JPH07232332A - Mold made of resin - Google Patents

Mold made of resin

Info

Publication number
JPH07232332A
JPH07232332A JP6301829A JP30182994A JPH07232332A JP H07232332 A JPH07232332 A JP H07232332A JP 6301829 A JP6301829 A JP 6301829A JP 30182994 A JP30182994 A JP 30182994A JP H07232332 A JPH07232332 A JP H07232332A
Authority
JP
Japan
Prior art keywords
resin
molding
surface layer
molding surface
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6301829A
Other languages
Japanese (ja)
Other versions
JP3320930B2 (en
Inventor
Kanji Osada
関治 長田
Hiroshi Ito
寛 伊藤
Toshiaki Ishihara
敏明 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSADA SEIKO KK
NGK Insulators Ltd
Original Assignee
OSADA SEIKO KK
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSADA SEIKO KK, NGK Insulators Ltd filed Critical OSADA SEIKO KK
Priority to JP30182994A priority Critical patent/JP3320930B2/en
Publication of JPH07232332A publication Critical patent/JPH07232332A/en
Application granted granted Critical
Publication of JP3320930B2 publication Critical patent/JP3320930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C11/1218Three-dimensional shape with regard to depth and extending direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To enhance durability as a mold and improve inferior thermal conductivity by specifying the difference in a thermal expansion coefficient between members constituting a molding face layer and a metallic backing part, respectively. CONSTITUTION:A model (wooden mold) 14 having a face exactly like the shape of an article to be molded is covered with a metallic backing 2 having a molding face layer 1 of 20mm in a wall thickness and a space corresponding to a width of 30mm at a circumferential part 6 on a parting face. Then, a composite resin material 15 comprising resin and a filler mainly composed of metallic powder is cast into a space defined by the model 14 and the backing 2, and casting is performed by applying pressure to the composite resin material. After casting, the whole is heated, and a surface layer part is caused to be primarily cured. After the model is opened, secondary cure is performed to form the molding face layer 1, and a mold (top force) 3 is obtained. In this case, the difference in a thermal expansion coefficient between the metallic backing member and the composite resin material is made to be at most 5X10<-6>/ deg.C. By this method, peeling and cracking of the molding face layer are not caused.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂よりなる成形面層
を金属製バッキング部で裏打ち支持してなる樹脂製成形
用型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin molding die in which a molding surface layer made of resin is backed and supported by a metal backing portion.

【0002】[0002]

【従来の技術】プラスチックなどの成形用金型の中で、
試作用の簡易型や小ロット生産用の型として、金型に比
べて低コスト、短納期で製作できる樹脂型が従来から使
用されてきた。
2. Description of the Related Art Among molding dies for plastics,
Conventionally, resin molds that can be manufactured at a lower cost and with shorter delivery times than molds have been used as simple molds for trial manufacture and molds for small-lot production.

【0003】これらの樹脂型は、型としての強度、耐久
性が低いこと、樹脂材料自体の熱伝導率が低いことによ
る成形効率の低下などの問題点を有しており、これらの
対策として、樹脂自体を多官能のエポキシ樹脂とし、更
に金属粉などのフィラーを多量に含有させることによ
り、強度、熱伝導性を高めたものが開発されている(特
開平5−25253号、特開平5−112629号、特
開平5−214214号各公報参照)。
These resin molds have problems such as low strength and durability as a mold and a decrease in molding efficiency due to the low thermal conductivity of the resin material itself. A resin having high strength and thermal conductivity has been developed by using a polyfunctional epoxy resin as the resin itself and further containing a large amount of a filler such as metal powder (Japanese Patent Laid-Open No. 25253/1993 and Japanese Patent Laid-Open No. 25253/1993). No. 112629, JP-A-5-214214).

【0004】また、樹脂を金属製バックアップ材で裏打
ちして支持する構造とすることで、型自体の強度を高め
つつ、樹脂部分の厚さを薄くして熱伝導性を向上させた
ものも提案されている(特開平4−129707号公報
参照)。この場合、樹脂部とバックアップ材との剥離
(硬化後の収縮時に樹脂部が割れることによる)を防止
するために、バックアップ材にボルトや溝を多数設けた
構造とすることで、機械的に接合強度を高めたものであ
る。一方、冷却パイプをバックアップ材中に設けること
により、成形時の冷却効率を向上させたものも一般に用
いられている。
Further, a structure in which the resin is lined with a metal backing material to support the resin, and the strength of the mold itself is increased, and the thickness of the resin portion is reduced to improve the thermal conductivity, is also proposed. (See Japanese Patent Laid-Open No. 4-129707). In this case, in order to prevent the resin part and the backup material from peeling off (due to the resin part breaking during shrinkage after curing), the backup material has a structure in which a large number of bolts and grooves are provided, so that mechanical bonding is achieved. It has increased strength. On the other hand, a cooling pipe is generally used in which a cooling pipe is provided in the backup material to improve cooling efficiency during molding.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の樹脂型においても、型製作時の硬化、冷却の段階で成
形面層にクラックが入ったり、成形時の繰り返し応力に
より、特に型の分割面(パーティングラインともいう)
近くにおいて、樹脂部とバックアップ材との剥離が生じ
る、樹脂部が摩耗などにより変形する(ダレる)、とい
った強度上の問題、また樹脂自体の熱伝導性の低さに加
え、樹脂部とバックアップ材との接合界面において熱伝
導性が劣ること(これは、樹脂部とバックアップ材とが
剥離することでより劣ることになる。)により、成形効
率がそれほど良くならないといった問題があった。
However, even in these resin molds, cracks may be formed in the molding surface layer at the stage of curing and cooling at the time of molding the mold, and repetitive stress at the time of molding may cause cracks (particularly on the dividing surface of the mold). Also called a parting line)
In addition to the problem of strength such as peeling of the resin part from the backup material in the vicinity, deformation (drip) of the resin part due to abrasion, etc., and low thermal conductivity of the resin itself, backup to the resin part There is a problem in that the molding efficiency does not improve that much due to the poor thermal conductivity at the bonding interface with the material (which is inferior when the resin part and the backup material are separated).

【0006】さらに、バックアップ材中にボルトや溝を
多数設けた構造のものも、充分な接合強度を得るには多
くの部位での加工が必要となり、工数、手間がかかるば
かりでなく、成形面層の熱伝導性の点でも問題があっ
た。このような問題点のため、上記した従来の樹脂型
は、いまだ数万ショットレベルの成形や、成形面層とバ
ックアップ材との熱膨張差の絶対量が大きくなり、更に
より大きな型締め力が必要となる大物品の型には適用で
きないといった欠点があった。
Further, even in the structure having a large number of bolts and grooves in the backup material, it is necessary to process in many parts in order to obtain sufficient joining strength, which not only requires man-hours and labor but also molding surface. There was also a problem with the thermal conductivity of the layers. Due to such problems, the above-mentioned conventional resin mold still has molding of several tens of thousands of shots, and the absolute amount of difference in thermal expansion between the molding surface layer and the backup material becomes large, and a still larger mold clamping force is required. It has the drawback that it cannot be applied to the type of large articles required.

【0007】[0007]

【課題を解決するための手段】本発明の目的は、従来の
樹脂型に比べ、型としての耐久性を向上させ、かつ熱伝
導性の悪さを改善させた樹脂製成形用型を提供するもの
であり、数千ショット〜数万ショットレベルに及ぶ成
形、および大物品の型への適用を可能にしたものであ
る。すなわち、本発明によれば、成形面層が金属粉を主
体とするフィラーを含有する樹脂から成り、該成形面層
が金属製バッキング部により接合にて裏打ち支持されて
なる樹脂製成形用型において、成形面層と金属製バッキ
ング部のそれぞれを構成する部材の熱膨張係数の差が5
×10-6/℃以下であることを特徴とする樹脂製成形用
型(第一発明)が提供される。また、本発明によれば、
成形面層、中間層及び金属製バッキング部とから構成さ
れる樹脂製成形用型であって、該成形面層と該中間層が
それぞれ金属粉を主体とするフィラーを含有する樹脂か
ら形成され、該中間層が金属製バッキング部により接合
にて裏打ち支持されてなり、該中間層と該金属製バッキ
ング部のそれぞれを構成する部材の熱膨張係数の差を5
×10-6/℃以下とするとともに、成形面層のフィラー
の含有率を中間層のフィラーの含有率より低くしたこと
を特徴とする樹脂製成形用型(第二発明)が提供され
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a resin molding die which has improved durability as a die and improved poor thermal conductivity as compared with a conventional resin die. That is, it is possible to perform molding ranging from several thousand shots to tens of thousands of shots and to apply it to a mold of a large article. That is, according to the present invention, in the molding die made of resin, the molding surface layer is made of a resin containing a filler mainly composed of metal powder, and the molding surface layer is backed and supported by a joint by a metal backing portion. , The difference in the coefficient of thermal expansion between the members constituting the molding surface layer and the metal backing portion is 5
Provided is a resin molding die (first invention) characterized by having a density of x10 -6 / ° C or less. Further, according to the present invention,
A molding die made of a molding surface layer, an intermediate layer and a metal backing part, wherein the molding surface layer and the intermediate layer are each formed of a resin containing a filler mainly containing metal powder, The intermediate layer is backed and supported by a metal backing portion by bonding, and the difference in coefficient of thermal expansion between the members constituting the intermediate layer and the metal backing portion is 5
Provided is a resin molding die (second invention) characterized in that the content of the filler in the molding surface layer is lower than the content of the filler in the intermediate layer while the content is not more than × 10 -6 / ° C.

【0008】[0008]

【作用】本発明の第一発明に係る樹脂製成形用型では、
成形面層が金属製バッキング部により接合にて裏打ち支
持されて構成されており、かつ成形面層と金属製バッキ
ング部のそれぞれを構成する部材の熱膨張係数の差を所
定以下とした。すなわち、成形面層と金属製バッキング
部を構成する各部材の常温〜200℃における熱膨張係
数の差を5×10-6/℃以下、好ましくは4×10-6
℃以下、さらに好ましくは2×10-6/℃以下とした。
In the resin molding die according to the first aspect of the present invention,
The molding surface layer is configured to be backed and supported by the metal backing portion by joining, and the difference in the coefficient of thermal expansion between the members forming the molding surface layer and the metal backing portion is set to a predetermined value or less. That is, the difference in coefficient of thermal expansion between each member constituting the molding surface layer and the metal backing portion at room temperature to 200 ° C. is 5 × 10 −6 / ° C. or less, preferably 4 × 10 −6 /
C. or less, more preferably 2.times.10.sup.- 6 / .degree. C. or less.

【0009】ここで熱膨張係数の差が5×10-6/℃を
超えると、型の製作時の硬化、冷却の段階で成形面層に
クラックが入ったり、成形中の熱サイクルと繰り返し応
力により成形面層とバッキング部の接合面で剥離が生じ
ることに起因して、成形面層にクラックが入る可能性が
大きい。また、剥離が生じると成形面層の熱伝導性(成
形面層の抜熱能)も低下するという問題が生じる。
If the difference in the coefficient of thermal expansion exceeds 5 × 10 -6 / ° C., cracks may occur in the molding surface layer during the steps of hardening and cooling during the manufacture of the mold, and the thermal cycle and repeated stress during molding Due to this, peeling may occur at the joint surface between the molding surface layer and the backing portion, so that the molding surface layer is likely to be cracked. Further, when peeling occurs, there is a problem that the thermal conductivity of the molding surface layer (heat removal ability of the molding surface layer) is also reduced.

【0010】第一発明において、成形面層と金属製バッ
キング部との接合は化学的な接着を主とするものと推定
される。そして、この化学的な接着を効果的に達成維持
するために、上記のような成形面層と金属製バッキング
部を構成する各部材の熱膨張係数が深く関係しており、
各部材の熱膨張係数の差が特定値以下のときに、はじめ
て成形面層と金属製バッキング部との接合が良好に達
成、維持できることを見出したものである。
In the first invention, it is presumed that the bonding between the molding surface layer and the metal backing portion is mainly chemical bonding. And, in order to effectively achieve and maintain this chemical adhesion, the thermal expansion coefficient of each member constituting the molding surface layer and the metal backing portion as described above is deeply related,
It was discovered that, when the difference in the coefficient of thermal expansion of each member is equal to or less than a specific value, the bonding between the molding surface layer and the metal backing portion can be satisfactorily achieved and maintained for the first time.

【0011】なお、第一発明において、成形面層とバッ
キング部の接合面における剥離をさらに確実に防止する
ために、化学的な接着強度を高めておく手段として、例
えばバッキング部の成形面層との接合面に、通常のエポ
キシ樹脂と金属の接着と同様に、カップリング処理を施
すことも有効であり、好ましい。
In the first aspect of the present invention, as a means for increasing the chemical bond strength in order to more reliably prevent peeling at the joint surface between the molding surface layer and the backing portion, for example, a molding surface layer of the backing portion It is also effective and preferable to apply a coupling treatment to the joint surface in the same manner as the usual adhesion between an epoxy resin and a metal.

【0012】成形面層と金属製バッキング部のそれぞれ
を構成する材質としては、次のとおりである。成形面層
は金属粉を主体とするフィラーを含有する樹脂からなる
もので、具体的な材質としては、特開平5−25253
号、特開平5−112629号、特開平5−21421
4号各公報などに示されるような、熱硬化性のエポキシ
樹脂(強度面から多官能樹脂を用いることが好まし
い。)に、金属粉やセラミック粉を50重量%以上含有
させて、熱伝導性、耐摩耗性を高めつつ熱膨張量を下げ
たもの(熱膨張係数が30×10-6/℃のレベル以下)
が好ましい。
The materials for forming the molding surface layer and the metal backing portion are as follows. The molding surface layer is made of a resin containing a filler composed mainly of metal powder, and as a specific material, it is disclosed in JP-A-5-25253.
Japanese Patent Laid-Open No. 5-112629, Japanese Patent Laid-Open No. 21421/1993
Thermosetting epoxy resin (preferably a polyfunctional resin is used from the viewpoint of strength) as shown in Japanese Patent No. 4 etc. contains 50% by weight or more of metal powder or ceramic powder to obtain thermal conductivity. , With reduced thermal expansion while increasing wear resistance (coefficient of thermal expansion is below the level of 30 × 10 -6 / ° C)
Is preferred.

【0013】上記金属粉としては、アルミニウム粉、ニ
ッケル粉、鉄粉、銅粉またはこれらの合金等がある。但
し、熱伝導性及び比重がエポキシ樹脂に近いことを考慮
すると、アルミニウム粉或いはアルミニウム合金粉が好
ましい。ここで比重を考慮するのは、樹脂と金属粉の比
重に大きな違いがあると樹脂と金属粉の混合物を注型す
る際に、金属粉が先に沈殿してしまうからである。(先
に金属粉のみを注型し、その後樹脂を含浸する方法もあ
る。) またセラミック粉としては、酸化物系(アルミナ、シリ
カ、ジルコニア、マグネシア等、またはこれらの混合
物)、及び炭化物系、窒化物系が挙げられる。
Examples of the metal powder include aluminum powder, nickel powder, iron powder, copper powder and alloys thereof. However, considering that the thermal conductivity and the specific gravity are close to those of epoxy resin, aluminum powder or aluminum alloy powder is preferable. The reason why the specific gravity is taken into consideration here is that if there is a large difference in the specific gravity between the resin and the metal powder, the metal powder will precipitate first when the mixture of the resin and the metal powder is cast. (There is also a method of first casting only metal powder and then impregnating it with resin.) As the ceramic powder, oxide type (alumina, silica, zirconia, magnesia, etc., or a mixture thereof), and carbide type, A nitride type is mentioned.

【0014】耐摩耗性を向上させるためには、セラミッ
ク粉を多量に含有させるとよい。また機械加工性を向上
させるためには、適宜金属粉とセラミック粉を混合して
含有させることが好ましい。但し、この場合、セラミッ
ク粉の粒径は金属粉の粒径よりも細かいものを用いると
よい。上記金属粉、セラミック粉、或いは両者の混合物
を樹脂に含有させるには、最密充填ができるようその個
々の粒度分布を調整するとよい。また含有量は、注型方
法によっても上限が制御でき、注型の圧力を上げるか、
振動を用いてもよい。
In order to improve wear resistance, it is preferable to add a large amount of ceramic powder. Further, in order to improve machinability, it is preferable to appropriately mix and contain metal powder and ceramic powder. However, in this case, the particle size of the ceramic powder may be smaller than that of the metal powder. In order to allow the resin to contain the above-mentioned metal powder, ceramic powder, or a mixture of both, it is advisable to adjust the individual particle size distribution so that the closest packing can be achieved. The upper limit of the content can also be controlled by the casting method.
Vibration may be used.

【0015】また、金属製バッキング部としては、亜鉛
合金(熱膨張係数が26〜28×10-6/℃)が好まし
い。この亜鉛合金としては、一般に鋳造用の合金として
用いられるAl:3.9〜4.3重量%、Cu:2.9
〜3.4重量%、Mg:0.03〜0.06重量%、残
Znを基本組成とするもの(商品名:ZAS、三井金属
鉱業(株)製)でよいが、同様のZn−Al−Cu系合
金でCu、Alの含有量を増加させたり、Ni、Ti等
を含有させることで、強度を増加させた亜鉛合金を用い
てもよい。このような樹脂からなる成形面層と亜鉛合金
からなるバッキング部の組み合わせが、それぞれの熱膨
張係数の差が小さくなることから好ましい。なお、バッ
キング部の成形面層側表面に凹凸を設けておくことは、
より接合強度を高めるために好ましい。
The metal backing part is preferably a zinc alloy (coefficient of thermal expansion is 26 to 28 × 10 -6 / ° C.). As this zinc alloy, Al: 3.9 to 4.3 wt% and Cu: 2.9, which are generally used as casting alloys, are used.
.About.3.4 wt%, Mg: 0.03 to 0.06 wt%, and a basic composition of residual Zn (trade name: ZAS, manufactured by Mitsui Mining & Smelting Co., Ltd.), but similar Zn-Al A zinc alloy may be used in which the strength is increased by increasing the contents of Cu and Al in a -Cu alloy, or by including Ni, Ti and the like. A combination of such a molding surface layer made of a resin and a backing portion made of a zinc alloy is preferable because the difference in the coefficient of thermal expansion between them becomes small. In addition, providing unevenness on the molding surface layer side surface of the backing part is
It is preferable in order to further increase the bonding strength.

【0016】成形面に凸状部が存在する場合、凸状部の
内部に金属製の棒や板状体をバッキング部に接合させた
状態で埋設させることが好ましい。この際、棒や板状体
にも凹凸や貫通孔を付けておくと更に接合強度が安定す
る。また、成形面の凸状部がより細く高い場合には、金
属製の同一形状品を挿入して成形面を構成することが好
ましい。
When the molding surface has a convex portion, it is preferable to embed a metal rod or plate in the convex portion in a state of being bonded to the backing portion. At this time, if the rod or plate is provided with irregularities or through holes, the bonding strength is further stabilized. Further, when the convex portion of the molding surface is narrower and higher, it is preferable to insert the same shaped article made of metal to form the molding surface.

【0017】成形面層の厚さは、抜熱能の向上と、硬化
時の反応熱を小さく抑え、モデル(原型)への熱影響を
少なくすること、更に成形面層を注型、硬化させて製作
する際の歪の発生を防止する等の観点から、薄い方が好
ましく、具体的には30mm以下、より好ましくは10
mm以下、特に好ましくは5mm以下である。但し、バ
ッキング部の精度上および注型時の充填性に鑑みると、
1mm以上は必要である。
The thickness of the molding surface layer is to improve the heat removal capability and to suppress the reaction heat at the time of curing to reduce the heat influence on the model (prototype). Furthermore, the molding surface layer is cast and cured. From the viewpoint of preventing distortion during production, it is preferably thinner, specifically 30 mm or less, more preferably 10 mm or less.
mm or less, and particularly preferably 5 mm or less. However, considering the accuracy of the backing part and the filling property at the time of casting,
1 mm or more is necessary.

【0018】第一発明の樹脂製成形用型においては、成
形面層中に冷却用パイプが埋設されていることが好まし
い。従来、成形するに当たっては、型の冷却を行なうた
めに、バッキング部の中に冷却パイプを設けた構造が知
られているが、本発明では、より一層成形面の冷却効果
を高めるために、成形面層中に冷却パイプを埋設した構
造としている。なお、大物品等や冷却効果が一層要求さ
れる場合においては、バッキング部にも冷却パイプを設
けることが型冷却の面から好ましいが、特に必須のもの
ではない。
In the resin molding die of the first invention, it is preferable that a cooling pipe is embedded in the molding surface layer. Conventionally, in molding, a structure in which a cooling pipe is provided in a backing part for cooling the mold is known, but in the present invention, in order to further enhance the cooling effect of the molding surface, The cooling pipe is embedded in the surface layer. In addition, when a large article or the like and a cooling effect are further required, it is preferable to provide a cooling pipe also in the backing portion from the viewpoint of mold cooling, but it is not particularly essential.

【0019】冷却パイプは予めバッキング部に接合させ
た状態で、モデルとバッキング部との間に成形面層を注
型することにより、成形面層中への埋設がなされる。こ
の際、成形面層は熱をかけることで硬化するとともにバ
ッキング部および冷却パイプと接合(接着)するが、こ
の場合、バッキング部と冷却パイプの固定が不充分であ
ると、冷却パイプ自体の熱膨張により、冷却パイプの位
置がずれて不正確になるばかりでなく、成形面層中で冷
却パイプとの熱膨張差による応力がかかる状態となり、
成形時の剥離の原因となる。冷却パイプの材質として
は、加工のし易さおよび熱伝導性から銅が好ましく、バ
ッキング部とは溶接により接合することができる。
The cooling pipe is pre-bonded to the backing portion, and the molding surface layer is cast between the model and the backing portion to be embedded in the molding surface layer. At this time, the molding surface layer is hardened by applying heat and is bonded (bonded) to the backing portion and the cooling pipe, but in this case, if the backing portion and the cooling pipe are not sufficiently fixed, the heat of the cooling pipe itself Due to the expansion, not only the position of the cooling pipe shifts and becomes inaccurate, but also the stress due to the difference in thermal expansion with the cooling pipe is applied in the molding surface layer,
It may cause peeling during molding. As the material of the cooling pipe, copper is preferable from the viewpoint of workability and thermal conductivity, and it can be joined to the backing portion by welding.

【0020】また、冷却パイプの埋設は、図6のよう
に、成形面層1と金属製バッキング部2との接合面にお
いて、金属製バッキング部2側に溝部11を設け、この
溝部11内に冷却パイプ12をはめ込み、かつ成形面層
1を構成する樹脂により冷却パイプ12が接合、埋設さ
れていることがさらに好ましい。このような構造とする
ことにより、冷却パイプと成形面層との熱膨張差により
生じる応力はほとんどバッキング部が吸収するため、剥
離の問題が解消される。また、冷却パイプの径に関係な
く、成形面層の厚さを薄く均一にすることができる。さ
らに、パイプの位置も正確になるため、型として必要な
離型用ピン等の後加工も容易に行なうことが可能とな
る。なお、本発明で用いる冷却パイプとしては、更に冷
却効率を高めるために、蛇腹状の金属製パイプを用いる
ことが好ましい。
As for embedding the cooling pipe, as shown in FIG. 6, a groove portion 11 is provided on the metal backing portion 2 side at the joint surface between the molding surface layer 1 and the metal backing portion 2, and the groove portion 11 is provided in the groove portion 11. It is further preferable that the cooling pipe 12 is fitted and the cooling pipe 12 is joined and buried by the resin forming the molding surface layer 1. With such a structure, most of the stress generated by the difference in thermal expansion between the cooling pipe and the molding surface layer is absorbed by the backing portion, so that the problem of peeling is solved. In addition, the thickness of the molding surface layer can be made thin and uniform regardless of the diameter of the cooling pipe. Further, since the position of the pipe is also accurate, it is possible to easily perform post-processing such as a mold releasing pin required as a mold. In addition, as the cooling pipe used in the present invention, it is preferable to use a bellows-shaped metal pipe in order to further enhance the cooling efficiency.

【0021】成形用型を用いて成形を行なう場合におい
て、成形時の型締め圧力は、型の分割面の周辺部にかか
る状態となる。ちなみに、型締め圧力は大物品で約10
00ton、中物品で300〜500ton、小物品で
約100tonであり、また型の分割面の周辺部におけ
る面圧は約400〜500kg/cm2 となる。このよ
うな場合、成形面層の樹脂自体の強度ではこの圧力の繰
り返しに耐えられず、繰り返し成形により成形面層の分
割面が変形あるいは摩耗し、遂には破損に至るという問
題も起こり得る。
When molding is performed using a molding die, the clamping pressure at the time of molding is in a state of being applied to the peripheral portion of the dividing surface of the die. By the way, the clamping pressure is about 10 for large items.
00 tons, medium articles 300 to 500 tons, small articles about 100 tons, and the surface pressure at the peripheral portion of the mold dividing surface is about 400 to 500 kg / cm 2 . In such a case, the strength of the resin itself of the molding surface layer cannot withstand the repetition of this pressure, and the repetitive molding may deform or wear the divided surfaces of the molding surface layer, which may eventually cause a problem.

【0022】そこで、本発明の樹脂製成形用型では、樹
脂製成形用型の分割面の周辺部において、金属製バッキ
ング部を露呈させ、成形時の型締めの際の圧力が、実質
的に露呈させた金属製バッキング部にかかる構造に形成
することにより、型の耐久性を著しく向上させることが
可能となる。これを図面により説明すると、図3に示す
ように、樹脂からなる成形面層1とそれを裏打ち支持し
た金属製バッキング部2とから構成される成形用型は、
通常上型3と下型4とから成り、上型3と下型4の各々
の成形面層1の間に成形空間5が形成される。本発明の
好適例では、型の分割面の周辺部6において金属製バッ
キング部2を露呈させ、この分割面の周辺部6に型締め
圧力がかかるようになっている。
Therefore, in the resin molding die of the present invention, the metal backing portion is exposed at the peripheral portion of the divided surface of the resin molding die, and the pressure at the time of mold clamping during molding is substantially The durability of the mold can be remarkably improved by forming the exposed metal backing portion in the structure. This will be described with reference to the drawings. As shown in FIG. 3, a molding die composed of a molding surface layer 1 made of a resin and a metal backing portion 2 lining and supporting it is
Usually, it is composed of an upper mold 3 and a lower mold 4, and a molding space 5 is formed between the molding surface layers 1 of the upper mold 3 and the lower mold 4. In the preferred embodiment of the present invention, the metal backing portion 2 is exposed at the peripheral portion 6 of the mold dividing surface, and the mold clamping pressure is applied to the peripheral portion 6 of the mold dividing surface.

【0023】また、図4のように、型の分割面の周辺部
6に、バッキング部材質より耐久性(硬度)の優れた材
質の金属製ブロック7を挿入して金属製バッキング部2
と接合させることが、より型の耐久性を高めることがで
き、好ましい。例えば、バッキング部材質が亜鉛合金の
場合には、金属製ブロックとしては炭素綱などのスチー
ル等が用いられる。
Further, as shown in FIG. 4, a metal block 7 made of a material having higher durability (hardness) than the backing member material is inserted into the peripheral portion 6 of the mold dividing surface to insert the metal backing portion 2.
It is preferable to join with because the durability of the mold can be improved. For example, when the backing material is a zinc alloy, steel such as carbon steel is used as the metal block.

【0024】図3、図4に示すような構造を有する樹脂
製成形用型において、型当たり面(当接面)における、
金属面と成形面層の高さ方向の調整が重要となる。すな
わち、図5に示すように、型の分割面の周辺部6に露呈
された金属製バッキング部2に、十分に型締め圧力がか
かり、かつ成形面層部のパーティングライン8から成形
品のバリが生じないようにするためには、型を合わせた
状態で金属当たり面9の隙間Aが実質的に0となり、成
形面層部のパーティングライン8の隙間Bが0.05m
m以下とすることが好ましい。
In the resin molding die having the structure shown in FIGS. 3 and 4, at the die contact surface (contact surface),
It is important to adjust the height direction of the metal surface and the molding surface layer. That is, as shown in FIG. 5, a sufficient mold clamping pressure is applied to the metal backing portion 2 exposed at the peripheral portion 6 of the mold dividing surface, and the molded product is fed from the parting line 8 of the molding surface layer portion. In order to prevent burrs from occurring, the gap A of the metal contact surface 9 becomes substantially 0 and the gap B of the parting line 8 of the molding surface layer portion is 0.05 m when the molds are fitted together.
It is preferably m or less.

【0025】この場合、金属当たり面9の隙間Aとパー
ティングライン8の隙間Bも0とすることがより好まし
いが、金属製バッキング部(金属製ブロックを挿入した
場合も含む。)と成形面層部との弾性率の差(金属は成
形面層を構成する樹脂の約10倍以上)を考慮して、先
に隙間Bが0となった後、成形面層部の弾性変形範囲で
の締付け力で隙間Aが0となる状態が更に好ましい。具
体的には、成形面層部の弾性率によって異なるが、隙間
Bが0のとき、隙間Aが0.05mm程度となるような
状態が好ましい。
In this case, the gap A between the metal contact surface 9 and the gap B between the parting lines 8 is more preferably 0, but the metal backing portion (including the case where a metal block is inserted) and the molding surface are also included. Considering the difference in elastic modulus from the layer portion (metal is approximately 10 times or more that of the resin forming the molding surface layer), after the gap B becomes 0, the elastic deformation range of the molding surface layer portion It is more preferable that the clearance A be zero by the tightening force. Specifically, although it depends on the elastic modulus of the molding surface layer, it is preferable that the clearance A be about 0.05 mm when the clearance B is zero.

【0026】なお、図5に示すように、本発明の樹脂製
成形用型において、成形面層1としてつば部10を設け
ることが、繰り返し成形による成形面層1の変形、摩耗
が抑制でき、好ましい。この場合、つば部10の厚みC
を20mm以上とすることが、弾性許容範囲が増加し好
ましい。また、つば部10の幅Dは、型締め時に成形面
層1と金属製バッキング部2により剪断方向の応力がか
からないように、10mm以上とすることが好ましい
が、金属部分で効果的に圧力を受けるためには30mm
以下とすることが更に好ましい。
As shown in FIG. 5, in the resin molding die of the present invention, the provision of the collar portion 10 as the molding surface layer 1 can suppress deformation and wear of the molding surface layer 1 due to repeated molding, preferable. In this case, the thickness C of the collar portion 10
Is preferably 20 mm or more because the elastic allowable range is increased. The width D of the collar portion 10 is preferably 10 mm or more so that the molding surface layer 1 and the metal backing portion 2 do not apply stress in the shearing direction during mold clamping, but the pressure is effectively applied to the metal portion. 30mm to receive
The following is more preferable.

【0027】次に、本発明の第二発明に係る樹脂製成形
用型について説明する。第二発明の成形用型は、成形面
層、中間層及び金属製バッキング部の3層構造からなる
ものであって、成形面層と中間層がそれぞれ金属粉を主
体とするフィラーを含有する樹脂から形成され、中間層
が金属製バッキング部により接合にて裏打ち支持されて
いる。そして、中間層と金属製バッキング部のそれぞれ
を構成する部材の常温〜200℃における熱膨張係数の
差を5×10-6/℃以下、好ましくは4×10-6/℃以
下、さらに好ましくは2×10-6/℃以下とするととも
に、成形面層のフィラーの含有率を中間層のフィラーの
含有率より低くしている。
Next, the resin molding die according to the second aspect of the present invention will be described. The molding die of the second invention has a three-layer structure of a molding surface layer, an intermediate layer, and a metal backing portion, and the molding surface layer and the intermediate layer each contain a filler mainly containing metal powder. And an intermediate layer is backed and supported by a metal backing by joining. And, the difference in the coefficient of thermal expansion between room temperature and 200 ° C. of the members constituting the intermediate layer and the metal backing part is 5 × 10 −6 / ° C. or less, preferably 4 × 10 −6 / ° C. or less, and further preferably The content of the filler in the molding surface layer is set lower than 2 × 10 −6 / ° C. and lower than the content of the filler in the intermediate layer.

【0028】樹脂層と金属製バッキング部の熱膨張係数
の差を5×10-6/℃以下にして両者の良好な接合状態
を得るとともに、熱伝導性を高めるためには、金属粉を
主体とするフィラーを樹脂中に多量に含有させる必要が
ある。具体的には、このフィラーの含有量は、面積率で
好ましくは45%以上、より好ましくは55%以上、更
に好ましくは65%以上であり、仮にフィラーにアルミ
ニウム合金粉を用いた場合は、重量比で各々約55%以
上、65%以上、75%以上を含有させたものとなる。
上記第一発明のように、このフィラーを多量に含有させ
た樹脂を直接成形面層として用いると、仕上げ時のみが
き特性が劣って光沢のある成形面が得にくかったり、成
形ショット数の増加に伴って成形面が粗面化しやすいな
ど、製品の成形性に問題を生じる場合がある。
In order to obtain a good bonding state between the resin layer and the metal backing by setting the difference in thermal expansion coefficient between them to 5 × 10 −6 / ° C. or less, and to improve the thermal conductivity, the main component is metal powder. It is necessary to make the resin contain a large amount of the filler. Specifically, the content of the filler is preferably 45% or more, more preferably 55% or more, still more preferably 65% or more in terms of area ratio. If aluminum filler powder is used as the filler, the weight is In the respective ratios, about 55% or more, 65% or more, and 75% or more are contained.
When the resin containing a large amount of this filler is directly used as the molding surface layer as in the above-mentioned first invention, it is difficult to obtain a glossy molding surface due to poor polishing characteristics only at the time of finishing, and an increase in the number of molding shots. Along with this, the molding surface may be roughened, which may cause a problem in the moldability of the product.

【0029】そこで、第二発明においては、上記のよう
な多量のフィラーを含有させた樹脂を中間層として用い
ることによって、金属製バッキング部と樹脂層との良好
な接合状態を確保し、かつ、熱伝導性を高めるととも
に、中間層よりもフィラーの含有率を低くした樹脂を用
いて中間層上に成形面層を設けることによって、成形性
の向上を図っている。このように、フィラーの含有率が
低い樹脂を成形面層に用いると、型仕上げ時のみがき特
性が向上して光沢面が得やすくなり、成形ショット数の
増加による成形面の粗面化も抑制される。
Therefore, in the second invention, the resin containing a large amount of the filler as described above is used as the intermediate layer to ensure a good joining state between the metal backing portion and the resin layer, and The moldability is improved by providing a molding surface layer on the intermediate layer using a resin having a filler content lower than that of the intermediate layer while increasing the thermal conductivity. As described above, when a resin having a low filler content is used for the molding surface layer, the glazing property is improved only at the time of mold finishing and a glossy surface is easily obtained, and the roughening of the molding surface due to an increase in the number of molding shots is also suppressed. To be done.

【0030】成形面層に用いる樹脂のフィラー含有率と
しては、面積率で好ましくは40%以下、より好ましく
は30%以下となるように含有させたものが望ましく、
より具体的には、みがき対象面(成形面層の表面)にお
けるフィラーの露出面積が、みがき対象面の全面積の3
0%以下となるような樹脂であることが望ましい。ま
た、成形面層に用いる樹脂は、常温で一次硬化可能なも
のが好ましい。成形面層の形成は、通常、これに使用す
る樹脂を、離型剤を塗布したモデルに刷毛塗りによりゲ
ルコートし、硬化させることによって行うが、常温にて
速やかに硬化処理がなされれば、硬化処理時にモデルに
含有された空気の膨張、噴出による転写面の不具合が発
生しない。
The filler content of the resin used in the molding surface layer is preferably 40% or less, more preferably 30% or less in terms of area ratio.
More specifically, the exposed area of the filler on the polishing target surface (the surface of the molding surface layer) is 3 times the total area of the polishing target surface.
It is desirable that the resin be 0% or less. The resin used for the molding surface layer is preferably one that can be primary cured at room temperature. The molding surface layer is usually formed by gel-coating the resin used for this on a model coated with a release agent by brush coating and curing, but if the curing treatment is quickly performed at room temperature, it is cured. No problems occur on the transfer surface due to expansion or ejection of air contained in the model during processing.

【0031】成形面層の厚みは、熱伝導性を低下させ
ず、また、成形面層形成の際の作業性や厚みの均一性確
保などの観点から、好ましくは0.1〜2.0mm、よ
り好ましくは0.1〜1.0mmとする。ここで、成形
面層の厚みを2.0mm以下としたのは、成形面層での
熱伝導性の低下を防止するためであり、1.0mm以下
だと更に効果的である。また、製作面では、成形面用の
樹脂を刷毛塗りによってモデルにゲルコートする際に、
刷毛塗り作業を何度も繰り返し行うと、予めモデルに塗
布していた離型剤が剥げ落ちやすい。これを避けるため
に、刷毛塗りを極力少ない回数、例えば1回で済ませた
場合、成形面層の厚みは0.5mm程度になる。また、
刷毛塗りによりモデルに塗布された樹脂は、塗布後のタ
レによって、モデルの立壁部で薄く、凹底部で厚くなる
傾向にある。この傾向はモデルに塗布した樹脂の厚みが
大きいほど顕著となり、また、このような厚みの違い
は、硬化時の反応による発熱の差となって、形状の歪み
や表面の荒れを誘発する原因となる。厚みをできるだけ
均一にして、このような不具合の発生を防ぐためには成
形面層の厚みを2.0mm程度に抑えるのが好ましい。
また、熱伝導性を低下させないためには、成形面層と中
間層の合計の厚みを5mm以下に抑えるのが好ましい。
これらの樹脂層は、厚すぎると型としての熱伝導が低下
し、成形品の品質を劣化させたり、成形サイクルを長く
するなどの不具合を招く。
The thickness of the molding surface layer is preferably 0.1 to 2.0 mm, from the viewpoints of not lowering the thermal conductivity, ensuring workability in forming the molding surface layer, and ensuring thickness uniformity. More preferably, it is 0.1 to 1.0 mm. Here, the reason why the thickness of the molding surface layer is 2.0 mm or less is to prevent a decrease in thermal conductivity in the molding surface layer, and it is more effective if it is 1.0 mm or less. Also, on the production side, when gel-coating the model for the molding surface resin with a brush,
If the brush coating operation is repeated many times, the release agent applied to the model in advance will easily come off. In order to avoid this, when the brush coating is performed as few times as possible, for example, once, the thickness of the molding surface layer is about 0.5 mm. Also,
The resin applied to the model by brush coating tends to be thin at the vertical wall portion of the model and thick at the concave bottom portion due to sagging after application. This tendency becomes more remarkable as the thickness of the resin applied to the model becomes larger, and such a difference in thickness causes a difference in heat generation due to a reaction at the time of curing, which may cause shape distortion and surface roughness. Become. In order to make the thickness as uniform as possible and prevent the occurrence of such defects, it is preferable to suppress the thickness of the molding surface layer to about 2.0 mm.
Further, in order not to reduce the thermal conductivity, it is preferable to suppress the total thickness of the molding surface layer and the intermediate layer to 5 mm or less.
If these resin layers are too thick, heat conduction as a mold is deteriorated, which leads to problems such as deterioration of quality of molded products and lengthening of molding cycle.

【0032】第二発明の成形用型においても、前述の第
一発明における成形面層中への冷却用パイプの埋設と同
様の手段により、中間層中へ冷却用パイプを埋設するこ
とが型冷却の点で好ましい。また、第一発明と同様に、
成形用型の分割面の周辺部において、金属製バッキング
部を露呈させ、成形時の型締めの際の圧力が、実質的に
露呈させた金属製バッキング部にかかる構造に形成した
り、成形用型の分割面の周辺部に、金属製ブロックを挿
入して金属製バッキング部と接合させ、成形時の型締め
の際の圧力が、実質的に金属製ブロックにかかる構造に
形成するなどして、型の耐久性向上を図ることができ
る。第二発明において、中間層と金属製バッキング部の
それぞれを構成する材質や、接合強度を高める手段など
については、前述の第一発明における成形面層と金属製
バッキングに関する説明を適用することができる。
Also in the molding die of the second invention, it is possible to embed the cooling pipe in the intermediate layer by the same means as the embedding of the cooling pipe in the molding surface layer in the above-mentioned first invention. In terms of Also, like the first invention,
By exposing the metal backing part in the peripheral part of the dividing surface of the molding die, the pressure at the time of mold clamping at the time of molding is formed to a structure that is applied to the exposed metal backing part, By inserting a metal block into the peripheral part of the dividing surface of the mold and joining it with the metal backing part, the pressure at the time of mold clamping during molding is formed so as to substantially affect the metal block. It is possible to improve the durability of the mold. In the second invention, the description regarding the molding surface layer and the metal backing in the first invention described above can be applied to the materials constituting the intermediate layer and the metal backing portion, the means for increasing the bonding strength, and the like. .

【0033】[0033]

【実施例】以下、本発明を実施例に基づき更に詳しく説
明するが、本発明はこれらの実施例に限られるものでは
ない。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to these examples.

【0034】(実施例1)箱型形状(寸法:750×4
50×250(高さ)mm)の成形品を製作するための
成形用型を、図7に示す方法により製作し、評価を行な
った。まず、成形品の形状を反映した面を有するモデル
(木型)14に、成形面層1の肉厚20mm及び分割面
の周辺部6に30mmの幅に相当する空間を有する亜鉛
合金製バッキング2(熱膨張係数 26×10-6/℃、
商品名:ZAS、三井金属鉱業(株)製)をかぶせた。
このバッキング2の成形面層側には、幅及び深さ10m
mの溝11が設けられており、この溝11内に銅製パイ
プ12をはめ込んだ。
(Example 1) Box shape (dimensions: 750 x 4)
A molding die for manufacturing a molded product of 50 × 250 (height) mm) was manufactured by the method shown in FIG. 7 and evaluated. First, a model (wooden mold) 14 having a surface that reflects the shape of a molded product, a zinc alloy backing 2 having a wall thickness of the molding surface layer 1 and a space corresponding to a width of 30 mm in the peripheral portion 6 of the split surface. (Coefficient of thermal expansion 26 × 10 −6 / ° C.,
Product name: ZAS, covered with Mitsui Mining & Smelting Co., Ltd.
On the molding surface layer side of this backing 2, the width and depth are 10 m.
m groove 11 is provided, and a copper pipe 12 is fitted into the groove 11.

【0035】次いで、モデル14とバッキング2で形成
される空間内に、金属粉を主体とするフィラー及び樹脂
から成る複合樹脂材15(熱膨張係数 28×10-6
℃、商品名:MYX−06、三菱油化(株)製)を注入
容器16から約1気圧の圧力をかけつつ注型した。な
お、バッキング2には溝11に連通するエアー抜き17
を設けた。注型後、一旦50℃に全体を加熱して表層部
を一次硬化させ、モデル(原型)を離型した後、170
℃で3時間の二次硬化処理を行なって成形面層1を形成
し、図1に示す成形用型(上型)3を得た。この際、成
形面層1の剥離、割れといった問題は全く生じなかっ
た。
Next, in the space formed by the model 14 and the backing 2, a composite resin material 15 (coefficient of thermal expansion 28 × 10 −6 /
C., brand name: MYX-06, manufactured by Mitsubishi Petrochemical Co., Ltd. was cast from the injection container 16 while applying a pressure of about 1 atm. It should be noted that the backing 2 has an air vent 17 communicating with the groove 11.
Was set up. After casting, heat the whole body to 50 ° C once to primary cure the surface layer and release the model (prototype).
The molding surface layer 1 was formed by performing a secondary curing treatment at 3 ° C. for 3 hours to obtain a molding mold (upper mold) 3 shown in FIG. At this time, no problem such as peeling or cracking of the molding surface layer 1 occurred.

【0036】(実施例2)複合樹脂材として、熱膨張係
数が30×10-6/℃の商品名MYX−05(三菱油化
(株)製)を用いた以外は、実施例1と同様に、図1に
示す成形用型(上型)3を得た。この際、成形面層1の
剥離、割れといった問題は全く生じなかった。
(Example 2) The same as Example 1 except that MYX-05 (trade name, manufactured by Mitsubishi Petrochemical Co., Ltd.) having a thermal expansion coefficient of 30 × 10 -6 / ° C. was used as the composite resin material. Then, a molding die (upper die) 3 shown in FIG. 1 was obtained. At this time, no problem such as peeling or cracking of the molding surface layer 1 occurred.

【0037】(比較例1)実施例1と同一の方法でバッ
キング部をアルミニウム合金(熱膨張係数 21×10
-6/℃、JIS AC4C)で形成したものを製作した
ところ、二次硬化処理後に成形面層の中央部においてク
ラックが生じた。また、型の分割面の周辺部における成
形面層部とバッキング部との境界でも、一部に剥離が確
認された。
(Comparative Example 1) An aluminum alloy (coefficient of thermal expansion: 21 x 10) was used for the backing portion in the same manner as in Example 1.
When a product formed at −6 / ° C., JIS AC4C) was manufactured, a crack was generated in the central portion of the molding surface layer after the secondary curing treatment. Further, peeling was also confirmed in part at the boundary between the molding surface layer portion and the backing portion in the peripheral portion of the mold dividing surface.

【0038】(実施例3)実施例1と同一の方法によ
り、バッキング部2の成形面層側には冷却パイプ用の溝
を設けず、また型分割面の周辺部6も複合樹脂材がバッ
キング部2の端面部まで覆う構造となるように形成した
以外は、合金材質及び複合樹脂材の材質も含めて実施例
1と同一の条件で、成形用型3を得た。その後、バッキ
ング部2内に冷却用孔13を設け、図2に示すごとき構
成の成形用型3とした。
(Embodiment 3) By the same method as in Embodiment 1, a groove for a cooling pipe is not provided on the molding surface layer side of the backing portion 2, and the composite resin material is also backed on the peripheral portion 6 of the mold dividing surface. A molding die 3 was obtained under the same conditions as in Example 1 including the alloy material and the composite resin material, except that the molding die 3 was formed so as to cover the end face portion of the portion 2. After that, cooling holes 13 were provided in the backing portion 2 to obtain the molding die 3 having the structure shown in FIG.

【0039】(実施例4)自動車用内装部品(寸法:6
00×400×200(高さ)mm)の成形品を製作す
るための成形用型を、図9に示す方法により製作し、評
価を行なった。まず、成形品の形状を反映した面を有す
るモデル(木型)14に、金属粉を主体とするフィラー
及び樹脂から成る成形面層用の複合樹脂材(熱膨張係数
36×10-6/℃、商品名:MEZ500G、ゼオン
ライズ(株)製)を、刷毛塗りにより厚さ0.5mmと
なるようにゲルコートし、フィラー含有率が約30面積
%となる成形面層を形成させた。ゲル化後、中間層の肉
厚4.5mm及び分割面の周辺部に20mmの幅に相当
する空間を有する亜鉛合金製バッキング2(熱膨張係数
26×10-6/℃、商品名:ZAS、三井金属鉱業
(株)製)をかぶせた。このバッキング2の中間層側に
は、幅及び深さ10mmの溝11が設けられており、こ
の溝11内に銅製パイプ12をはめ込んだ。
(Example 4) Interior parts for automobiles (Dimension: 6)
A molding die for manufacturing a molded product of 00 × 400 × 200 (height) mm) was manufactured by the method shown in FIG. 9 and evaluated. First, a model (wooden mold) 14 having a surface that reflects the shape of a molded product is used, and a composite resin material (coefficient of thermal expansion: 36 × 10 −6 / ° C.) for a molding surface layer composed of a filler mainly composed of metal powder and a resin. , Trade name: MEZ500G, manufactured by Zeon Rise Co., Ltd., was gel-coated by brush coating to a thickness of 0.5 mm to form a molding surface layer having a filler content of about 30 area%. After gelling, the backing 2 made of zinc alloy (thermal expansion coefficient 26 × 10 −6 / ° C., trade name: ZAS, having a thickness of 4.5 mm of the intermediate layer and a space corresponding to a width of 20 mm in the peripheral portion of the dividing surface, Covered with Mitsui Mining & Smelting Co., Ltd. A groove 11 having a width and a depth of 10 mm is provided on the intermediate layer side of the backing 2, and a copper pipe 12 is fitted into the groove 11.

【0040】次いで、モデル14上のゲルコート19と
バッキング2とで形成される空間内に、金属粉を主体と
するフィラー及び樹脂から成る中間層用の複合樹脂材1
5(三菱油化(株)製、商品名:MYX−06(熱膨張
係数 28×10-6/℃)に、更に平均粒径20μmの
アルミニウム合金粉を10重量%増量させ、面積率で6
5%のフィラー含有率としたもの)を注入容器16から
約2気圧の圧力をかけつつ注型した。なお、バッキング
2には溝11に連通するエアー抜き17を設けた。注型
後、一旦50℃に全体を加熱して表層部を一次硬化さ
せ、モデル(原型)を離型した後、120℃で3時間の
二次硬化処理を行なって中間層を形成し、図8に示す成
形用型(上型)3を得た。この際、中間層20の剥離、
割れといった問題は全く生じなかった。
Then, in the space formed by the gel coat 19 and the backing 2 on the model 14, the composite resin material 1 for the intermediate layer, which is composed mainly of filler and resin mainly composed of metal powder.
5 (manufactured by Mitsubishi Petrochemical Co., Ltd., trade name: MYX-06 (coefficient of thermal expansion: 28 × 10 −6 / ° C.)) was further increased by 10% by weight of an aluminum alloy powder having an average particle size of 20 μm.
5% filler content) was cast from the injection container 16 while applying a pressure of about 2 atm. The backing 2 was provided with an air vent 17 communicating with the groove 11. After casting, the whole surface is once heated to 50 ° C. to primary cure the surface layer, the model (prototype) is released, and then secondary curing is performed at 120 ° C. for 3 hours to form an intermediate layer. A molding die (upper die) 3 shown in 8 was obtained. At this time, peeling of the intermediate layer 20,
No problems such as cracking occurred.

【0041】(評価)実施例1〜4について、それぞれ
同一の方法にて所望の成形品の裏側形状を反映したモデ
ル(原型)を用いて、コア用の成形用型(下型)4を製
作し、実施例1〜3で作成した成形用型(上型)3との
組み込み加工を行ない、ABS樹脂による成形品18の
成形を行なった。なお、実施例1〜2の型については、
型を合わせた状態で金属当たり面9の隙間と成形面層部
のパーティングライン8の隙間が0となるように加工し
た。
(Evaluation) In each of Examples 1 to 4, a core molding die (lower die) 4 was manufactured by the same method, using a model (prototype) reflecting the back side shape of a desired molded article. Then, an assembling process with the molding die (upper die) 3 created in Examples 1 to 3 was performed to mold the molded product 18 with the ABS resin. Regarding the molds of Examples 1 and 2,
In the state where the molds are matched, the metal contact surface 9 and the parting line 8 in the molding surface layer portion are processed so that the clearance between them is 0.

【0042】(成形結果)実施例3の成形用型では、5
000ショットの段階まで繰り返し成形を行なうことが
できた。その後は型の分割面で損耗が生じ、成形品にバ
リが生じてきたので成形を中止した。実施例1〜2の成
形用型では、10000ショットの繰り返し成形におい
ても成形品にバリは発生せず、更に成形サイクルも実施
例3の成形用型に比し約20%向上することが判明し
た。また実施例1と実施例2の成形用型を比較すると、
10000ショットの繰り返し成形後では、実施例2に
おいて、型分割面の周辺部における成形面層部とバッキ
ング部との境界で僅かに剥離が確認されたが、実施例1
では問題がなかった。実施例4の成形用型では、実施例
1〜2と同様10000ショットの繰り返し成形を行っ
ても成形品にバリは発生せず、成形サイクルは実施例1
に比較し更に20%短縮して、一般の金属製金型と略同
等レベルとすることができた。
(Molding Result) In the molding die of Example 3, 5
It was possible to repeat molding up to the stage of 000 shots. After that, wear was generated on the divided surface of the mold and burrs were generated on the molded product, so the molding was stopped. It was found that the molding dies of Examples 1 and 2 did not cause burrs on the molded products even after repeated molding of 10,000 shots, and that the molding cycle was improved by about 20% as compared with the molding dies of Example 3. . Also, comparing the molding dies of Example 1 and Example 2,
After repeated molding of 10,000 shots, in Example 2, slight peeling was confirmed at the boundary between the molding surface layer portion and the backing portion in the peripheral portion of the mold dividing surface.
Then there was no problem. In the molding die of Example 4, burrs did not occur in the molded product even after repeated molding of 10,000 shots as in Examples 1 and 2, and the molding cycle was the same as that of Example 1.
It was possible to achieve a level almost equal to that of a general metal mold by further shortening by 20% as compared with the above.

【0043】[0043]

【発明の効果】以上説明したとおり、本発明の樹脂製成
形用型によれば、耐久性が向上し、かつ熱伝導性の悪さ
を改善させることができる。したがって、この樹脂製成
形用型を用いると、数千ショット〜数万ショットレベル
に及ぶ成形、および大物品の型への適用を可能にするこ
とができるという優れた効果を奏するものである。
As described above, according to the resin molding die of the present invention, the durability can be improved and the poor thermal conductivity can be improved. Therefore, the use of this resin molding die has an excellent effect that molding can be performed for several thousand shots to tens of thousands of shots and application to a die for large articles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明(第一発明)の樹脂製成形用型の構造の
一例を示す断面構成図である。
FIG. 1 is a cross-sectional configuration diagram showing an example of the structure of a resin molding die of the present invention (first invention).

【図2】本発明(第一発明)の樹脂製成形用型の構造の
他の例を示す断面構成図である。
FIG. 2 is a cross-sectional configuration diagram showing another example of the structure of the resin molding die of the present invention (first invention).

【図3】本発明(第一発明)に係る成形用型の分割面の
周辺部において金属製バッキング部を露呈させた例を示
す部分断面図である。
FIG. 3 is a partial cross-sectional view showing an example in which a metal backing portion is exposed at the peripheral portion of the dividing surface of the molding die according to the present invention (first invention).

【図4】本発明(第一発明)に係る成形用型の分割面の
周辺部に金属製ブロックを挿入して金属製バッキング部
と接合させた例を示す部分断面図である。
FIG. 4 is a partial cross-sectional view showing an example in which a metal block is inserted into the peripheral portion of the divided surface of the molding die according to the present invention (first invention) and joined to the metal backing portion.

【図5】型合わせ状態での金属当たり面と成形面層部の
パーティングラインの隙間状況を示す説明図である。
FIG. 5 is an explanatory diagram showing a state of a gap between a metal contact surface and a parting line of a molding surface layer portion in a mold matching state.

【図6】金属製バッキング部側に設けた溝部内に冷却パ
イプをはめ込んだ例を示す部分説明図である。
FIG. 6 is a partial explanatory view showing an example in which a cooling pipe is fitted in a groove portion provided on the metal backing portion side.

【図7】本発明(第一発明)の樹脂製成形用型を製作す
る方法の例を示す概略説明図である。
FIG. 7 is a schematic explanatory view showing an example of a method for producing the resin molding die of the present invention (first invention).

【図8】本発明(第二発明)の樹脂製成形用型の構造の
一例を示す断面構成図である。
FIG. 8 is a cross-sectional configuration diagram showing an example of the structure of a resin molding die of the present invention (second invention).

【図9】本発明(第二発明)の樹脂製成形用型を製作す
る方法の例を示す概略説明図である。
FIG. 9 is a schematic explanatory view showing an example of a method for producing a resin molding die of the present invention (second invention).

【符合の説明】[Explanation of sign]

1 成形面層、2 金属製バッキング部、3 上型(成
形用型)、4 下型(成形用型)、5 成形空間、6
型の分割面の周辺部、7 金属製ブロック、8パーティ
ングライン、9 金属当たり面、10 つば部、11
溝部、12 冷却パイプ、13 冷却用孔、14 モデ
ル、15 複合樹脂材、16 注入容器、17 エアー
抜き、18 成形品、19 ゲルコート、20 中間
層。
1 molding surface layer, 2 metal backing part, 3 upper mold (molding mold), 4 lower mold (molding mold), 5 molding space, 6
Periphery of mold dividing surface, 7 metal block, 8 parting line, 9 metal contact surface, 10 collar part, 11
Grooves, 12 cooling pipes, 13 cooling holes, 14 models, 15 composite resin materials, 16 injection containers, 17 air vents, 18 molded products, 19 gel coats, 20 intermediate layers.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 敏明 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiaki Ishihara 2-56 Suda-cho, Mizuho-ku, Nagoya, Aichi Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 成形面層が金属粉を主体とするフィラー
を含有する樹脂から成り、該成形面層が金属製バッキン
グ部により接合にて裏打ち支持されてなる樹脂製成形用
型において、成形面層と金属製バッキング部のそれぞれ
を構成する部材の熱膨張係数の差が5×10-6/℃以下
であることを特徴とする樹脂製成形用型。
1. A molding surface made of resin, wherein the molding surface layer is made of a resin containing a filler mainly composed of metal powder, and the molding surface layer is backed and supported by a metal backing portion by bonding. A resin molding die, wherein a difference in coefficient of thermal expansion between members constituting the layer and the metal backing portion is 5 × 10 −6 / ° C. or less.
【請求項2】 成形面層中に冷却用パイプが埋設されて
いる請求項1記載の樹脂製成形用型。
2. The resin molding die according to claim 1, wherein a cooling pipe is embedded in the molding surface layer.
【請求項3】 成形面層と金属製バッキング部との接合
面において、金属製バッキング部側に溝部を設け、該溝
部内に冷却パイプがはめ込まれ、かつ該成形面層を構成
する樹脂により冷却パイプが接合、埋設されている請求
項1記載の樹脂製成形用型。
3. A groove is provided on the metal backing portion side at a joint surface between the molding surface layer and the metal backing portion, a cooling pipe is fitted in the groove portion, and cooling is performed by a resin forming the molding surface layer. The resin molding die according to claim 1, wherein the pipes are joined and embedded.
【請求項4】 樹脂製成形用型の分割面の周辺部におい
て、金属製バッキング部を露呈させ、成形時の型締めの
際の圧力が、実質的に露呈させた金属製バッキング部に
かかる構造に形成したことを特徴とする請求項1記載の
樹脂製成形用型。
4. A structure in which a metal backing portion is exposed at a peripheral portion of a divided surface of a resin molding die, and pressure during mold clamping during molding is substantially applied to the exposed metal backing portion. The resin molding die according to claim 1, wherein the resin molding die is formed.
【請求項5】 樹脂製成形用型の分割面の周辺部に、金
属製ブロックを挿入して金属製バッキング部と接合さ
せ、成形時の型締めの際の圧力が、実質的に該金属製ブ
ロックにかかる構造に形成したことを特徴とする請求項
1記載の樹脂製成形用型。
5. A metal block is inserted into a peripheral portion of a divided surface of a resin molding die to be joined to a metal backing portion, and the pressure at the time of mold clamping during molding is substantially the same as that of the metal mold. The resin molding die according to claim 1, wherein the resin molding die is formed to have a structure of a block.
【請求項6】 成形面層、中間層及び金属製バッキング
部とから構成される樹脂製成形用型であって、該成形面
層と該中間層がそれぞれ金属粉を主体とするフィラーを
含有する樹脂から形成され、該中間層が金属製バッキン
グ部により接合にて裏打ち支持されてなり、該中間層と
該金属製バッキング部のそれぞれを構成する部材の熱膨
張係数の差を5×10-6/℃以下とするとともに、成形
面層のフィラーの含有率を中間層のフィラーの含有率よ
り低くしたことを特徴とする樹脂製成形用型。
6. A resin molding die comprising a molding surface layer, an intermediate layer and a metal backing part, wherein the molding surface layer and the intermediate layer each contain a filler mainly containing metal powder. The intermediate layer is made of a resin, and the intermediate layer is backed and supported by a metal backing portion by joining. The difference in coefficient of thermal expansion between the members forming the intermediate layer and the metal backing portion is 5 × 10 −6. / ° C. or less, and the content of the filler in the molding surface layer is lower than the content of the filler in the intermediate layer.
JP30182994A 1993-12-28 1994-12-06 Mold for resin molding Expired - Fee Related JP3320930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30182994A JP3320930B2 (en) 1993-12-28 1994-12-06 Mold for resin molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33639293 1993-12-28
JP5-336392 1993-12-28
JP30182994A JP3320930B2 (en) 1993-12-28 1994-12-06 Mold for resin molding

Publications (2)

Publication Number Publication Date
JPH07232332A true JPH07232332A (en) 1995-09-05
JP3320930B2 JP3320930B2 (en) 2002-09-03

Family

ID=26562891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30182994A Expired - Fee Related JP3320930B2 (en) 1993-12-28 1994-12-06 Mold for resin molding

Country Status (1)

Country Link
JP (1) JP3320930B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118367A (en) * 1994-09-02 1996-05-14 Asahi Chem Ind Co Ltd Molding of synthetic resin product
WO2000030826A1 (en) * 1998-11-23 2000-06-02 Alliedsignal Inc. Low pressure injection molding of metal and ceramic powders using soft tooling
JP2006123315A (en) * 2004-10-28 2006-05-18 Daiwa Can Co Ltd Molding die for container made of resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118367A (en) * 1994-09-02 1996-05-14 Asahi Chem Ind Co Ltd Molding of synthetic resin product
WO2000030826A1 (en) * 1998-11-23 2000-06-02 Alliedsignal Inc. Low pressure injection molding of metal and ceramic powders using soft tooling
US6203734B1 (en) 1998-11-23 2001-03-20 Alliedsignal Inc. Low pressure injection molding of metal and ceramic powders using soft tooling
JP2002530220A (en) * 1998-11-23 2002-09-17 アライドシグナル インコーポレイテッド Low pressure injection molding of metals and ceramics using flexible molds
JP2006123315A (en) * 2004-10-28 2006-05-18 Daiwa Can Co Ltd Molding die for container made of resin

Also Published As

Publication number Publication date
JP3320930B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
JP4975021B2 (en) Thermoplastic resin mold, cavity mold, and method of manufacturing the cavity mold
US10780491B2 (en) Aluminum casting design with alloy set cores for improved intermetallic bond strength
US3083424A (en) Method for producing coated die castings
US4088046A (en) Method of producing forming tools
US20060218770A1 (en) Laser generation of thermal insulation blanket
JPH07232332A (en) Mold made of resin
EP1154886B1 (en) Moulds and method of making the same
JP3866636B2 (en) Manufacturing method of aluminum matrix composite liner
JP2001234806A (en) Cast-in method and cast-in product
CA2315356C (en) Resinous die
US20030106198A1 (en) Methods of making wear resistant tooling systems to be used in high temperature casting and molding
US3053610A (en) Flame-sprayed metal article
US2874429A (en) Process for casting-in of sintered metal bodies
US7296610B2 (en) Method of manufacturing metallic components
KR101086319B1 (en) Method for manufacturing metal tool using thermal spray
JPS6233730A (en) Wear resistant composite material
JP4409101B2 (en) Cast-in member, method for manufacturing the same, and cast product incorporating the same
JPS5849161Y2 (en) molding mold
JP2004174584A (en) Sand mold, method for making sand mold and casting method using this sand mold
CN112392623A (en) Coated cylinder liner
JP2000308926A (en) Manufacture of heating cylinder for molding machine
JPH0218187B2 (en)
JP4185294B2 (en) Sand mold molding mold with plating coating
JP2004314335A (en) Method for processing surface of mold and mold
JP3405481B2 (en) Composite cylinder for molding machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020611

LAPS Cancellation because of no payment of annual fees