JP4409101B2 - Cast-in member, method for manufacturing the same, and cast product incorporating the same - Google Patents

Cast-in member, method for manufacturing the same, and cast product incorporating the same Download PDF

Info

Publication number
JP4409101B2
JP4409101B2 JP2001020659A JP2001020659A JP4409101B2 JP 4409101 B2 JP4409101 B2 JP 4409101B2 JP 2001020659 A JP2001020659 A JP 2001020659A JP 2001020659 A JP2001020659 A JP 2001020659A JP 4409101 B2 JP4409101 B2 JP 4409101B2
Authority
JP
Japan
Prior art keywords
cast
particles
mold
molten metal
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001020659A
Other languages
Japanese (ja)
Other versions
JP2002224813A (en
Inventor
靖 岩田
弘昭 岩堀
義夫 冨士田
文章 是津
高興 小野
修 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP2001020659A priority Critical patent/JP4409101B2/en
Publication of JP2002224813A publication Critical patent/JP2002224813A/en
Application granted granted Critical
Publication of JP4409101B2 publication Critical patent/JP4409101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鋳ぐるみ部材とそれを鋳込む鋳造材との間で優れた密着性が得られる、鋳ぐるみ部材とその製造方法およびそれを鋳込んだ鋳造品に関するものである。
【0002】
【従来の技術】
複雑な形状の製品や大量生産品には鋳造品が多いが、鋳物品は単一組成金属からなるため、そのまま鋳造しただけでは部位により異なった特性を持たせることは、通常不可能である。そこで従来から、要求性能を満たす鋳ぐるみ部材を特定部分に鋳込んだ鋳造品が製作されている。例えば、自動車等のエンジンでは、軽量で熱伝達性に優れるアルミニウム合金製のシリンダブロックに、ピストンやピストンリングとの摺動性や耐摩耗性に優れる鋳鉄製のシリンダライナが鋳込まれている。
しかし、そのような従来の鋳造品では、境界面における両者の密着性が必ずしも十分ではなかった。例えば、前述のシリンダブロックの場合、700℃程度のAl合金の溶湯で、融点が1200℃付近にあるシリンダライナを溶融密着させることは難しい。
【0003】
また、Al合金製のシリンダブロックと鋳鉄製のシリンダライナとは熱膨張係数が相当異なるため、エンジンが高温になると、内側のシリンダライナの熱膨張率が小さい一方で外側のシリンダブロックの熱膨張率が大きい。このために、鋳造当初では、両者が接合していたとしても、その境界面に生じる大きな熱応力により、両者は引離され、両者間にクリアランスを生じてしまう。このように、鋳ぐるみ部材とそれを鋳込む鋳造材との間の密着性を保持することは、従来から困難であった。
そして、その境界面での密着性が不十分になると、製品の種類にもよるが、熱伝達性、鋳ぐるみ部材の支持強度等が悪化し、また、その境界面からオイルやガスの漏洩等を生じたりする可能性がある。従って、鋳ぐるみ部材を鋳込む鋳造品の場合、両者の密着性を十分に確保することが求められる。そこで、両者の密着性の向上を図れる提案が、次に挙げるような公報等において為されている。
【0004】
▲1▼特開平8−174188号公報では、シリンダライナ(鋳鉄)を鋳込む溶湯(Al合金)と溶着性をもつ金属材(Al合金系ろう材)を、そのシリンダライナの外表面に溶射して、シリンダライナの表面層を改良することにより、両者の密着性を高める方法が開示されている。同じような開示は、特開平10−94867号公報や特開平5−237630号公報にもある。
▲2▼特開平7−139419号公報では、ライナ表面に斜めの構加工を行って密着面積を大きくすると共に、ライナ表面に発生する気泡を上部に排出して両者の密着力を向上させる方法が開示されている。
また、鋳ぐるみ部材であるシリンダライナに係合部を設けて物理的に密着性を高めたものが特開平10−122034号公報に開示されている。
【0005】
【発明が解決しようとする課題】
しかし、前者の場合、溶射に伴いシリンダライナの熱変形を生じたり、溶射を行うための別工程を必要としたりする。
また、後者の場合、本発明者が試験したところによると、鋳ぐるみ部材を鋳込む溶湯の射出条件(ダイカストの場合)によって溶湯の凝固状態が変わり、密着性向上の効果が出現しない場合も多く生じた。しかも、後者の方法では、追加工を必要とするため、生産コスト等から見ても好ましい方法ではない。
【0006】
本発明は、このような事情に鑑みて為されたものである。
つまり、鋳ぐるみ部材とそれを鋳込む鋳造材との間の密着性を確実に向上させることができる、鋳ぐるみ部材を提供することを目的とする。
また、密着性に優れた鋳ぐるみ部材を効率良く生産できる、鋳ぐるみ部材の製造方法を提供することを目的とする。
さらに、鋳ぐるみ部材と鋳造材とが強固に密着した、鋳ぐるみ部材を鋳込んだ鋳造品を提供することを目的とする。
【0007】
【課題を解決するための手段】
そこで、本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ね、鋳ぐるみ部材を鋳込んで鋳造する場合に生じる、化学的焼着現象について詳細に検討した結果、凝固時に塩基性酸化物を生成する溶湯を、酸性酸化物(酸性砂)の鋳物砂からなる鋳型に注湯すると、鋳ぐるみ部材の本体表面に、粒子が強固に焼着することを見出し、本発明の鋳ぐるみ部材およびその製造方法を完成させるに至ったものである。
【0008】
(1)すなわち、本発明の鋳ぐるみ部材は、塩基性酸化物を生じる金属元素からなる本体と、該塩基性酸化物と反応して該本体の表面に焼着する酸性酸化物からなる付着粒子とを有し、該本体を鋳造材中に鋳込んだときに該本体と該鋳造材との間の密着性を該付着粒子を介して高められることを特徴とする。
【0009】
鋳ぐるみ部材の本体表面にできる金属元素の塩基性酸化物と、付着粒子の酸性酸化物とが反応して、付着粒子が本体の表面に焼着し、両者が強固に結合していると共に、付着粒子がその本体表面から突き出て、本体表面が種々の形状をした細かな凹凸状となっている。
そして、この鋳ぐるみ部材が鋳込まれると、その付着粒子の周囲を取囲むように、鋳造材の溶湯が回り込み、いわゆるその付着粒子がアンカまたは楔(くさび)となって、鋳ぐるみ部材と鋳造材とをその境界面で離脱困難に、物理的に結合する。
このように、鋳ぐるみ部材の本体表面に化学的に強固に結合した付着粒子が、さらに、鋳造材と物理的に強固に結合し、この付着粒子を介することにより、鋳ぐるみ部材とそれを鋳込む鋳造材とが強固に連結され、両者の密着性が著しく向上することとなる。
【0010】
ここで、付着粒子の酸性酸化物と反応する塩基性酸化物は、鋳ぐるみ部材自体の製造中(例えば、鋳造中)にできるものでも、鋳ぐるみ部材の製造後にできるものでも良い。また、その塩基性酸化物を形成する金属元素は、鋳ぐるみ部材本体の主成分でなくても良く、添加した合金成分でも良い。付着粒子も、酸性酸化物が主成分である場合に限らない。また、塩基性酸化物と酸性酸化物とはそれぞれ1種以上必要であるが、一方もしくは両方が複数種からなるものでも良い。これらのことは、特に断らない限り、以下同様である。
なお、塩基性酸化物と酸性酸化物との間での焼着反応については、詳細を後述する。
【0011】
(2)また、この鋳ぐるみ部材は、例えば、次の本発明の製造方法により製造することができる。
すなわち、本発明の鋳ぐるみ部材の製造方法は、凝固層表面に塩基性酸化物を生じる金属元素を含む溶湯を調製する溶湯調製工程と、該塩基性酸化物と反応する酸性酸化物からなる付着粒子をキャビティ内面の少なくとも一部に有する鋳型に該溶湯を注湯する注湯工程と、該溶湯を冷却凝固する凝固工程とからなり、該付着粒子が鋳込まれる表面に焼着した鋳ぐるみ部材を得ることを特徴とする。
ここで、付着粒子を設ける範囲を「キャビティ内面の少なくとも一部」としたのは、鋳ぐるみ部材を鋳込む鋳造材と接する部分に、付着粒子が存在すれば十分だからであり、鋳造材と接触しない表面にまで付着粒子は設ける必要ないからである(以下、同様)。
【0015】
(3)この鋳ぐるみ部材は、例えば、次の本発明の製造方法により製造することができる。
すなわち、本発明の鋳ぐるみ部材の製造方法は、金属元素を主成分とする溶湯を調製する溶湯調製工程と、該溶湯と主成分の金属元素を同一とし該溶湯に少なくとも表面部分が溶融する付着粒子をキャビティ内面の少なくとも一部に有する鋳型に該溶湯を注湯する注湯工程と、該溶湯を冷却凝固する凝固工程とからなり、該付着粒子が鋳込まれる表面に焼着した鋳ぐるみ部材を得ることを特徴とする。
【0016】
ここで、付着粒子は、本体を形成する溶湯と主成分の金属元素を同一とするため、両者の融点は同一か、または近接しており、その溶湯に接した付着粒子は、少なくともその溶湯に接する表面の一部分が溶融することになる。もっとも、その溶融は、付着粒子全体が溶融する必要はなく、付着粒子が鋳ぐるみ部材の本体表面に溶着すれば、十分である。
【0017】
【発明の実施の形態】
次に、実施形態を挙げ、本発明をより詳細に説明する。
(1)鋳ぐるみ部材
塩基性酸化物は、酸と反応して塩をつくる酸化物であるが、本発明でいう塩基性酸化物は金属酸化物である。例えば、FeO、Fe23、Mn23等の鉄系酸化物やマンガン系酸化物が塩基性酸化物として代表的である。その他、鋳ぐるみ部材の材質(組成)により、塩基性酸化物はCaO、MgO、Na2O、K2O等でも良い。また、Al23等の両性酸化物でも良い。
例えば、鋳ぐるみ部材が鉄製であるとき、その本体に鋳鉄、鋳鋼、マンガン鋼のいずれかを用いることができる。鋳造品自体は軽合金製であっても、強度、耐摩耗性、摺動性等の観点から、鉄製の鋳ぐるみ部材が多用されている。これは、付着粒子を焼着ではなく溶着させた場合にも言えることである。溶着する付着粒子について言換えると、鋳ぐるみ部材と付着粒子との主成分の金属元素が鉄であると、好ましい。
【0018】
特に、その本体が、組成全体を100質量%としたときに、マンガン(Mn)が0.3質量%以上、1.0質量%以下の含有量とすると好ましい。
これは、0.3質量%以下では反応が生じにくく、焼着が起りにくいからであり、Mnが1.0質量%を超えると、溶湯の表面張力が低下し、さし込み欠陥が増加するためである。
酸性酸化物は、塩基と反応して塩をつくる酸化物であるが、本発明でいう酸性酸化物は上記塩基性酸化物と反応して焼着反応を生じるものである。例えば、鋳物砂として一般的な珪砂の主成分であるSiO2が、酸性酸化物として代表的である。その他、酸性酸化物は、ジルコン砂の主成分であるZrSiO4やムライト粒子の主成分である3Al23・2SiO2〜2Al23SiO2等でも良い。
そこで、付着粒子を、珪砂、ジルコン砂、ムライト粒子のいずれか1種以上とすると、好ましい。
もっとも、塩基性酸化物と酸性酸化物とは、鋳ぐるみ部材の組成と使用する鋳物砂を考慮して、相性の良いものを選択すると好ましい。
【0019】
ところで、塩基性酸化物と酸性酸化物との焼着反応について、FeO(塩基性酸化物)とSiO2(酸性酸化物)とを例にとり説明する。この場合、次の化学式の右向きの反応が進行して、塩基性酸化物と酸性酸化物との境界面にファヤライト(fayalite)が生成される。
2FeO+SiO2→2FeO・SiO2(fayalite)
このファヤライトは、非常に大きな強度を有し、塩基性酸化物と酸性酸化物とが強固に結合して容易に剥がすことはできない。そして、このファヤライトを介することにより、酸性酸化物からなる付着粒子は、表面に塩基性酸化物を備える鋳ぐるみ部材上に強固に結合することとなる。そして、この付着粒子は、ショットブラスト等では容易に落とすことはできない。
【0020】
さらに、このような焼着反応は、例えば、SiO2などの酸性鋳物砂に鋳鉄などの塩基性酸化物(FeO)を生成する溶湯を注湯した後の凝固途中で起り易い。
鋳ぐるみ部材の本体表面に、酸性酸化物である付着粒子が焼着している様子を図1に模式的に表した。また、付着粒子が鋳鉄製シリンダライナの外周表面全体に均一に焼着している様子を模式的に図2に示した。
このように、従来のシリンダライナでは、熱膨張差により密着性を保持することが難しいが、本発明の確鋳ぐるみ部材を用いると、両者の密着性を高められ、シリンダライナとシリンダブロックとの間の熱伝達性を確保でき、また、エンジン性能や耐久性の向上を図ることができる。
いずれにしても、付着粒子(例えば、鋳物砂)が鋳ぐるみ部材の本体表面に点在し、その表面から突出てが存在するため、本発明の鋳ぐるみ部材を鋳造材の溶湯(特に高圧の溶湯)中に鋳込むと、その付着粒子が溶湯に鋳ぐまれ、付着粒子のアンカ効果または楔効果によって、鋳ぐるみ部材が鋳造材に強固に密着することとなる。
【0021】
ところで、付着粒子は、平均粒径を100μm以上、さらには、150μm以上とすると好ましい。
鋳ぐるみ部材の表面から突出している部分が大きい程、または鋳ぐるみ部材の表面に種々の凹凸が形成されている程、回り込んだ鋳造材の溶湯と付着粒子とが複雑に絡まり、鋳ぐるみ部材と鋳造材との密着性をより強固にできるからである。
ここで、平均粒径とは、画像処理を用いて付着粒子の断面積と等価な面積の円の直径を、サンプル数n=300について平均化したものである。
なお、これは、焼着した付着粒子に限らず、前述の溶着した付着粒子についても言えることである。以降、特に断らない限り、両種の付着粒子に共通する説明である。
【0022】
また、前記付着粒子は、前記本体が鋳込まれる鋳込表面積の5〜80%、さらに望ましくは20〜60%に分布していると、好適である。
付着粒子の存在する領域が鋳込表面積の5%未満では、十分な密着力を得ることができず、80%を越えると、付着粒子間の溶湯の回り込みが困難になり、アンカ効果が殆ど望めず、密着力が低下するからである。
【0023】
(2)鋳ぐるみ部材の製造方法
本発明の鋳ぐるみ部材の製造方法は、溶湯調製工程と、注湯工程と、凝固工程とからなる。各工程は、鋳ぐるみ部材の材質や形状等に応じて、従来の種々の方法を利用できるが、本発明の製造方法では、所望の成分に調製された溶湯の注がれる鋳型、特にキャビティの内面に特徴がある。つまり、前述したように、そのキャビティ内面の少なくとも一部には、焼着または溶着する付着粒子が存在する。
そして、その付着粒子が酸性酸化物からなるときは、塩基性酸化物と反応して付着粒子の焼着した鋳ぐるみ部材が得られ、その付着粒子が鉄粉からなるときは、溶湯により少なくとも一部が溶融して付着粒子の溶着した鋳ぐるみ部材が得られる。
【0024】
ところで、表面に付着粒子が適度に付着した鋳ぐるみ部材を得るために、前記付着粒子の存在する前記キャビティ内面の表面粗さが、15〜150μmRz(十点平均粗さ)、さらに望ましくは60〜150μmRzであると、好適である。
つまり、15μmRz以上の荒れたキャビティ内面とすることにより、溶湯と付着粒子との接触面積が増えると共に溶湯の付着粒子中に浸透する量(浸透量)が増加して、その溶湯が付着粒子(例えば、珪砂等の鋳物砂粒)をくるむ量が増える。
これにより、溶湯(塩基性酸化物)と付着粒子(酸性酸化物)との焼着反応が促進されたり、溶湯と付着粒子との溶融反応が促進されたりして、多数の付着粒子が表面に付着した鋳ぐるみ部材が得られる。
一方、キャビティ内面の表面粗さが150μmRzを越えると、鋳ぐるみ部材の寸法精度が保証できなくなり好ましくない。
【0025】
ところで、鋳ぐるみ部材を砂型鋳造する場合、砂型の造型は、粘結剤に被覆された珪砂等の鋳物砂が充填された鋳枠を、模型(木型、金型、樹脂型など)定盤にセットした造型機を用いて行われるのが一般的である。しかし、一般的に模型の表面は滑らかであり、仮に、模型の表面粗さを調整しても、砂型のキャビティの内面の表面粗さを上記のような値とすることは困難である。
そこで、前記キャビティは、前記付着粒子からなる鋳物砂を固化させた鋳型ブロックを切削加工して形成されたものとすると、好適である。
付着粒子からなる鋳物砂を固化させた鋳型ブロックを、エンドミル等の切削工具を用いて切削加工すると、切削工具が鋳物砂をはぎ取りながらキヤビティを創成するため、表面の滑らかな焼成型に比べて、キャビティ内面の表面粗度が適度に粗い鋳型(砂型)が容易に得られる。
【0026】
切削加工により形成された砂型表面の状態およびその砂型への溶湯浸透状態と、滑らかな焼成型により作製された砂型表面の状態およびその砂型への溶湯浸透状態とを、ぞれぞれ、図3、図4に模式的に示した。なお、図3、図4は、溶湯が鋳鉄の溶湯で、付着粒子(鋳物砂)が珪砂である場合を例示したものである。これらの図からも、砂型のキャビティ内面が切削加工により形成されていると、溶湯が回り込み易く、つまり浸透量が多く、表面に多くの付着粒子が強固に焼着または溶着した鋳ぐるみ部材が得られることが解る。
そして、キャビティ内面を切削加工する場合、前記鋳物砂を珪砂とし、前記鋳型ブロックが樹脂バインダーでコーティングした該珪砂を成形後に硬化させたものであると、好適である。
【0027】
珪砂は酸性酸化物であると共に鋳物砂として一般的であり、樹脂バインダーでコーティングされた珪砂(鋳物砂)の入手は容易である。また、熱硬化性樹脂を粘結剤(バインダー)として使用すると、水や粘土からなる粘結剤を使用する場合に比べて、砂型の強度を高くすることができ、切削加工しても型くずれを起し難く、好都合である。
なお、バインダーとなる樹脂には、フラン樹脂、フェノール樹脂、ウレタン樹脂等の硬化性樹脂がある。
【0028】
また、付着粒子の焼着した鋳ぐるみ部材を製造する場合、キャビティの内面に、前記塩基性酸化物を塗布しておいても良い。
塩基性酸化物をキャビティの内面に塗布しておくことにより、前述した焼着反応がより一層促進させ、例えば、ファヤライトが鋳ぐるみ部材の本体表面に多く生成される。その結果、塩基性酸化物を生じる金属元素(例えば、鋳鉄中のMn量等)を多くしなくとも、鋳ぐるみ部材の表面に付着粒子を容易に焼着させることもできる。
【0029】
さらに、前記鋳型は、少なくともそのキャビティの内面を、前記付着粒子を含む塗型材で形成された塗型であっても良い。
塗型は、特に、鋳造後の塑性加工や切削加工が困難な、形状の複雑な鋳ぐるみ部材を製作する場合に適する。
ところで、鋳ぐるみ部材の表面に付着粒子がすべて焼着または溶着することは殆どなく、付着粒子(鋳物砂等を含む)が鋳ぐるみ部材の表面に残留する。そこで、そのような残留物を除去することが好ましい。
従って、本発明の鋳ぐるみ部材の製造方法が、さらに、前記付着粒子の付着している前記鋳ぐるみ部材の表面から溶着または焼着していない残留粒子を除去する除去工程を備えると、好適である。
この除去工程は、例えば、ショットブラスト、ショットピーニング、タンブラ、エアブラスト、ハイドロブラスト等を使用して鋳ぐるみ部材の表面を清浄にする工程であるが、特に、ショットブラストによると、容易で確実である。
【0030】
(3)鋳ぐるみ部材を鋳込んだ鋳造品
上述した本発明の鋳ぐるみ部材を用いると、鋳ぐるみ部材と鋳造材との密着性に優れた鋳造品が得られる。従って、本発明は次にような鋳造品に関するものでもある。
すなわち、本発明の鋳ぐるみ部材を鋳込んだ鋳造品は、塩基性酸化物を生じる金属元素からなる本体と該塩基性酸化物と反応して該本体の表面に焼着する酸性酸化物からなる付着粒子とを有する鋳ぐるみ部材を、鋳造材中に鋳込んで該鋳ぐるみ部材と該鋳造材との間の密着性を高めたことを特徴とする。
【0031】
また、本発明の鋳ぐるみ部材を鋳込んだ鋳造品は、金属製の本体と該本体と主成分の金属元素を同一とする該本体の表面に溶着した付着粒子とからなる鋳ぐるみ部材を、鋳造材中に鋳込んで該鋳ぐるみ部材と該鋳造材との間の密着性を高めたことを特徴とする。
なお、鋳造材の溶湯の圧力が大きい程、より多くの付着粒子をその溶湯が鋳ぐるため、大きな射出圧力が得られる金型鋳造(ダイカスト)により鋳造品が製造されることが好ましい。溶湯の材質にもよるが、射出圧力が20〜100MPa、さらには65〜80MPaであると、好ましい。100MPa以下としたのは、射出圧力が大きすぎると、非常に大型の設備が必要となり経済的でないからである。また、その溶湯の温度は、当然湯回り不良の生じない温度以上とすることが望ましく、例えば、ADC12合金を用いた場合なら、640〜680℃とするのが好ましい。
【0032】
このような鋳造品の具体例として、例えば、シリンダライナを鋳込んだシリンダブロック、シャフトを鋳込んだスーパチャージャ等のロータ、シャフトを鋳込んだ斜板式コンプレッサの斜板、鋳鉄製ディスクを鋳込んだディスクブレーキ、本発明の鋳ぐるみ部材を用いることにより、それらの鋳造品の強度、耐摩耗性、熱伝導性、熱伝達性等を向上させることができる。しかも、本発明の鋳ぐるみ部材を用いれば、鋳ぐるみ部材の本体に追加工等を施すことなく、鋳造材との密着性を容易に確保することが可能となる。
【0033】
【実施例】
次に、実施例を挙げて、本発明をより具体的に説明する。
(実施例1)
以下に示す第1〜7鋳ぐるみ部材を製作して、本発明に係る鋳ぐるみ部材の評価を行った。
(1)鋳ぐるみ部材とそれを鋳込んだ鋳造品の製作
▲1▼第1鋳ぐるみ部材
鋳ぐるみ部材の形状は、長さ140×内径68×外径75(mm)の円筒状とした。
円筒状の鋳ぐるみ部材を製作するために、半円筒のキャビティを持つ焼成用鋳型を作製し、レジン(1.7%)をコーティングした平均粒径150μmの6号珪砂を充填後、300℃で焼成し、鋳型1を作製した。
別途、同じ条件で外径68mmの円柱状中子(鋳型2)を製作し、鋳型2を鋳型1の筒内部に挿入し両鋳型を組合わせることにより、円筒部材用鋳型(ライナ鋳型)を製作した。
そして、FCA12を熔解して鋳鉄の溶湯を得た後(溶湯調製工程)、前述の鋳型にこの溶湯を1350℃で注湯し(注湯工程)、鋳型内冷却の条件で冷却して凝固させた(凝固工程)。
得られた鋳ぐるみ部材の外周面に、ガラスビーズを用いてショットピーニングを行い、未焼着の砂粒(付着粒子)を落とし洗浄して(除去工程)、各鋳ぐるみ部材を得た。
【0034】
▲2▼第2〜7鋳ぐるみ部材
第1鋳ぐるみ部材に対して、使用した鋳型材(鋳物砂)の種類や粒径のみを変更し、その他は第1鋳ぐるみ部材と同様にして、第2〜7鋳ぐるみ部材を得た。各部材の異同を表1にまとめて示す。
なお、鋳ぐるみ部材の製作に使用した、いずれの鋳型内面(キャビティ内面)粗さも、15〜25μmであった。
【0035】
【表1】

Figure 0004409101
【0036】
▲3▼こうして得た各鋳ぐるみ部材を、3500t(3500000kg)のダイカスト機に取り付け、ADC12合金溶湯を700kg/cm2(68.65MPa)の圧力で射出し、鋳ぐるみ部材を鋳込んだAl合金製の鋳造品を製作した。
【0037】
(2)鋳ぐるみ部材の評価
▲1▼第1鋳ぐるみ部材を用いた鋳造品の接合部断面の様子を図5に示す。なお、図5は、その接合部断面を示す40倍の顕微鏡写真である。
この図5から、鋳ぐるみ部材の表面部には珪砂が入組んだように分散し、鋳ぐるみ部材と鋳造材とを強固に接着していることが解る。
また、この鋳ぐるみ部材と鋳造材との密着強度を、ロードセル(荷重計)を用いて測定したところ、700kg/cm2(68.65MPa)であり、鋳造材のアルミ基材単体での剪断強度が1400kg/cm2(137.3MPa)であることから考えても、その密着強度が非常に大きいものであることが解った。
【0038】
▲2▼第2〜5鋳ぐるみ部材を鋳込んだ各鋳造品についても、同様に密着強度を調べた。その結果を付着粒子の粒径順に図6に示す。使用した鋳物砂(付着粒子)は、珪砂とムライトであり、種類が異なるものの、両者ともに酸性砂である点で共通する。そして、いずれの鋳ぐるみ部材においても、その粒径に拘らず、各鋳物砂が強固に鋳ぐるみ部材の本体表面に付着していた。
但し、図6から解るように、平均粒径が100μm以下の鋳物砂を用いた場合、鋳ぐるみ部材と鋳造材との密着強度は十分ではなかった。これは、付着粒子の鋳ぐるみ部材表面からの突出量が少なく、Al合金の鋳造材中における付着粒子のアンカ効果が不十分であったためと思われる。
【0039】
▲3▼第1鋳ぐるみ部材と第6鋳ぐるみ部材との鋳肌面のSEM(走査型電子顕微鏡)写真を、図7および図8にそれぞれ示す。
図7から解るように、酸性酸化物からなる酸性砂(珪砂)を使用した場合、多数の珪砂が鋳ぐるみ部材の鋳肌面に焼着し、画像処理装置により測定したところ、その面積率は60%程度であった。
一方、図8から解るように、オリビン砂を使用した場合、鋳ぐるみ部材の鋳肌面に殆どオリビン砂が焼着しておらず、その面積率は3%程度であった。これは、オリビン砂のMgOが塩基性であるため、酸性酸化物FeOと反応せず、焼着反応が進行し難かったためと思われる。
また、第1鋳ぐるみ部材と第6鋳ぐるみ部材とを鋳込んだ鋳造品について、前述したのと同様に、密着強度をそれぞれ調べた結果を図9に示す。この図から、粒子が殆ど焼着していない第6鋳ぐるみ部材の場合、鋳ぐるみ部材と鋳造材との間の密着強度が殆どないことが解る。
【0040】
▲4▼鉄粉を固めた鋳型をもちいて製作した第7鋳ぐるみ部材の表面断面状態を図10に模式的に示した。
この場合、上述の焼着と異なり、鉄粉が鋳ぐるみ部材の表面に多数溶着していた。そして、この第7鋳ぐるみ部材を鋳込んだ鋳造品について、密着強度を調べたところ、900kg/cm2(88.26MPa)と非常に大きいものであることが解った。
【0041】
(実施例2)
以下に示す第1〜5シリンダライナ(鋳ぐるみ部材)を製作して、本発明に係る鋳ぐるみ部材の評価を行った。
なお、製作したシリンダライナの形状は共通で、長さ140×内径68×外径75(mm)とした。
(1)シリンダライナの製造
▲1▼第1シリンダライナ
円筒状のシリンダライナを製作するために、半円筒の滑らかなキャビティを持つ焼成用鋳型を作製し、レジン(1.7%)をコーティングした平均粒径150μmの6号珪砂を充填後、300℃で焼成し、鋳型(砂型)を作製した。この鋳型の表面粗さは10μmRzであった。こうして製作した鋳型を2つ合わせて、円筒状のキャビティをもつ鋳型(砂型)を作製した。そして、実施例1と同様に、その鋳型と中子とを組合わせてライナ鋳型を製作した。
このライナ鋳型に、FCA12を熔解し鋳鉄の溶湯を得て(溶湯調製工程)、この溶湯を前述の鋳型の上部から1350℃で注湯し(注湯工程)、その後鋳型内自然冷却の条件で冷却して凝固させた後(凝固工程)、取出してシリンダライナを得た。
こうして得られたシリンダライナの外周面に、ガラスビーズのショットピーニングを行い、未焼着の砂粒(付着粒子)を落とし清浄にした(除去工程)。
【0042】
▲2▼第2シリンダライナ
先ず、第1シリンダライナの場合と同じ珪砂を用いて、この珪砂を110×110×170mmの枠型に充填後、焼成して鋳型ブロックを製作した。次に、この鋳型ブロックの上面からφ6mm×長さ200mmの超硬エンドミルで、内径68mm×外径75mm×深さ140mmの同心円状の溝加工を行い、鋳型(砂型)を製作した。このときの表面粗さは50μmRzであった。
これ以降は、第1シリンダライナと同様にして、溶湯の注湯、凝固、取出しを行い、第2シリンダライナを得た。
【0043】
▲3▼第3シリンダライナ
第3シリンダライナは、第2シリンダライナに対して、使用する鋳物砂と、鋳型のキャビティを切削加工するエンドミル径とを変更して製作したものである。
すなわち、先ず、フラン樹脂をコーティングした平均粒径250μmの5号珪砂を、110×110×170mmの枠型に充填後、反応硬化させて鋳型ブロックを製作した。
次に、この鋳型ブロックの上面からφ5mm×長さ200mmの超硬エンドミルで、内径68mm×外径75mm×深さ140mmの同心円状の溝加工を行い、鋳型(砂型)を製作した。このときの表面粗さは150μmRzであった。
これ以降は、第1シリンダライナと同様にして、溶湯の注湯、凝固、取出しを行い、第3シリンダライナを製作した。
【0044】
▲4▼第4シリンダライナ
円筒状のシリンダライナを製作するために、半円筒のキャビティを持つ焼成用鋳型を作製した。このキャビティ面を磨くことなく、加工面の粗さとした。
以降は、第1シリンダライナの場合と同様に、レジンをコーティングした平均粒径150μmの6号珪砂を充填後、300℃で焼成し、鋳型を作製した。この鋳型の表面粗さは15μmRzであった。こうして製作した鋳型を2つ合わせて、円筒状のキャビティをもつ鋳型(砂型)を作製した。そして、実施例1等と同様に、中子を組合わせてライナ鋳型を製作した。
さらに、第1シリンダライナの場合と同様に、溶湯の注湯、凝固、取出しを行い、第4シリンダライナを製作した。
【0045】
(2)シリンダブロック(鋳造品)の製造
上述の第1〜4シリンダライナについて、それぞれ4個づつ鋳込んだ4気筒のシリンダブロックを製作した。つまり、各シリンダライナを、3500t(3500000kg)のダイカスト機に取り付け、注湯温度640℃のADC12合金溶湯を700kg/cm2(68.65MPa)の圧力で射出して、4つのシリンダライナを鋳込んだ4気筒のAl合金製シリンダブロックを、各種シリンダライナ毎に製作した。
【0046】
(3)シリンダブロックの評価
製作した各シリンダブロックについて、そのボア部に切り込みを入れ、破断状況を観察し、また、開放ひずみを測定した。ここで言う開放ひずみとは、次のようなものである。
つまり、アルミ溶湯は、固体に変化する過程での凝固、冷却により収縮しようとするが、鋳ぐるんだライナが拘束しているため、作製したアルミ鋳物は引張られた状態となっている。そのため、めがね形状鋳物のめがね中心部にひずみゲージを貼り、側面部を破断すると、鋳物は縮もうとして、そのひずみゲージには圧縮(マイナス)ひずみが測定される。こうして測定されるひずみ量を開放ひずみと呼ぶ。
【0047】
▲1▼第1シリンダライナを用いた場合、図11に示すように、切り込みを入れると、すぐにブロック側のAl合金製鋳造材が破断し、そのボア間で測定した開放ひずみは、−1500μmと非常に大きいものであった。
シリンダブロック側のAl合金とシリンダライナ側の鋳鉄との間には熱膨張差があるため、凝固過程における収縮で、Al合金側には引張応力が作用する。ところが、第1シリンダライナの表面とシリンダブロック側のAl合金との界面の様子は、図12から解るように、両者の間にアンカとなる粒子が殆ど存在していないため、密着力が皆無であることが解った。そして、この結果、前述の大きな開放ひずみが生じたものと考えられる。なお、図12は、その界面の様子を示す12倍のマクロ観察写真である(後述の図14も同様)。
【0048】
▲2▼第2シリンダライナを用いた場合、図13(a)に示すように、シリンダブロック側のAl合金部分に切り込みを入れても破断せず、図13(b)に示すように、シリンダライナ部分にまで切り込みを入れシリンダライナが破断してはじめて、ひずみが開放された。
このときのボア間の開放ひずみは、−300μmと、非常に小さいものであった。
これは、第2シリンダライナの場合、界面の状態を示す図14から解るように、シリンダライナの表面に焼着した砂粒(付着粒子)がADC12合金にくるまれて、付着粒子によるアンカ効果によって、両者間に強い密着力が生じている。そして、このような付着粒子が介在することにより、シリンダブロックに切り込みを入れても、鋳鉄製のシリンダライナがシリンダブロックのAl合金を保持しているため、ボア間までひずみが開放されなかったと考えられる。
【0049】
▲3▼第3シリンダライナを用いた場合、第2シリンダライナと同様で、図13に示すように、切り込みを入れても破断せず、シリンダライナ部分にまで切り込みを入れシリンダライナが破断してはじめて、ひずみが開放された。そして、このときの開放ひずみは、−290μmと非常に小さいものであった。
【0050】
▲4▼第4シリンダライナを用いた場合も、第2、3シリンダライナと同様で、図13に示すように、切り込みを入れても破断せず、シリンダライナ部分にまで切り込みを入れシリンダライナが破断してはじめて、ひずみが開放された。そして、このときの開放ひずみは、−500μmと非常に小さいものであった。
【0051】
▲5▼以上の評価をもとに、各シリンダライナを製作した鋳型(砂型)のキャビティ内面の表面粗さと、得られたシリンダライナを鋳込んだシリンダブロックのボア間に生じる開放ひずみとの関係を図15に示す。
これから、その表面粗さが15μmRzを越えると、開放ひずみが急減し、シリンダライナとシリンダブロックとの間の密着力が急増していることが解る。
【0052】
(4)塩基性酸化物の塗布
さらに、第1シリンダライナを製作した焼成鋳型の滑らかなキャビティ内面に、塩基性酸化物であるFe23を塗布して、第1シリンダライナの場合と同様に鋳鉄を注湯、凝固、取出し等して、第5シリンダライナを製作した。
この第5シリンダライナを鋳込んだシリンダブロックは、キャビティ内面の表面粗さがは10μmと小さかったにも拘らず、シリンダライナとシリンダブロックとの間に大きな密着力が得られ、シリンダライナの拘束除去時の開放ひずみも−300μmと非常に小さいものであった。
これは、塩基性酸化物(Fe23)の存在により、シリンダライナの表面における焼着反応が促進され、その表面に付着粒子が多数付着したためと考えられる。
【0053】
【発明の効果】
本発明の鋳ぐるみ部材によれば、その本体表面に付着した多数の粒子がアンカのように作用し、それを鋳込んだ鋳造品との間の密着性を著しく高めることができる。
【0054】
また、本発明の鋳ぐるみ部材の製造方法によれば、付着粒子が表面に焼着または溶着した鋳ぐるみ部材を容易に、また、効率的に得ることができる。
【0055】
さらに、本発明の鋳ぐるみ部材を鋳込んだ鋳造品によれば、鋳ぐるみ部材と鋳造材との間の密着性が高く、両者の間の強度、熱伝達性、熱伝導性、耐漏洩性等を向上させることができる。
【図面の簡単な説明】
【図1】鋳ぐるみ部材の本体表面に酸性酸化物である付着粒子が焼着している様子を示す模式図である。
【図2】付着粒子がシリンダライナの外周表面全体に均一に焼着している様子を示す模式図である。
【図3】切削加工により形成された砂型への溶湯浸透状態を示す模式図である。
【図4】滑らかな焼成型により作製された砂型への溶湯浸透状態を示す模式図である。
【図5】第1実施例に係る第1鋳ぐるみ部材を用いた鋳造品の接合部の断面状態を示す顕微鏡組織写真である。
【図6】第1実施例に挙げた各鋳ぐるみ部材について、鋳造材との密着強度と付着粒子の粒径との関係を示すグラフである。
【図7】第1実施例に係る第1鋳ぐるみ部材の鋳肌面を示すSEM写真である。
【図8】第1実施例中に挙げた第6鋳ぐるみ部材の鋳肌面を示すSEM写真である。
【図9】第1実施例中に挙げた第1鋳ぐるみ部材と第6鋳ぐるみ部材とを鋳込んだ鋳造品の密着強度を対比したグラフである。
【図10】第1実施例に係る、鉄粉の鋳型を用いて製作した第7鋳ぐるみ部材表面の断面状態を示す模式図である。
【図11】第2実施例中に挙げた第1シリンダライナを鋳込んだシリンダブロックに切り込みを入れ、破断した様子を示す模式図である。
【図12】第2実施例中に挙げた第1シリンダライナとシリンダブロックとの界面の様子を示すマクロ観察写真である。
【図13】第2実施例に係る第2シリンダライナを鋳込んだシリンダブロックに切り込みを入れた様子を示す模式図であり、同図(a)はシリンダブロックのAl合金部分にのみ切り込みを入れた場合であり、同図(b)はシリンダライナにまで切り込みを入れた場合である。
【図14】第2実施例中に係る第2シリンダライナとシリンダブロックとの界面の様子を示すマクロ観察写真である。
【図15】第2実施例に挙げた各シリンダライナを製作した鋳型(砂型)のキャビティ内面の表面粗さと、得られたシリンダライナを鋳込んだシリンダブロックのボア間に生じる開放ひずみとの関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cast-in member, a method for manufacturing the cast-in member, and a cast product in which the cast-in member is cast, in which excellent adhesion can be obtained between the cast-in member and a cast material into which the cast-in member is cast.
[0002]
[Prior art]
Many products with complex shapes and mass-produced products are cast products. However, since a cast article is made of a single composition metal, it is usually impossible to give different characteristics depending on the site by casting as it is. Therefore, conventionally, a cast product in which a cast-in member that satisfies the required performance is cast in a specific portion has been manufactured. For example, in an engine such as an automobile, a cast iron cylinder liner excellent in slidability and wear resistance with a piston or piston ring is cast into an aluminum alloy cylinder block that is lightweight and excellent in heat transfer.
However, in such a conventional casting, the adhesion between the two at the interface is not always sufficient. For example, in the case of the above-described cylinder block, it is difficult to melt and bond a cylinder liner having a melting point near 1200 ° C. with a molten Al alloy at about 700 ° C.
[0003]
In addition, since the coefficient of thermal expansion is considerably different between the cylinder block made of Al alloy and the cylinder liner made of cast iron, when the engine becomes hot, the coefficient of thermal expansion of the inner cylinder liner is small while the coefficient of thermal expansion of the outer cylinder block is small. Is big. For this reason, even if both are joined at the beginning of casting, they are separated by a large thermal stress generated at the boundary surface, and a clearance is generated between them. Thus, it has been conventionally difficult to maintain the adhesion between the cast-in member and the cast material into which it is cast.
And if the adhesion at the interface becomes insufficient, depending on the type of product, heat transfer, support strength of the cast-in member, etc. deteriorate, and oil or gas leaks from the interface, etc. May occur. Therefore, in the case of a cast product in which a cast-in member is cast, it is required to ensure sufficient adhesion between the two. Accordingly, proposals that can improve the adhesion between the two have been made in the following publications and the like.
[0004]
(1) In Japanese Patent Application Laid-Open No. 8-174188, a molten metal (Al alloy) for casting a cylinder liner (cast iron) and a weldable metal material (Al alloy brazing material) are sprayed on the outer surface of the cylinder liner. Thus, a method for improving the adhesion between the two by improving the surface layer of the cylinder liner is disclosed. Similar disclosures can be found in Japanese Patent Application Laid-Open Nos. 10-94867 and 5-237630.
(2) In Japanese Patent Laid-Open No. 7-139419, there is a method of increasing the contact area by obliquely constructing the liner surface and discharging bubbles generated on the liner surface upward. It is disclosed.
Japanese Patent Application Laid-Open No. 10-122034 discloses a cylinder liner, which is a cast-in member, provided with an engaging portion to physically improve adhesion.
[0005]
[Problems to be solved by the invention]
However, in the case of the former, thermal deformation of the cylinder liner occurs with spraying, or a separate process for spraying is required.
In the latter case, according to the test conducted by the present inventors, the solidification state of the molten metal changes depending on the injection conditions (in the case of die casting) of the molten metal in which the cast-in member is cast, and the effect of improving the adhesion often does not appear. occured. Moreover, since the latter method requires additional work, it is not a preferable method from the viewpoint of production cost.
[0006]
The present invention has been made in view of such circumstances.
That is, it aims at providing the cast-in member which can improve the adhesiveness between the cast-in member and the cast material which casts it reliably.
Moreover, it aims at providing the manufacturing method of the cast-in member which can produce efficiently the cast-in member excellent in adhesiveness.
It is another object of the present invention to provide a cast product in which a cast-in member is cast, in which the cast-in member and the cast material are firmly adhered.
[0007]
[Means for Solving the Problems]
Therefore, the present inventor has intensively studied to solve this problem, repeated trial and error, and examined in detail the chemical seizure phenomenon that occurs when casting and casting a cast-in member. It has been found that when molten metal that generates oxide is poured into a casting mold made of casting sand of acidic oxide (acidic sand), particles are firmly baked on the surface of the main body of the cast-in member. The member and the manufacturing method thereof have been completed.
[0008]
(1) That is, the cast-in member of the present invention includes a main body made of a metal element that generates a basic oxide, and an attached particle made of an acid oxide that reacts with the basic oxide and burns onto the surface of the main body. The adhesion between the main body and the cast material can be enhanced through the adhering particles when the main body is cast into the cast material.
[0009]
The basic oxide of the metal element formed on the main body surface of the cast-in member reacts with the acidic oxide of the adhered particles, the adhered particles are baked on the surface of the main body, and both are firmly bonded, The adhering particles protrude from the surface of the main body, and the main body surface has fine irregularities with various shapes.
And when this cast-in member is cast, the molten metal of the casting material wraps around the adhering particles, so that the adhering particles become anchors or wedges (wedges), and the cast-in member and the casting are cast. The material is physically connected to the material at the interface so that it is difficult to separate.
In this way, the adhered particles that are chemically firmly bonded to the surface of the main body of the cast-in member are further physically bonded to the casting material, and the cast-in member and the cast-in member are cast through the adhered particles. The cast material to be inserted is firmly connected, and the adhesion between the two is remarkably improved.
[0010]
Here, the basic oxide that reacts with the acidic oxide of the adhered particles may be produced during the production of the cast-in member itself (for example, during casting) or may be produced after the production of the cast-in member. Further, the metal element forming the basic oxide may not be the main component of the cast-in member main body, and may be an added alloy component. The adhered particles are not limited to the case where the acidic oxide is a main component. One or more basic oxides and acidic oxides are required, but one or both of them may be composed of a plurality of types. The same applies hereinafter unless otherwise specified.
The details of the baking reaction between the basic oxide and the acidic oxide will be described later.
[0011]
(2) Moreover, this cast-in member can be manufactured by the following manufacturing method of this invention, for example.
That is, the method for producing a cast-in member of the present invention includes a molten metal preparation step for preparing a molten metal containing a metal element that generates a basic oxide on the surface of a solidified layer, and an adhesion comprising an acidic oxide that reacts with the basic oxide. A cast-in member formed by pouring the molten metal into a mold having particles on at least a part of the inner surface of the cavity and a solidifying process for cooling and solidifying the molten metal, and baked on the surface into which the adhered particles are cast It is characterized by obtaining.
Here, the reason that the range in which the adhering particles are provided is “at least a part of the cavity inner surface” because it is sufficient that the adhering particles exist in the portion in contact with the casting material into which the cast-in member is cast. This is because it is not necessary to provide the adhered particles even on the surface to be removed (the same applies hereinafter).
[0015]
(3) This cast-in member can be manufactured, for example, by the following manufacturing method of the present invention.
That is, the method for producing a cast-in member of the present invention includes a molten metal preparation step for preparing a molten metal containing a metal element as a main component, and an adhesion in which the molten metal and the metal element of the main component are the same and at least a surface portion is melted in the molten metal. A cast-in member formed by pouring the molten metal into a mold having particles on at least a part of the inner surface of the cavity and a solidifying process for cooling and solidifying the molten metal, and baked on the surface into which the adhered particles are cast It is characterized by obtaining.
[0016]
Here, since the adhering particles have the same main metal element as the molten metal forming the main body, the melting points of both are the same or close to each other, and the adhering particles in contact with the molten metal are at least in the molten metal. A part of the contacting surface will melt. However, it is not necessary for the entire adhering particles to melt, and it is sufficient if the adhering particles are welded to the surface of the main body of the cast-in member.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to embodiments.
(1) Cast-in member
The basic oxide is an oxide that reacts with an acid to form a salt, but the basic oxide in the present invention is a metal oxide. For example, FeO, Fe 2 O Three , Mn 2 O Three Such iron-based oxides and manganese-based oxides are typical basic oxides. In addition, depending on the material (composition) of the cast-in member, the basic oxides are CaO, MgO, Na 2 O, K 2 O etc. may be sufficient. Al 2 O Three Amphoteric oxides such as
For example, when the cast-in member is made of iron, any of cast iron, cast steel, and manganese steel can be used for the main body. Even if the cast product itself is made of a light alloy, iron cast-in members are frequently used from the viewpoints of strength, wear resistance, slidability and the like. This is also true when the adhered particles are welded rather than baked. In other words, it is preferable that the metal element of the main component of the cast-in member and the adhered particles is iron.
[0018]
In particular, it is preferable that the main body has a manganese (Mn) content of 0.3% by mass or more and 1.0% by mass or less when the entire composition is 100% by mass.
This is because when 0.3% by mass or less, the reaction hardly occurs and seizure hardly occurs. When Mn exceeds 1.0% by mass, the surface tension of the molten metal is lowered and the insertion defects are increased. Because.
The acidic oxide is an oxide that reacts with a base to form a salt, but the acidic oxide referred to in the present invention reacts with the basic oxide to cause a baking reaction. For example, SiO, the main component of silica sand, which is common as foundry sand 2 Is representative of acidic oxides. In addition, the acidic oxide is ZrSiO, the main component of zircon sand. Four 3Al, the main component of mullite particles 2 O Three ・ 2SiO 2 ~ 2Al 2 O Three SiO 2 Etc.
Therefore, it is preferable that the adhered particles be one or more of quartz sand, zircon sand, and mullite particles.
However, it is preferable to select a basic oxide and an acidic oxide that are compatible with each other in consideration of the composition of the cast-in member and the foundry sand to be used.
[0019]
By the way, regarding the baking reaction between a basic oxide and an acidic oxide, FeO (basic oxide) and SiO 2 (Acid oxide) will be described as an example. In this case, the reaction in the right direction of the following chemical formula proceeds, and fayalite is generated at the interface between the basic oxide and the acidic oxide.
2FeO + SiO 2 → 2FeO ・ SiO 2 (Fayalite)
This firelite has a very large strength, and the basic oxide and the acidic oxide are firmly bonded and cannot be easily peeled off. And through this firelite, the adhering particles made of the acidic oxide are firmly bonded onto the cast-in member having the basic oxide on the surface. The adhered particles cannot be easily removed by shot blasting or the like.
[0020]
Further, such a baking reaction can be performed by, for example, SiO. 2 It tends to occur during solidification after pouring a molten metal that produces basic oxide (FeO) such as cast iron into acidic casting sand.
FIG. 1 schematically shows a state where adhered particles, which are acidic oxides, are baked on the surface of the main body of the cast-in member. Further, FIG. 2 schematically shows that the adhered particles are uniformly baked on the entire outer peripheral surface of the cast iron cylinder liner.
As described above, in the conventional cylinder liner, it is difficult to maintain the adhesion due to the difference in thermal expansion. However, when the positive cast walnut member of the present invention is used, the adhesion between the two can be improved, and the cylinder liner and the cylinder block can be improved. In addition, the heat transfer performance can be secured, and the engine performance and durability can be improved.
In any case, adhering particles (for example, foundry sand) are scattered on the surface of the main body of the cast-in member, and there are protrusions from the surface. When cast into the molten metal, the adhered particles are cast into the molten metal, and the cast-in member is firmly adhered to the cast material due to the anchor effect or the wedge effect of the adhered particles.
[0021]
By the way, the adhered particles preferably have an average particle size of 100 μm or more, and more preferably 150 μm or more.
The larger the portion that protrudes from the surface of the cast-in member, or the more unevenness is formed on the surface of the cast-in member, the more complicated the melted and molten particles of the cast material that wraps around, and the cast-in member This is because the adhesion between the steel and the cast material can be further strengthened.
Here, the average particle diameter is obtained by averaging the diameters of circles having an area equivalent to the cross-sectional area of attached particles using image processing with respect to the number of samples n = 300.
This is true not only for the adhered particles that have been baked but also for the aforementioned adhered particles that have been deposited. Hereinafter, unless otherwise specified, the description is common to both types of adhered particles.
[0022]
The adhering particles are preferably distributed in 5 to 80%, more desirably 20 to 60%, of the casting surface area into which the main body is cast.
If the area where the adhering particles are present is less than 5% of the casting surface area, sufficient adhesion cannot be obtained, and if it exceeds 80%, it becomes difficult for the molten metal to wrap around the adhering particles, and the anchor effect can be almost expected. This is because the adhesion is reduced.
[0023]
(2) Method for producing cast-in member
The manufacturing method of the cast-in member of the present invention includes a molten metal preparation step, a pouring step, and a solidification step. Each process can use various conventional methods depending on the material, shape, etc. of the cast-in member, but in the manufacturing method of the present invention, a mold, particularly a cavity, into which a molten metal prepared as a desired component is poured. There are features on the inside. That is, as described above, adhered particles to be baked or welded exist on at least a part of the inner surface of the cavity.
When the adhered particles are made of an acidic oxide, a cast-in member in which the adhered particles are baked by reacting with the basic oxide is obtained, and when the adhered particles are made of iron powder, at least one of the molten metal is obtained. The cast-in member with the part melted and the adhered particles welded is obtained.
[0024]
By the way, in order to obtain a cast-in member having adhering particles appropriately adhered to the surface, the surface roughness of the cavity inner surface where the adhering particles exist is 15 to 150 μm Rz (ten-point average roughness), more preferably 60 to 150 μm Rz is preferable.
In other words, by making the inner surface of the cavity more rough than 15 μm Rz, the contact area between the molten metal and the adhered particles increases, and the amount (penetration amount) that penetrates into the adhered particles of the molten metal increases. , Casting sand particles such as silica sand).
As a result, the baking reaction between the molten metal (basic oxide) and the adhered particles (acidic oxide) is promoted, or the melting reaction between the molten metal and the adhered particles is promoted. An attached cast-in member is obtained.
On the other hand, if the surface roughness of the cavity inner surface exceeds 150 μm Rz, the dimensional accuracy of the cast-in member cannot be guaranteed, which is not preferable.
[0025]
By the way, when cast-cast members are cast by sand mold, sand mold molding is performed by using a casting frame filled with casting sand such as silica sand coated with a binder, model (wood mold, mold, resin mold, etc.) surface plate. It is common to use a molding machine set in the above. However, the surface of the model is generally smooth, and even if the surface roughness of the model is adjusted, it is difficult to set the surface roughness of the inner surface of the sand mold cavity to the above value.
Therefore, it is preferable that the cavity is formed by cutting a mold block obtained by solidifying foundry sand made of the adhered particles.
When the mold block that solidifies the foundry sand consisting of adhering particles is cut using a cutting tool such as an end mill, the cutting tool creates a cavity while stripping the foundry sand. A mold (sand mold) having an appropriately rough surface on the inner surface of the cavity can be easily obtained.
[0026]
The state of the surface of the sand mold formed by cutting and the state of molten metal penetration into the sand mold, and the state of the surface of the sand mold produced by the smooth firing mold and the state of molten metal penetration into the sand mold are shown in FIG. This is schematically shown in FIG. 3 and 4 exemplify the case where the molten metal is cast iron and the adhered particles (cast sand) are silica sand. Also from these figures, when the sand mold cavity inner surface is formed by cutting, the molten metal is easy to go around, that is, a large amount of penetration and a large amount of adhered particles firmly adhered to the surface are obtained. I understand that
When the cavity inner surface is cut, it is preferable that the foundry sand is made of silica sand and the mold block is hardened after molding the silica sand coated with a resin binder.
[0027]
Silica sand is an acidic oxide and is commonly used as foundry sand, and silica sand (cast sand) coated with a resin binder is easily available. In addition, when a thermosetting resin is used as a binder, the strength of the sand mold can be increased compared to the case where a binder made of water or clay is used. It is hard to start and is convenient.
In addition, in resin used as a binder, there exist curable resins, such as a furan resin, a phenol resin, and a urethane resin.
[0028]
Moreover, when manufacturing the cast-in member which the adhesion particle baked on, you may apply | coat the said basic oxide to the inner surface of a cavity.
By applying the basic oxide to the inner surface of the cavity, the above-described baking reaction is further promoted, and, for example, a lot of firelite is generated on the surface of the main body of the cast-in member. As a result, the adhering particles can be easily baked on the surface of the cast-in member without increasing the amount of the metal element (for example, the amount of Mn in the cast iron) that generates the basic oxide.
[0029]
Furthermore, the mold may be a coating mold in which at least the inner surface of the cavity is formed of a coating material containing the attached particles.
The coating mold is particularly suitable for producing a cast-in member having a complicated shape that is difficult to perform plastic processing or cutting after casting.
By the way, the adhered particles are hardly baked or welded on the surface of the cast-in member, and the adhered particles (including foundry sand and the like) remain on the surface of the cast-in member. Therefore, it is preferable to remove such a residue.
Therefore, it is preferable that the method for producing a cast-in member of the present invention further includes a removal step of removing residual particles that are not welded or baked from the surface of the cast-in member to which the attached particles are attached. is there.
This removal process is a process of cleaning the surface of the cast-in member using, for example, shot blasting, shot peening, tumbling, air blasting, hydroblasting, etc. is there.
[0030]
(3) Cast product with cast-in member
When the above-described cast-in member of the present invention is used, a cast product having excellent adhesion between the cast-in member and the cast material can be obtained. Accordingly, the present invention also relates to the following castings.
That is, a cast product in which the cast-in member of the present invention is cast is composed of a main body made of a metal element that generates a basic oxide and an acidic oxide that reacts with the basic oxide and is deposited on the surface of the main body. A cast-in member having adhering particles is cast into a cast material to improve adhesion between the cast-in member and the cast material.
[0031]
Further, a cast product in which the cast-in member of the present invention is cast includes a cast-in member formed of a metal main body and adhering particles welded to the surface of the main body, which is the same as the main body and the metal element. It is characterized in that the adhesion between the cast-in member and the cast material is improved by casting into a cast material.
In addition, since the molten metal casts more adhering particles as the pressure of the molten metal of the cast material increases, it is preferable that the cast product is manufactured by die casting (die casting) that can obtain a large injection pressure. Although it depends on the material of the molten metal, the injection pressure is preferably 20 to 100 MPa, more preferably 65 to 80 MPa. The reason why the pressure is 100 MPa or less is that if the injection pressure is too large, a very large facility is required, which is not economical. Further, it is desirable that the temperature of the molten metal is not less than a temperature at which no hot water defect occurs. For example, when an ADC12 alloy is used, it is preferably 640 to 680 ° C.
[0032]
Specific examples of such cast products include, for example, a cylinder block in which a cylinder liner is cast, a rotor such as a supercharger in which a shaft is cast, a swash plate of a swash plate compressor in which a shaft is cast, and a cast iron disk. By using the disk brake and the cast-in member of the present invention, it is possible to improve the strength, wear resistance, thermal conductivity, heat transferability, etc. of those cast products. In addition, when the cast-in member of the present invention is used, it is possible to easily ensure adhesion with the cast material without performing additional processing or the like on the main body of the cast-in member.
[0033]
【Example】
Next, an Example is given and this invention is demonstrated more concretely.
Example 1
The following first to seventh cast-in members were manufactured, and the cast-in member according to the present invention was evaluated.
(1) Production of cast-in members and cast products in which they are cast
(1) First cast-in member
The shape of the cast-in member was a cylindrical shape of length 140 × inner diameter 68 × outer diameter 75 (mm).
In order to manufacture a cylindrical cast-in member, a firing mold having a semi-cylindrical cavity was prepared and filled with No. 6 silica sand with an average particle size of 150 μm coated with resin (1.7%), and then at 300 ° C. The mold 1 was produced by firing.
Separately, a cylindrical core (mold 2) having an outer diameter of 68 mm is manufactured under the same conditions, and a mold for a cylindrical member (liner mold) is manufactured by inserting the mold 2 into the cylinder of the mold 1 and combining both molds. did.
Then, after melting FCA 12 to obtain a molten cast iron (molten preparation step), the molten metal is poured into the above-mentioned mold at 1350 ° C. (pouring step), and cooled and solidified under the conditions of cooling in the mold. (Coagulation process).
Shot peening was performed on the outer peripheral surface of the obtained cast-in member using glass beads, and unbaked sand particles (adhered particles) were removed and washed (removal process) to obtain each cast-in member.
[0034]
(2) Second to seventh cast-in members
Only the type and particle size of the used mold material (casting sand) were changed with respect to the first cast-in member, and the other 2-7 cast-in members were obtained in the same manner as the first cast-in member. The differences between the members are summarized in Table 1.
In addition, the roughness of any mold inner surface (cavity inner surface) used for manufacturing the cast-in member was 15 to 25 μm.
[0035]
[Table 1]
Figure 0004409101
[0036]
(3) Each cast-in member thus obtained is attached to a 3500 t (3500000 kg) die casting machine, and the ADC12 alloy molten metal is injected at a pressure of 700 kg / cm 2 (68.65 MPa) to make the cast-in member cast. A casting was made.
[0037]
(2) Evaluation of cast-in members
{Circle around (1)} FIG. 5 shows a cross section of a joint portion of a cast product using the first cast-in member. FIG. 5 is a 40 × photomicrograph showing the cross section of the joint.
From FIG. 5, it can be seen that silica sand is dispersed in the surface portion of the cast-in member so that the cast-in member and the cast material are firmly bonded.
Further, when the adhesion strength between the cast-in member and the cast material was measured using a load cell (load meter), it was 700 kg / cm 2 (68.65 MPa), and the shear strength of the cast material with the aluminum base material alone was Even from the fact that it is 1400 kg / cm 2 (137.3 MPa), it has been found that the adhesion strength is very high.
[0038]
{Circle around (2)} The adhesion strength of each cast product in which the second to fifth cast-in members were cast was also examined. The results are shown in FIG. The foundry sand (adherent particles) used is quartz sand and mullite, and although they are of different types, both are common in that they are acidic sand. In each cast member, regardless of the particle size, each foundry sand was firmly attached to the surface of the main body of the cast member.
However, as can be seen from FIG. 6, when the foundry sand having an average particle size of 100 μm or less was used, the adhesion strength between the cast-in member and the cast material was not sufficient. This is presumably because the amount of adhesion particles protruding from the surface of the cast-in member is small and the anchor effect of the adhesion particles in the cast material of the Al alloy was insufficient.
[0039]
(3) SEM (scanning electron microscope) photographs of the cast surface of the first cast-in member and the sixth cast-in member are shown in FIGS. 7 and 8, respectively.
As can be seen from FIG. 7, when acid sand (silica sand) made of acid oxide is used, a large number of silica sand is baked on the casting surface of the cast-in member and measured by an image processing apparatus. It was about 60%.
On the other hand, as shown in FIG. 8, when olivine sand was used, the olivine sand was hardly baked on the casting surface of the cast-in member, and the area ratio was about 3%. This is probably because MgO in olivine sand is basic, so it does not react with the acidic oxide FeO and the baking reaction does not proceed easily.
FIG. 9 shows the results of examining the adhesion strength of the cast product in which the first cast-in member and the sixth cast-in member are cast, as described above. From this figure, it can be seen that in the case of the sixth cast-in member in which particles are hardly baked, there is almost no adhesion strength between the cast-in member and the cast material.
[0040]
(4) The surface cross-sectional state of the seventh cast-in member produced using a mold in which iron powder is hardened is schematically shown in FIG.
In this case, unlike the above-described baking, many iron powders were deposited on the surface of the cast-in member. Then, when the adhesion strength of the cast product in which the seventh cast-in member was cast was examined, it was found that the cast product was very large at 900 kg / cm 2 (88.26 MPa).
[0041]
(Example 2)
The following first to fifth cylinder liners (casting member) were manufactured, and the casting member according to the present invention was evaluated.
In addition, the shape of the manufactured cylinder liner was common, and it was set to length 140 * inner diameter 68 * outer diameter 75 (mm).
(1) Manufacture of cylinder liner
(1) First cylinder liner
In order to manufacture a cylindrical cylinder liner, a mold for firing having a semi-cylindrical smooth cavity was prepared, filled with No. 6 silica sand with an average particle size of 150 μm coated with resin (1.7%), and then heated to 300 ° C. Was fired to prepare a mold (sand mold). The surface roughness of this mold was 10 μm Rz. Two molds thus produced were combined to produce a mold (sand mold) having a cylindrical cavity. Then, as in Example 1, a liner mold was manufactured by combining the mold and the core.
In this liner mold, FCA 12 is melted to obtain a molten cast iron (molten preparation process), and this molten metal is poured from above the mold at 1350 ° C. (pouring process), and then under the condition of natural cooling in the mold. After cooling and solidifying (solidifying step), the cylinder liner was obtained by taking out.
Shot peening of glass beads was performed on the outer peripheral surface of the cylinder liner thus obtained, and unbaked sand particles (adhered particles) were removed and cleaned (removal step).
[0042]
(2) Second cylinder liner
First, using the same silica sand as in the case of the first cylinder liner, this silica sand was filled into a 110 × 110 × 170 mm frame mold and then fired to produce a mold block. Next, concentric grooves with an inner diameter of 68 mm, an outer diameter of 75 mm, and a depth of 140 mm were formed from the upper surface of the mold block with a carbide end mill of φ6 mm × length 200 mm to produce a mold (sand mold). The surface roughness at this time was 50 μm Rz.
Thereafter, in the same manner as the first cylinder liner, the molten metal was poured, solidified, and taken out to obtain a second cylinder liner.
[0043]
(3) Third cylinder liner
The third cylinder liner is manufactured by changing the casting sand to be used and the end mill diameter for cutting the mold cavity to the second cylinder liner.
That is, first, No. 5 silica sand having an average particle diameter of 250 μm coated with a furan resin was filled in a 110 × 110 × 170 mm frame mold and then cured by reaction to produce a mold block.
Next, concentric grooves with an inner diameter of 68 mm, an outer diameter of 75 mm, and a depth of 140 mm were processed from the upper surface of the mold block with a carbide end mill of φ5 mm × 200 mm in length to produce a mold (sand mold). The surface roughness at this time was 150 μm Rz.
Thereafter, the third cylinder liner was manufactured by pouring, solidifying, and taking out the molten metal in the same manner as the first cylinder liner.
[0044]
(4) Fourth cylinder liner
In order to produce a cylindrical cylinder liner, a firing mold having a semi-cylindrical cavity was produced. The surface of the cavity was roughened without polishing the cavity surface.
Thereafter, as in the case of the first cylinder liner, No. 6 silica sand having an average particle diameter of 150 μm coated with a resin was filled and then fired at 300 ° C. to produce a mold. The surface roughness of this mold was 15 μm Rz. Two molds thus produced were combined to produce a mold (sand mold) having a cylindrical cavity. In the same manner as in Example 1 and the like, a liner mold was manufactured by combining cores.
Further, as in the case of the first cylinder liner, the molten metal was poured, solidified, and taken out to produce a fourth cylinder liner.
[0045]
(2) Manufacture of cylinder block (cast product)
A four-cylinder cylinder block was manufactured by casting four of each of the above-described first to fourth cylinder liners. That is, each cylinder liner was attached to a 3500 t (3500000 kg) die casting machine, and an ADC12 alloy melt having a pouring temperature of 640 ° C. was injected at a pressure of 700 kg / cm 2 (68.65 MPa) to cast four cylinder liners. A 4-cylinder Al alloy cylinder block was manufactured for each cylinder liner.
[0046]
(3) Cylinder block evaluation
About each manufactured cylinder block, it cut | incised into the bore part, the fracture condition was observed, and the open strain was measured. The open strain referred to here is as follows.
In other words, the molten aluminum tends to shrink by solidification and cooling in the process of changing to a solid, but the cast aluminum liner is constrained, so that the produced aluminum casting is in a tensioned state. For this reason, when a strain gauge is attached to the center of the spectacle of the spectacle-shaped casting and the side surface is broken, the casting is about to shrink, and a compressive (minus) strain is measured on the strain gauge. The amount of strain measured in this way is called open strain.
[0047]
(1) When the first cylinder liner is used, as shown in FIG. 11, as soon as the notch is made, the Al alloy cast material on the block side breaks immediately, and the open strain measured between the bores is −1500 μm. And it was very big.
Since there is a difference in thermal expansion between the Al alloy on the cylinder block side and the cast iron on the cylinder liner side, tensile stress acts on the Al alloy side due to shrinkage during the solidification process. However, the state of the interface between the surface of the first cylinder liner and the Al alloy on the cylinder block side, as shown in FIG. 12, has almost no anchor particles between them, so there is no adhesion. I understood that there was. As a result, the large open strain described above is considered to have occurred. FIG. 12 is a 12 × macro observation photograph showing the state of the interface (the same applies to FIG. 14 described later).
[0048]
(2) When the second cylinder liner is used, as shown in FIG. 13 (a), the aluminum alloy part on the cylinder block side does not break even if it is cut, and the cylinder as shown in FIG. 13 (b) Strain was released only after the cylinder liner was broken by cutting into the liner.
The open strain between the bores at this time was as very small as −300 μm.
In the case of the second cylinder liner, as can be seen from FIG. 14 showing the state of the interface, sand particles (adhesion particles) baked on the surface of the cylinder liner are wrapped in the ADC12 alloy, and due to the anchor effect by the adhesion particles, There is a strong adhesion between the two. And, it seems that the strain was not released between the bores because the cast iron cylinder liner held the Al alloy of the cylinder block even if the cylinder block was cut by the presence of such adhered particles. It is done.
[0049]
(3) When the third cylinder liner is used, it is the same as the second cylinder liner, and as shown in FIG. For the first time, the strain was released. The open strain at this time was as very small as −290 μm.
[0050]
(4) When the fourth cylinder liner is used, it is the same as the second and third cylinder liners. As shown in FIG. 13, the cylinder liner does not break even if a cut is made. Only after breaking was the strain released. The open strain at this time was as very small as −500 μm.
[0051]
(5) Based on the above evaluation, the relationship between the surface roughness of the cavity inner surface of the mold (sand mold) on which each cylinder liner was manufactured and the open strain generated between the bores of the cylinder block in which the obtained cylinder liner was cast. Is shown in FIG.
From this, it can be seen that when the surface roughness exceeds 15 μm Rz, the open strain rapidly decreases, and the adhesion between the cylinder liner and the cylinder block increases rapidly.
[0052]
(4) Application of basic oxide
Furthermore, Fe, which is a basic oxide, is formed on the inner surface of the smooth cavity of the firing mold for manufacturing the first cylinder liner. 2 O Three As in the case of the first cylinder liner, cast iron was poured, solidified, and taken out to produce a fifth cylinder liner.
Although the cylinder block in which the fifth cylinder liner is cast has a small surface roughness of 10 μm on the inner surface of the cavity, a large adhesion force is obtained between the cylinder liner and the cylinder block, and the cylinder liner is restrained. The open strain at the time of removal was as very small as −300 μm.
This is a basic oxide (Fe 2 O Three This is considered to be because the adhesion reaction on the surface of the cylinder liner was promoted, and a large number of adhered particles adhered to the surface.
[0053]
【The invention's effect】
According to the cast-in member of the present invention, a large number of particles adhering to the surface of the main body act like an anchor, and the adhesion between the cast product in which it is cast can be remarkably enhanced.
[0054]
Further, according to the method for producing a cast-in member of the present invention, it is possible to easily and efficiently obtain a cast-in member in which adhered particles are baked or welded to the surface.
[0055]
Furthermore, according to the cast product in which the cast-in member of the present invention is cast, the adhesion between the cast-in member and the cast material is high, and the strength, heat transferability, thermal conductivity, and leak resistance between the two. Etc. can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a state where adhered particles, which are acidic oxides, are baked on the surface of a main body of a cast-in member.
FIG. 2 is a schematic diagram showing a state where adhered particles are uniformly baked on the entire outer peripheral surface of a cylinder liner.
FIG. 3 is a schematic diagram showing a state of molten metal penetration into a sand mold formed by cutting.
FIG. 4 is a schematic view showing a state of molten metal penetration into a sand mold produced by a smooth firing mold.
FIG. 5 is a photomicrograph showing the cross-sectional state of the joint portion of the cast product using the first cast-in member according to the first embodiment.
FIG. 6 is a graph showing the relationship between the adhesion strength with a cast material and the particle size of attached particles for each cast-in member listed in the first example.
FIG. 7 is an SEM photograph showing a casting surface of the first cast-in member according to the first example.
FIG. 8 is an SEM photograph showing the cast surface of the sixth cast-in member listed in the first embodiment.
FIG. 9 is a graph comparing the adhesion strength of cast products in which the first cast-in member and the sixth cast-in member listed in the first embodiment are cast.
FIG. 10 is a schematic view showing a cross-sectional state of the surface of a seventh cast-in member produced using an iron powder mold according to the first embodiment.
FIG. 11 is a schematic view showing a state in which a cylinder block into which the first cylinder liner cited in the second embodiment is cast is cut and broken.
FIG. 12 is a macro observation photograph showing the state of the interface between the first cylinder liner and the cylinder block mentioned in the second embodiment.
FIG. 13 is a schematic view showing a state in which a cut is made in a cylinder block in which a second cylinder liner according to a second embodiment is cast, and FIG. FIG. 4B shows the case where the cylinder liner is cut.
FIG. 14 is a macro observation photograph showing a state of an interface between a second cylinder liner and a cylinder block according to a second embodiment.
FIG. 15 shows the relationship between the surface roughness of the cavity inner surface of the mold (sand mold) in which each cylinder liner described in the second embodiment is manufactured and the open strain generated between the bores of the cylinder block in which the obtained cylinder liner is cast. It is a graph which shows.

Claims (16)

塩基性酸化物を生じる金属元素からなる本体と、
該塩基性酸化物と反応して該本体の表面に焼着する酸性酸化物からなる付着粒子とを有し、
該本体を鋳造材中に鋳込んだときに該本体と該鋳造材との間の密着性を該付着粒子を介して高められることを特徴とする鋳ぐるみ部材。
A body made of a metal element that produces a basic oxide;
Having adhered particles made of an acidic oxide that reacts with the basic oxide and burns onto the surface of the body,
A cast-in member, wherein when the main body is cast into a cast material, the adhesion between the main body and the cast material can be enhanced through the adhered particles.
前記付着粒子は、平均粒径を100μm以上とする請求項1に記載の鋳ぐるみ部材。The cast-in member according to claim 1, wherein the adhered particles have an average particle size of 100 μm or more. 前記付着粒子は、前記本体が鋳込まれる鋳込表面積の5〜80%に分布している請求項1に記載の鋳ぐるみ部材。The cast-in member according to claim 1, wherein the adhered particles are distributed in 5 to 80% of a casting surface area into which the main body is cast. 前記付着粒子は、珪砂、ジルコン砂、ムライト粒子のいずれか1種以上である請求項1記載の鋳ぐるみ部材。2. The cast-in member according to claim 1, wherein the attached particles are at least one of quartz sand, zircon sand, and mullite particles. 前記本体は、鋳鉄、鋳鋼、マンガン鋼のいずれかからなる請求項1に記載の鋳ぐるみ部材。The cast body according to claim 1, wherein the main body is made of cast iron, cast steel, or manganese steel. 前記本体は、組成全体を100質量%としたときに、マンガンを0.3質量%以上含む請求項5記載の鋳ぐるみ部材。The cast body member according to claim 5, wherein the main body contains 0.3% by mass or more of manganese when the entire composition is 100% by mass. 前記本体は、シリンダライナである請求項1に記載の鋳ぐるみ部材。The cast-in member according to claim 1, wherein the main body is a cylinder liner. 塩基性酸化物を生じる金属元素からなる本体と該塩基性酸化物と反応して該本体の表面に焼着する酸性酸化物からなる付着粒子とを有する鋳ぐるみ部材を、鋳造材中に鋳込んで該鋳ぐるみ部材と該鋳造材との間の密着性を高めたことを特徴とする鋳ぐるみ部材を鋳込んだ鋳造品。A cast-in member having a main body made of a metal element that generates a basic oxide and adhering particles made of an acidic oxide that reacts with the basic oxide and burns onto the surface of the main body is cast into a cast material. A cast product in which a cast-in member is cast, wherein the adhesion between the cast-in member and the cast material is improved. 凝固層表面に塩基性酸化物を生じる金属元素を含む溶湯を調製する溶湯調製工程と、該塩基性酸化物と反応する酸性酸化物からなる付着粒子をキャビティ内面の少なくとも一部に有する鋳型に該溶湯を注湯する注湯工程と、該溶湯を冷却凝固する凝固工程とからなり、該付着粒子が鋳込まれる表面に焼着した鋳ぐるみ部材を得ることを特徴とする鋳ぐるみ部材の製造方法。A molten metal preparation step for preparing a molten metal containing a metal element that generates a basic oxide on the surface of the solidified layer, and a mold having attached particles made of an acidic oxide that reacts with the basic oxide on at least a part of the inner surface of the cavity. A method for producing a cast-in member comprising a pouring step for pouring a molten metal and a solidifying step for cooling and solidifying the molten metal, and obtaining a cast-in member baked on the surface into which the adhered particles are cast. . 金属元素を主成分とする溶湯を調製する溶湯調製工程と、A melt preparation process for preparing a melt mainly composed of a metal element;
該溶湯と主成分の金属元素を同一とし該溶湯に少なくとも表面部分が溶融する付着粒子をキャビティ内面の少なくとも一部に有する鋳型に該溶湯を注湯する注湯工程と、  A pouring step of pouring the molten metal into a mold having the same main metal element as the molten metal and having at least a part of the cavity inner surface with adhering particles that melt at least a surface portion of the molten metal;
該溶湯を冷却凝固する凝固工程とからなり、該付着粒子が鋳込まれる表面に焼着した鋳ぐるみ部材を得ることを特徴とする鋳ぐるみ部材の製造方法。  A method for producing a cast-in member, comprising a solidifying step of cooling and solidifying the molten metal, and obtaining a cast-in member that is baked on the surface into which the adhered particles are cast.
さらに、前記付着粒子の付着している前記鋳ぐるみ部材の表面から溶着または焼着していない残留粒子を除去する除去工程を備える請求項9または10に記載の鋳ぐるみ部材の製造方法。Furthermore, the manufacturing method of the cast-in member of Claim 9 or 10 provided with the removal process which removes the residual particle | grains which are not welded or baked from the surface of the said cast-up member to which the said adhesion particle has adhered. 前記付着粒子の存在する前記キャビティ内面の表面粗さは、15〜150μmRz(十点平均粗さ)である請求項9または10に記載の鋳ぐるみ部材の製造方法。The method for producing a cast-in member according to claim 9 or 10, wherein the surface roughness of the inner surface of the cavity where the adhered particles are present is 15 to 150 µmRz (10-point average roughness). 前記キャビティは、前記付着粒子からなる鋳物砂を固化させた鋳型ブロックを切削加工して形成されたものである請求項9記載の鋳ぐるみ部材の製造方法。The method for producing a cast-in member according to claim 9, wherein the cavity is formed by cutting a mold block obtained by solidifying foundry sand made of the adhered particles. 前記鋳物砂は珪砂であり、前記鋳型ブロックは樹脂バインダーでコーティングした該珪砂を成形後に硬化させたものである請求項13に記載の鋳ぐるみ部材の製造方法。The method for producing a cast-in member according to claim 13, wherein the foundry sand is silica sand, and the mold block is obtained by curing the silica sand coated with a resin binder after molding. 前記キャビティの内面には、前記塩基性酸化物が塗布されている請求項9に記載の鋳ぐるみ部材の製造方法。The method for manufacturing a cast-in member according to claim 9, wherein the basic oxide is applied to an inner surface of the cavity. 前記鋳型は、少なくとも前記キャビティの内面を前記付着粒子を含む塗型材で形成した鋳型である請求項9または10に記載の鋳ぐるみ部材の製造方法。The mold manufacturing method of the insert casting component according to claim 9 or 10 as a template formed by coating material comprising at least an inner surface of the adhered particles of the cavity.
JP2001020659A 2001-01-29 2001-01-29 Cast-in member, method for manufacturing the same, and cast product incorporating the same Expired - Fee Related JP4409101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020659A JP4409101B2 (en) 2001-01-29 2001-01-29 Cast-in member, method for manufacturing the same, and cast product incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020659A JP4409101B2 (en) 2001-01-29 2001-01-29 Cast-in member, method for manufacturing the same, and cast product incorporating the same

Publications (2)

Publication Number Publication Date
JP2002224813A JP2002224813A (en) 2002-08-13
JP4409101B2 true JP4409101B2 (en) 2010-02-03

Family

ID=18886336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020659A Expired - Fee Related JP4409101B2 (en) 2001-01-29 2001-01-29 Cast-in member, method for manufacturing the same, and cast product incorporating the same

Country Status (1)

Country Link
JP (1) JP4409101B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532527B2 (en) * 2007-06-27 2010-08-25 株式会社栗本鐵工所 Cast composite
US9364894B2 (en) 2009-03-11 2016-06-14 J. Sintokiogio, Ltd. Method of treating the surface of a cavity of a die used for casting

Also Published As

Publication number Publication date
JP2002224813A (en) 2002-08-13

Similar Documents

Publication Publication Date Title
US7383805B2 (en) Cylinder liner for insert casting and method for manufacturing thereof
JP3253605B2 (en) Cast-in cast iron member, cast-in product using the same, and method of manufacturing cast-in cast iron member
WO2006044713A2 (en) Insert cladding technique for precision casting processes
US7921901B2 (en) Sacrificial sleeves for die casting aluminum alloys
JP4409101B2 (en) Cast-in member, method for manufacturing the same, and cast product incorporating the same
JP3248011B2 (en) Casting method using special core
EP0882534B1 (en) Apparatus and use of the apparatus for producing a cylinder block of an internal combustion engine
US20040261969A1 (en) Method for producing castings, molding sand and its use for carrying out said method
KR100806481B1 (en) Lining support plate and associated production method
KR100893960B1 (en) Method for producing a light-alloy bearing bush with a rough external surface
JPS6224172B2 (en)
CN104226898A (en) Investment casting method for bucket tooth
JP3293420B2 (en) Engine cylinder block and method of manufacturing the same
JPS58128245A (en) Production of sand core for pressure casting
JPS61172666A (en) Production of fiber reinforced cylindrical member
JP6979171B2 (en) Casting and packaging members and their manufacturing methods
JP2001340940A (en) Foundry casting die and its manufacturing method
JPH0813400B2 (en) Precision casting method for castings having a narrow hollow portion
US7677297B2 (en) Reducing residual stresses during sand casting
JPS63248552A (en) Sand core for pressure casting
JPH08155588A (en) Molding formed using special core for molding
JP2001071118A (en) Inserting member and inserting method therefor
JP2003230952A (en) Method of manufacturing cast product
JPH07232332A (en) Mold made of resin
CN104325077A (en) Casting method of vehicle engine piston

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees