JP6978652B2 - Sphere orientation control device - Google Patents

Sphere orientation control device Download PDF

Info

Publication number
JP6978652B2
JP6978652B2 JP2017205293A JP2017205293A JP6978652B2 JP 6978652 B2 JP6978652 B2 JP 6978652B2 JP 2017205293 A JP2017205293 A JP 2017205293A JP 2017205293 A JP2017205293 A JP 2017205293A JP 6978652 B2 JP6978652 B2 JP 6978652B2
Authority
JP
Japan
Prior art keywords
holding
directional control
control device
sphere
pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017205293A
Other languages
Japanese (ja)
Other versions
JP2019078874A (en
Inventor
健太郎 小針
俊宏 辻
一司 山中
慎吾 赤尾
宣生 竹田
祐輔 塚原
透 大泉
秀幸 福士
達広 岡野
渚 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BALL WAVE INC.
Original Assignee
BALL WAVE INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BALL WAVE INC. filed Critical BALL WAVE INC.
Priority to JP2017205293A priority Critical patent/JP6978652B2/en
Publication of JP2019078874A publication Critical patent/JP2019078874A/en
Application granted granted Critical
Publication of JP6978652B2 publication Critical patent/JP6978652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Description

本発明は、球状の被方位制御体の方位や表面の位置を高い精度で制御するように被方位制御体の極座標を所望の方位に回転・制御し、被方位制御体の極座標を任意に決定することが可能な球の方位制御装置に関する。 The present invention rotates and controls the polar coordinates of the directional control body to a desired direction so as to control the azimuth and surface position of the spherical directional control body with high accuracy, and arbitrarily determines the polar coordinates of the directional control body. With respect to the directional control device of the sphere that can be.

軸受けの転動体等、球状の物体(球)に対して非破壊検査を行う技術として、例えば、特許文献1に開示されている技術がある。特許文献1に開示されている技術では、空気圧により浮上させて支持した球に非接触で共振を起こすことで、球の振動を非接触で測定する。 As a technique for performing non-destructive inspection on a spherical object (sphere) such as a rolling element of a bearing, there is a technique disclosed in Patent Document 1, for example. In the technique disclosed in Patent Document 1, the vibration of a sphere is measured in a non-contact manner by causing a non-contact resonance with a sphere that is floated and supported by pneumatic pressure.

特許第4670000号公報Japanese Patent No. 4670000

しかしながら、特許文献1に開示されている技術では、球の下方から空気を吹き上げることで、球を浮上させて支持するため、球の方位や表面の位置を制御することが困難であるという問題点があった。本発明の課題は、球状の被方位制御体の極座標の方位や表面の位置を高い精度で制御するように被方位制御体を所望の方位に回転することが可能な、球の方位制御装置を提供することである。 However, the technique disclosed in Patent Document 1 has a problem that it is difficult to control the orientation and the position of the surface of the sphere because the sphere is floated and supported by blowing air from below the sphere. was there. An object of the present invention is to provide a sphere orientation control device capable of rotating the oriented controller in a desired orientation so as to control the polar coordinate orientation and surface position of the spherical oriented controller with high accuracy. To provide.

上記課題を解決するために、本発明の態様は、(a)台座と、(b)台座に固定され、且つn個(nは3以上の正の整数)の円形貫通孔を一定ピッチで円周上に配列した保持板と、(c)n個の円形貫通孔のそれぞれの内部に、水平移動を制限されて回転自在に収容されたn個の保持球と、(d)台座と保持板との間に配置され、n個の保持球と接触し、n個の保持球の回転を駆動する駆動板を備える球の方位制御装置であることを要旨とする。本発明の態様に係る球の方位制御装置においては、n個の保持球のそれぞれに点接触するようにn個の保持球の上に球状の被方位制御体を搭載する。そして、駆動板の水平面内の移動により、n個の保持球を回転させ、n個の保持球の回転により被方位制御体を回転させ、この被方位制御体の方位が制御される。 In order to solve the above problems, the embodiment of the present invention is to (a) a pedestal and (b) a circle fixed to the pedestal and n (n is a positive integer of 3 or more) circular through holes at a constant pitch. A holding plate arranged on the circumference, (c) n holding balls rotatably housed inside each of the n circular through holes with restricted horizontal movement, and (d) a pedestal and a holding plate. It is a gist that it is a sphere control device provided with a drive plate which is arranged between and in contact with n holding spheres and drives the rotation of n holding spheres. In the sphere direction control device according to the aspect of the present invention, a spherical directional control body is mounted on the n holding spheres so as to make point contact with each of the n holding spheres. Then, the movement of the drive plate in the horizontal plane rotates the n holding spheres, and the rotation of the n holding spheres rotates the directional control body, and the orientation of the directional control body is controlled.

本発明によれば、球状の被方位制御体の極座標の方位や表面の位置を高い精度で制御するように被方位制御体を所望の方位に回転することが可能な、球の方位制御装置を提供することが可能となる。 According to the present invention, there is a spherical orientation control device capable of rotating the oriented controller in a desired orientation so as to control the polar coordinate orientation and surface position of the spherical oriented controller with high accuracy. It will be possible to provide.

本発明の第1実施形態に係る方位制御装置を表す図である。It is a figure which shows the directional control device which concerns on 1st Embodiment of this invention. 第1実施形態に係る方位制御装置を図1に示したII方向から見た側面図である。FIG. 3 is a side view of the directional control device according to the first embodiment as viewed from the direction II shown in FIG. 第1実施形態に係る方位制御装置の応用例として、球状の被方位制御体の干渉縞の観察を説明する図である。As an application example of the directional control device according to the first embodiment, it is a figure explaining observation of the interference fringe of a spherical directional control body. 第1実施形態に係る方位制御装置を用いた、球状の被方位制御体のハンドリング動作を表す図である。It is a figure which shows the handling operation of the spherical directional control body using the directional control device which concerns on 1st Embodiment.

図面を参照して、本発明の第1実施形態を以下において説明する。以下の説明で参照する図面の記載において、同一、または類似の部分には、同一、または類似の符号を付している。ただし、図面は模式的なものであり、厚さと平面寸法との関係、厚さの比率等は、現実のものとは異なることに留意すべきである。したがって、具体的な厚さや寸法は、以下の説明を参酌して判断すべきものである。また、図面相互間においても、互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 The first embodiment of the present invention will be described below with reference to the drawings. In the description of the drawings referred to in the following description, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other.

さらに、以下に示す第1実施形態は、本発明の技術的思想を具体化するための球の方位制御装置(以降の説明では、「方位制御装置」と記載する)を例示するものであって、本発明の技術的思想は、構成部品の材質や、それらの形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることが可能である。また、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」に、「右」が「左」になることは勿論である。 Further, the first embodiment shown below exemplifies a sphere direction control device (referred to as "direction control device" in the following description) for embodying the technical idea of the present invention. , The technical idea of the present invention does not specify the materials of the components and their shapes, structures, arrangements, etc. to the following. The technical idea of the present invention can be modified in various ways within the technical scope specified by the claims described in the claims. Further, the directions of "left and right" and "up and down" in the following description are merely definitions for convenience of explanation, and do not limit the technical idea of the present invention. So, for example, if you rotate the paper 90 degrees, "left and right" and "up and down" are read interchangeably, and if you rotate the paper 180 degrees, "left" becomes "right" and "right" becomes "left". Of course it will be.

(第1実施形態)
図1及び図2に示す、本発明の第1実施形態に係る方位制御装置は、球状の被方位制御体1に対して、被方位制御体1の極座標を制御し、被方位制御体1の方位や表面の位置を精密に決定する装置である。具体的には、内部に球面座標系の極座標を設定した被方位制御体1に対し、被方位制御体1に定義される極座標の方位が所望の方位と一致するように、被方位制御体1を回転させて、被方位制御体1の方位を制御する。
(First Embodiment)
The directional control device according to the first embodiment of the present invention shown in FIGS. 1 and 2 controls the polar coordinates of the directional control body 1 with respect to the spherical directional control body 1, and the directional control body 1 of the directional control body 1. It is a device that precisely determines the orientation and the position of the surface. Specifically, with respect to the directional control body 1 in which the polar coordinates of the spherical coordinate system are set internally, the directional control body 1 so that the azimuth of the polar coordinates defined in the directional control body 1 matches the desired azimuth. Is rotated to control the direction of the directional control body 1.

3次元ユークリッド空間R3における球面座標系(r,θ,φ)においては、1個の動径rと2個の偏角θ,φによって極座標が定義される。本発明の第1実施形態に係る方位制御装置の被方位制御体1の半径(直径)は、予め決定されているのが通常であるので、球面座標系(r,θ,φ)の動径r=一定である。球面座標系(r,θ,φ)において、動径rを固定し、2個の偏角θ,φを制御すれば、方位ベクトルの方向が決定できる。本発明の第1実施形態に係る方位制御装置は、この方位ベクトルの方向である「方位」を、任意の方向に制御する。 In the spherical coordinate system (r, θ, φ) in the three-dimensional Euclidean space R 3 , polar coordinates are defined by one moving diameter r and two deviation angles θ, φ. Since the radius (diameter) of the directional control body 1 of the directional control device according to the first embodiment of the present invention is usually determined in advance, the radius of the spherical coordinate system (r, θ, φ). r = constant. In the spherical coordinate system (r, θ, φ), the direction of the azimuth vector can be determined by fixing the radius r and controlling the two deviation angles θ, φ. The directional control device according to the first embodiment of the present invention controls the "direction", which is the direction of the directional vector, in an arbitrary direction.

図1及び図2に示すように、第1実施形態に係る方位制御装置は、台座2と、台座2に搭載された保持板4と、保持板4に保持された3つの保持球6a,6b,6cと、保持球6a〜6cの回転をそれぞれ駆動する駆動板8と、駆動板8を移動させるアクチュエータ10と、アクチュエータ10を制御する動作制御部20を備えている。 As shown in FIGS. 1 and 2, the directional control device according to the first embodiment includes a pedestal 2, a holding plate 4 mounted on the pedestal 2, and three holding balls 6a and 6b held on the holding plate 4. , 6c, a drive plate 8 for driving the rotation of the holding balls 6a to 6c, an actuator 10 for moving the drive plate 8, and an operation control unit 20 for controlling the actuator 10.

台座2は、平板状又はブロック状の部材である。台座2の上面(図2中で上側の面)の駆動板8が搭載される駆動板搭載領域は、平滑な面となっている。また、台座2は、台座2の上面の駆動板搭載領域が水平面となるように設置されている。第1実施形態では、一例として、台座2を、平面視で長方形に形成した場合について説明するので、台座2の上面の全体が駆動板搭載領域に一致している例である。なお、「平面視」とは、図2中に矢印PSで表す視点であり、方位制御装置を、台座2の厚さ方向から見た視点(方位制御装置を上方から見た視点)である。 The pedestal 2 is a flat plate-shaped or block-shaped member. The drive plate mounting area on the upper surface of the pedestal 2 (the upper surface in FIG. 2) on which the drive plate 8 is mounted is a smooth surface. Further, the pedestal 2 is installed so that the drive plate mounting area on the upper surface of the pedestal 2 is a horizontal plane. In the first embodiment, as an example, a case where the pedestal 2 is formed into a rectangular shape in a plan view will be described, so that the entire upper surface of the pedestal 2 coincides with the drive plate mounting area. The "planar view" is a viewpoint represented by an arrow PS in FIG. 2, and is a viewpoint when the directional control device is viewed from the thickness direction of the pedestal 2 (a viewpoint when the directional control device is viewed from above).

図2では、保持板4を、台座2よりも面積の小さい平板状の部材で例示しているが、保持板4は、一定の平板領域を含めば、必ずしもその全体が平板状である必要はない。図2に例示した構造では、保持板4は、4本のボルト30a,30b,30c,30dを用いて、台座2に固定されているが、固定の方法や構造は図2に例示した方法や構造に限定されるものではない。また、保持板4は、台座2との間に駆動板8の移動空間を設定するように、台座2に固定されている。第1実施形態では、一例として、保持板4を、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂を用いて形成した場合について説明する。 In FIG. 2, the holding plate 4 is illustrated by a flat plate-shaped member having a smaller area than the pedestal 2, but the holding plate 4 does not necessarily have to have a flat plate shape as a whole if a certain flat plate area is included. No. In the structure exemplified in FIG. 2, the holding plate 4 is fixed to the pedestal 2 by using four bolts 30a, 30b, 30c, 30d, but the fixing method and structure are the method illustrated in FIG. It is not limited to the structure. Further, the holding plate 4 is fixed to the pedestal 2 so as to set a moving space for the drive plate 8 between the holding plate 4 and the pedestal 2. In the first embodiment, as an example, a case where the holding plate 4 is formed by using a fluororesin such as polytetrafluoroethylene (PTFE) will be described.

また、図1に示すように、保持板4の中央近傍において、一定ピッチで円周上に定義された3箇所には、同一の形状、同一の内径寸法の円形貫通孔40a,40b,40cが貫通している。保持板4に設けられた円形貫通孔40a,40b,40cは、それぞれの内径(直径)が等しい真円であるが、図2において視認できる保持板4の厚さは、円形貫通孔40a〜40cの内径よりも小さく、円形貫通孔40a〜40cのそれぞれは、保持板4の厚さ方向(図2中では「上下方向」と示す)に保持板4を貫通している。 Further, as shown in FIG. 1, in the vicinity of the center of the holding plate 4, circular through holes 40a, 40b, 40c having the same shape and the same inner diameter are provided at three locations defined on the circumference at a constant pitch. It penetrates. The circular through holes 40a, 40b, and 40c provided in the holding plate 4 are perfect circles having the same inner diameter (diameter), but the thickness of the holding plate 4 visible in FIG. 2 is the circular through holes 40a to 40c. Each of the circular through holes 40a to 40c, which is smaller than the inner diameter of the holding plate 4, penetrates the holding plate 4 in the thickness direction of the holding plate 4 (indicated as "vertical direction" in FIG. 2).

また、円形貫通孔40a,40b,40cは、平面視で(台座2の主面に垂直方向となる厚さ方向から見て)、それぞれの中心点が、正三角形の頂点と重なっている。すなわち、円形貫通孔40a〜40cのそれぞれの円の中心点は、平面視で円周上に等間隔に配置されており、円形貫通孔40a〜40cの中心点を結ぶ3本の直線は、互いのなす角度が60[°]となっている。 Further, the center points of the circular through holes 40a, 40b, and 40c overlap with the vertices of an equilateral triangle in a plan view (viewed from the thickness direction perpendicular to the main surface of the pedestal 2). That is, the center points of the circles of the circular through holes 40a to 40c are arranged at equal intervals on the circumference in a plan view, and the three straight lines connecting the center points of the circular through holes 40a to 40c are mutual. The angle formed by is 60 [°].

3つの保持球6a,6b,6cは、例えば、金属、半導体、水晶、セラミックス等を用いて、同一の形状、同一寸法の真球に形成されている。各保持球6a〜6cの外径は、保持板4の厚さよりも大きい値である。更に、第1の保持球6aの外径は、第1の円形貫通孔40aの内径よりも小さく、第1の保持球6aは第1の円形貫通孔40aと、第1の保持球6aの外周で近似的な点接触をしている。又、第2の保持球6bの外径は、第2の円形貫通孔40bの内径よりも小さく、第2の保持球6bは第2の円形貫通孔40bと、第2の保持球6bの外周で近似的な点接触をしている。同様に、第3の保持球6cの外径は、第3の円形貫通孔40cの内径よりも小さく、第3の保持球6cは第3の円形貫通孔40cと、第3の保持球6cの外周で近似的な点接触をしている。 The three holding spheres 6a, 6b, 6c are formed into true spheres having the same shape and the same dimensions by using, for example, metal, semiconductor, crystal, ceramics, or the like. The outer diameter of each holding ball 6a to 6c is a value larger than the thickness of the holding plate 4. Further, the outer diameter of the first holding sphere 6a is smaller than the inner diameter of the first circular through hole 40a, and the first holding sphere 6a has the first circular through hole 40a and the outer circumference of the first holding sphere 6a. There is an approximate point contact at. Further, the outer diameter of the second holding sphere 6b is smaller than the inner diameter of the second circular through hole 40b, and the second holding sphere 6b has the second circular through hole 40b and the outer circumference of the second holding sphere 6b. There is an approximate point contact at. Similarly, the outer diameter of the third holding sphere 6c is smaller than the inner diameter of the third circular through hole 40c, and the third holding sphere 6c is the third holding sphere 40c and the third holding sphere 6c. Approximate point contact is made on the outer circumference.

各保持球6a,6b,6cは、対応する円形貫通孔40a,40b,40cの内部で、それぞれ高精度な回転が自在に可能であるが、各保持球6a,6b,6cは平行移動(水平移動)する範囲を制限されるように、円形貫通孔40a,40b,40cの内部に収容されている。このため、保持球6a〜6cと対応する円形貫通孔40a〜40cの内径との間のクリアランス(遊び)は、0.01〜0.1[mm]程度の範囲の値に設定されている。第1実施形態に係る方位制御装置では、保持球6a〜6cの、対応する円形貫通孔40a〜40cの内部での高精度な回転の自由度を達成するために、保持板4と保持球6a〜6cとの間の動摩擦係数を低く設定している。 The holding balls 6a, 6b, 6c can be freely rotated with high accuracy inside the corresponding circular through holes 40a, 40b, 40c, respectively, but the holding balls 6a, 6b, 6c move in parallel (horizontal). It is housed inside the circular through holes 40a, 40b, 40c so as to limit the range of movement). Therefore, the clearance (play) between the holding balls 6a to 6c and the inner diameters of the corresponding circular through holes 40a to 40c is set to a value in the range of about 0.01 to 0.1 [mm]. In the directional control device according to the first embodiment, the holding plate 4 and the holding sphere 6a are used in order to achieve a highly accurate degree of freedom of rotation inside the corresponding circular through holes 40a to 40c of the holding spheres 6a to 6c. The dynamic friction coefficient between ~ 6c is set low.

即ち、第1実施形態に係る方位制御装置では、保持板4に動摩擦係数の低いフッ素系樹脂を選定することにより、保持板4と保持球6a〜6cとの間の動摩擦係数を低減させる「動摩擦係数低減機構」を、保持板4が構成している。そして、動摩擦係数低減機構は、駆動板8の移動に伴って、水平移動を制限された3つの保持球6a〜6cは、それぞれ、円形貫通孔40a〜40cの内部で、それぞれの回転自由度に従って、円滑に回転する。そして、図2に示したように、保持球6a〜6cの上部は、保持板4の上面から突出し、保持球6a〜6cの下部は、保持板4の下面から突出している。 That is, in the directional control device according to the first embodiment, by selecting a fluororesin having a low dynamic friction coefficient for the holding plate 4, the dynamic friction coefficient between the holding plate 4 and the holding balls 6a to 6c is reduced. The holding plate 4 constitutes the "coefficient reduction mechanism". Then, in the dynamic friction coefficient reducing mechanism, the three holding balls 6a to 6c whose horizontal movement is restricted due to the movement of the drive plate 8 are inside the circular through holes 40a to 40c, respectively, according to their respective rotational degrees of freedom. , Rotates smoothly. Then, as shown in FIG. 2, the upper portion of the holding balls 6a to 6c protrudes from the upper surface of the holding plate 4, and the lower portion of the holding balls 6a to 6c protrudes from the lower surface of the holding plate 4.

図1及び図2に示したように、保持板4の上面から突出している各保持球6a〜6cのそれぞれの上部分には、球状の被方位制御体1が3点接触で載せられている。球状の被方位制御体1は、3つの保持球6a〜6cに載せられた状態で保持球6a〜6cと3点接触で転がり接触しており、保持球6a〜6cの回転に伴って回転し、被方位制御体1の内部に定義される極座標を変化させる。被方位制御体1の外径は、必ずしも保持球6a〜6cの外径と同一である必要はないが、3つの保持球6a〜6cが、円形貫通孔40a〜40cに収容された状態で被方位制御体1と転がり接触できる大きさであれば良い。 As shown in FIGS. 1 and 2, a spherical directional control body 1 is mounted on the upper portion of each of the holding spheres 6a to 6c protruding from the upper surface of the holding plate 4 in a three-point contact. .. The spherical directional control body 1 is in a state of being mounted on the three holding balls 6a to 6c and is in rolling contact with the holding balls 6a to 6c at three points, and rotates with the rotation of the holding balls 6a to 6c. , The polar coordinates defined inside the directional control body 1 are changed. The outer diameter of the directional control body 1 does not necessarily have to be the same as the outer diameter of the holding spheres 6a to 6c, but the three holding spheres 6a to 6c are covered in the circular through holes 40a to 40c. It suffices as long as it has a size that allows rolling contact with the directional control body 1.

図1から分かるように、駆動板8は、台座2よりも面積の小さい板状(平板状)の部材であり、台座2と保持板4との間の空間に挿入されている。図1中に示すように、駆動板8は、平面視で、保持板4のうち、ボルト30a〜30dを取り付けた位置とは重ならない位置に配置され、X−Y平面内での2次元の精密移動を可能にしている。駆動板8は、台座2のうち保持板4と対向する面(台座2の上面)と接触又は非接触に対向し、精密移動を実現している。位置制御を高精度にする場合は、リニアモーターカーと同様な磁気浮上等により、駆動板8を台座2に対して非接触となるようにして、台座2に対する駆動板8の摩擦係数をゼロに設定すればよい。 As can be seen from FIG. 1, the drive plate 8 is a plate-shaped (flat plate-shaped) member having a smaller area than the pedestal 2, and is inserted into the space between the pedestal 2 and the holding plate 4. As shown in FIG. 1, the drive plate 8 is arranged at a position of the holding plate 4 that does not overlap with the position where the bolts 30a to 30d are attached in a plan view, and is two-dimensional in the XY plane. Allows precision movement. The drive plate 8 faces the surface of the pedestal 2 facing the holding plate 4 (the upper surface of the pedestal 2) in contact or non-contact, and realizes precise movement. When the position control is made highly accurate, the drive plate 8 is made non-contact with the pedestal 2 by magnetic levitation or the like similar to that of a linear motor car, and the friction coefficient of the drive plate 8 with respect to the pedestal 2 is set to zero. Just set it.

駆動板8の上面には、ゴムシート50のような、保持球6a〜6cに対する静摩擦係数の大きな素材を設けておくことが好ましい。第1実施形態に係る方位制御装置において、ゴムシート50は、保持板4の下面から突出している保持球6a〜6cのそれぞれの下部分と接触する際の静摩擦係数を増大させる「静摩擦係数増加機構」を構成している。すなわち、ゴムシート50は、載せられた3つの保持球6a〜6cのそれぞれと大きな静摩擦係数で転がり接触し、駆動板8の移動と保持球6a〜6cの回転の精密な対応関係が実現できる。したがって、台座2と保持板4との間の水平位置で、駆動板8が2次元移動することにより、駆動板8に接触した保持球6a〜6cのそれぞれの回転を精密に制御して駆動することが可能である。 It is preferable that the upper surface of the drive plate 8 is provided with a material having a large coefficient of static friction with respect to the holding balls 6a to 6c, such as a rubber sheet 50. In the directional control device according to the first embodiment, the rubber sheet 50 increases the coefficient of static friction when it comes into contact with the lower portions of the holding balls 6a to 6c protruding from the lower surface of the holding plate 4. ". That is, the rubber sheet 50 rolls and contacts each of the three holding balls 6a to 6c mounted on the rubber sheet 50 with a large coefficient of static friction, and a precise correspondence between the movement of the drive plate 8 and the rotation of the holding balls 6a to 6c can be realized. Therefore, the drive plate 8 moves two-dimensionally at the horizontal position between the pedestal 2 and the holding plate 4, so that the rotations of the holding balls 6a to 6c in contact with the drive plate 8 are precisely controlled and driven. It is possible.

このように、第1実施形態に係る方位制御装置によれば、静摩擦係数増加機構により、駆動板8の移動に伴って3つの保持球6a〜6cが回転する際に、駆動板8に対する保持球6a〜6cのスリップを抑制することが可能となる。これにより、3つの保持球6a〜6cを回転させる制御を高い精度で行うことが可能となり、被方位制御体1の極座標を変更するように、被方位制御体1を回転させる制御を、高い精度で行うことが可能となる。 As described above, according to the directional control device according to the first embodiment, when the three holding balls 6a to 6c rotate with the movement of the driving plate 8 by the static friction coefficient increasing mechanism, the holding balls with respect to the driving plate 8 It is possible to suppress the slip of 6a to 6c. This makes it possible to control the rotation of the three holding spheres 6a to 6c with high accuracy, and control the rotation of the directional control body 1 so as to change the polar coordinates of the directional control body 1 with high accuracy. It is possible to do it with.

アクチュエータ10は、例えば、二つのモータや直動案内装置(例えば、ボールねじ)等を用いて形成されており、駆動板8をX軸方向及びY軸方向へ移動させる。例えば、図1において、X軸方向を、台座2の長辺と平行な方向に定義できる。この場合、Y軸方向は、平面視でX軸方向と直交する方向(台座2の短辺と平行な方向)となる。したがって、X軸方向及びY軸方向は、図2に示す水平方向である。 The actuator 10 is formed by using, for example, two motors, a linear motion guide device (for example, a ball screw), or the like, and moves the drive plate 8 in the X-axis direction and the Y-axis direction. For example, in FIG. 1, the X-axis direction can be defined as a direction parallel to the long side of the pedestal 2. In this case, the Y-axis direction is a direction orthogonal to the X-axis direction in a plan view (a direction parallel to the short side of the pedestal 2). Therefore, the X-axis direction and the Y-axis direction are the horizontal directions shown in FIG.

動作制御部20は、例えば、コンピュータシステムに用いられる中央演算装置(CPU)等のプロセッサや、プロセッサの論理演算に必要なデータやプログラムの命令を記憶する主記憶装置や、この主記憶装置を補助する補助記憶装置部等を備え、アクチュエータ10の動作を制御する。 The operation control unit 20 assists, for example, a processor such as a central processing unit (CPU) used in a computer system, a main storage device that stores data and program instructions required for logical calculation of the processor, and this main storage device. It is provided with an auxiliary storage device unit and the like, and controls the operation of the actuator 10.

また、動作制御部20は、駆動板8の移動で発生するすべての保持球6a〜6cの回転により被方位制御体1を回転させることで、被方位制御体1の中に定義される特定の方位が、第1実施形態に係る方位制御装置の内部に予め設定した方位と一致するように、アクチュエータ10の動作を制御する。 Further, the motion control unit 20 is defined in the directional control body 1 by rotating the directional control body 1 by the rotation of all the holding balls 6a to 6c generated by the movement of the drive plate 8. The operation of the actuator 10 is controlled so that the directional direction matches the directional direction preset inside the directional control device according to the first embodiment.

具体的には、被方位制御体1の結晶方位を制御しながら、被方位制御体1の光学複屈折による干渉縞IFを観察する応用例が例示できる。この応用例の場合、図1に示すように、第1実施形態に係る方位制御装置が偏光顕微鏡等の撮像部60を備えるように構成し、この撮像部60によって、被方位制御体1の方位を光学複屈折が生じる特定の結晶軸(c軸)方向に制御して撮像すれば、図3中に示したような被方位制御体1の干渉縞IFを観察することが例示できる。なお、第1実施形態に係る方位制御装置に定義される観察方位軸は、X軸方向(第1軸方向)及びY軸方向(第2軸方向)と直交するデカルト座標系(3次元直交座標系)の第3軸方向(上下方向)となるZ軸方向に設定可能であるが、観察方位軸は必ずしもZ軸方向でなくてもよい。また、図3中には、Y軸方向に沿った撮像部60の照準線を符号「Ty」で表し、Z軸方向に沿った撮像部60の照準線を符号「Tz」で表す。 Specifically, an application example of observing the interference fringe IF due to the optical birefringence of the directional control body 1 while controlling the crystal orientation of the directional control body 1 can be exemplified. In the case of this application example, as shown in FIG. 1, the directional control device according to the first embodiment is configured to include an image pickup unit 60 such as a polarizing microscope, and the directional control body 1 is oriented by the image pickup unit 60. By controlling the image in the direction of a specific crystal axis (c-axis) where optical birefringence occurs, it is possible to exemplify observing the interference fringe IF of the directional control body 1 as shown in FIG. The observation azimuth axis defined in the azimuth control device according to the first embodiment is a Cartesian coordinate system (three-dimensional Cartesian coordinates) orthogonal to the X-axis direction (first axis direction) and the Y-axis direction (second axis direction). It can be set in the Z-axis direction, which is the third axis direction (vertical direction) of the system), but the observation azimuth axis does not necessarily have to be in the Z-axis direction. Further, in FIG. 3, the aiming line of the imaging unit 60 along the Y-axis direction is represented by the reference numeral “Ty”, and the aiming line of the imaging unit 60 along the Z-axis direction is represented by the reference numeral “Tz”.

第1実施形態に係る方位制御装置によれば、被方位制御体1の光学複屈折による干渉縞IFが観測出来るように、3つの保持球6a〜6cを回転させることで被方位制御体1の結晶軸(c軸)の方位を回転させ、被方位制御体1の結晶軸を観察方位軸と一致させる制御を行うことができる。すなわち、図1に示した第1実施形態に係る方位制御装置の動作制御部20は、被方位制御体1の中に定義される方位を「被方位制御体1の特定の方位」と定義し、予め設定した方位を「観察方位軸」と定義する。そして、被方位制御体1の特定の方位と観察方位軸が一致するように、アクチュエータ10の動作を制御する。 According to the directional control device according to the first embodiment, the directional control body 1 is rotated by rotating the three holding spheres 6a to 6c so that the interference fringe IF due to the optical birefringence of the directional control body 1 can be observed. It is possible to rotate the direction of the crystal axis (c-axis) to match the crystal axis of the oriented control body 1 with the observation direction axis. That is, the operation control unit 20 of the directional control device according to the first embodiment shown in FIG. 1 defines the azimuth defined in the directional control body 1 as "a specific directional control of the directional control body 1." , The preset azimuth is defined as the "observation azimuth axis". Then, the operation of the actuator 10 is controlled so that the specific direction of the oriented control body 1 and the observation direction axis coincide with each other.

なお、動作制御部20の記憶部には、予め、アクチュエータ10の動作による駆動板8の移動量と、駆動板8の移動に応じたすべての保持球6a〜6cの回転状態と、すべての保持球6a〜6cの回転状態に応じた被方位制御体1の回転状態との関係を記憶しておけば、学習効果よる繰り返し観察や高速な方位制御が可能となる。特に、動作制御部20を構成しているプロセッサや主記憶装置、補助記憶装置部によって深層学習機能を持たせれば、より迅速な極座標の制御が可能になり、被方位制御体1が真球から若干ずれている球状物体の場合であっても、被方位制御体1の極座標を制御することが可能となる。 In the storage unit of the motion control unit 20, the amount of movement of the drive plate 8 due to the operation of the actuator 10, the rotational state of all the holding balls 6a to 6c according to the movement of the drive plate 8, and all the holding states are stored in advance. If the relationship with the rotational state of the directional control body 1 according to the rotational state of the spheres 6a to 6c is memorized, repeated observation and high-speed directional control by the learning effect become possible. In particular, if the processor, the main storage device, and the auxiliary storage device that make up the motion control unit 20 have a deep learning function, it is possible to control the polar coordinates more quickly, and the directional control body 1 can be moved from the true sphere. Even in the case of a spherical object that is slightly displaced, it is possible to control the polar coordinates of the oriented control body 1.

アクチュエータ10の動作による駆動板8の移動量には、駆動板8のX軸方向への移動量及びY軸方向への移動量を含む。駆動板8の移動に応じたすべての保持球6a〜6cの回転状態とは、3つの保持球6a〜6cの回転方向及び回転量を含む。すべての保持球6a〜6cの回転状態に応じた被方位制御体1の回転状態とは、被方位制御体1の特定の方位の回転方向及び回転量を含む。 The amount of movement of the drive plate 8 due to the operation of the actuator 10 includes the amount of movement of the drive plate 8 in the X-axis direction and the amount of movement in the Y-axis direction. The rotation state of all the holding balls 6a to 6c according to the movement of the drive plate 8 includes the rotation direction and the rotation amount of the three holding balls 6a to 6c. The rotation state of the directional control body 1 according to the rotation state of all the holding balls 6a to 6c includes the rotation direction and the rotation amount of the specific direction of the directional control body 1.

被方位制御体1の特定の方位と観察方位軸を一致させた後は、例えば、図4中に示すように、被方位制御体1の方位を制御した状態で、被方位制御体1の赤道上において操作アーム70を吸引又は接着等により固定することも可能である。例えば、結晶異方性を有する弾性体を被方位制御体1に用いれば、必要に応じて操作アーム70等を介在させながら、球状の弾性体に微細加工を施して各種の電気―機械変換素子等を製造することが可能となる。 After matching the observation azimuth axis with the specific azimuth of the directional control body 1, for example, as shown in FIG. 4, the equatorial line of the directional control body 1 is controlled while the azimuth of the directional control body 1 is controlled. It is also possible to fix the operation arm 70 on the above by suction, adhesion, or the like. For example, if an elastic body having crystal anisotropy is used for the directional control body 1, various electric-mechanical conversion elements are formed by finely processing a spherical elastic body while interposing an operation arm 70 or the like as necessary. Etc. can be manufactured.

また、従来用いられていた、超音波モータを用いて被方位制御体1を回転させる装置と比較して、第1実施形態に係る方位制御装置は超音波モータの振動モードを制御する必要が無いため、装置構造を簡便化して低コスト化が可能となる。また、従来用いられていた、真空ピンセットを用いて被方位制御体1を受け渡す装置と比較して、第1実施形態に係る方位制御装置は被方位制御体1の落下の危険が無い。よって、第1実施形態に係る方位制御装置によれば、被方位制御体1の中心位置を変化させずに、被方位制御体1を正確且つ、高信頼性を維持して回転させることが可能となる。 Further, the orientation control device according to the first embodiment does not need to control the vibration mode of the ultrasonic motor as compared with the conventionally used device for rotating the oriented control body 1 using an ultrasonic motor. Therefore, the device structure can be simplified and the cost can be reduced. Further, as compared with the conventionally used device for handing over the directional control body 1 using vacuum tweezers, the directional control device according to the first embodiment has no risk of the directional control body 1 falling. Therefore, according to the directional control device according to the first embodiment, it is possible to rotate the directional control body 1 accurately and with high reliability without changing the center position of the directional control body 1. It becomes.

また、第1実施形態に係る方位制御装置は、円形貫通孔40a〜40cの、それぞれの中心点が、平面視で正三角形の頂点と重なっている。このため、第1実施形態に係る方位制御装置であれば、3つの保持球6a〜6cに対して被方位制御体1を載せると、被方位制御体1から加わる荷重により、平面視で、各保持球6a〜6cが、各円形貫通孔40a〜40cの内部で正三角形の頂点から離れる方向へ移動する。 Further, in the directional control device according to the first embodiment, the center points of the circular through holes 40a to 40c overlap with the vertices of an equilateral triangle in a plan view. Therefore, in the case of the directional control device according to the first embodiment, when the directional control body 1 is mounted on the three holding vertices 6a to 6c, the load applied from the directional control body 1 causes each of them in a plan view. The holding spheres 6a to 6c move in the inside of each circular through hole 40a to 40c in a direction away from the apex of the equilateral triangle.

これにより、3つの保持球6a〜6cに対して被方位制御体1を載せると、平面視で、正三角形の頂点から3つの保持球6a〜6cの中心までの距離が等しくなる。このため、被方位制御体1を3つの保持球6a〜6cに載せるだけで、3つの保持球6a〜6cに対する被方位制御体1の接触面積を均等とすることが可能となる。したがって、方位制御装置の操作性を向上させることが可能となる。 As a result, when the oriented control body 1 is mounted on the three holding spheres 6a to 6c, the distances from the vertices of the equilateral triangle to the centers of the three holding spheres 6a to 6c become equal in a plan view. Therefore, it is possible to make the contact area of the directional control body 1 equal to the three holding spheres 6a to 6c only by placing the directional control body 1 on the three holding spheres 6a to 6c. Therefore, it is possible to improve the operability of the directional control device.

(その他の実施形態)
上述した第1実施形態に係る方位制御装置は、本発明の一例であり、本発明は、上述した第1実施形態に係る方位制御装置に限定されることはない。すなわち、第1実施形態以外の態様であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
(Other embodiments)
The directional control device according to the first embodiment described above is an example of the present invention, and the present invention is not limited to the directional control device according to the first embodiment described above. That is, even in aspects other than the first embodiment, various changes can be made according to the design and the like as long as they do not deviate from the technical idea of the present invention.

例えば、第1実施形態に係る方位制御装置においては、アクチュエータ10を用いて自動的に駆動板8を水平面内で移動させ、これにより保持球6a,6b,6cを回転させ、保持球6a,6b,6cの回転により被方位制御体1を回転させ、この被方位制御体1の方位が制御される場合を例示的に説明した。しかしながら、高精度の制御が不要な場合等であれば、アクチュエータ10を用いずに、駆動板8を手動もしくは、機械的なマニュピュレータ等を用いて半自動的に、水平面内でX−Y移動させ、保持球6a,6b,6cを回転させるようにしてもよい。このように、装置構造を簡便化して低コスト化を達成した場合であっても、従来用いられていた真空ピンセットを用いて被方位制御体1を受け渡す装置と比較して落下の危険が無いので、小さな被方位制御体のハンドリングが容易になるという効果を奏することが出来る。 For example, in the directional control device according to the first embodiment, the actuator 10 is used to automatically move the drive plate 8 in the horizontal plane, thereby rotating the holding balls 6a, 6b, 6c, and holding balls 6a, 6b. , The case where the directional control body 1 is rotated by the rotation of 6c and the direction of the directional control body 1 is controlled is exemplified. However, if high-precision control is not required, the drive plate 8 is manually or semi-automatically moved XY in the horizontal plane without using the actuator 10. , The holding balls 6a, 6b, 6c may be rotated. In this way, even if the device structure is simplified and the cost is reduced, there is no risk of falling as compared with the device that delivers the directional control body 1 using the vacuum tweezers conventionally used. Therefore, it is possible to achieve the effect of facilitating the handling of the small directional control body.

第1実施形態に係る方位制御装置では、保持板4に円形貫通孔40a〜40cを形成し、円形貫通孔40a〜40cのそれぞれへ3つの保持球6a〜6cを回転自在に収容したが、これに限定するものではない。すなわち、保持板4にn=4箇所の円形貫通孔を形成し、4箇所の円形貫通孔のそれぞれへ4つの保持球を回転自在に収容してもよい。 In the directional control device according to the first embodiment, circular through holes 40a to 40c are formed in the holding plate 4, and three holding balls 6a to 6c are rotatably accommodated in each of the circular through holes 40a to 40c. It is not limited to. That is, the holding plate 4 may be formed with n = 4 circular through holes, and 4 holding balls may be rotatably accommodated in each of the 4 circular through holes.

この場合、4箇所の円形貫通孔を、一定ピッチで円周上に配列し、それぞれの中心点が、平面視で正方形の頂点と重なるようにする。したがって、円形貫通孔及び保持球の数は、3以上のn個(nは3以上の正の整数)であればよく、また、n個の円形貫通孔は、それぞれの中心点が、台座2の厚さ方向から見て、n個の頂点を有する正多角形の頂点が円周上に一定ピッチで配列される構成であればよい。 In this case, four circular through holes are arranged on the circumference at a constant pitch so that the center point of each is overlapped with the apex of the square in a plan view. Therefore, the number of circular through holes and holding spheres may be n (n is a positive integer of 3 or more) of 3 or more, and the center point of each of the n circular through holes is the pedestal 2. It suffices if the vertices of a regular polygon having n vertices are arranged on the circumference at a constant pitch when viewed from the thickness direction of.

ただし、被方位制御体1の極座標を制御する点では、n=3の場合が最も設計が容易である。nが4以上の場合、実質的に被方位制御体1の極座標を制御する保持球を3個とし、他を自由回転する補助球としてもよい。外径が保持球より大きな被方位制御体1を回転・制御する場合は、駆動に寄与しない自由回転をする補助球を含めることによってnを4以上にしてもよい。例えば3個の大きさの等しい駆動用保持球と、駆動用保持球より外形の小さな3個の補助球を交互に配列して6個の保持球で、外径が保持球より大きな被方位制御体1を保持してもよい。 However, in terms of controlling the polar coordinates of the directional control body 1, the case of n = 3 is the easiest to design. When n is 4 or more, the number of holding spheres that substantially control the polar coordinates of the directional control body 1 may be three, and the others may be used as auxiliary spheres that freely rotate. When rotating and controlling the directional control body 1 having an outer diameter larger than that of the holding sphere, n may be set to 4 or more by including an auxiliary sphere that freely rotates without contributing to driving. For example, three holding spheres of equal size and three auxiliary spheres with a smaller outer diameter than the driving holding sphere are alternately arranged to form six holding spheres, and the outer diameter is larger than that of the holding sphere. Body 1 may be retained.

第1実施形態では、駆動板8の上面に取り付けたゴムシート50により静摩擦係数増加機構を形成したが、これに限定するものではなく、静摩擦係数増加機構を、例えば、駆動板8の上面に溝幅10〜200[μm]程度の微細なローレット加工を格子状に施すことで形成してもよい。また、静摩擦係数増加機構を、例えば、駆動板8の上面に粒径10〜200[μm]程度の粒状の物体を接着することで形成してもよい。 In the first embodiment, the static friction coefficient increasing mechanism is formed by the rubber sheet 50 attached to the upper surface of the drive plate 8, but the present invention is not limited to this, and the static friction coefficient increasing mechanism is formed in, for example, a groove on the upper surface of the drive plate 8. It may be formed by applying a fine knurling process having a width of about 10 to 200 [μm] in a grid pattern. Further, the mechanism for increasing the coefficient of static friction may be formed, for example, by adhering a granular object having a particle size of about 10 to 200 [μm] to the upper surface of the drive plate 8.

第1実施形態では、保持板4を、フッ素系樹脂を用いて形成したが、これに限定するものではない。すなわち、保持板4を、例えば、金属等を用いて形成してもよい。この場合、保持板4のうち、円形貫通孔の内径面、すなわち、保持球と接触する部分を、フッ素系樹脂を用いて被覆することで、保持板4と保持球との間の動摩擦係数を低減させる動摩擦係数低減機構を形成してもよい。 In the first embodiment, the holding plate 4 is formed by using a fluororesin, but the present invention is not limited to this. That is, the holding plate 4 may be formed by using, for example, a metal or the like. In this case, the inner diameter surface of the circular through hole, that is, the portion in contact with the holding ball of the holding plate 4 is covered with a fluororesin to obtain the coefficient of dynamic friction between the holding plate 4 and the holding ball. A mechanism for reducing the coefficient of dynamic friction to be reduced may be formed.

この場合、駆動板8を、磁石を用いて形成することにより、着磁性を有する鋼球で形成した保持球と、磁石を用いて形成した駆動板8との組み合わせによって、駆動板8と保持球との間の静摩擦係数を増加させる静摩擦係数増加機構を形成してもよい。 In this case, the drive plate 8 is formed by using a magnet, so that the holding sphere formed of a steel ball having a coefficient of friction and the driving plate 8 formed by using a magnet are combined to form the driving plate 8 and the holding sphere. A mechanism for increasing the coefficient of static friction may be formed to increase the coefficient of static friction between the two.

上記のように、本発明は第1実施形態によって記載したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。すなわち、第1実施形態の開示から、当業者には、様々な代替実施形態、実施例及び運用技術が明らかとなろう。 As mentioned above, the invention has been described by the first embodiment, but the statements and drawings that form part of this disclosure should not be understood as limiting the invention. That is, the disclosure of the first embodiment will reveal to those skilled in the art various alternative embodiments, examples and operational techniques.

1…被方位制御体、2…台座、4…保持板、6a,6b,6c…保持球、8…駆動板、10…アクチュエータ、20…動作制御部、30a,30b,30c,30d…ボルト、40a,40b,40c…円形貫通孔、50…ゴムシート、60…撮像部、70…操作アーム 1 ... Directional control body, 2 ... Pedestal, 4 ... Holding plate, 6a, 6b, 6c ... Holding ball, 8 ... Drive plate, 10 ... Actuator, 20 ... Motion control unit, 30a, 30b, 30c, 30d ... Bolt, 40a, 40b, 40c ... Circular through hole, 50 ... Rubber sheet, 60 ... Imaging unit, 70 ... Operation arm

Claims (5)

台座と、
前記台座に固定され、且つ3個の円形貫通孔を一定ピッチで円周上に配列した保持板と、
3個前記円形貫通孔のそれぞれの内径に外周が近似的な点接触をして、回転自在に収容された3個の保持球と、
前記台座と前記保持板との間に配置され、3個前記保持球と接触し、3個前記保持球の回転を駆動する駆動板と、
を備え、3個前記保持球のみにそれぞれ点接触して3点接触を構成するように3個前記保持球の上に球状の被方位制御体を搭載し、前記駆動板の水平面内の移動により、3個前記保持球を回転させ、3個前記保持球の回転により前記被方位制御体を回転させ、球面座標系(r,θ,φ)のθ,φを制御して、前記被方位制御体の方位ベクトルの方向を制御することを特徴とする球の方位制御装置。
With the pedestal
A holding plate fixed to the pedestal and having three circular through holes arranged on the circumference at a constant pitch,
Three said outer periphery to the respective inner diameter of the circular through hole and the contact approximate point, and three retaining balls rotatably accommodated,
Is disposed between the holding plate and the pedestal, the drive plate in contact with three of the retaining balls, drives the rotation of the three said retaining ball,
The provided, three of the orientation control of spherical and mounted on three of the holding sphere so as to constitute the retaining balls only contact with three-point contact each point in the horizontal plane of the drive plate by moving to rotate the three said retaining balls, said rotate the orientation control member, the spherical coordinate system (r, theta, phi) of theta, and controls the phi rotation of three of said retaining balls, A sphere orientation control device for controlling the direction of the orientation vector of the oriented controller.
前記駆動板を移動させるアクチュエータを更に備えることを特徴とする請求項1に記載の球の方位制御装置。 The sphere orientation control device according to claim 1, further comprising an actuator for moving the drive plate. 前記駆動板と前記保持球との間の静摩擦係数を増加させる静摩擦係数増加機構を備えることを特徴とする請求項1又は2に記載の球の方位制御装置。 The sphere orientation control device according to claim 1 or 2, further comprising a mechanism for increasing the coefficient of static friction that increases the coefficient of static friction between the drive plate and the holding ball. 前記保持板と前記保持球との間の動摩擦係数を低減させる動摩擦係数低減機構を備えることを特徴とする請求項1〜3のいずれか1項に記載の球の方位制御装置。 The sphere orientation control device according to any one of claims 1 to 3, further comprising a dynamic friction coefficient reducing mechanism for reducing the dynamic friction coefficient between the holding plate and the holding ball. 3個前記円形貫通孔は、それぞれの中心点が、前記台座の主面に直交する方向から見て、3個の頂点を有する正三角形の頂点と重なっていることを特徴とする請求項1〜4のいずれか1項に記載の球の方位制御装置。 Three of the circular through holes, each of the center points, when viewed from the direction perpendicular to the main surface of the base, according to claim 1, characterized in that overlaps the apex of an equilateral triangle having three apexes The sphere direction control device according to any one of items 1 to 4.
JP2017205293A 2017-10-24 2017-10-24 Sphere orientation control device Active JP6978652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205293A JP6978652B2 (en) 2017-10-24 2017-10-24 Sphere orientation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205293A JP6978652B2 (en) 2017-10-24 2017-10-24 Sphere orientation control device

Publications (2)

Publication Number Publication Date
JP2019078874A JP2019078874A (en) 2019-05-23
JP6978652B2 true JP6978652B2 (en) 2021-12-08

Family

ID=66626535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205293A Active JP6978652B2 (en) 2017-10-24 2017-10-24 Sphere orientation control device

Country Status (1)

Country Link
JP (1) JP6978652B2 (en)

Also Published As

Publication number Publication date
JP2019078874A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US5899798A (en) Low profile, low hysteresis force feedback gimbal system for chemical mechanical polishing
JP5276434B2 (en) Route planning method
CN106489192B (en) Multi-axis positioning device
TWI393340B (en) Spherical rotary piezoelectric motor
CN102259277B (en) Measurement apparatus
JP5571007B2 (en) Sphere shape measuring device
US20060080852A1 (en) Surface roughness/contour shape measuring apparatus
JP5319154B2 (en) Stage equipment
US20060090357A1 (en) Construction laser with tiltable deflecting means
CN109195753A (en) Using the apparatus for work of parallel linkage
JP6978652B2 (en) Sphere orientation control device
US20190003813A1 (en) Sensor adjustment mechanism for a coordinate measuring machine
JP2019045312A (en) Stylus and surface shape measurement device
JPWO2007004413A1 (en) Translational and two-degree-of-freedom stage device and three-degree-of-freedom stage device using the same
CN105856057A (en) Coupling mechanism, substrate polishing apparatus, method of determining position of rotational center of coupling mechanism, program of determining position of rotational center of coupling mechanism, method of determining maximum pressing load of rotating body, and program of determining maximum pressing load of rotating body
US4592684A (en) Method and apparatus for producing aspherical surfaces
JP2016151292A (en) Shaft joint, rotary table, and circularity measuring device
JP2015001496A (en) Parallel mechanism with flat three degrees of freedom
CN114111688A (en) Device and method for measuring orthogonality of orthogonal axis system
JP4155546B2 (en) Spherical ultrasonic motor
WO2022198588A1 (en) Six-degree-of-freedom movement mechanism
JP6662089B2 (en) Stage equipment
JPH05123992A (en) Surface wave manipulator
Zhuo et al. Research on Accuracy Analysis and Motion Control of Two-axis Non-magnetic Turntable Based on Ultrasonic Motor Journal
JP5757526B2 (en) Diagnostic method for synchronization accuracy of rotating biaxial motion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R150 Certificate of patent or registration of utility model

Ref document number: 6978652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150