場合に、網目状の凸部を平面上に投影した投影面積は、全投影面積に対して、好ましくは5%以上70%以下、より好ましくは10%以上60%以下、さらにより好ましくは16%以上43%以下である。5%未満だと、鋳包み時のアルミと接する有効面積が不十分となる場合があり、また、外力によって発生する応力を低減する補強リブとしての効果が低下する場合がある。70%を超えると、軽量化効果が活かされない場合がある。網目状の凸部の投影面積は、凸部の頂部の上方より凸部を投影した面積である。当該網目状の凸部の投影面積を、全投影面積に対して上記の範囲とすることで、鋳包んだ際に鋳包む金属との密着強さや熱伝達性、熱放散性、剛性を向上させることが可能となり、鋳包んだ後の鋳包み部材としての熱伝導率や比弾性率を向上させることも可能となり得る。なお、投影面積は、例えばマイクロスコープを用いて撮影し、平面補正した画像に基づいて2値化処理を行って算出してもよく、例えば1〜50点の測定結果から平均の凸部投影面積率で求めてもよいし、又は、当該面積率の最小値と最大値に基づいてその測定値が含まれる範囲、好ましくはその測定値全てが含まれる範囲として求めてもよい。 Further, when the surface to be cast and wrapped of the casting and wrapping member is projected on a plane, the projected area in which the mesh-like convex portion is projected on the plane is preferably 5% or more and 70% or less with respect to the total projected area. , More preferably 10% or more and 60% or less, and even more preferably 16% or more and 43% or less. If it is less than 5%, the effective area in contact with aluminum during casting may be insufficient, and the effect as a reinforcing rib for reducing stress generated by an external force may be reduced. If it exceeds 70%, the weight reduction effect may not be utilized. The projected area of the mesh-like convex portion is the area where the convex portion is projected from above the top of the convex portion. By setting the projected area of the mesh-like convex portion within the above range with respect to the total projected area, the adhesion strength, heat transferability, heat dissipation, and rigidity with the metal to be cast and wrapped are improved. This makes it possible to improve the thermal conductivity and specific elastic modulus of the cast-wrapping member after casting. The projected area may be calculated by, for example, taking a picture using a microscope and performing binarization processing based on the plane-corrected image. For example, the average convex portion projected area from the measurement results of 1 to 50 points. It may be obtained by a rate, or it may be obtained as a range in which the measured value is included based on the minimum and maximum values of the area ratio, preferably a range in which all the measured values are included.

鋳包み用部材の肉厚11bは、好ましくは2〜20mmの厚みを有する。鋳包み用部材の肉厚は、例えば図3では、鋳包み用部材の内周面から外周面の平坦面までの厚みh9と、高凸部領域の網目状の凸部の高さhaの和であり、凸部の高さhaは、鋳包み用部材の肉厚の好ましくは1〜70%、より好ましくは10〜50%を有していてもよい。 The wall thickness 11b of the casting and wrapping member preferably has a thickness of 2 to 20 mm. For example, in FIG. 3, the wall thickness of the casting and wrapping member is the sum of the thickness h9 from the inner peripheral surface to the flat surface of the outer peripheral surface of the casting and wrapping member and the height ha of the mesh-like convex portion in the high convex portion region. The height ha of the convex portion may be preferably 1 to 70%, more preferably 10 to 50% of the wall thickness of the casting and wrapping member.

このように、鋳包み用部材は、その鋳包まれる表面に、線状部分と集合部分とを備える凸部を有するので、鋳包む金属と接触する面積を従来よりも増大し、熱伝達性、放熱性を効率的に向上させることができる。また、鋳包み用部材は、任意の領域で、凸部の高さが相対的に高い、高凸部領域と、凸部の高さが相対的に低い、低凸部領域とを備える。デッキ面側、吸排方向、ピストン摺動領域等に適用される高凸部領域に鋳包む金属が食い込んで、密着強さを向上させ鋳包む金属との間に隙間を生じにくくさせ、鋳包む金属への熱伝導性を向上かつ均一化させることができるため、ボア歪を抑制でき、かつ、エンジンの高圧縮化に伴う筒内温度上昇にも対応できるようになる。また、クランケース側、前後方向、ピストン摺動領域以外の領域等に適用される低凸部領域では、熱放散を抑制し、全体の温度を均一にすることができるため、ボア歪を抑制でき、かつ、ボア歪を抑制することでメカロスやブローバイガスを低減し、燃費を向上できる。また、エンジンのF−R方向とスリーブの低凸部領域を一致させて鋳包むことで、アルミの肉厚を確保しつつスリーブ同士を近づけることが可能となるため、ボア間ピッチを短縮できる。 As described above, since the cast-wrapping member has a convex portion having a linear portion and an aggregate portion on the surface to be cast-wrapped, the area in contact with the metal to be cast-wrapped is increased as compared with the conventional case, and the heat transferability is improved. The heat dissipation can be improved efficiently. Further, the casting and wrapping member includes a high convex portion region in which the height of the convex portion is relatively high and a low convex portion region in which the height of the convex portion is relatively low in an arbitrary region. The metal to be cast bites into the highly convex region applied to the deck surface side, suction / exhaust direction, piston sliding region, etc., improving the adhesion strength and making it difficult to create a gap with the metal to be cast, and the metal to be cast. Since the thermal conductivity to the metal can be improved and made uniform, the bore distortion can be suppressed, and the temperature inside the cylinder can be increased due to the high compression of the engine. Further, in the low convex region applied to the crankcase side, the front-rear direction, the region other than the piston sliding region, etc., heat dissipation can be suppressed and the overall temperature can be made uniform, so that bore strain can be suppressed. Moreover, by suppressing the bore distortion, mechanical loss and blow-by gas can be reduced and fuel efficiency can be improved. Further, by casting and wrapping the sleeve so that the FR direction of the engine and the low convex portion region of the sleeve are aligned with each other, it is possible to bring the sleeves closer to each other while ensuring the thickness of aluminum, so that the pitch between bores can be shortened.

さらに、凸部が例えば等方性の網状構造である場合、凸部が補強リブとしての効果をもたらし、様々な方向からの外力により生じる応力の分散と軽減に寄与することが可能となる。例えば鋳包み用部材がシリンダスリーブであれば、ボア径方向又は軸方向の比弾性率を向上させることができ、強いては鋳包み部材の変形を防止し得る。このため、同一の剛性を維持しつつシリンダスリーブを薄肉化や軽量化することが可能となる。 Further, when the convex portion has, for example, an isotropic net structure, the convex portion has an effect as a reinforcing rib, and can contribute to dispersion and reduction of stress generated by an external force from various directions. For example, if the casting and wrapping member is a cylinder sleeve, the specific elastic modulus in the bore radial direction or the axial direction can be improved, and the deformation of the casting and wrapping member can be prevented. Therefore, it is possible to reduce the thickness and weight of the cylinder sleeve while maintaining the same rigidity.

鋳包み用部材は、アルミニウム(アルミともいう)、アルミニウム合金、又は、その他の非鉄合金によって鋳包まれる。ここで、鋳包み用部材をこれらの金属又は合金によって鋳包んで得られる鋳包み部材は、上述したように鋳包み用部材と鋳包むアルミニウム等の金属又は合金との密着性が良好であり、鋳包み部材としての熱伝導性も良好となる。なお、熱伝導率は、レーザーフラッシュ法によって測定することができる。 The casting and wrapping member is cast and wrapped with aluminum (also referred to as aluminum), an aluminum alloy, or other non-ferrous alloy. Here, the casting-wrapping member obtained by casting and wrapping the casting-wrapping member with these metals or alloys has good adhesion between the casting-wrapping member and the metal or alloy such as aluminum to be cast-wrapped as described above. The thermal conductivity as a casting and wrapping member is also good. The thermal conductivity can be measured by a laser flash method.

例えば、鋳包み用部材がエンジンシリンダブロックに鋳込まれるシリンダスリーブである場合、シリンダスリーブは、周囲のアルミ製のシリンダバレルに熱を均一に放散すること、及び、燃焼圧力やシリンダヘッド締結時の圧縮荷重がかかりやすいため剛性が高いことが求められる。本発明をシリンダスリーブに適用し、そのシリンダスリーブを例えばアルミで鋳包むことで、熱伝導率や熱拡散性に優れたエンジンシリンダブロックとすることができる。また、エンジンの圧縮比を上げても効率よくシリンダスリーブからアルミのシリンダバレルへと放熱することができ、高圧縮化に伴う燃焼温度の上昇を抑制し得る。さらに、シリンダスリーブの比弾性率を向上し得るため、同一の重量であれば上記の運転時や締結時に、鋳包んだシリンダスリーブのボア変形、つまり真円度の変化を防止でき、エンジンのメカニカルロスやブローバイガスを低減し得る。同一の剛性のシリンダスリーブであれば、スリーブ自体を薄肉化及び軽量化することができ、強いてはエンジンの軽量化を可能とし得る。 For example, when the casting and wrapping member is a cylinder sleeve cast into an engine cylinder block, the cylinder sleeve uniformly dissipates heat to the surrounding aluminum cylinder barrel, and at the time of combustion pressure and cylinder head fastening. High rigidity is required because a compressive load is easily applied. By applying the present invention to a cylinder sleeve and wrapping the cylinder sleeve with, for example, aluminum, an engine cylinder block having excellent thermal conductivity and thermal diffusivity can be obtained. Further, even if the compression ratio of the engine is increased, heat can be efficiently dissipated from the cylinder sleeve to the aluminum cylinder barrel, and the increase in combustion temperature due to the increase in compression can be suppressed. Furthermore, since the specific elastic modulus of the cylinder sleeve can be improved, if the weight is the same, it is possible to prevent the bore deformation of the cast and wrapped cylinder sleeve, that is, the change in roundness, during the above-mentioned operation and fastening, and the mechanical of the engine. Loss and blow-by gas can be reduced. If the cylinder sleeves have the same rigidity, the sleeve itself can be made thinner and lighter, and the engine can be made lighter.

次に、本発明に係る鋳包み用部材の製造方法の一実施の形態については説明する。本実施形態の方法は、鋳型の溶湯を流し込もうとする面に塗型剤を塗布する工程と、塗布した塗型剤を乾燥させて、表面にひび割れの形状を有する塗型層を形成する工程と、塗型層上から溶湯を流しこみ、鋳型を回転させながら鋳造する工程とを主に含む。これら各工程について以下に詳細に説明する。 Next, an embodiment of the method for manufacturing a casting and wrapping member according to the present invention will be described. The method of the present embodiment is a step of applying a mold coating agent to the surface of the mold to which the molten metal is to be poured, and drying the applied coating agent to form a mold coating layer having a crack shape on the surface. It mainly includes a process and a process of pouring molten metal from the coating layer and casting while rotating the mold. Each of these steps will be described in detail below.

鋳包み用部材を成形するための鋳型の材質や形状は、特に限定されるものではなく、対象の鋳包み用部材の粗材や用途に合わせて選定してもよい。例えば、鋳包み用部材としてエンジンシリンダブロックに鋳込まれるシリンダスリーブを成形する場合は、鋳型は、金属製の鋳型であることが好ましく、筒状の形状であることが好ましい。 The material and shape of the mold for molding the casting and wrapping member are not particularly limited, and may be selected according to the rough material and the intended use of the target casting and wrapping member. For example, when molding a cylinder sleeve to be cast into an engine cylinder block as a member for casting and wrapping, the mold is preferably a metal mold, and preferably has a cylindrical shape.

本実施形態の方法に使用し得る鋳型として、例えば、図9に示すように、鋳型の内周面31sは、軸方向に相対的に内径が小さい、基準内径領域Dbと、相対的に内径が大きい、非基準内径領域Daとを備えてもよい。基準内径領域Dbと、非基準内径領域Daは交互に備えられていてもよく、ランダムに備えられていてもよく、また、領域境界80で段になっていてもよく、対象の鋳包み用部材の粗材や用途に合わせて変更してもよい。基準内径領域Dbと非基準内径領域Daは、それぞれ、鋳包み用部材における、低凸部領域と高凸部領域に対応する。基準内径領域Dbの内径は基準内径Dであり、基準内径領域Dbと非基準内径領域Daとの内径差Dcは、0.1mm〜1.0mm、好ましくは0.2〜0.5mmである。内径差Dcを上記の範囲とすることで、適当な箇所に高さの違う凸部領域を備えることにより、例えば、成形後の鋳包み用部材において、エンジン用シリンダブロックに適用した場合に、デッキ面側、吸排方向、ピストン摺動領域等に高凸部領域を適用し、クランクケース側、前後方向、ピストン摺動領域以外の領域等に低凸部領域を適用することにより、鋳包み用部材から鋳包む金属への熱伝導性が全体的に均一化し、ボア歪を抑制できる。さらに、低凸部領域同士を一致させて鋳包むことによりボア間ピッチを短縮できる。 As a mold that can be used in the method of the present embodiment, for example, as shown in FIG. 9, the inner peripheral surface 31s of the mold has a relatively small inner diameter with respect to the reference inner diameter region Db having a relatively small inner diameter in the axial direction. It may be provided with a large, non-reference inner diameter region Da. The reference inner diameter region Db and the non-reference inner diameter region Da may be provided alternately, may be provided randomly, or may be stepped at the region boundary 80, and may be a target casting member. It may be changed according to the rough material and application. The reference inner diameter region Db and the non-reference inner diameter region Da correspond to the low convex portion region and the high convex portion region in the casting and packaging member, respectively. The inner diameter of the reference inner diameter region Db is the reference inner diameter D, and the inner diameter difference Dc between the reference inner diameter region Db and the non-reference inner diameter region Da is 0.1 mm to 1.0 mm, preferably 0.2 to 0.5 mm. By setting the inner diameter difference Dc to the above range, by providing convex regions with different heights at appropriate locations, for example, when applied to an engine cylinder block in a cast-wrapping member after molding, a deck. By applying the high convex region to the surface side, suction / exhaust direction, piston sliding region, etc., and applying the low convex region to the crankcase side, front-rear direction, region other than the piston sliding region, etc., the casting and wrapping member The thermal conductivity from the metal to the metal to be cast and wrapped is made uniform as a whole, and bore strain can be suppressed. Furthermore, the pitch between bores can be shortened by wrapping the low-convex regions in the same manner.

本実施形態の方法に使用し得る鋳型として、別の例として、図10に示すように、鋳型の内周面31sに備える基準内径領域Dbと非基準内径領域Daは、段になっていなくてもよく、例えば連続的に内径が変化する波形状であってもよい。 As another example of the mold that can be used in the method of the present embodiment, as shown in FIG. 10, the reference inner diameter region Db and the non-reference inner diameter region Da provided on the inner peripheral surface 31s of the mold are not stepped. It may also have a wavy shape in which the inner diameter changes continuously, for example.

本実施形態の方法に使用し得る鋳型として、更に別の例として、図11に示すように、鋳型の内周面31sは、軸に対して垂直方向に基準内径領域Dbと非基準内径領域Daとを備えてもよい。このように、軸方向に溝を有する形状にすることにより、成形体を鋳型から抜きやすくなり、鋳包み用部材の作製を簡便にする。また、成形した複数の鋳包み用部材同士を近づける(並列に近づける)場合は、低凸部領域同士を向い合せることで、アルミの肉厚を確保しつつ鋳包み用部材同士を近づけることが可能となるため、確実に充填しつつボア間ピッチを短縮できる。 As a mold that can be used in the method of the present embodiment, as yet another example, as shown in FIG. 11, the inner peripheral surface 31s of the mold has a reference inner diameter region Db and a non-reference inner diameter region Da in the direction perpendicular to the axis. And may be provided. By forming the shape having grooves in the axial direction in this way, it becomes easy to remove the molded body from the mold, and it becomes easy to manufacture the casting and wrapping member. In addition, when a plurality of molded members for casting and wrapping are brought close to each other (close to each other in parallel), it is possible to bring the members for casting and wrapping close to each other while ensuring the thickness of aluminum by facing the low convex region regions. Therefore, the pitch between bores can be shortened while reliably filling.

高凸部領域と低凸部領域とを備える鋳包み用部材は、鋳型内周面に相対的に内径が小さい基準内径領域と、相対的に内径が大きい非基準内径領域を部分的に備える鋳型を使用し、鋳型を回転させた状態で溶湯を遠心力により流し込む遠心鋳造法によって成形することが好ましい。他の成形方法では、内径が一定の鋳型にて、外周面に凸部を有する鋳包み用部材を作製後、切削加工により凸部の高さを低くすることで密着力ないし熱伝導性を任意領域で変更できるが、切削加工に必要な工程が増え、製造コストが高くなるため好ましくない。なお、鋳包み用部材を成形する鋳型の表面は、例えば機械加工のままの略平滑面であってもよい。 The casting / wrapping member having a high convex region and a low convex region partially has a reference inner diameter region having a relatively small inner diameter and a non-reference inner diameter region having a relatively large inner diameter on the inner peripheral surface of the mold. It is preferable to mold by a centrifugal casting method in which the molten metal is poured by centrifugal force while the mold is rotated. In other molding methods, a casting and wrapping member having a convex portion on the outer peripheral surface is manufactured using a mold having a constant inner diameter, and then the height of the convex portion is lowered by cutting to obtain optional adhesion or thermal conductivity. Although it can be changed depending on the area, it is not preferable because the number of processes required for cutting increases and the manufacturing cost increases. The surface of the mold for forming the casting / wrapping member may be, for example, a substantially smooth surface as it is machined.

図12の模式的なフロー図を用いて、本実施形態の製造方法を更に詳細に説明する。先ず、図12(a)に示すように、容器36内で塗型剤32を調製する。塗型剤は、耐火材と粘結材と溶媒とを少なくとも含むものである。場合によって、骨材を含んでいてもよい。 The manufacturing method of the present embodiment will be described in more detail with reference to the schematic flow chart of FIG. First, as shown in FIG. 12 (a), the mold coating agent 32 is prepared in the container 36. The mold coating agent contains at least a refractory material, a binder and a solvent. In some cases, it may contain aggregate.

耐火材としては、鋳型表面の保護に加え、特に、溶湯の白銑化防止や十分な離型性を確保する点から、珪藻土粉体が好ましい。耐火材の配合量の下限値は、塗型剤全体の質量に対して、好ましくは2質量%以上、より好ましくは8質量%以上であり、上限値は、好ましくは40質量%以下、より好ましくは27質量%以下、さらにより好ましくは15質量%以下である。 As the refractory material, diatomaceous earth powder is preferable from the viewpoint of protecting the surface of the mold, preventing the molten metal from becoming white pig iron, and ensuring sufficient mold releasability. The lower limit of the blending amount of the refractory material is preferably 2% by mass or more, more preferably 8% by mass or more, and the upper limit is preferably 40% by mass or less, more preferably, with respect to the total mass of the coating agent. Is 27% by mass or less, and more preferably 15% by mass or less.

粘結材としては、ベントナイト、モンモリロナイト、カオリナイト、セピオライト、アタパルジャイト、耐火粘土などが挙げられる。特に、耐火材や骨材と共に溶媒に混合した際、分離を抑制し、塗型剤を鋳型の表面に貼り付けることができる粘度とし得る点から、溶媒を吸収して膨潤するベントナイトが好ましい。粘結材の配合量の下限値は、塗型剤全体の質量に対して、好ましくは2質量%以上、より好ましくは5質量%以上、さらに好ましくは8質量%以上であり、上限値は、好ましくは20質量%以下、より好ましくは12質量%以下、さらに好ましくは10質量%以下である。2質量%未満では、耐火材との分離が発生しやすく、また塗型層の強度が不十分となる場合があり、20質量%を超えると、塗型剤のスラリー粘度が高くなり過ぎてコーティングが困難となる場合がある。 Examples of the binder include bentonite, montmorillonite, kaolinite, sepiolite, attapulsite, and refractory clay. In particular, bentonite that absorbs the solvent and swells is preferable because it can suppress separation when mixed with a solvent together with a refractory material or an aggregate and have a viscosity that allows the mold to be attached to the surface of the mold. The lower limit of the blending amount of the binder is preferably 2% by mass or more, more preferably 5% by mass or more, still more preferably 8% by mass or more, and the upper limit is set with respect to the total mass of the coating agent. It is preferably 20% by mass or less, more preferably 12% by mass or less, still more preferably 10% by mass or less. If it is less than 2% by mass, separation from the refractory material is likely to occur, and the strength of the coating layer may be insufficient. If it exceeds 20% by mass, the slurry viscosity of the coating agent becomes too high and the coating is applied. May be difficult.

溶媒としては、水を用いてもよい。溶媒の配合量の下限値は、塗型剤全体の質量に対して、好ましくは60質量%以上であり、上限値は、好ましくは85質量%以下である。塗型剤は、上述した材料の他に、例えばブタノールなどの水より沸点の高い有機溶剤を含んでいてもよく、この場合、水と混和して用いてもよい。 Water may be used as a solvent. The lower limit of the blending amount of the solvent is preferably 60% by mass or more with respect to the total mass of the coating agent, and the upper limit is preferably 85% by mass or less. In addition to the above-mentioned materials, the coating agent may contain an organic solvent having a boiling point higher than that of water, such as butanol, and in this case, it may be miscible with water.

塗型剤は、また、上述した材料の他に骨材を含んでいてもよい。骨材としては、ムライトやセラビーズのような酸化アルミニウムと二酸化ケイ素からなる鉱物粉体又は人工セラミックス砂、また、ジルコン砂、クロマイト砂、けい砂、オリビン砂、スピネル砂などの鋳造砂を用いてもよい。特に、耐火材や粘結材との分離を防ぐために比重が小さく、さらに溶媒を吸収せず、乾燥固化時に塗型層の収縮量を促進させて、塗型層のひび割れを増加させる点から、ムライトやセラビーズが好ましい。骨材の配合量の下限値は、塗型剤全体の質量に対して、好ましくは1.0質量%以上、より好ましくは1.5質量%以上、さらにより好ましくは3.0質量%以上であり、上限値は、特に限定されるものではないが、好ましくは25質量%以下であり、より好ましくは10質量%以下である。 The mold coating agent may also contain an aggregate in addition to the materials described above. As the aggregate, mineral powder or artificial ceramic sand composed of aluminum oxide and silicon dioxide such as Murite and Cera beads, and cast sand such as zircon sand, chromate sand, silica sand, olivin sand and spinel sand may be used. good. In particular, the specific gravity is small to prevent separation from the refractory material and the binder, and it does not absorb the solvent, promotes the shrinkage of the coating layer during drying and solidification, and increases the cracking of the coating layer. Mullite and cera beads are preferred. The lower limit of the blending amount of the aggregate is preferably 1.0% by mass or more, more preferably 1.5% by mass or more, still more preferably 3.0% by mass or more, based on the total mass of the coating agent. The upper limit is not particularly limited, but is preferably 25% by mass or less, and more preferably 10% by mass or less.

耐火材と粘結材と溶媒とを少なくとも混合し、場合によって骨材も混合して、スラリー状の塗型剤としてもよい。 A refractory material, a binder, and a solvent may be mixed at least, and an aggregate may be mixed as the case may be used to obtain a slurry-like coating agent.

次に、図12(b)に示すように、鋳型31の溶湯を流し込もうとする内周面31sに塗型剤32を塗布する。この塗型剤を塗布する工程では、筒状の鋳型31を一定の向き40に回転させながら、ノズル41を用いて鋳型の内周面31sに塗型剤32を塗布する。ノズル41は、鋳型の内周面31sから一定の距離を保ちながら、一定の速度で筒の長手方向42に移動させて、筒の内周面全体に均一に塗布することが好ましい。円筒状の鋳型を用いる場合、例えば、筒を横にして転がすような状態で、鋳型を回転させることが好ましい。回転時の鋳型の遠心加速度は、4G以上40G以下に設定することが好ましい。 Next, as shown in FIG. 12B, the mold coating agent 32 is applied to the inner peripheral surface 31s to which the molten metal of the mold 31 is to be poured. In the step of applying the mold coating agent, the mold coating agent 32 is applied to the inner peripheral surface 31s of the mold by using the nozzle 41 while rotating the tubular mold 31 in a constant direction 40. It is preferable that the nozzle 41 is moved in the longitudinal direction 42 of the cylinder at a constant speed while maintaining a constant distance from the inner peripheral surface 31s of the mold, and is uniformly applied to the entire inner peripheral surface of the cylinder. When using a cylindrical mold, for example, it is preferable to rotate the mold in a state where the cylinder is laid on its side and rolled. The centrifugal acceleration of the mold during rotation is preferably set to 4 G or more and 40 G or less.

鋳型に塗型剤を塗布する際の鋳型の内周面31sは、塗型剤が急騰しない温度に加熱されていることが好ましい。加熱温度としては、好ましくは110〜210℃、より好ましくは120〜180℃である。 It is preferable that the inner peripheral surface 31s of the mold when the mold is applied to the mold is heated to a temperature at which the mold does not soar. The heating temperature is preferably 110 to 210 ° C, more preferably 120 to 180 ° C.

そして、図12(c)に示すように、塗布した塗型剤を乾燥させて、ひび割れの幅と深さが部分的に異なる領域を備える塗型層32sを形成する。この塗型層を形成する工程では、塗型剤を乾燥させるまでの間、鋳型31を一定の向き40に回転させることが好ましい。 Then, as shown in FIG. 12 (c), the applied coating agent is dried to form a coating layer 32s having regions having partially different widths and depths of cracks. In the step of forming the mold coating layer, it is preferable to rotate the mold 31 in a constant direction 40 until the mold coating agent is dried.

塗型剤の乾燥は、塗布後にそのまま鋳型を回転させたまま行うことができる。加熱したまま又はさらに加熱した鋳型の熱によって塗型剤を乾燥・固化させてもよい。回転保持時間は0.25〜3分間であることが好ましい。または、鋳型の回転を停止させた後に、必要に応じて鋳型の内側または外側から鋳型を加熱し、乾燥固化時間の短縮を図ってもよい。 The mold can be dried by rotating the mold as it is after coating. The mold may be dried and solidified while it is still heated or by the heat of the further heated mold. The rotation holding time is preferably 0.25 to 3 minutes. Alternatively, after stopping the rotation of the mold, the mold may be heated from the inside or the outside of the mold as needed to shorten the drying and solidifying time.

塗布後にさらに加熱することで乾燥させる場合、好ましくは、溶媒の蒸発温度以上であって蒸発温度から110℃高い温度以下の温度で加熱する。これにより、塗型剤の内部から溶媒が急騰するのを抑制し、また、気泡(水蒸気)の過度な発生を抑制した状態で、所定のひび割れの塗型層を形成することができる。加熱温度の下限値は、好ましくは溶媒の蒸発温度以上であり、より好ましくは溶媒の蒸発温度より10℃高い温度以上であり、さらに好ましくは溶媒の蒸発温度より20℃高い温度である。加熱温度の上限値は、好ましくは溶媒の蒸発温度より110℃高い温度以下であり、より好ましくは溶媒の蒸発温度より80℃高い温度以下である。 When it is dried by further heating after coating, it is preferably heated at a temperature equal to or higher than the evaporation temperature of the solvent and not higher than the evaporation temperature by 110 ° C. As a result, a predetermined cracked coating layer can be formed in a state where the solvent does not rise sharply from the inside of the coating agent and the excessive generation of bubbles (water vapor) is suppressed. The lower limit of the heating temperature is preferably a temperature equal to or higher than the evaporation temperature of the solvent, more preferably a temperature 10 ° C. higher than the evaporation temperature of the solvent, and further preferably a temperature 20 ° C. higher than the evaporation temperature of the solvent. The upper limit of the heating temperature is preferably 110 ° C. or higher than the evaporation temperature of the solvent, and more preferably 80 ° C. or lower than the evaporation temperature of the solvent.

塗型層の乾燥後の厚みは、特に限定されるものではないが、好ましくは0.1mm〜5.0mm、より好ましくは0.5mm〜2.0mmの平均厚さを有していることが好ましい。 The thickness of the coating layer after drying is not particularly limited, but preferably has an average thickness of 0.1 mm to 5.0 mm, more preferably 0.5 mm to 2.0 mm. preferable.

ここで、図13を参照して、塗型層の形成メカニズムについて説明する。図13(a)に示すように、例えば、鋳型31の内周面31sに段差等があって高さが異なっていても、塗型剤32の表面は略平滑に形成される。そして、加熱した鋳型31の内周面31sの塗型剤32から、揮発成分33の一部が蒸発する。図13(b)は、塗型層32sの乾燥固化時の初期の状態を示す。この段階では、塗型層32sから揮発成分33が大量に蒸発し、塗型層32sの表面においてランダムな間隔で収縮34が生じ始め、ひび割れ35iが発生する。ここで、塗型層32sの厚さの違いにより、揮発成分33の量も異なるため、収縮34の量も異なる。塗型層32sの厚さが大きい程、収縮量は大きくなるため、ひび割れ35iの幅はより大きくなり、また、より深くなる。よって、乾燥が進むにつれて、基準内径領域Dbにおける塗型層は相対的にひび割れの幅が小さく深さが浅くなり、非基準内径領域Daにおける塗型層は相対的にひび割れの幅が大きく深さが深くなる。 Here, the mechanism for forming the coating layer will be described with reference to FIG. As shown in FIG. 13A, for example, even if the inner peripheral surface 31s of the mold 31 has a step or the like and the height is different, the surface of the mold coating agent 32 is formed substantially smooth. Then, a part of the volatile component 33 evaporates from the mold coating agent 32 on the inner peripheral surface 31s of the heated mold 31. FIG. 13B shows the initial state of the coating layer 32s at the time of drying and solidification. At this stage, a large amount of the volatile component 33 evaporates from the coating layer 32s, shrinkage 34 begins to occur at random intervals on the surface of the coating layer 32s, and cracks 35i occur. Here, since the amount of the volatile component 33 also differs depending on the difference in the thickness of the coating layer 32s, the amount of shrinkage 34 also differs. The larger the thickness of the coating layer 32s, the larger the amount of shrinkage, so that the width of the crack 35i becomes larger and deeper. Therefore, as the drying progresses, the coating layer in the reference inner diameter region Db has a relatively small crack width and a shallow depth, and the coating layer in the non-reference inner diameter region Da has a relatively large crack width and depth. Becomes deeper.

図13(c)は、乾燥固化時の末期の状態を示す。塗型層32sの収縮34がさらに進行し、塗型層32sの表面から、鋳型31の表面に向かって拡大したひび割れ35mが生じ、塗型層の厚み方向における空隙の断面が楔形状となる。この状態では、塗型層32sの厚さの違いによるひび割れの幅と深さの違いが顕著になり、相対的にひび割れの幅が小さく深さが浅いひび割れ35mbからなる、低ひび割れ領域Ebと、相対的にひび割れの幅が大きく深さが深いひび割れ35maからなる、高ひび割れ領域Eaが形成される。このようなひび割れの状態で完全に乾燥固化する。 FIG. 13 (c) shows the terminal state at the time of drying and solidifying. The shrinkage 34 of the coating layer 32s further progresses, cracks 35 m expanding toward the surface of the mold 31 are generated from the surface of the coating layer 32s, and the cross section of the void in the thickness direction of the coating layer becomes a wedge shape. In this state, the difference in the width and the depth of the cracks becomes remarkable due to the difference in the thickness of the coating layer 32s, and the low crack region Eb consisting of the cracks 35 mb having a relatively small width and a shallow depth. A high crack region Ea is formed, which is composed of cracks of 35 ma having a relatively wide crack width and a deep crack depth. It completely dries and solidifies in such a cracked state.

この乾燥固化時の末期の状態のとき、軸方向に基準内径領域と、非基準内径領域とを備える図9のような鋳型、及び、基準内径領域と非基準内径領域が、段になっていない、例えば連続的に内径が変化する波形状になっている図10のような鋳型を用いる場合は、どちらの領域のひび割れ35ma、35mbも、鋳型の内周面31sに達しないように調節することが好ましい。特に、幅が大きく深さが深いひび割れ35maが、鋳型31の基準内径Dよりも深くならないようにひび割れの深さをコントロールすることが好ましい。これにより、鋳包み用部材を成形した後、鋳型31から引き抜くときに、高ひび割れ領域Eaのひび割れ35maにおいて形成された高凸部領域が鋳型31の内周面31sによって損傷されることなく、スムーズに引き抜くことができ、より簡便に所望の構造の鋳包み用部材を成形することができる。 In the final state at the time of this dry solidification, the mold as shown in FIG. 9 having the reference inner diameter region and the non-reference inner diameter region in the axial direction, and the reference inner diameter region and the non-reference inner diameter region are not stepped. For example, when a mold as shown in FIG. 10 having a wavy shape in which the inner diameter changes continuously is used, the cracks 35ma and 35mb in either region should be adjusted so as not to reach the inner peripheral surface 31s of the mold. Is preferable. In particular, it is preferable to control the depth of the crack so that the crack 35ma having a large width and a deep depth does not become deeper than the reference inner diameter D of the mold 31. As a result, when the casting and wrapping member is molded and then pulled out from the mold 31, the highly convex region formed in the crack 35ma of the high crack region Ea is not damaged by the inner peripheral surface 31s of the mold 31 and is smooth. It can be pulled out more easily, and a casting and wrapping member having a desired structure can be formed more easily.

一方で、この乾燥固化時の末期の状態のとき、軸に対して垂直方向に基準内径領域と、非基準内径領域とを備える図11のような鋳型を用いる場合は、鋳包み用部材を成形した後、軸方向に鋳型31から引き抜くので、ひび割れ35ma、35mbが、鋳型の内周面31sに達しても、及び、ひび割れ35maが、鋳型31の基準内径Dよりも深くなっても、ひび割れ35ma、35mbにおいて形成された高凸部領域と低凸部領域の凸部が損傷されることなく、スムーズに引き抜くことができ、より簡便に所望の構造の鋳包み用部材を成形することができる。 On the other hand, in the final state at the time of drying and solidification, when a mold as shown in FIG. 11 having a reference inner diameter region and a non-reference inner diameter region in the direction perpendicular to the axis is used, a casting and packaging member is formed. Then, since it is pulled out from the mold 31 in the axial direction, even if the cracks 35ma and 35mb reach the inner peripheral surface 31s of the mold and the cracks 35ma become deeper than the reference inner diameter D of the mold 31, the cracks 35ma , The convex portions of the high convex portion region and the low convex portion region formed at 35 mb can be smoothly pulled out without being damaged, and a casting and wrapping member having a desired structure can be more easily formed.

図13(d)は、図13(c)よりもさらに乾燥固化を進行させた状態を示す。塗型層32sにてより深いひび割れ35fが生じる。低ひび割れ領域Ebでは、塗型層を貫通し鋳型の内周面31sに達したひび割れ35fbが生じ、高ひび割れ領域Eaでは、基準内径Dよりも深いひび割れ35faが生じる。 FIG. 13 (d) shows a state in which drying and solidification have further progressed as compared with FIG. 13 (c). Deeper cracks 35f occur in the coating layer 32s. In the low crack region Eb, cracks 35fb that penetrate the coating layer and reach the inner peripheral surface 31s of the mold are generated, and in the high crack region Ea, cracks 35fa deeper than the reference inner diameter D are generated.

この乾燥固化を進行させた状態のとき、軸方向に基準内径領域と、非基準内径領域とを備える図9のような鋳型、及び、基準内径領域と非基準内径領域が、段になっていない、例えば連続的に内径が変化する波形状になっている図10のような鋳型を用いる場合は、ひび割れ35fbが鋳型の内周面31sに達したり、基準内径Dよりも深いひび割れ35faが生じたりすると、鋳包み用部材を成形した後、鋳型31から引き抜くときに、ひび割れ35faにおいて形成された高凸部領域を引き抜くことが困難になる。よって、軸方向に基準内径領域と非基準内径領域を有する鋳型を用いた場合、低凸部領域及び高凸部領域では、図6で示すような傾きを有する凸部を備える場合はあるが、図7及び図8で示すような括れを有する凸部を備えないように凸部の高さをコントロールすることが好ましい。 When this dry solidification is in progress, the mold as shown in FIG. 9 having the reference inner diameter region and the non-reference inner diameter region in the axial direction, and the reference inner diameter region and the non-reference inner diameter region are not stepped. For example, when a mold as shown in FIG. 10 having a wavy shape in which the inner diameter changes continuously is used, the crack 35fb may reach the inner peripheral surface 31s of the mold, or the crack 35fa deeper than the reference inner diameter D may occur. Then, when the casting and wrapping member is formed and then pulled out from the mold 31, it becomes difficult to pull out the highly convex portion region formed in the crack 35fa. Therefore, when a mold having a reference inner diameter region and a non-reference inner diameter region in the axial direction is used, the low convex portion region and the high convex portion region may have a convex portion having an inclination as shown in FIG. It is preferable to control the height of the convex portion so as not to have the convex portion having the constriction as shown in FIGS. 7 and 8.

一方で、この乾燥固化を進行させた状態のとき、軸に対して垂直方向に基準内径領域と、非基準内径領域とを備える図11のような鋳型を用いる場合は、高ひび割れ領域Eaで基準内径Dよりも深いひび割れ35faが生じていても、低ひび割れ領域Ebのひび割れ35fbが鋳型の内周面31sに達していてもよい。鋳包み用部材を成形した後、軸方向に鋳型31から引き抜くので、スムーズに引き抜くことができるからである。このように内周面31sに達したひび割れ35fbは、塗型層の収縮により、鋳型表面に沿ってさらに広がる。このようにして得られたひび割れにおいて形成される凸部領域は、図7及び図8で示すような括れを有する凸部を備える。すなわち、軸に対して垂直方向に基準内径領域と、非基準内径領域とを備える鋳型を用いる場合は、図6で示すような傾きを有する凸部の他に、図7及び図8で示すような括れを有する凸部を備える場合もある。 On the other hand, when a mold as shown in FIG. 11 having a reference inner diameter region and a non-reference inner diameter region in the direction perpendicular to the axis is used in the state where this drying solidification has progressed, the reference is based on the high crack region Ea. Even if the crack 35fa deeper than the inner diameter D is generated, the crack 35fb in the low crack region Eb may reach the inner peripheral surface 31s of the mold. This is because after the casting and wrapping member is molded, it is pulled out from the mold 31 in the axial direction, so that it can be pulled out smoothly. The cracked 35fb that has reached the inner peripheral surface 31s in this way further expands along the mold surface due to the shrinkage of the coating layer. The convex region formed in the crack thus obtained includes a convex portion having a constriction as shown in FIGS. 7 and 8. That is, when a mold having a reference inner diameter region and a non-reference inner diameter region in the direction perpendicular to the axis is used, as shown in FIGS. 7 and 8, in addition to the convex portion having an inclination as shown in FIG. It may also have a convex portion with a tight constriction.

鋳包み用部材の製造方法の説明に戻ると、図12(d)に示すように、塗型層32sの上から鋳型31に鋳鉄溶湯43を流しこみ、鋳型31を一定の向き40に回転させながら遠心鋳造する。この鋳造工程では、図12(b)と同様に、鋳型を回転させながら、ノズル等の溶湯供給手段を用いて筒の内側に溶湯を流し込むことができる。鋳型を回転させる場合、鋳型の遠心加速度は、100G以上120G以下に設定することが好ましい。鋳型を回転させることにより、遠心力によって溶湯が塗型層のひび割れの内にも流れ込み、鋳包み用部材の表面に所望の線状突起構造を形成することができる。溶湯の温度は、使用する鋳鉄、金属又は合金等が溶融する温度であれば特に限定されるものではないが、鋳鉄であれば1380〜1450℃であることが好ましい。また、溶湯を鋳型に投入する際の、鋳型の温度は、100〜300℃であることが好ましい。 Returning to the description of the method for manufacturing the casting and wrapping member, as shown in FIG. 12 (d), the cast iron molten metal 43 is poured into the mold 31 from above the mold layer 32s, and the mold 31 is rotated in a certain direction 40. Centrifugal casting while. In this casting step, as in FIG. 12B, the molten metal can be poured into the inside of the cylinder by using a molten metal supply means such as a nozzle while rotating the mold. When rotating the mold, the centrifugal acceleration of the mold is preferably set to 100 G or more and 120 G or less. By rotating the mold, the molten metal flows into the cracks of the coating layer by centrifugal force, and a desired linear protrusion structure can be formed on the surface of the casting and wrapping member. The temperature of the molten metal is not particularly limited as long as it is a temperature at which the cast iron, metal, alloy or the like to be used melts, but it is preferably 1380 to 1450 ° C. for cast iron. Further, the temperature of the mold when the molten metal is put into the mold is preferably 100 to 300 ° C.

そして、図12(e)に示すように、鋳鉄溶湯を凝固させる。この凝固工程では、鋳鉄溶湯43を鋳型31の外側から冷却して凝固させることで、鋳包み用部材型の成形体44を得る。鋳型に溶湯を流し込んで鋳造した後、例えば0.25〜1分間保持して自然冷却し凝固させてもよいし、例えば成形体の温度が共晶凝固終了温度から共晶凝固終了温度より100℃低い温度となる温度まで自然冷却し、溶湯を凝固させてもよい。溶湯を凝固させた後に、鋳型の回転を停止させることが好ましい。成形体44を構成する金属組織内にフェライトが析出するのを防ぐため、鋳包み用部材の質量又は肉厚によっては、共析変態(Ar1変態)の終了温度、例えば約730℃までの温度で、鋳型を回転させながら、鋳型の外側を例えば水冷してもよい。このようにして溶湯を凝固、冷却させることで、鋳包み用部材型の成形体が得られる。 Then, as shown in FIG. 12 (e), the molten cast iron is solidified. In this solidification step, the molten cast iron 43 is cooled from the outside of the mold 31 and solidified to obtain a molded body 44 of a member type for casting and wrapping. After the molten metal is poured into a mold and cast, it may be held for 0.25 to 1 minute and naturally cooled to solidify. For example, the temperature of the molded product is 100 ° C. from the eutectic solidification end temperature to the eutectic solidification end temperature. The molten metal may be coagulated by natural cooling to a low temperature. After solidifying the molten metal, it is preferable to stop the rotation of the mold. In order to prevent ferrite from precipitating in the metal structure constituting the molded body 44, depending on the mass or wall thickness of the casting and wrapping member, the end temperature of the eutectoid transformation (Ar1 transformation), for example, at a temperature up to about 730 ° C. , The outside of the mold may be, for example, water-cooled while rotating the mold. By solidifying and cooling the molten metal in this way, a member-type molded body for casting and wrapping can be obtained.

次に、図12(f)に、鋳包み用部材型の成形体44を鋳型31から取り出す。鋳型から成形体を取り出す方法としては、特に限定されるものではなく、鋳型の形状に合わせて手法を選定する。例えば、筒型の鋳型の場合、成形体44の内径端部に外側に開口する爪を有するチャックを取り付け、チャックの他端側を油圧シリンダなどを用いて図中の矢印方向45へ引き抜くようにして、鋳型31から取り出すことができる。 Next, in FIG. 12 (f), the cast-wrapping member type molded body 44 is taken out from the mold 31. The method for taking out the molded product from the mold is not particularly limited, and the method is selected according to the shape of the mold. For example, in the case of a tubular mold, a chuck having a claw that opens outward is attached to the inner diameter end of the molded body 44, and the other end side of the chuck is pulled out in the arrow direction 45 in the drawing using a hydraulic cylinder or the like. And can be taken out from the mold 31.

そして、図12(g)に示すように、鋳型31から取り出した成形体44から塗型層32sを取り除く。鋳型から取り出した成形体には、その表面に塗型層が付着している場合がある。成形体から塗型層を取り除く方法として、特に限定されるものではないが、ショットブラスト又はウォータージェット、ドライアイス研掃等が挙げられる。例えば成形体44を矢印方向46へ移動させ、成形体44の表面の塗型層32sにブラスト47を投射し、成形体44から塗型層32sを除去することができる。ショットブラストの場合、投射メディアとして、粒度が#240〜#8000、平均粒径が0.5〜60μmのセラミックス粉末を用いてもよく、投射圧力は、0.1〜0.4MPaであることが好ましい。ウォータージェットの場合、投射圧力は、0.1〜0.4MPaであることが好ましい。 Then, as shown in FIG. 12 (g), the coating layer 32s is removed from the molded body 44 taken out from the mold 31. A mold layer may be attached to the surface of the molded product taken out from the mold. The method for removing the coating layer from the molded body is not particularly limited, and examples thereof include shot blasting, water jet, and dry ice cleaning. For example, the molded body 44 can be moved in the direction of the arrow 46, the blast 47 can be projected onto the mold layer 32s on the surface of the molded body 44, and the mold layer 32s can be removed from the molded body 44. In the case of shot blasting, ceramic powder having a particle size of # 240 to # 8000 and an average particle size of 0.5 to 60 μm may be used as the projection medium, and the projection pressure may be 0.1 to 0.4 MPa. preferable. In the case of a water jet, the projection pressure is preferably 0.1 to 0.4 MPa.

図12(h)に、成形体から塗型層を取り除いた後の、鋳包み用部材48を示す。成形体から塗型層を取り除くことで、その表面48sに網目状の凸部を有する鋳包み用部材48が得られる。 FIG. 12H shows the casting and wrapping member 48 after the coating layer is removed from the molded body. By removing the coating layer from the molded body, a casting and wrapping member 48 having a mesh-like convex portion on the surface 48s thereof can be obtained.

本発明によれば、単一の鋳包み用部材の鋳包まれる表面上に、従来の製造方法では成し得なかった、網目状の凸部であって、線状部分の凸部の高さが異なる高凸部領域と低凸部領域を形成することができる。また、本発明の鋳包み用部材は、高剛性で、熱伝達性、熱放散性や熱伝導性に優れた摺動部品以外の部材、例えば、アルミブレーキドラムや二輪車用アルミダイカスト製ホィールハブ、パワートレーン系の軸受ジャーナル部など回転トルクが作用する部位の鋳包み部材にも適用できる。 According to the present invention, it is a mesh-like convex portion on the surface to be cast and wrapped of a single casting-wrapping member, which is a mesh-like convex portion that cannot be achieved by a conventional manufacturing method, and the height of the convex portion of the linear portion. Can form a high-convex region and a low-convex region with different values. Further, the casting and wrapping member of the present invention is a member other than sliding parts having high rigidity and excellent heat transfer, heat dissipation and heat conductivity, for example, an aluminum brake drum, a wheel hub made of aluminum die cast for a two-wheeled vehicle, and a power. It can also be applied to cast-wrapping members in parts where rotational torque acts, such as train-type bearing journals.

鋳包み用部材の鋳包まれる表面に、高凸部領域と低凸部領域とを部分的に備えた連続した線状の突起構造を形成するためには、上記した製法が好ましい。鋳包み用部材の鋳包まれる表面の一部を研削又は切削してもよい。 The above-mentioned manufacturing method is preferable in order to form a continuous linear protrusion structure partially provided with a high-convex portion region and a low-convex portion region on the cast-wrapped surface of the casting-wrapping member. A part of the cast-wrapped surface of the cast-wrapping member may be ground or cut.

得られた鋳包み用部材を、例えば、ダイカスト法によって鋳包んでもよい。射出条件は、特に限定されるものではないが、例えばADC12やADC10、ADC3を用いて、620〜670℃で注湯し、射出圧力50〜100MPa、射出速度1.5〜4.0m/秒で行ってもよい。このようにして鋳包み部材を得ることができる。 The obtained casting and wrapping member may be cast and wrapped by, for example, a die casting method. The injection conditions are not particularly limited, but for example, using ADC12, ADC10, and ADC3, pour hot water at 620 to 670 ° C., injection pressure is 50 to 100 MPa, and injection speed is 1.5 to 4.0 m / sec. You may go. In this way, the cast-wrapping member can be obtained.

(鋳包み用部材の作製)
<試験例1>
塗型剤は、珪藻土15質量%、ベントナイト10質量%、及び水75質量%の混合比で混合し、パワーミキサー装置(リョービ株式会社製)で攪拌して作製した。
(Manufacturing of casting and wrapping members)
<Test Example 1>
The coating agent was prepared by mixing at a mixing ratio of 15% by mass of diatomaceous earth, 10% by mass of bentonite, and 75% by mass of water, and stirring with a power mixer device (manufactured by Ryobi Co., Ltd.).

鋳包み用部材の鋳型として、図9に示す、基準内径領域の基準内径約79mm、非基準内径領域の内径約80mmの、軸方向に内径が異なる領域を備える円筒状の鋳型を用い、筒の内周面の鋳型温度を160℃とした。この温度は、接触温度計又は放射温度計によって測定できる。鋳型は、筒状の部分(筒の長手方向)を横にし、4〜10Gの遠心加速度で回転させながら、鋳型の内周面にノズルを用いて塗型剤を塗布し、塗型層を形成した。塗布後、約1分間、鋳型の回転を保持し、鋳型の内周面上に塗型層を形成した。得られた塗型層は、その表面にひび割れの幅と深さが部分的に異なる領域を備える形状を形成しており、層の平均厚みは約1mmであった。層の厚みは、電磁式膜厚計((株)サンコウ電子研究所製、型番SWT−8000II)に測定プローブ(Fe−2.5LwA)を接続して塗型層の表面を10箇所測定し、それらの測定値から平均を算出した。 As a mold for the casting and wrapping member, a cylindrical mold having a reference inner diameter of about 79 mm in the reference inner diameter region and an inner diameter of about 80 mm in the non-reference inner diameter region, which have different inner diameters in the axial direction, is used as a mold for the cylinder. The mold temperature of the inner peripheral surface was set to 160 ° C. This temperature can be measured by a contact thermometer or a radiation thermometer. The mold is formed by applying a coating agent to the inner peripheral surface of the mold using a nozzle while laying the tubular part (longitudinal direction of the cylinder) sideways and rotating it at a centrifugal acceleration of 4 to 10 G. did. After coating, the rotation of the mold was held for about 1 minute to form a coating layer on the inner peripheral surface of the mold. The obtained coating layer had a shape having a region having a partially different width and depth of cracks on the surface thereof, and the average thickness of the layer was about 1 mm. The thickness of the layer was measured by connecting a measuring probe (Fe-2.5LwA) to an electromagnetic film thickness meter (manufactured by Sanko Electronics Laboratory Co., Ltd., model number SWT-8000II) and measuring the surface of the coating layer at 10 points. The average was calculated from those measurements.

次に、内周面上に塗型層を形成した鋳型に溶湯を流し込み、鋳包み用部材を鋳造した。溶湯として、1420℃で溶融させた鋳鉄を用いた。溶湯を鋳型に注湯する際、鋳型の内周面の温度を160℃とし、120Gの遠心加速度で回転させながら行った。鋳型に溶湯を注湯した後、鋳型を回転させたまま0.5分間保持し、その後、鋳型を回転させたまま鋳型の外周面から冷水を用いて730℃以下となるまで冷却し、溶湯を凝固、冷却させて、鋳包み用部材の成形体を得た。 Next, the molten metal was poured into a mold having a coating layer formed on the inner peripheral surface, and a member for casting and wrapping was cast. Cast iron melted at 1420 ° C. was used as the molten metal. When the molten metal was poured into the mold, the temperature of the inner peripheral surface of the mold was set to 160 ° C., and the molten metal was rotated at a centrifugal acceleration of 120 G. After pouring the molten metal into the mold, hold it for 0.5 minutes while rotating the mold, and then cool the outer peripheral surface of the mold with cold water to a temperature of 730 ° C or lower while rotating the mold to cool the molten metal. It was solidified and cooled to obtain a molded body of a casting and wrapping member.

溶湯を凝固、冷却させた後、鋳型の回転を停止させ、成形体の内径端部に外側に開口する爪チャックを取り付け、チャックの他端を油圧シリンダにつないで鋳型と逆方向に移動させて成形体を鋳型から引き抜いた。引き抜いた成形体の外周面にブラストを投射して、成形体から塗型層を除去した。投射したブラストは、平均粒径23μmのセラミックス粉末であり、投射圧力は、0.3MPaであった。このようにして、塗型層を除去し、内径64mm、鋳包み用部材の肉厚7.5mmの鋳包み用部材の長筒状粗材を得た。さらに、この鋳包み用部材の粗材を必要な長さに切断し、さらに外径を基準とする旋盤加工によって内周面に機械加工を施して、長さ124mm、肉厚4.5mmの鋳包み用部材を得た。上記鋳包み用部材の肉厚は、鋳包み用部材の内周面から外周面の平坦面までの厚みと、高凸部領域の網目状の凸部の高さの和であり、ノギスによって両端面の厚さを5箇所測定し、それらの平均値を算出した。表1に、観察した凸部の領域、鋳包み用部材を得るための塗型剤の配合比、鋳型温度、鋳包み用部材の肉厚、及び高凸部領域と低凸部領域のそれぞれの平均凸部高さを示す。 After the molten metal is solidified and cooled, the rotation of the mold is stopped, a claw chuck that opens to the outside is attached to the inner diameter end of the molded body, and the other end of the chuck is connected to the hydraulic cylinder and moved in the opposite direction to the mold. The molded product was withdrawn from the mold. A blast was projected onto the outer peripheral surface of the drawn molded product to remove the coating layer from the molded product. The projected blast was a ceramic powder having an average particle size of 23 μm, and the projection pressure was 0.3 MPa. In this way, the coating layer was removed to obtain a long cylindrical rough material for the casting and packaging member having an inner diameter of 64 mm and a wall thickness of 7.5 mm for the casting and packaging member. Further, the rough material of this casting and wrapping member is cut to a required length, and the inner peripheral surface is machined by lathe processing based on the outer diameter to cast a length of 124 mm and a wall thickness of 4.5 mm. A wrapping member was obtained. The wall thickness of the casting and wrapping member is the sum of the thickness from the inner peripheral surface to the flat surface of the outer peripheral surface of the casting and wrapping member and the height of the mesh-like convex portion in the high convex portion region. The thickness of the surface was measured at 5 points, and the average value thereof was calculated. Table 1 shows the observed convex region, the compounding ratio of the coating agent for obtaining the casting and wrapping member, the mold temperature, the wall thickness of the casting and wrapping member, and the high convex region and the low convex region, respectively. Shows the average convex height.

Figure 0006979171
Figure 0006979171

<試験例2〜8>
塗型剤の配合比、鋳型温度、鋳包み用部材の肉厚、及び高凸部領域と低凸部領域のそれぞれの平均凸部高さを表1となるようにした以外は、試験例1と同様にして行い、鋳包み用部材を得た。
<Test Examples 2-8>
Test Example 1 except that the compounding ratio of the coating agent, the mold temperature, the wall thickness of the casting and wrapping member, and the average convex heights of the high convex region and the low convex region are shown in Table 1. In the same manner as above, a member for casting and wrapping was obtained.

(鋳包み部材の作製)
試験例1〜8の各鋳包み用部材をダイカスト法により、その外周面をアルミで鋳包んだ略円筒形状の鋳包み部材を作製した。アルミはADC12を用い、650℃で注湯し、射出圧力65MPa、射出速度2.0m/秒で鋳造した。得られた鋳包み部材を、その内周面を基準にして外周面のアルミを外径81mmとなるまで旋盤加工し、その後、外周面を基準として鋳包み部材の内周面を内径73mmとなるよう旋盤加工して鋳包み部材の厚みが4mmとなるようにした。
(Making a casting member)
Each of the casting and wrapping members of Test Examples 1 to 8 was die-cast to produce a substantially cylindrical casting and wrapping member whose outer peripheral surface was cast and wrapped with aluminum. Aluminum was cast at an injection pressure of 65 MPa and an injection speed of 2.0 m / sec by pouring hot water at 650 ° C. using ADC12. The obtained cast-wrapping member is lathed with aluminum on the outer peripheral surface having an outer diameter of 81 mm based on the inner peripheral surface thereof, and then the inner peripheral surface of the cast-wrapping member has an inner diameter of 73 mm based on the outer peripheral surface. It was turned into a lathe so that the thickness of the cast and wrapped member was 4 mm.

[鋳包み部材の熱伝導性評価]
試験例1〜8の鋳包み部材から試験装置に適合できる直径の円形板を削り出して試験片とした。試験片は、鋳包み用部材とそれを鋳包むアルミの界面を中心として双方が同じ肉厚となるようにした。熱伝導性試験として、熱定数測定装置(アルバック理工社製、TC−7000)を用いて、レーザーフラッシュ法(LF法)により、室温(25℃)、大気中において、試験片の鋳鉄面にレーザー照射を行い、比熱と熱拡散率を測定し、以下の式(1)から熱伝導率を算出した。
λ=Cp×α×ρ (1)
式中、λは熱伝導率、Cpは比熱、αは熱拡散率、ρは室温における密度である。室温における密度は、室温(25℃)、大気中で測定した試験片の寸法と重量を用いて算出した。表2に、アルミ溶湯充填時の熱伝導率を示す。
[Evaluation of thermal conductivity of cast and wrapped members]
A circular plate having a diameter suitable for the test apparatus was carved from the cast and wrapped members of Test Examples 1 to 8 to obtain a test piece. The test piece had the same wall thickness centered on the interface between the casting member and the aluminum that wraps it. As a thermal conductivity test, a laser flash method (LF method) was used on the cast iron surface of the test piece at room temperature (25 ° C.) using a thermal constant measuring device (TC-7000, manufactured by ULVAC Riko Co., Ltd.). Irradiation was performed, the specific heat and the thermal diffusivity were measured, and the thermal conductivity was calculated from the following formula (1).
λ = Cp × α × ρ (1)
In the formula, λ is the thermal conductivity, Cp is the specific heat, α is the thermal diffusivity, and ρ is the density at room temperature. The density at room temperature was calculated using the dimensions and weight of the test piece measured at room temperature (25 ° C.) and in the atmosphere. Table 2 shows the thermal conductivity when filling the molten aluminum.

[鋳包み部材の密着強さ評価]
試験例1〜8の鋳包み部材から300〜500mmの密着面積を有する四角形の試験片を8個削り出した。試験片のアルミ側の面と鋳鉄側の表面に、熱硬化性エポキシ系接着剤で引張治具をそれぞれ固定し、精密万能試験機(島津製作所製、AG−100kN Xplus)を用いて、垂直剥離試験を行った。鋳包み用部材とアルミが剥離した時の最大荷重を試験前の試験片の密着面積で除した値を密着強さとした。表2に、アルミ溶湯充填時のアルミとの密着強さを示す。
[Evaluation of adhesion strength of cast and wrapped members]
Eight quadrangular test pieces having a contact area of 300 to 500 mm 2 were carved from the cast and wrapped members of Test Examples 1 to 8. A tension jig is fixed to the aluminum side surface and the cast iron side surface of the test piece with a thermosetting epoxy adhesive, and vertical peeling is performed using a precision universal testing machine (AG-100kN Xplus, manufactured by Shimadzu Corporation). A test was conducted. The value obtained by dividing the maximum load when the cast-wrapping member and the aluminum were peeled off by the contact area of the test piece before the test was defined as the contact strength. Table 2 shows the adhesion strength with aluminum when filled with molten aluminum.

Figure 0006979171
Figure 0006979171

高凸部領域凸部では、凸部が相対的に高いことにより、密着性及び熱伝導性が向上したことが確認された。低凸部領域の凸部では、凸部が相対的に低いことにより、熱伝導率が抑制されることが確認された。このように、試験例1〜4に示すような高凸部領域と試験例5〜8に示すような低凸部領域とを単一の鋳包み用部材に設けることで、大きく異なる密着性及び熱伝導性を有する領域を有する鋳包み用部材を提供することができる。 It was confirmed that in the convex portion of the high convex portion region, the adhesiveness and the thermal conductivity were improved due to the relatively high convex portion. It was confirmed that in the convex portion of the low convex portion region, the thermal conductivity was suppressed due to the relatively low convex portion. As described above, by providing the high-convex region as shown in Test Examples 1 to 4 and the low-convex region as shown in Test Examples 5 to 8 in a single casting and wrapping member, the adhesion and the adhesion greatly differ. It is possible to provide a member for casting and wrapping having a region having thermal conductivity.

1 :線状部分
1a、1b、1c、1d、1e:線状部分
2 :集合部分
2a、2b、2c、2d :集合部分
3 :網目状の凸部
3a :高凸部領域
3b :低凸部領域
6 :凸部の底面(平坦面)
35i、35ma、35mb、35fa、35fb:ひび割れ
D :基準内径
Da :非基準内径領域
Db :基準内径領域
Ea :高ひび割れ領域
Eb :低ひび割れ領域
La :線状部分の長手方向の長さ
Lb :線状部分の短手方向の長さ(幅)
h3 :凸部の高さ
h9 :鋳包み部材の平坦面までの厚み
ha :高凸部領域の凸部の高さ
hb :低凸部領域の凸部の高さ
F :平坦面
Ic :内接円
1: Linear part 1a, 1b, 1c, 1d, 1e: Linear part 2: Collecting part 2a, 2b, 2c, 2d: Collecting part 3: Mesh-like convex part 3a: High convex part region 3b: Low convex part Area 6: Bottom surface (flat surface) of the convex part
35i, 35ma, 35mb, 35fa, 35fb: Crack D: Reference inner diameter Da: Non-reference inner diameter region Db: Reference inner diameter region Ea: High crack region Eb: Low crack region La: Length in the longitudinal direction of the linear portion Lb: Line Length (width) of the shaped part in the lateral direction
h3: Height of convex portion h9: Thickness to flat surface of cast-wrapping member ha: Height of convex portion in high convex portion region hb: Height of convex portion in low convex region region F: Flat surface Ic: Inscribed circle Circle

Claims (6)

鋳包まれる面上に網目状の凸部と平坦面とを有する鋳包み用部材であって、
前記網目状の凸部が、線状部分と、少なくとも2つの線状部分が合流している集合部分とを備え、
前記凸部が、前記平坦面から立ち上がる縦壁部分を備え、
a)前記凸部が、前記縦壁部分と頂部とを備え、前記縦壁部分の幅と比較して前記頂部の幅が大きい形状を備え、及び/または
b)前記凸部の高さがランダムに異なる形状を備え、
前記線状部分の凸部の前記平坦面からの高さが相対的に高い、高凸部領域と、前記線状部分の凸部の前記平坦面からの高さが相対的に低い、低凸部領域とを備える、鋳包み用部材。
A member for casting and wrapping having a mesh-like convex portion and a flat surface on the surface to be cast and wrapped.
The mesh-like convex portion comprises a linear portion and an aggregate portion where at least two linear portions are confluent.
The convex portion comprises a vertical wall portion that rises from the flat surface.
a) The convex portion has a shape having the vertical wall portion and the top portion, and the width of the top portion is larger than the width of the vertical wall portion, and / or.
b) The height of the convex portion has a shape that is randomly different.
The height of the convex portion of the linear portion from the flat surface is relatively high, and the height of the convex portion of the linear portion is relatively low, that is, the height of the convex portion of the linear portion is relatively low. A member for casting and wrapping, which comprises a part area.
前記鋳包み用部材が円筒形状を有し、この円筒形状の軸方向または周方向に沿って前記高凸部領域と前記低凸部領域とを備える、請求項1に記載の鋳包み用部材。 The casting / wrapping member according to claim 1, wherein the casting / wrapping member has a cylindrical shape and has a high convex portion region and a low convex portion region along the axial direction or the circumferential direction of the cylindrical shape. 前記鋳包み用部材が、エンジンシリンダブロックに鋳込まれるシリンダスリーブであって、デッキ面側に前記高凸部領域を備え、クランクケース側に前記低凸部領域を備える、請求項1又は2に記載の鋳包み用部材。 2. The described casting and wrapping member. 前記高凸部領域における前記凸部の高さと前記低凸部領域における前記凸部の高さとの差が、0.1mm以上である、請求項1〜3のいずれか一項に記載の鋳包み用部材。 The casting package according to any one of claims 1 to 3, wherein the difference between the height of the convex portion in the high convex portion region and the height of the convex portion in the low convex portion region is 0.1 mm or more. Materials. 鋳型の溶湯を流し込もうとする面に塗型剤を塗布する工程と、
前記塗布した塗型剤を乾燥させて、表面にひび割れの形状を有する塗型層を形成する工程と、
前記塗型層上から溶湯を流しこみ、前記鋳型を回転させながら鋳造する工程とを少なくとも含み、
前記鋳型の溶湯を流し込もうとする面は、少なくとも2つの異なる高さの領域を有しており、これによって、前記塗型層は、厚さが相対的に厚い領域と薄い領域とを有し、
前記ひび割れは、前記厚い領域において、相対的にひび割れの幅が大きく深さが深く、前記薄い領域において、相対的にひび割れの幅が小さく深さが浅い、鋳包み用部材の製造方法。
The process of applying the mold to the surface on which the molten metal of the mold is to be poured, and
A step of drying the applied coating agent to form a coating layer having a crack shape on the surface, and a step of forming the coating layer.
It includes at least a step of pouring molten metal from the coating layer and casting while rotating the mold.
The surface on which the molten metal of the mold is to be poured has at least two different height regions, whereby the coating layer has a relatively thick region and a thin region. death,
The crack is a method for manufacturing a member for casting, in which the width of the crack is relatively large and the depth is deep in the thick region, and the width of the crack is relatively small and the depth is shallow in the thin region.
前記塗型層の前記厚い領域に形成される前記幅が大きく深さが深くひび割れが、前記薄い領域の前記塗型層の厚さよりも、ひび割れの深さを浅くするように制御する、請求項5に記載の鋳包み用部材の製造方法。 A claim that controls the wide, deep and deep cracks formed in the thick region of the coating layer so that the crack depth is shallower than the thickness of the coating layer in the thin region. 5. The method for manufacturing a member for casting and wrapping according to 5.
JP2017220946A 2017-11-16 2017-11-16 Casting and packaging members and their manufacturing methods Active JP6979171B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017220946A JP6979171B2 (en) 2017-11-16 2017-11-16 Casting and packaging members and their manufacturing methods
DE102018125395.8A DE102018125395B4 (en) 2017-11-16 2018-10-15 INSERT AND METHOD OF MANUFACTURING THE SAME
FR1859763A FR3073434B1 (en) 2017-11-16 2018-10-23 INSERT ELEMENT AND METHOD OF MANUFACTURING IT
CN201811347787.3A CN109794593B (en) 2017-11-16 2018-11-13 Insert casting member and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017220946A JP6979171B2 (en) 2017-11-16 2017-11-16 Casting and packaging members and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2019089115A JP2019089115A (en) 2019-06-13
JP6979171B2 true JP6979171B2 (en) 2021-12-08

Family

ID=66335319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017220946A Active JP6979171B2 (en) 2017-11-16 2017-11-16 Casting and packaging members and their manufacturing methods

Country Status (4)

Country Link
JP (1) JP6979171B2 (en)
CN (1) CN109794593B (en)
DE (1) DE102018125395B4 (en)
FR (1) FR3073434B1 (en)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593178Y2 (en) * 1980-04-23 1984-01-28 スズキ株式会社 internal combustion engine cylinder
JPH075240Y2 (en) * 1989-07-06 1995-02-08 本田技研工業株式会社 Cylinder liner structure of internal combustion engine
US5291862A (en) * 1992-01-09 1994-03-08 Honda Giken Kogyo Kabushiki Kaisha Cylinder sleeve assembly used in cylinder block for multi-cylinder internal combustion engine, and forming mold for use in production of sand mold for casting the same
JP2816920B2 (en) * 1992-01-09 1998-10-27 本田技研工業株式会社 Cylinder sleeve assembly used for cylinder block for multi-cylinder internal combustion engine
GB9515926D0 (en) * 1995-08-03 1995-10-04 T & N Technology Ltd Manufacture of brake pads
JP3866473B2 (en) * 2000-02-08 2007-01-10 本田技研工業株式会社 Cylinder block sleeve structure
JP3976991B2 (en) * 2000-07-12 2007-09-19 本田技研工業株式会社 Metal casting wrap
JP3300331B2 (en) * 2000-09-01 2002-07-08 本田技研工業株式会社 Manufacturing method of cylindrical metal cast member
DE10125615A1 (en) * 2001-05-25 2002-12-05 Mahle Gmbh Mold and method for making a lost foam cast model for a light metal liner
JP4429025B2 (en) * 2004-01-09 2010-03-10 トヨタ自動車株式会社 Cylinder liner for casting
JP4452661B2 (en) * 2005-07-08 2010-04-21 トヨタ自動車株式会社 Cast-in part, cylinder block, cast-in part coating method and cylinder block manufacturing method
JP4512001B2 (en) * 2005-07-08 2010-07-28 トヨタ自動車株式会社 Cylinder liner, cylinder block, and cylinder liner manufacturing method
JP4584058B2 (en) * 2005-07-08 2010-11-17 トヨタ自動車株式会社 Cylinder liner and manufacturing method thereof
JP4474338B2 (en) * 2005-07-08 2010-06-02 トヨタ自動車株式会社 Cylinder liner and engine
JP2009243386A (en) * 2008-03-31 2009-10-22 Toyota Motor Corp Cylinder liner and cylinder block
JP5388475B2 (en) * 2008-04-30 2014-01-15 Tpr株式会社 Casting structure
JP2012141044A (en) * 2011-01-06 2012-07-26 Honda Motor Co Ltd Crankshaft support structure
DE102012211866A1 (en) 2012-07-06 2014-01-09 Mahle International Gmbh Cylinder liner
CN103016723B (en) * 2012-11-29 2016-08-03 广东肇庆动力金属股份有限公司 A kind of aluminum contains the preparation method of cylinder jacket
US10094325B2 (en) * 2014-01-28 2018-10-09 ZYNP International Corp. Cylinder liner
CN106555697A (en) * 2015-09-29 2017-04-05 张凌 Graphite cast iron cylinder jacket
DE102017206858A1 (en) 2016-04-27 2017-11-02 Mahle International Gmbh Raugusszylinderlaufbuchse
US10215128B2 (en) * 2016-04-27 2019-02-26 Mahle International Gmbh Rough cast cylinder liner
JP6256524B2 (en) * 2016-05-17 2018-01-10 スズキ株式会社 Cast-in member and manufacturing method thereof

Also Published As

Publication number Publication date
CN109794593A (en) 2019-05-24
JP2019089115A (en) 2019-06-13
FR3073434A1 (en) 2019-05-17
CN109794593B (en) 2021-02-12
DE102018125395B4 (en) 2021-09-23
FR3073434B1 (en) 2023-08-04
DE102018125395A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP6256524B2 (en) Cast-in member and manufacturing method thereof
JP3253605B2 (en) Cast-in cast iron member, cast-in product using the same, and method of manufacturing cast-in cast iron member
US7383805B2 (en) Cylinder liner for insert casting and method for manufacturing thereof
US3069209A (en) Method of bonding a bi-metallic casting
JP5388475B2 (en) Casting structure
JP6705045B2 (en) Casting cylinder liner and method of manufacturing cylinder block
JP2012067740A (en) Cylinder liner for insert casting
JP7039953B2 (en) Casting and packaging members and their manufacturing methods
JP6979171B2 (en) Casting and packaging members and their manufacturing methods
JP3883502B2 (en) Cast iron parts for cast fills
CN214517524U (en) Cylinder sleeve for casting
CN107377944B (en) Cast-in member
JP7429853B2 (en) Casting parts
JP4409101B2 (en) Cast-in member, method for manufacturing the same, and cast product incorporating the same
US11548060B2 (en) High heat-absorption core for manufacturing of castings
JP2003181621A (en) Cast iron component for insert
CN117020119A (en) Casting method of metal casting
KR20210078950A (en) Cast iron inserts for shrink-fitting process and manufacturing method of dissimilar metal members using the same
BRPI0904476B1 (en) insertion casting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211028

R151 Written notification of patent or utility model registration

Ref document number: 6979171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151