JP6978481B2 - Aluminum alloy ingot - Google Patents

Aluminum alloy ingot Download PDF

Info

Publication number
JP6978481B2
JP6978481B2 JP2019218816A JP2019218816A JP6978481B2 JP 6978481 B2 JP6978481 B2 JP 6978481B2 JP 2019218816 A JP2019218816 A JP 2019218816A JP 2019218816 A JP2019218816 A JP 2019218816A JP 6978481 B2 JP6978481 B2 JP 6978481B2
Authority
JP
Japan
Prior art keywords
mass
mold
casting
aluminum alloy
liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019218816A
Other languages
Japanese (ja)
Other versions
JP2020041224A (en
Inventor
鉄浩 水野
嘉公 大橋
義男 水野
尚也 山下
健太郎 平間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016015911A external-priority patent/JP6629083B2/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2019218816A priority Critical patent/JP6978481B2/en
Publication of JP2020041224A publication Critical patent/JP2020041224A/en
Application granted granted Critical
Publication of JP6978481B2 publication Critical patent/JP6978481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は低融点元素を含むアルミニウム合金鋳塊に関する。 The present invention relates to an aluminum alloy ingot containing a low melting point element.

アルミニウム合金の切削性を向上させるためにPb(融点327℃)、Bi(融点271℃)、Sn(融点232℃)、In(融点156℃)といった低融点元素を添加することがある。これらの低融点元素およびこれらの化合物は合金中に分散しており、切削時の加工熱によって溶融してその部分を起点として亀裂が発生し伝播する。そして、亀裂発生と伝播を繰り返すことによって切り屑が分断されて切削性が向上する。切削に供されるアルミニウム合金素材の多くは、材料金属を溶解して連続鋳造した鋳塊、あるいは鋳塊を加工した押出材や圧延材である。 In order to improve the machinability of the aluminum alloy, low melting point elements such as Pb (melting point 327 ° C.), Bi (melting point 271 ° C.), Sn (melting point 232 ° C.), and In (melting point 156 ° C.) may be added. These low melting point elements and these compounds are dispersed in the alloy, melted by the processing heat at the time of cutting, and cracks are generated and propagated from that portion. By repeating the generation and propagation of cracks, the chips are separated and the machinability is improved. Most of the aluminum alloy materials used for cutting are ingots that are continuously cast by melting the material metal, or extruded or rolled materials that are processed from the ingots.

アルミニウム合金の連続鋳造装置では、鋳塊の焼き付きや再溶融を防ぐために金型の内面に自己潤滑性を有するカーボン製ライナーを取り付けて潤滑性を向上させることが知られている(特許文献1、2、3参照)。 It is known that in a continuous aluminum alloy casting apparatus, a carbon liner having self-lubricating property is attached to the inner surface of a mold to improve lubricity in order to prevent seizure and remelting of the ingot (Patent Document 1, Patent Document 1, See a few).

特許文献1には、金型本体の内周面に黒鉛製ライナーを取り付けたAl−Mg系合金の連続鋳造用金型が記載されている。また、前記ライナーにはカーボン粒子と有機系接着剤を含むカーボン溶液を塗布して潤滑性を持続させている。 Patent Document 1 describes a mold for continuous casting of an Al—Mg-based alloy in which a graphite liner is attached to the inner peripheral surface of the mold body. Further, a carbon solution containing carbon particles and an organic adhesive is applied to the liner to maintain lubricity.

特許文献2には、ホットトップ連続鋳造装置において、金型の内周面に離型剤を供給するディストリビューターおよびグラファイト製の機能性リングを組み込むことが記載されている。 Patent Document 2 describes that a hot-top continuous casting apparatus incorporates a distributor for supplying a mold release agent to the inner peripheral surface of a mold and a functional ring made of graphite.

特許文献3には、横型連続鋳造用鋳型において、冷却不足による凝固壁の弱体化を防ぐために、熱伝導度が151W/(m・K)以上(130Kcal/mh℃以上)のカーボンスリーブを用いることが記載されている。 In Patent Document 3, a carbon sleeve having a thermal conductivity of 151 W / (m · K) or more (130 Kcal / mh ° C or more) is used in a horizontal continuous casting mold in order to prevent the solidified wall from being weakened due to insufficient cooling. Is described.

特開2009−39760号公報Japanese Unexamined Patent Publication No. 2009-39760 特開2002−301547号公報Japanese Unexamined Patent Publication No. 2002-301547 特開平11−170008号公報Japanese Unexamined Patent Publication No. 11-170008

上述した快削性アルミニウム合金の鋳造では溶湯の凝固によってPb−Bi、Bi−Sn、Pb−Sn、In−Bi、In−Snといった低融点化合物を形成する。金型からの冷却によって鋳塊の表面が凝固しても、連続的に供給される溶湯の熱によって低融点化合物の再溶融が起こり易く、再溶融した低融点化合物が金型に付着して鋳肌にキズが発生するという問題点がある。 In the casting of the free-cutting aluminum alloy described above, low melting point compounds such as Pb-Bi, Bi-Sn, Pb-Sn, In-Bi, and In-Sn are formed by solidification of the molten metal. Even if the surface of the ingot solidifies due to cooling from the mold, the low melting point compound is likely to remelt due to the heat of the continuously supplied molten metal, and the remelted low melting point compound adheres to the mold and is cast. There is a problem that the skin is scratched.

特許文献1に記載された金型はAl−Mg系合金用である。Al−Mg系合金では前記快削性アルミニウム合金のような低融点化合物が形成されないので、快削性アルミニウム合金の鋳造には適さない。特許文献2に記載された金型も低融点化合物の再溶融による鋳肌品質の低下を解消できるものではない。しかも、離型性の高い泡を形成するために気体と潤滑油の混合物を形成する必要があり、ホットトップ連続鋳造装置に限定されており汎用性が乏しい。また、特許文献3に記載された熱伝導度の高いカーボンスリーブは、実施例のAl−Si共晶合金の鋳造には適しているが、低融点元素を含有するアルミニウム合金の鋳造において低融点化合物の再溶融を防ぎうるものではない。 The mold described in Patent Document 1 is for an Al—Mg-based alloy. Since the Al—Mg-based alloy does not form a low melting point compound like the free-cutting aluminum alloy, it is not suitable for casting a free-cutting aluminum alloy. The mold described in Patent Document 2 cannot eliminate the deterioration of the casting surface quality due to the remelting of the low melting point compound. Moreover, it is necessary to form a mixture of gas and lubricating oil in order to form bubbles with high releasability, which is limited to hot-top continuous casting equipment and lacks versatility. Further, the carbon sleeve having high thermal conductivity described in Patent Document 3 is suitable for casting the Al—Si eutectic alloy of the embodiment, but is a low melting point compound in the casting of an aluminum alloy containing a low melting point element. It cannot prevent the remelting of aluminum.

本発明は、上述した背景技術に鑑み、低融点元素を含有する特定組成のアルミニウム合金からなり、鋳肌品質の良い鋳塊を提供する。 In view of the background art described above, the present invention provides an ingot having a specific composition of an aluminum alloy containing a low melting point element and having a good casting surface quality.

即ち、本発明は下記[1]〜[5]に記載の構成を有する。 That is, the present invention has the configurations described in the following [1] to [5].

[1]Pb:0.2質量%〜2質量%、Bi:0.01質量%〜3質量%、Sn:0.01質量%〜1.5質量%、In:0.01質量%〜0.2質量%のうちの1種以上の元素を含むアルミニウム合金からなる鋳塊であり、鋳肌の凹凸差が1.5mm以下であることを特徴とするアルミニウム合金鋳塊。 [1] Pb: 0.2% by mass to 2% by mass, Bi: 0.01% by mass to 3% by mass, Sn: 0.01% by mass to 1.5% by mass, In: 0.01% by mass to 0 . An aluminum alloy ingot made of an aluminum alloy containing one or more elements of 2% by mass, wherein the unevenness difference of the casting surface is 1.5 mm or less.

[2]前記アルミニウム合金は、さらに、Cu:3.5質量%〜6.5質量%およびZn:0.01質量%〜1.2質量%を含有する前項1に記載のアルミニウム合金鋳塊。 [2] The aluminum alloy ingot according to item 1 above, wherein the aluminum alloy further contains Cu: 3.5% by mass to 6.5% by mass and Zn: 0.01% by mass to 1.2% by mass.

[3]前記アルミニウム合金は、さらに、Si:0.01質量%〜1.0質量%、Mg:0.01質量%〜2.0質量%、Ti:0.01質量%〜0.1質量%、B:0.0001質量%〜0.01質量%のうちの1種以上の元素を含む前項2に記載のアルミニウム合金鋳塊。 [3] The aluminum alloy further contains Si: 0.01% by mass to 1.0% by mass, Mg: 0.01% by mass to 2.0% by mass, and Ti: 0.01% by mass to 0.1% by mass. %, B: The aluminum alloy ingot according to item 2 above, which contains one or more elements from 0.0001% by mass to 0.01% by mass.

[4]前記アルミニウム合金は、さらに、Mg:0.3質量%〜1.5質量%およびSi:0.2質量%〜1.0質量%を含有する前項1に記載のアルミニウム合金鋳塊。 [4] The aluminum alloy ingot according to item 1 above, wherein the aluminum alloy further contains Mg: 0.3% by mass to 1.5% by mass and Si: 0.2% by mass to 1.0% by mass.

[5]前記アルミニウム合金は、さらに、Cu:0.01質量%〜2.0質量%、Zn:0.01質量%〜0.2質量%、Ti:0.01質量%〜0.1質量%、B:0.0001質量%〜0.01質量%のうちの1種以上の元素を含む前項4に記載のアルミニウム合金鋳塊。 [5] The aluminum alloy further contains Cu: 0.01% by mass to 2.0% by mass, Zn: 0.01% by mass to 0.2% by mass, and Ti: 0.01% by mass to 0.1% by mass. %, B: The aluminum alloy ingot according to item 4 above, which contains one or more elements from 0.0001% by mass to 0.01% by mass.

上記[1]〜[5]に記載のアルミニウム合金鋳塊は、低融点元素を含んでいるにもかかわらず鋳肌の凹凸差が1.5mm以下であり、表面平滑性が高い。 The aluminum alloy ingots described in the above [1] to [5] have a difference in unevenness of the casting surface of 1.5 mm or less even though they contain a low melting point element, and have high surface smoothness.

本発明のアルミニウム合金鋳塊の連続鋳造方法を示す断面図である。It is sectional drawing which shows the continuous casting method of the aluminum alloy ingot of this invention.

[アルミニウム合金]
本発明を適用するアルミニウム合金は低融点元素であるPb、Bi、Sn、Inのうちの1種以上の元素を含む合金であり、前記低融点元素のみが添加されたアルミニウム合金または前記低融点元素以外の元素が添加されたアルミニウム合金である。
[Aluminum alloy]
The aluminum alloy to which the present invention is applied is an alloy containing one or more of the low melting point elements Pb, Bi, Sn, and In, and is an aluminum alloy to which only the low melting point element is added or the low melting point element. It is an aluminum alloy to which elements other than the above are added.

前記低融点元素は切削性を向上させるために添加される元素であり、1種または任意の組み合わせで2種以上が添加されている。Pbの融点は327℃、Biの融点は271℃、Snの融点は232℃、Inの融点は156℃であり、これらの化合物、即ちPb−Bi、Bi−Sn、Pb−Sn、In−Bi、In−Snも共晶温度が183℃以下の低融点化合物である。各化合物の共晶温度は、Pb−Biが125℃、Bi−Snが139℃、Pb−Snが183℃、In−Biが72℃、In−Snが117℃である。 The low melting point element is an element added to improve machinability, and one kind or two or more kinds are added in any combination. The melting point of Pb is 327 ° C, the melting point of Bi is 271 ° C, the melting point of Sn is 232 ° C, and the melting point of In is 156 ° C. These compounds, that is, Pb-Bi, Bi-Sn, Pb-Sn, In-Bi , In—Sn is also a low melting point compound having a eutectic temperature of 183 ° C. or lower. The eutectic temperature of each compound is 125 ° C. for Pb-Bi, 139 ° C. for Bi-Sn, 183 ° C. for Pb-Sn, 72 ° C. for In-Bi, and 117 ° C. for In-Sn.

アルミニウム合金中の各元素の好ましい濃度は以下のとおりである。Pb濃度は0.2質量%〜2質量%が好ましく、Bi濃度は0.01質量%〜3質量%が好ましく、Sn濃度は0.01質量%〜1.5質量%が好ましく、In濃度が0.01質量%〜0.2質量%が好ましい。いずれの元素においても下限値未満では切削性の向上効果が乏しく、上限値を超えると押出性または耐食性が低下するおそれがある。特に好ましい濃度は、Pb濃度が0.3質量%〜1.0質量%、Bi濃度が0.1質量%〜0.6質量%、Sn濃度が0.2質量%〜1.5質量%、In濃度が0.08質量%〜0.2質量%である。 The preferred concentrations of each element in the aluminum alloy are as follows. The Pb concentration is preferably 0.2% by mass to 2% by mass, the Bi concentration is preferably 0.01% by mass to 3% by mass, the Sn concentration is preferably 0.01% by mass to 1.5% by mass, and the In concentration is high. It is preferably 0.01% by mass to 0.2% by mass. For any of the elements, if the value is less than the lower limit, the effect of improving machinability is poor, and if the value exceeds the upper limit, the extrudability or corrosion resistance may decrease. Particularly preferable concentrations are Pb concentration of 0.3% by mass to 1.0% by mass, Bi concentration of 0.1% by mass to 0.6% by mass, Sn concentration of 0.2% by mass to 1.5% by mass, and so on. The In concentration is 0.08% by mass to 0.2% by mass.

前記低融点元素のみが添加されたアルミニウム合金の残部はAlおよび不可避不純物である。 The balance of the aluminum alloy to which only the low melting point element is added is Al and unavoidable impurities.

前記低融点元素以外に添加される元素として、Cu、Mg、Si、Zn、Ti、Bを例示できる。これらの元素はいずれも強度向上に寄与する元素であり、1種または任意の2種以上の元素が添加される。これらのアルミニウム合金における低融点元素の濃度は上述した低融点元素のみを含有するアルミニウム合金における濃度に準じる。また、Cu、Mg、Si、Zn、Ti、Bの好ましい濃度は以下のとおりである。 Examples of elements added in addition to the low melting point element include Cu, Mg, Si, Zn, Ti, and B. All of these elements are elements that contribute to the improvement of strength, and one kind or any two or more kinds of elements are added. The concentration of the low melting point element in these aluminum alloys is the same as the concentration in the aluminum alloy containing only the low melting point element described above. The preferable concentrations of Cu, Mg, Si, Zn, Ti and B are as follows.

2000系のAl−Cu系合金において、好ましいCu濃度は3.5質量%〜6.5質量%であり、Zn濃度は0.01質量%〜1.2質量%であり、特に好ましいCu濃度は4.5質量%〜6.0質量%であり、Zn濃度は0.01質量%〜1.0質量%である。また、CuおよびZnの他に、0.01質量%〜1.0質量%のSi、0.01質量%〜2.0質量%のMg、0.01質量%〜0.1質量%のTi、0.0001質量%〜0.01質量%のBのうちのいずれか1種以上が添加されていても良い。残部はAlおよび不可避不純物である。 In the 2000 series Al—Cu based alloy, the preferred Cu concentration is 3.5% by mass to 6.5% by mass, the Zn concentration is 0.01% by mass to 1.2% by mass, and the particularly preferable Cu concentration is It is 4.5% by mass to 6.0% by mass, and the Zn concentration is 0.01% by mass to 1.0% by mass. In addition to Cu and Zn, 0.01% by mass to 1.0% by mass of Si, 0.01% by mass to 2.0% by mass of Mg, and 0.01% by mass to 0.1% by mass of Ti. , 0.0001% by mass to 0.01% by mass, any one or more of B may be added. The balance is Al and unavoidable impurities.

6000系のAl−Mg−Si系合金において、好ましいMg濃度は0.3質量%〜1.5質量%であり、好ましいSi濃度は0.2質量%〜1.0質量%である。特に好ましいMg濃度は0.5質量%〜0.8質量%であり、Si濃度は0.6質量%〜0.9質量%である。また、MgおよびSiの他に、0.01質量%〜2.0質量%のCu、0.01質量%〜0.2質量%のZn、0.01質量%〜0.1質量%のTi、0.0001質量%〜0.01質量%のBのうちのいずれか1種以上が添加されていても良い。残部はAlおよび不可避不純物である。 In the 6000 series Al—Mg—Si alloy, the preferable Mg concentration is 0.3% by mass to 1.5% by mass, and the preferable Si concentration is 0.2% by mass to 1.0% by mass. A particularly preferable Mg concentration is 0.5% by mass to 0.8% by mass, and the Si concentration is 0.6% by mass to 0.9% by mass. In addition to Mg and Si, 0.01% by mass to 2.0% by mass of Cu, 0.01% by mass to 0.2% by mass of Zn, and 0.01% by mass to 0.1% by mass of Ti. , 0.0001% by mass to 0.01% by mass, any one or more of B may be added. The balance is Al and unavoidable impurities.

また、前記低融点元素以外に添加される元素はCu、Mg、Si、Zn、Ti、Bに限定されず、融点が327℃を超える元素を添加したアルミニウム合金も本発明に含まれる。即ち、低融点元素としてPb:0.2質量%〜2質量%、Bi:0.01質量%〜3質量%、Sn:0.01質量%〜1.5質量%、In:0.01質量%〜0.2質量%のうちの1種以上を含み、さらに融点が327℃を超える元素を含み、残部がAlおよび不可避不純物からなるアルミニウム合金である。 Further, the elements added other than the low melting point element are not limited to Cu, Mg, Si, Zn, Ti, and B, and an aluminum alloy to which an element having a melting point exceeding 327 ° C. is added is also included in the present invention. That is, as a low melting point element, Pb: 0.2% by mass to 2% by mass, Bi: 0.01% by mass to 3% by mass, Sn: 0.01% by mass to 1.5% by mass, In: 0.01% by mass. It is an aluminum alloy containing one or more of% to 0.2% by mass, further containing an element having a melting point of more than 327 ° C., and the balance consisting of Al and unavoidable impurities.

本発明のアルミニウム合金は上述した組成の合金に限定するものではなく、Pb、Bi、Sn、Inのうちの1種以上の元素を含む全てのアルミニウム合金に適用できる。
[金型および連続鋳造方法]
図1に、本発明のアルミニウム合金鋳塊を連続鋳造するための連続鋳造用金型およびこの金型を用いた縦型連続鋳造装置の要部を示す。
The aluminum alloy of the present invention is not limited to the alloy having the above-mentioned composition, and can be applied to all aluminum alloys containing one or more elements of Pb, Bi, Sn, and In.
[Mold and continuous casting method]
FIG. 1 shows a main part of a continuous casting die for continuously casting an aluminum alloy ingot of the present invention and a vertical continuous casting device using this die.

金型10は、断面円形の成形孔11の両端が開口する筒型であり、筒型の金型本体20と、金型本体20の成形孔11に内嵌めされた筒型のライナー30とにより構成されている。前記成形孔11の一端は溶湯Mの注入口12であり、他端は鋳塊Sの鋳出口13である。 The mold 10 is a tubular mold in which both ends of a molding hole 11 having a circular cross section are opened, and is formed by a tubular mold main body 20 and a tubular liner 30 internally fitted in the molding hole 11 of the mold main body 20. It is configured. One end of the molding hole 11 is an injection port 12 for the molten metal M, and the other end is a casting outlet 13 for the ingot S.

金型本体20は内部に冷却水Cを流通させるキャビティ21を有し、上部にキャビテイィへ21への入口22が設けられ、前記鋳出口13を囲んで噴出口23が設けられている。入口22から導入された冷却水Cは、キャビティ21内を流通して成形孔11内の溶湯Mを金型本体20および成形孔11に内嵌めされた筒型のライナー30を介し一次冷却して凝固させ、噴出口23から噴出して鋳出されてくる鋳塊Sに吹き付けられて鋳塊Sを二次冷却する。また、前記金型本体20の内周面25の鋳出口13側の一部を除く領域に、ライナー30の厚み相当の凹部26が形成されている。前記金型本体20の材料は限定されず、アルミニウム、鉄、銅等の周知金属材料を適宜用いることができる。 The mold main body 20 has a cavity 21 for circulating cooling water C inside, an inlet 22 to the cavity 21 is provided at the upper portion, and a spout 23 is provided surrounding the casting outlet 13. The cooling water C introduced from the inlet 22 flows through the cavity 21 and primaryly cools the molten metal M in the molding hole 11 via the mold body 20 and the tubular liner 30 internally fitted in the molding hole 11. It is solidified and sprayed onto the ingot S that is ejected from the ejection port 23 and is cast to secondarily cool the ingot S. Further, a recess 26 corresponding to the thickness of the liner 30 is formed in a region excluding a part of the inner peripheral surface 25 of the mold main body 20 on the casting outlet 13 side. The material of the mold body 20 is not limited, and well-known metal materials such as aluminum, iron, and copper can be appropriately used.

ライナー30は、熱伝導度が60W/(m・K)〜139W/(m・K)のカーボン製であり、内周面31の表面粗さはJIS B0601 2001で規定された最大高さRzで1μm〜25μmに調整され、平滑性の高い内周面31が形成されている。前記ライナー30は金型本体20の凹部26に焼き嵌めにより嵌合され、ライナー30の内周面31と金型本体25の内周面25の下方部とが連続する曲面を形成し、この曲面が金型10の成形孔11の壁面11aを構成している。従来の金型に用いられるカーボンライナー、例えば、特許文献3に記載されているカーボンライナー(スリーブ)の熱伝導度は151W/(m・K)以上(130Kcal/mh℃以上)であり、前記ライナー30は従来よりも熱伝導度の低いカーボンからなる。 The liner 30 is made of carbon having a thermal conductivity of 60 W / (m · K) to 139 W / (m · K), and the surface roughness of the inner peripheral surface 31 is the maximum height Rz specified by JIS B0601 2001. The inner peripheral surface 31 is adjusted to 1 μm to 25 μm and has high smoothness. The liner 30 is fitted into the recess 26 of the mold main body 20 by shrink fitting, and the inner peripheral surface 31 of the liner 30 and the lower portion of the inner peripheral surface 25 of the mold main body 25 form a continuous curved surface. Consists of the wall surface 11a of the molding hole 11 of the mold 10. The carbon liner used in the conventional mold, for example, the carbon liner (sleeve) described in Patent Document 3, has a thermal conductivity of 151 W / (m · K) or more (130 Kcal / mh ° C. or more), and the liner. Reference numeral 30 is made of carbon having a lower thermal conductivity than the conventional one.

アルミニウム合金の連続鋳造において、金型10の注入口12から成形孔11に注入された溶湯Mは、壁面11aから一次冷却を受けて外周面から中心へと凝固が進行し、鋳出口13に到達する前に、凝固収縮によって鋳塊Sの表面が壁面11aから離れる。鋳塊Sが壁面11aから離れて壁面11aとの間に隙間ができると、熱移動が妨げられて金型10から受ける一次冷却能力が低下する。鋳塊Sが成形孔11の壁面11aから離れる位置P(以下、「鋳塊の離型位置」と称する)は、金型10への抜熱量が大きいほど溶湯Mの冷却が早くなって注入口12に近くなり、逆に抜熱量が小さいほど冷却が遅くなって鋳出口13に近くなる。一方、成形孔11内で凝固しつつある鋳塊Sは表面に凝固壁が形成されていても中心部は高温の溶融状態にあり、凝固中の鋳塊Sの表面は金型10から冷却を受けながらも中心部からの熱を受けている。このため、凝固壁の形成が不十分なままで鋳塊Sが離型すると、中心部からの熱によって鋳塊表面、特に低融点化合物が再溶融するおそれがある。 In the continuous casting of an aluminum alloy, the molten metal M injected into the molding hole 11 from the injection port 12 of the mold 10 receives primary cooling from the wall surface 11a, solidifies from the outer peripheral surface to the center, and reaches the casting outlet 13. The surface of the ingot S is separated from the wall surface 11a by the solidification shrinkage. When the ingot S is separated from the wall surface 11a and a gap is formed between the ingot S and the wall surface 11a, heat transfer is hindered and the primary cooling capacity received from the mold 10 is reduced. At the position P where the ingot S separates from the wall surface 11a of the molding hole 11 (hereinafter referred to as “the ingot release position”), the larger the amount of heat removed from the mold 10, the faster the molten metal M cools and the injection port. It becomes closer to 12, and conversely, the smaller the amount of heat removed, the slower the cooling and the closer to the casting outlet 13. On the other hand, the ingot S being solidified in the forming hole 11 has a solidified wall formed on the surface, but the central portion is in a high-temperature molten state, and the surface of the ingot S being solidified is cooled from the mold 10. While receiving it, it receives heat from the center. Therefore, if the ingot S is released from the mold while the solidification wall is not sufficiently formed, the ingot surface, particularly the low melting point compound, may be remelted by the heat from the central portion.

上述した溶湯Mの凝固過程において、ライナー30の熱伝導度が高い程抜熱量が大きく冷却が早くなって鋳塊Sの離型位置Pが注入口12に近くなる。逆に、ライナー30の熱伝導度が低い程抜熱量が小さく冷却が遅くなって鋳塊Sの離型位置Pが鋳出口13に近くなる。本発明のアルミニウム合金鋳塊を製造するに際し、金型10は、従来のカーボンライナー、例えば上記の熱伝導度が162W/(m・K)のカーボンライナーよりも熱伝導度の低いライナー30を用いているので、従来の連続鋳造よりも鋳塊Sの離型位置Pが鋳出口13側に移動する。そして、鋳塊Sの離型位置Pが鋳出口13側に移動することで、一次冷却を受ける時間が長くなり離型によって一次冷却能力が低下する期間が短縮されるので、金型10から十分な冷却を受けることができる。また、鋳塊Sの離型位置Pが鋳出口13に近くなることで噴出口23までの距離が短くなるので、離型した鋳塊Sが冷却水Cによる二次冷却を受けるまでの時間が短縮される。従って、熱伝導度の低いライナー30を用いることにより、成形孔11の壁面11aから冷却される一次冷却時間が長くなり、離型によって一次冷却能力が低下する期間が短縮され、かつ一次冷却後に二次冷却を受けるまでの時間が短縮される。その結果、鋳塊Sが十分に冷却されて低融点化合物の再溶融が抑制され、再溶融による湯漏れや鋳肌の荒れが抑制される。 In the solidification process of the molten metal M described above, the higher the thermal conductivity of the liner 30, the larger the amount of heat removed and the faster the cooling, and the mold release position P of the ingot S becomes closer to the injection port 12. On the contrary, the lower the thermal conductivity of the liner 30, the smaller the amount of heat removed and the slower the cooling, so that the mold release position P of the ingot S becomes closer to the casting outlet 13. In producing the aluminum alloy ingot of the present invention, the mold 10 uses a conventional carbon liner, for example, a liner 30 having a lower thermal conductivity than the above-mentioned carbon liner having a thermal conductivity of 162 W / (m · K). Therefore, the mold release position P of the ingot S moves to the casting outlet 13 side as compared with the conventional continuous casting. Then, since the mold release position P of the ingot S moves to the casting outlet 13 side, the time for receiving the primary cooling becomes longer and the period during which the primary cooling capacity decreases due to the mold release is shortened, which is sufficient from the mold 10. Can be cooled. Further, since the mold release position P of the ingot S is closer to the casting outlet 13, the distance to the ejection port 23 is shortened, so that it takes time for the released ingot S to receive secondary cooling by the cooling water C. It will be shortened. Therefore, by using the liner 30 having low thermal conductivity, the primary cooling time for cooling from the wall surface 11a of the molding hole 11 becomes long, the period during which the primary cooling capacity decreases due to the mold release is shortened, and the secondary cooling is performed after the primary cooling. The time to receive the next cooling is shortened. As a result, the ingot S is sufficiently cooled to suppress the remelting of the low melting point compound, and the leakage of hot water and the roughening of the casting surface due to the remelting are suppressed.

さらに、前記ライナー30は表面平滑性が高く、カーボン自体がもつ自己潤滑性と表面平滑性により溶湯Mや凝固壁の滑りが良く、これらの付着が抑制されて表面平滑性の高い鋳肌が得られる。 Further, the liner 30 has high surface smoothness, and the self-lubricating property and surface smoothness of carbon itself make the molten metal M and the solidified wall slippery, and the adhesion of these is suppressed to obtain a cast surface with high surface smoothness. Be done.

上述したように、前記ライナー30は熱伝導度が60W/(m・K)〜139W/(m・K)のカーボンで構成されている。ライナー30の熱伝導度が60W/(m・K)未満のカーボンでは一次冷却による冷却が弱く凝固壁の形成が不完全となり、湯漏れによる鋳造失敗の危険があり、139W/(m・K)を超えるカーボンでは鋳塊Sの離型位置Pを鋳出口13側に移動させる効果が小さい。特に好ましい熱伝導度は80W/(m・K)〜130W/(m・K)である。また、前記ライナー30の表面は、JIS B0601 2001で規定された最大高さRzが1μm〜25μmである。最大高さRzが1μm未満では鋳造時に供給する潤滑油がライナー表面に保持されず、また研磨加工等で平滑な表面を得ようとした場合加工費用が大幅に上がってしまう。25μmを超えると上記効果が乏しい。特に好ましい表面の最大高さRzは5μm〜25μmである。 As described above, the liner 30 is made of carbon having a thermal conductivity of 60 W / (m · K) to 139 W / (m · K). If the thermal conductivity of the liner 30 is less than 60 W / (m · K), the cooling by the primary cooling is weak and the formation of the solidified wall is incomplete, and there is a risk of casting failure due to hot water leakage. With carbon exceeding the above, the effect of moving the mold release position P of the ingot S to the casting outlet 13 side is small. A particularly preferable thermal conductivity is 80 W / (m · K) to 130 W / (m · K). The surface of the liner 30 has a maximum height Rz of 1 μm to 25 μm defined by JIS B0601 2001. If the maximum height Rz is less than 1 μm, the lubricating oil supplied at the time of casting is not retained on the liner surface, and if a smooth surface is to be obtained by polishing or the like, the processing cost will increase significantly. If it exceeds 25 μm, the above effect is poor. A particularly preferable maximum height Rz of the surface is 5 μm to 25 μm.

前記ライナー30の製造方法は問わないが、最大高さRzが1μm〜25μmの平滑表面を得るには、冷間等方圧加圧法(CIP)による成形品または熱間等方圧加圧法(HIP)による成形品であることが好ましい。CIP成形およびHIP成形は等方加圧しているために押出成形に比べて緻密な構造となり、平滑表面が得やすいためである。 The method for manufacturing the liner 30 is not limited, but in order to obtain a smooth surface having a maximum height Rz of 1 μm to 25 μm, a molded product by a cold isostatic pressing method (CIP) or a hot isostatic pressing method (HIP) can be obtained. ) Is preferable. This is because CIP molding and HIP molding have a denser structure than extrusion molding because they are isotropically pressurized, and a smooth surface can be easily obtained.

また、前記ライナー30は、金型本体20とライナー30の熱膨張率の差を利用して焼き嵌めることにより金型本体20に取り付けることが好ましい。カーボンは金型本体20を構成する金属よりも熱膨張率が小さいので、常温において鋳型本体20の内径をライナー30の外径よりも小さく設定し、加熱により内径が拡大した金型本体20ライナー30を内嵌めすると、金型10の温度低下によりライナー30が金型本体20に締め付けられた状態で固定される。焼き嵌めで取り付けると金型本体20とライナー30とが密着して両者間に隙間ができないので、連続鋳造時にライナー30から金型本体20への熱移動が速やかに行われる。また、周方向の全域で金型本体20とライナー30が密着するので、周方向における冷却ムラが生じない。
[連続鋳造方法]
図1の縦型連続鋳造装置は溶湯Mの供給装置の記載を省略しているが、フロートによるDC鋳造法、ホットトップ鋳造法、気体加圧式ホットトップ鋳造法等の溶湯の供給方式は何ら限定されない。また、前記金型およびアルミニウム合金の連続鋳造方法は鋳造方向を垂直方向に限定するものではなく、水平連続鋳造にも適用できる。前記金型はライナーの熱伝導度および表面粗さに特徴を有しており、どのような鋳造方式の金型にも適用できる。
Further, it is preferable that the liner 30 is attached to the mold main body 20 by shrink-fitting using the difference in the coefficient of thermal expansion between the mold main body 20 and the liner 30. Since carbon has a smaller coefficient of thermal expansion than the metal constituting the mold body 20, the inner diameter of the mold body 20 is set smaller than the outer diameter of the liner 30 at room temperature, and the inner diameter of the mold body 20 liner 30 is expanded by heating. When the inner fitting is performed, the liner 30 is fixed in a state of being tightened to the mold main body 20 due to the temperature drop of the mold 10. When attached by shrink fitting, the mold body 20 and the liner 30 are in close contact with each other and no gap is formed between them, so that heat is quickly transferred from the liner 30 to the mold body 20 during continuous casting. Further, since the mold main body 20 and the liner 30 are in close contact with each other over the entire area in the circumferential direction, cooling unevenness in the circumferential direction does not occur.
[Continuous casting method]
In the vertical continuous casting apparatus of FIG. 1, the description of the molten metal M supply apparatus is omitted, but the molten metal supply method such as the DC casting method by float, the hot top casting method, and the gas pressure type hot top casting method is limited. Not done. Further, the continuous casting method of the mold and the aluminum alloy does not limit the casting direction to the vertical direction, and can be applied to horizontal continuous casting. The mold is characterized by the thermal conductivity and surface roughness of the liner and can be applied to any casting mold.

アルミニウム合金の連続鋳造において、鋳造温度(溶湯Mの温度)は650℃〜750℃の範囲が好ましく、鋳造速度は10mm/min〜200mm/minの範囲が好ましい。また、金型10の噴出口13噴出させる冷却水量は0.01m/min〜0.5m/minの範囲が好ましい。これらは凝固に影響を及ぼす条件であり、鋳造温度が750℃を超え、鋳造速度が200mm/minを超え、冷却水量が0.01m/min未満になると、凝固が遅く成りすぎて平滑性の高い鋳肌の鋳塊鋳造が困難になる。一方、鋳造温度が650℃未満、鋳造速度が10mm/min未満、冷却水量が0.5m/minを超えると凝固が早くなりすぎる。縦型連続鋳造装置においては、溶湯上部まで凝固が進行し平滑性の高い鋳塊鋳造が困難となり、溶湯供給装置まで凝固が進行した場合鋳塊が下降せず、支持台に追従せずに鋳造失敗する可能性がある。 In the continuous casting of an aluminum alloy, the casting temperature (temperature of the molten metal M) is preferably in the range of 650 ° C to 750 ° C, and the casting speed is preferably in the range of 10 mm / min to 200 mm / min. The cooling water which spout 13 is ejected in the die 10 is preferably in the range of 0.01m 3 /min~0.5m 3 / min. These are conditions that affect solidification. If the casting temperature exceeds 750 ° C, the casting speed exceeds 200 mm / min, and the amount of cooling water is less than 0.01 m 3 / min, solidification becomes too slow and smoothness is achieved. Ingot casting with a high casting surface becomes difficult. On the other hand, if the casting temperature is less than 650 ° C., the casting speed is less than 10 mm / min, and the amount of cooling water exceeds 0.5 m 3 / min, the solidification becomes too fast. In the vertical continuous casting equipment, solidification progresses to the upper part of the molten metal, making it difficult to cast ingots with high smoothness. It can fail.

上述した低融点元素を含有するアルミニウム合金を前記金型10を用いて連続鋳造して作製された鋳塊Sは表面平滑性が高く、鋳肌の凹凸差、即ち最も高い凸部から最も低い凹部までの距離は1.5mm以下である。 The ingot S produced by continuously casting the above-mentioned aluminum alloy containing a low melting point element using the mold 10 has high surface smoothness, and the unevenness difference of the casting surface, that is, the highest convex portion to the lowest concave portion. The distance to is 1.5 mm or less.

低融点元素を含有するアルミニウム合金で表面平滑性の高い鋳塊を連続鋳造するに際し、好適な連続鋳造用金型および連続鋳造方法の構成、ならびにそれらの効果は以下に記載したとおりである。 The configurations of suitable continuous casting dies and continuous casting methods for continuous casting of ingots having high surface smoothness with an aluminum alloy containing a low melting point element, and their effects are as described below.

[1]成形孔の一端が溶湯の注入口となされ他端が鋳塊の鋳出口となされた金型本体と、前記金型本体の成形孔に取り付けられたライナーとを備えるアルミニウム合金の連続鋳造用金型であり、
前記ライナーは、熱伝導度が60W/(m・K)〜139W/(m・K)のカーボンからなり、内周面はJIS B0601 2001で規定された最大高さRzが1μm〜25μmであることを特徴とする連続鋳造用金型。
[1] Continuous casting of an aluminum alloy including a mold body having one end of a molded hole serving as an injection port for molten metal and the other end serving as a casting outlet for an ingot, and a liner attached to the molding hole of the mold body. It is a mold,
The liner is made of carbon having a thermal conductivity of 60 W / (m · K) to 139 W / (m · K), and the inner peripheral surface has a maximum height Rz of 1 μm to 25 μm specified by JIS B0601 2001. A mold for continuous casting characterized by.

[2]前記鋳出口の周囲に冷却水の噴出口が設けられている前項1に記載の連続鋳造用金型。 [2] The continuous casting die according to item 1 above, wherein a cooling water spout is provided around the casting outlet.

[3]前記ライナーは冷間等方圧加圧法または熱間等方圧加圧法による成形品である前項1または2に記載の連続鋳造用金型。 [3] The die for continuous casting according to item 1 or 2 above, wherein the liner is a molded product by a cold isostatic pressing method or a hot isostatic pressing method.

[4]前記ライナーは金型本体に焼き嵌めによって取り付けられている前項1〜3のうちのいずれか1項に記載の連続鋳造用金型。 [4] The continuous casting die according to any one of items 1 to 3 above, wherein the liner is attached to the die body by shrink fitting.

[5]Pb、Bi、Sn、Inのうちの1種以上の元素を含むアルミニウム合金を、前項1〜4のうちのいずれか1項に記載の連続鋳造用金型を用いて連続鋳造することを特徴とするアルミニウム合金の連続鋳造方法。 [5] An aluminum alloy containing one or more elements of Pb, Bi, Sn, and In is continuously cast using the continuous casting mold according to any one of the above items 1 to 4. A method for continuous casting of aluminum alloys.

上記[1]に記載の連続鋳造用金型は、成形孔に取り付けられているライナーの熱伝導度が従来のライナーの熱伝導度よりも低いので、冷却が遅くなって鋳塊の離型位置が鋳出口側に近づく。このため、成形孔の壁面から抜熱される一次冷却時間が長くなり離型によって一次冷却能力が低下する期間が短縮される。その結果、鋳塊が十分に冷却されて鋳塊表面の再溶融が抑制され、再溶融による湯漏れや鋳肌の荒れが抑制される。しかも、ライナーの内周面の表面粗さがJIS B0601 2001で規定された最大高さRzで1μm〜25μmの平滑面で形成されているので鋳塊の滑りが良く、鋳肌の凹凸差の小さい鋳塊を連続鋳造することができる。 In the continuous casting die described in the above [1], the thermal conductivity of the liner attached to the molding hole is lower than that of the conventional liner, so that the cooling is delayed and the ingot release position. Approaches the casting outlet side. Therefore, the primary cooling time for removing heat from the wall surface of the molded hole becomes long, and the period during which the primary cooling capacity decreases due to mold release is shortened. As a result, the ingot is sufficiently cooled to suppress remelting of the ingot surface, and leakage of hot water and roughening of the casting surface due to remelting are suppressed. Moreover, since the surface roughness of the inner peripheral surface of the liner is formed on a smooth surface of 1 μm to 25 μm at the maximum height Rz specified by JIS B0601 2001, the ingot slips well and the difference in unevenness of the casting surface is small. Ingots can be continuously cast.

上記[2]に記載の連続鋳造用金型によれば、鋳塊の離型位置が鋳出口側に近づくことで、冷却水の吹きつけによる二次冷却を受けるまでの時間が短縮されるので、鋳塊が十分に冷却されて鋳塊表面の再溶融が抑制される。 According to the continuous casting die described in [2] above, since the mold release position of the ingot is closer to the casting outlet side, the time required for secondary cooling by spraying cooling water is shortened. , The ingot is sufficiently cooled and the remelting of the ingot surface is suppressed.

上記[3]に記載の連続鋳造用金型はライナーが冷間等方圧加圧法または熱間等方圧加圧法による成形品であるから表面平滑性が高い。 The continuous casting die according to [3] above has high surface smoothness because the liner is a molded product by a cold isostatic pressing method or a hot isostatic pressing method.

上記[4]に記載の連続鋳造用金型は、ライナーが鋳型本体に焼き嵌めによって取り付けられているので、両者間の密着性が高く熱移動が速やかに行われるとともに、周方向における冷却ムラが生じない。 In the continuous casting die described in [4] above, since the liner is attached to the mold body by shrink fitting, the adhesion between the two is high, heat transfer is performed quickly, and cooling unevenness in the circumferential direction occurs. Does not occur.

上記[5]に記載のアルミニウム合金の連続鋳造方法は、低融点元素であるBi、Sn、PbおよびInのうちの1種以上を含むアルミニウム合金を上記の金型を用いて連続鋳造を行う。連続鋳造用金型は、成形孔に取り付けられているライナーの熱伝導度が従来のライナーの熱伝導度よりも低いので、冷却が遅くなって鋳塊の離型位置が鋳出口側に近づく。このため、成形孔の壁面から抜熱される一次冷却時間が長くなり離型によって一次冷却能力が低下する期間が短縮される。その結果、鋳塊が十分に冷却されて鋳塊表面の低融点化合物の再溶融が抑制され、再溶融による湯漏れや鋳肌の荒れが抑制される。しかも、ライナーの内周面の表面粗さがJIS B0601 2001で規定された最大高さRzで1μm〜25μmの平滑面で形成されているので鋳塊の滑りが良く、鋳肌の凹凸差の小さい鋳塊を連続鋳造することができる。 In the method for continuously casting an aluminum alloy according to the above [5], an aluminum alloy containing one or more of low melting point elements Bi, Sn, Pb and In is continuously cast using the above mold. In the continuous casting die, the thermal conductivity of the liner attached to the forming hole is lower than that of the conventional liner, so that the cooling is delayed and the mold release position of the ingot approaches the casting outlet side. Therefore, the primary cooling time for removing heat from the wall surface of the molded hole becomes long, and the period during which the primary cooling capacity decreases due to mold release is shortened. As a result, the ingot is sufficiently cooled to suppress the remelting of the low melting point compound on the surface of the ingot, and the leakage of hot water and the roughening of the casting surface due to the remelting are suppressed. Moreover, since the surface roughness of the inner peripheral surface of the liner is formed on a smooth surface of 1 μm to 25 μm at the maximum height Rz specified by JIS B0601 2001, the ingot slips well and the difference in unevenness of the casting surface is small. Ingots can be continuously cast.

図1に参照されるフロート型の縦型連続鋳造装置を用い、実施例1〜16および比較例1〜18のアルミニウム合金の連続鋳造を行った。 Using the float type vertical continuous casting apparatus referred to in FIG. 1, the aluminum alloys of Examples 1 to 16 and Comparative Examples 1 to 18 were continuously cast.

アルミニウム合金は表1に示す4種類を用いた。これらのアルミニウム合金は、強度向上のためにSi、Cu、MgおよびZnが添加され、切削性向上のために、Bi、Sn、PbおよびInが添加された快削性アルミニウム合金である。 The four types of aluminum alloys shown in Table 1 were used. These aluminum alloys are free-cutting aluminum alloys to which Si, Cu, Mg and Zn are added to improve the strength, and Bi, Sn, Pb and In are added to improve the machinability.

Figure 0006978481
Figure 0006978481

金型10は、アルミニウムからなる円筒型の金型本体20にカーボン製の円筒型ライナー30が取りつけられている。前記金型10は、成形孔11の直径が170mm、300mm、380mmの3種類である。各例で用いた金型10の成形孔11の直径は表2に示すとおりである。 In the mold 10, a carbon cylindrical liner 30 is attached to a cylindrical mold main body 20 made of aluminum. The mold 10 has three types of molding holes 11 having diameters of 170 mm, 300 mm, and 380 mm. The diameters of the molding holes 11 of the mold 10 used in each example are as shown in Table 2.

前記金型本体20は冷却水用のキャビティ12を有し、入口22から導入した冷却水Cによって成形孔11内の溶湯Mを一次冷却し、噴出口23から噴出させた冷却水Cで鋳出された鋳塊Sを二次冷却する構造である。また、内周面25にライナー30を内嵌めするための凹部26が形成されている。前記冷却水Cの流量は図外の制御装置によって調節される。 The mold main body 20 has a cavity 12 for cooling water, and the molten metal M in the molding hole 11 is primarily cooled by the cooling water C introduced from the inlet 22, and cast with the cooling water C ejected from the ejection port 23. The structure is such that the ingot S is secondarily cooled. Further, a recess 26 for internally fitting the liner 30 is formed on the inner peripheral surface 25. The flow rate of the cooling water C is adjusted by a control device (not shown).

ライナー30は、鋳造方向の長さが100mmで、内径が成形孔11の直径相当の円筒型であり、厚みは5mmである。前記ライナ30はカーボン粉をCIP成形によって押し固めた成形品であり、各ライナー30の熱伝導度は表2に示すとおりであり、内周面31が表2に記載した表面高さRzに調整されている。前記表面高さRzはJIS B0601 2001で規定された表面粗さである。 The liner 30 has a length of 100 mm in the casting direction, an inner diameter corresponding to the diameter of the forming hole 11, and a thickness of 5 mm. The liner 30 is a molded product obtained by compacting carbon powder by CIP molding, and the thermal conductivity of each liner 30 is as shown in Table 2, and the inner peripheral surface 31 is adjusted to the surface height Rz shown in Table 2. Has been done. The surface height Rz is the surface roughness defined by JIS B0601 2001.

実施例1〜16および比較例1〜18の各金型10は、表2に記載した金型本体20とライナー30を組み合わせ、ライナー30が金型本体20の凹部26に焼き嵌めにより取り付けられている。 Each of the molds 10 of Examples 1 to 16 and Comparative Examples 1 to 18 is a combination of the mold main body 20 and the liner 30 shown in Table 2, and the liner 30 is attached to the recess 26 of the mold main body 20 by shrink fitting. There is.

各金型10を図1に参照される縦型連続鋳造装置に組み込み、表1のアルミニウム合金を連続鋳造した。表2に各例の金型10とアルミニウム合金を示す。また、各例の連続鋳造条件は、表2に示す鋳造温度、鋳造速度および冷却水量とした。 Each die 10 was incorporated into a vertical continuous casting apparatus referred to in FIG. 1, and the aluminum alloy shown in Table 1 was continuously cast. Table 2 shows the mold 10 and the aluminum alloy of each example. The continuous casting conditions of each example were the casting temperature, casting speed, and cooling water amount shown in Table 2.

各例の連続鋳造について湯漏れの有無を調べた。さらに湯漏れの無かった連続鋳造については鋳塊の鋳肌の凹凸を調べ、凹凸差が1.5mm以下の鋳塊を良好(〇)、凹凸差が1.5mmを超える鋳塊を不良(×)と評価した。評価結果を表2に示す。 The presence or absence of hot water leakage was investigated for the continuous casting of each example. Furthermore, for continuous casting without hot water leakage, the unevenness of the ingot's casting surface was examined, and ingots with an unevenness difference of 1.5 mm or less were good (〇), and ingots with an unevenness difference of more than 1.5 mm were defective (×). ). The evaluation results are shown in Table 2.

Figure 0006978481
Figure 0006978481

表2に示した結果より、ライナーの熱伝導度および表面粗さを規定することによって凝固壁の再溶融による湯漏れを防ぎ、平滑性の高い鋳塊を連続鋳造できることを確認した。 From the results shown in Table 2, it was confirmed that by defining the thermal conductivity and surface roughness of the liner, it was possible to prevent hot water leakage due to remelting of the solidified wall and to continuously cast ingots with high smoothness.

本発明のアルミニウム合金鋳塊は、低融点元素を含有する快削性アルミニウム合金として利用できる。 The aluminum alloy ingot of the present invention can be used as a free-cutting aluminum alloy containing a low melting point element.

10…金型
11…成形孔
12…注入口
13…鋳出口
20…金型本体
21…キャビティ
23…噴出口
30…ライナー
M…溶湯
S…鋳塊
C…冷却水
10 ... Mold 11 ... Molding hole 12 ... Injection port 13 ... Casting outlet 20 ... Mold body 21 ... Cavity 23 ... Spout 30 ... Liner M ... Molten metal S ... Ingot C ... Cooling water

Claims (2)

Pb:0.2質量%〜2質量%、Bi:0.01質量%〜3質量%、Sn:0.01質量%〜1.5質量%、In:0.01質量%〜0.2質量%のうちの1種以上の元素を含み、さらに、Cu:3.5質量%〜6.5質量%およびZn:0.01質量%〜1.2質量%を含み、さらに、Si:0.01質量%〜1.0質量%、Mg:0.01質量%〜2.0質量%、Ti:0.01質量%〜0.1質量%、B:0.0001質量%〜0.01質量%のうちの種以上の元素を含み、残部がAlおよび不可避不純物からなるアルミニウム合金からなる連続鋳造鋳塊であり、鋳肌の凹凸差が1.5mm以下であることを特徴とするアルミニウム合金鋳塊。 Pb: 0.2% by mass to 2% by mass, Bi: 0.01% by mass to 3% by mass, Sn: 0.01% by mass to 1.5% by mass, In: 0.01% by mass to 0.2% by mass It contains one or more elements of%, and further contains Cu: 3.5% by mass to 6.5% by mass and Zn: 0.01% by mass to 1.2% by mass, and further Si: 0. 01% by mass to 1.0% by mass, Mg: 0.01% by mass to 2.0% by mass, Ti: 0.01% by mass to 0.1% by mass, B: 0.0001% by mass to 0.01% by mass An aluminum alloy containing one or more elements of%, the balance of which is an aluminum alloy composed of Al and unavoidable impurities, and the difference in unevenness of the casting surface is 1.5 mm or less. Ingot. Pb:0.2質量%〜2質量%、Bi:0.01質量%〜3質量%、Sn:0.01質量%〜1.5質量%、In:0.01質量%〜0.2質量%のうちの1種以上の元素を含み、さらに、Mg:0.3質量%〜1.5質量%およびSi:0.2質量%〜1.0質量%を含み、さらに、Cu:0.01質量%〜2.0質量%、Zn:0.01質量%〜0.2質量%、Ti:0.01質量%〜0.1質量%、B:0.0001質量%〜0.01質量%のうちの1種以上の元素を含み、残部がAlおよび不可避不純物からなるアルミニウム合金からなる連続鋳造鋳塊であり、鋳肌の凹凸差が1.5mm以下であることを特徴とするアルミニウム合金鋳塊。 Pb: 0.2% by mass to 2% by mass, Bi: 0.01% by mass to 3% by mass, Sn: 0.01% by mass to 1.5% by mass, In: 0.01% by mass to 0.2% by mass %, Which contains one or more elements, and further contains Mg: 0.3% by mass to 1.5% by mass and Si: 0.2% by mass to 1.0% by mass, and further Cu: 0. 01% by mass to 2.0% by mass, Zn: 0.01% by mass to 0.2% by mass, Ti: 0.01% by mass to 0.1% by mass, B: 0.0001% by mass to 0.01% by mass An aluminum alloy containing one or more elements of%, the balance of which is an aluminum alloy composed of Al and unavoidable impurities, and the difference in unevenness of the casting surface is 1.5 mm or less. Ingot.
JP2019218816A 2016-01-29 2019-12-03 Aluminum alloy ingot Active JP6978481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019218816A JP6978481B2 (en) 2016-01-29 2019-12-03 Aluminum alloy ingot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016015911A JP6629083B2 (en) 2016-01-29 2016-01-29 Continuous casting method of aluminum alloy
JP2019218816A JP6978481B2 (en) 2016-01-29 2019-12-03 Aluminum alloy ingot

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016015911A Division JP6629083B2 (en) 2016-01-29 2016-01-29 Continuous casting method of aluminum alloy

Publications (2)

Publication Number Publication Date
JP2020041224A JP2020041224A (en) 2020-03-19
JP6978481B2 true JP6978481B2 (en) 2021-12-08

Family

ID=69797693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019218816A Active JP6978481B2 (en) 2016-01-29 2019-12-03 Aluminum alloy ingot

Country Status (1)

Country Link
JP (1) JP6978481B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371351A (en) * 1991-06-20 1992-12-24 Furukawa Electric Co Ltd:The Horizontal type continuous casting method
JPH10265884A (en) * 1997-03-26 1998-10-06 Nippon Light Metal Co Ltd Aluminum alloy material excellent in machinability and its production
JP2004052054A (en) * 2002-07-22 2004-02-19 Honda Motor Co Ltd Aluminum alloy material for forging and method of continuously casting the same
JP2011038130A (en) * 2009-08-06 2011-02-24 Furukawa-Sky Aluminum Corp Aluminum alloy having excellent machinability and high temperature embrittlement resistance

Also Published As

Publication number Publication date
JP2020041224A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
CN101522935B (en) Process for production of aluminum alloy formings, aluminum alloy formings and production system
US9272327B2 (en) Method for producing shaped article of aluminum alloy, shaped aluminum alloy article and production system
KR100895618B1 (en) Continuous casting apparatus, continuous casting method, and aluminum aloy cast rod
JP6629083B2 (en) Continuous casting method of aluminum alloy
JP4907248B2 (en) Continuous casting method of Al-Si aluminum alloy
US20130216426A1 (en) Strip castings of immiscible metals
JP4359231B2 (en) Method for producing aluminum alloy molded product, and aluminum alloy molded product
JP2009279643A (en) Al ALLOY DIE CASTING, AND METHOD FOR PRODUCING THE SAME
JP6978481B2 (en) Aluminum alloy ingot
JP5157684B2 (en) Hypereutectic Al-Si alloy casting method and ingot
JP4655994B2 (en) Vertical casting apparatus for aluminum and vertical casting method using this casting apparatus
JPH0569624B2 (en)
US6328823B1 (en) Aluminum sliding bearing alloy
JP5689669B2 (en) Continuous casting method of Al-Si aluminum alloy
JP4757602B2 (en) Continuous casting apparatus, continuous casting method, and aluminum alloy casting rod
JP4757603B2 (en) Horizontal continuous casting method and horizontal continuous casting apparatus
JP5021199B2 (en) Horizontal continuous casting apparatus, horizontal continuous casting method, and aluminum alloy casting rod
US11642721B2 (en) Horizontal continuous casting apparatus and method for manufacturing aluminum alloy cast rod using the same
Chadwick The hot extrusion of non-ferrous metals
JPS5923898B2 (en) Continuous casting method for high silicon aluminum alloy
JP2003290878A (en) Horizontally continuous casting method
JP2006110558A (en) Continuous casting mold
JPH11170008A (en) Mold for horizontal continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211111

R150 Certificate of patent or registration of utility model

Ref document number: 6978481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350