JPH04371351A - Horizontal type continuous casting method - Google Patents

Horizontal type continuous casting method

Info

Publication number
JPH04371351A
JPH04371351A JP17715691A JP17715691A JPH04371351A JP H04371351 A JPH04371351 A JP H04371351A JP 17715691 A JP17715691 A JP 17715691A JP 17715691 A JP17715691 A JP 17715691A JP H04371351 A JPH04371351 A JP H04371351A
Authority
JP
Japan
Prior art keywords
ingot
cooling
mold
cooling mold
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17715691A
Other languages
Japanese (ja)
Inventor
Keiichi Kobayashi
敬一 小林
Yoshihiro Yama
山 善裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP17715691A priority Critical patent/JPH04371351A/en
Publication of JPH04371351A publication Critical patent/JPH04371351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide the method, by which a high quality cast billet can be stably produced for long time. CONSTITUTION:Stepping degree in drawing mark part formed on surface of the cast billet 1 closely related to the quality of cast billet, is measured with ultrasonic thickness meter 11, etc., and the cast billet is cast while adjusting cooling condition of a cooling mold 12 so that the above stepping degree becomes a prescribed degree obtaining a high quality cast billet 1. As the quality of cast billet is judged by measuring a stepping degree in the drawing mark part, the quality of cast billet can be exactly and quickly decided for long time. Further, as the above stepping degree is controlled by adjusting the cooling condition of cooling mold 12, control of the stepping on the surface of cast billet, i.e., improvement of the quality of cast billet can be easily executed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高品質の鋳塊を長時間
安定して製造し得る横型連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a horizontal continuous casting method capable of stably producing high quality ingots over a long period of time.

【0002】0002

【従来の技術】横型連続鋳造方法は、図2にその工程説
明図を示したように、黒鉛鋳型8の外周に銅製クーラー
10を設けた冷却鋳型12を鋳造炉13の側壁に取付け
、鋳造炉13から供給さる溶融金属5を前記冷却鋳型1
2内で冷却し凝固させて鋳塊1となし、この鋳塊1をピ
ンチロール14にて水平方向に引出し、引出された鋳塊
1を二次冷却装置15で室温に冷却する鋳造方法である
。この横型連続鋳造方法は設備を床上に設置できるので
、鋳塊を垂直方向に引出す竪型連続鋳造方法に較べて、
建設費用が安くて済み又作業がし易いという利点があり
、種々の金属材料の鋳造に広く採用されている。ところ
で、このような横型連続鋳造方法では、鋳塊は引出しと
停止を交互に繰返して引出すもので、このようにして引
出す理由は、図3にその凝固形態を示したように、溶融
金属5が黒鉛鋳型8の内面に触れて形成された薄い初期
凝固層4を鋳塊1の引出を停止して成長させ、引出時の
鋳型内面との摩擦等により凝固層に欠陥が生じないよう
にする為である。この初期凝固層は、厚さが薄いと、引
出し時に溶融金属側に倒れ込んで収縮巣が生じたり、又
厚すぎると凝固収縮量が大きくなり凝固層が鋳型から離
れ過ぎて冷却が効かなくなり、その結果凝固層が内部の
溶融金属により加熱されて低融点金属の発汗が生じたり
する。従って初期凝固層を適正な厚さに制御することが
高品質の鋳塊を製造する上での重要なポイントであった
2. Description of the Related Art In the horizontal continuous casting method, as shown in FIG. The molten metal 5 supplied from the cooling mold 1
This is a casting method in which the ingot 1 is cooled and solidified in the ingot 2 to form an ingot 1, the ingot 1 is pulled out horizontally by pinch rolls 14, and the pulled out ingot 1 is cooled to room temperature by a secondary cooling device 15. . This horizontal continuous casting method allows equipment to be installed on the floor, so compared to the vertical continuous casting method in which the ingot is pulled out vertically,
It has the advantages of low construction cost and easy work, and is widely used for casting various metal materials. By the way, in such a horizontal continuous casting method, the ingot is drawn out by repeating drawing and stopping alternately.The reason why the ingot is drawn out in this way is that the molten metal 5 is drawn out as shown in the solidification form in FIG. In order to allow the thin initial solidified layer 4 formed by touching the inner surface of the graphite mold 8 to grow while stopping the drawing of the ingot 1, and to prevent defects from occurring in the solidified layer due to friction with the inner surface of the mold during drawing. It is. If this initial solidified layer is thin, it will fall down to the molten metal side during drawing, creating shrinkage cavities, and if it is too thick, the amount of solidification shrinkage will become large, and the solidified layer will be too far away from the mold, making cooling ineffective. As a result, the solidified layer is heated by the molten metal inside, causing sweating of the low melting point metal. Therefore, controlling the initial solidification layer to an appropriate thickness is an important point in producing high-quality ingots.

【0003】0003

【発明が解決しようとする課題】しかしながら、このよ
うな横型連続鋳造方法における凝固形態、特に初期凝固
層の厚さは、供給される溶融金属の温度や鋳型の冷却能
等の鋳造条件により左右されるが、上記鋳造条件は刻々
変化する為、得られる鋳塊は品質が経時的に劣化すると
いう問題があった。しかも凝固初期に発生する欠陥は一
般に微細であり目視によっては中々検出できず、後の圧
延工程で拡大するもので、かかる欠陥を鋳造中に検出す
るには、製出する鋳塊からサンプルを切り出してこれを
曲げたり或いはエッチングして欠陥を拡大する方法が用
いられているが、このような検出法は結果をだすのに時
間がかかり、その間に大量の不良鋳塊が製出されてしま
い、生産性が著しく低下するという問題があった。又、
製出する鋳塊の表面温度を連続測定し、その温度パター
ンを基に凝固形態を推定して鋳塊品質を判定する方法が
提案されたが、凝固形態と鋳塊の表面温度とは必ずしも
一対一に対応せず、又鋳塊の表面温度を、赤外線温度計
を用いた非接触法で測定する場合は鋳塊表面の酸化状態
によって放射率が変化する為、又熱電対を用いた接触法
では鋳塊表面の凸凹によって接触圧力が変化する為、い
ずれの場合も鋳塊の表面温度を長時間正確に計測するこ
とが不可能であった。更に、初期凝固層の厚さは、図4
に示したように鋳型の抽出熱量パターンに明瞭に現れる
もので、初期凝固層が薄いとピークの低いなだらかな曲
線(Aパターン)となり、初期凝固層が厚いとピークの
高い鋭い曲線(Cパターン)となり、前者は冷却が弱い
為凝固殻が薄く形成されており、引出時にこの薄い凝固
殻が溶融金属側に倒れ込み、鋳型内面との間に新たに流
れ込んだ溶融金属との間に収縮巣が生じたり、或いは薄
い凝固層が破断して浮遊し粗大晶が発生したりする。又
後者は冷却が強く、初期凝固層と鋳型との間に間隙が開
きすぎて冷却が効かなくなり、鋳塊表面に低融点金属の
発汗や凝固層の再溶解等の欠陥が生じる。このようなこ
とから、鋳型の抽出熱量パターンを計測して、それがA
パターンとCパターンの中間のBパターンになるように
冷却条件を制御する方法が考えられた。しかしながらこ
の方法は、鋳型の抽出熱量パターンを測定するのに、抽
出熱量Qを、鋳型温度を鋳型の厚さ方向に2箇所測定し
、この温度Ta及びTbを次の計算式、Q=λ(Ta−
Tb)/d(但し、式中λは鋳型材料の熱伝導率,dは
測温箇所間の距離。)に代入して求め、これを鋳型の長
手方向に複数箇所測定することにより描くという面倒な
ものであった。
[Problems to be Solved by the Invention] However, the solidification form in such a horizontal continuous casting method, especially the thickness of the initial solidified layer, is influenced by casting conditions such as the temperature of the molten metal supplied and the cooling capacity of the mold. However, since the above-mentioned casting conditions change from moment to moment, there is a problem in that the quality of the obtained ingot deteriorates over time. Furthermore, defects that occur during the initial stage of solidification are generally so minute that they cannot be detected visually, and they become larger during the subsequent rolling process. Methods of enlarging the defects by bending or etching the ingots are used, but these detection methods take time to produce results, and during that time, a large number of defective ingots are produced. There was a problem in that productivity decreased significantly. or,
A method has been proposed in which the surface temperature of the ingot being produced is continuously measured and the solidification form is estimated based on the temperature pattern to determine the quality of the ingot. However, the solidification form and the surface temperature of the ingot are not necessarily one pair. In addition, when measuring the surface temperature of an ingot using a non-contact method using an infrared thermometer, the emissivity changes depending on the oxidation state of the ingot surface. In both cases, it has been impossible to accurately measure the surface temperature of the ingot over a long period of time because the contact pressure changes depending on the unevenness of the ingot surface. Furthermore, the thickness of the initial solidified layer is as shown in Figure 4.
As shown in Figure 2, it clearly appears in the extracted heat amount pattern of the mold, and when the initial solidification layer is thin, it becomes a gentle curve with a low peak (pattern A), and when the initial solidification layer is thick, it becomes a sharp curve with a high peak (pattern C). In the former case, the solidified shell is thin due to weak cooling, and this thin solidified shell collapses toward the molten metal during withdrawal, creating a shrinkage cavity between the inner surface of the mold and the newly poured molten metal. Or, the thin solidified layer may break and become floating, generating coarse crystals. In the latter case, cooling is strong, and a gap is too large between the initially solidified layer and the mold, making cooling ineffective and causing defects such as sweating of the low melting point metal and remelting of the solidified layer on the surface of the ingot. Because of this, we measured the extracted heat pattern of the mold and found that it was A.
A method was devised in which the cooling conditions were controlled so that the B pattern was obtained, which was between the C pattern and the C pattern. However, in this method, in order to measure the extracted heat amount pattern of the mold, the extracted heat amount Q and the mold temperature are measured at two points in the thickness direction of the mold, and these temperatures Ta and Tb are calculated using the following formula, Q = λ ( Ta-
Tb)/d (in the formula, λ is the thermal conductivity of the mold material, and d is the distance between the temperature measurement points). It was something.

【0004】0004

【課題を解決する為の手段】本発明はかかる状況に鑑み
鋭意研究を行って、引出し周期毎に鋳塊表面に形成され
る引出マークの段差の大きさと鋳塊品質との間に密接な
関係があることを見出し、更に研究を進めて本発明を完
成するに到ったものである。即ち、本発明は、溶融金属
を貯留した鋳造炉の側壁に両端開放の冷却鋳型の一端を
前記鋳造炉に連通して取付け、鋳造炉から供給される溶
融金属を冷却鋳型内で冷却し凝固させて鋳塊となし、こ
の鋳塊を冷却鋳型の他端より引出しと停止を交互に繰返
して水平方向に引出す横型連続鋳造方法において、引出
し周期毎に鋳塊表面に形成される引出マーク部分の段差
の大きさを計測し、この段差の大きさが所定の範囲内に
入るように、冷却鋳型の冷却条件を調節することを特徴
とするものである。本発明は、図5に示したような、鋳
塊1の表面に引出し周期毎に形成される引出マーク2部
分の段差3の大きさを計測し、この段差3の大きさを、
鋳型の冷却条件を調節することによって、割れ等の欠陥
のない高品質の鋳塊が得られる所定範囲内に制御して鋳
造するものである。
[Means for Solving the Problems] In view of the above situation, the present invention has conducted intensive research and has established a close relationship between the size of the step of the drawing mark formed on the surface of the ingot every drawing period and the quality of the ingot. After discovering that there is, and proceeding with further research, we have completed the present invention. That is, in the present invention, one end of a cooling mold with both ends open is attached to the side wall of a casting furnace storing molten metal so as to communicate with the casting furnace, and the molten metal supplied from the casting furnace is cooled and solidified within the cooling mold. In the horizontal continuous casting method, in which the ingot is drawn horizontally from the other end of the cooling mold by repeating pulling and stopping alternately, the difference in level of the drawing mark part formed on the surface of the ingot every drawing cycle. This method is characterized by measuring the size of the step and adjusting the cooling conditions of the cooling mold so that the size of the step falls within a predetermined range. In the present invention, as shown in FIG. 5, the size of the step 3 of the pull-out mark 2 portion formed on the surface of the ingot 1 at each pull-out cycle is measured, and the size of the step 3 is determined by
By adjusting the cooling conditions of the mold, casting is controlled within a predetermined range to obtain a high quality ingot free of defects such as cracks.

【0005】以下に、引出し周期毎に鋳塊表面に引出マ
ーク、つまり段差が形成されるメカニズムを図を参照し
て具体的に説明する。図6イ〜ハは、それぞれ引出直前
の凝固形態を示す部分拡大説明図である。図イに示した
凝固形態は、引出し直前の初期凝固層4の先端部分の厚
さが薄い場合のもので、鋳塊1を引出した際、初期凝固
層4の先端部分が内側に倒れ込み、この先端部分の凝固
層の回りに溶融金属5が侵入し凝固して二次凝固層6と
なり、この二次凝固層6と先の初期凝固層(引出後は旧
凝固層7と称す)との間に段差3が形成される。この段
差3の大きさは旧凝固層7が内側に倒れ込むので、やや
大きくなり8%燐青銅合金の場合で0.2〜0.3mm
程度の大きさになる。この場合は冷却鋳型の冷却を強め
て初期凝固層4の厚さを増加させる。図ロに示した凝固
形態は、初期凝固層4の先端部分が厚く形成された場合
のもので、旧凝固層7の凝固収縮量が大きい為二次凝固
層6との間の段差3は0.3mm以上と大きくなる。又
鋳塊1は旧凝固層7と鋳型8内面との間にギャップが大
きく開くので鋳型からの冷却が効かなくなり、旧凝固層
7に低融点金属の発汗や凝固層に再溶融部9が生じる。 この場合は鋳型の冷却を弱めて初期凝固層4の厚さを減
少させる。図ハに示した凝固形態は、初期凝固層4の先
端部分の厚さが適正な厚さに形成された場合のもので、
段差3は前述の図イ,ロで説明したものより小さく、0
.2mm以下となる。この場合は、初期凝固層4が適正
な厚さの為、前述の収縮巣や発汗等は生ぜず、鋳塊は健
全なものとなる。
[0005] The mechanism by which a withdrawal mark, that is, a step, is formed on the surface of an ingot every withdrawal cycle will be explained in detail below with reference to the drawings. FIGS. 6A to 6C are partially enlarged explanatory views showing the solidification form immediately before being drawn out, respectively. The solidification form shown in Figure A is a case where the thickness of the tip of the initially solidified layer 4 immediately before being pulled out is thin, and when the ingot 1 is pulled out, the tip of the initially solidified layer 4 collapses inward. The molten metal 5 enters around the solidified layer at the tip and solidifies to form a secondary solidified layer 6, and between this secondary solidified layer 6 and the earlier initial solidified layer (referred to as the old solidified layer 7 after withdrawal). A step 3 is formed. The size of this step 3 is slightly larger because the old solidified layer 7 falls inward, and is 0.2 to 0.3 mm in the case of 8% phosphor bronze alloy.
It will be about the same size. In this case, the cooling of the cooling mold is strengthened to increase the thickness of the initially solidified layer 4. The solidification form shown in Figure B is the case where the tip of the initial solidified layer 4 is formed thickly, and because the amount of solidification shrinkage of the old solidified layer 7 is large, the step 3 between it and the secondary solidified layer 6 is 0. .3mm or more. In addition, in the ingot 1, there is a large gap between the old solidified layer 7 and the inner surface of the mold 8, so cooling from the mold becomes ineffective, and sweating of low melting point metal occurs in the old solidified layer 7, and a re-melted part 9 occurs in the solidified layer. . In this case, cooling of the mold is weakened to reduce the thickness of the initially solidified layer 4. The solidification form shown in Figure C is when the thickness of the tip of the initial solidification layer 4 is formed to an appropriate thickness.
The step 3 is smaller than the one explained in Figures A and B above, and is 0.
.. It will be 2 mm or less. In this case, since the initial solidified layer 4 has an appropriate thickness, the above-mentioned shrinkage cavities and perspiration do not occur, and the ingot is healthy.

【0006】上述の引出マーク部分の段差が0.2mm
を超え0.3mm未満のもの(図6イ)は、図4に示し
た抽出熱量パターンのAパターンを、0.3mm以上の
もの(図6ロ)はCパターンを、0.2mm以下のもの
(図6ハ)はBパターンをそれぞれ示すものである。本
発明方法は、鋳造する合金毎に、品質良好な鋳塊が得ら
れる引出マーク部分の段差の大きさの範囲を求めておき
、製出する鋳塊の前記段差の大きさをオンラインで計測
し、この計測値が前記段差の大きさの範囲内に入るよう
に鋳型の冷却条件を調節してなされるものであり、前記
の段差の大きさの計測と、この計測結果に基づく鋳型の
冷却条件の調節とは、一連のプロセスを図7に示したよ
うなフローチャートに従って電算機にプログラミングし
ておくことにより自動制御することができる。前記フロ
ーチャートは、段差値境界部での判断がファジーになさ
れるように配慮されている。本発明方法において、幅広
の板状鋳塊を鋳造する場合は幅方向で凝固形態が異なる
場合があり、この場合は冷却鋳型を幅方向に複数のゾー
ンに区分し、各々のゾーン毎に製出する鋳塊の段差の大
きさを計測するとともに、前記冷却鋳型の冷却水路を前
記ゾーンに合わせて分割して各々のゾーン毎に冷却水量
等の冷却条件を調節して鋳造がなされる。段差の計測と
鋳型の冷却条件の調節とは鋳塊の裏表について別々に行
うのが良い。  又、引出マーク部分の段差の測定には
、超音波を利用した非接触型厚み計等が好適である。
[0006] The step of the above-mentioned pull-out mark part is 0.2 mm.
For those exceeding 0.3 mm and less than 0.3 mm (Figure 6 A), pattern A of the extracted heat amount pattern shown in Figure 4 is used, for those 0.3 mm or more (Figure 6 B), use pattern C, and for those 0.2 mm or less. (FIG. 6C) shows the B pattern. In the method of the present invention, for each alloy to be cast, the range of the size of the step at the pull-out mark part that will yield an ingot of good quality is determined, and the size of the step of the ingot to be produced is measured online. The cooling conditions of the mold are adjusted so that this measurement value falls within the range of the size of the step, and the cooling conditions of the mold are adjusted based on the measurement of the size of the step and this measurement result. The adjustment can be automatically controlled by programming a series of processes into a computer according to a flowchart as shown in FIG. The flowchart is designed so that judgments at step value boundaries are made in a fuzzy manner. In the method of the present invention, when casting a wide plate-shaped ingot, the solidification form may differ in the width direction. In this case, the cooling mold is divided into a plurality of zones in the width direction, and each zone is Casting is carried out by measuring the step size of the ingot, dividing the cooling channel of the cooling mold according to the zones, and adjusting the cooling conditions such as the amount of cooling water for each zone. It is best to measure the level difference and adjust the cooling conditions of the mold separately for the front and back sides of the ingot. In addition, a non-contact thickness meter using ultrasonic waves is suitable for measuring the level difference in the pull-out mark portion.

【0007】[0007]

【作用】本発明方法では、製出する鋳塊の品質を、引出
し周期毎に鋳塊表面に形成される引出マーク部分の段差
の大きさを計測して判定するので、鋳塊品質の判定が迅
速に且つ的確になされる。又前記段差の大きさを、鋳型
の冷却条件を調節して制御するので、鋳塊表面の段差の
制御、即ち鋳塊品質の改善が容易に行える。
[Operation] In the method of the present invention, the quality of the produced ingot is determined by measuring the size of the step of the withdrawal mark formed on the surface of the ingot at each withdrawal cycle, so the quality of the ingot can be judged. done quickly and accurately. Furthermore, since the size of the step is controlled by adjusting the cooling conditions of the mold, the step on the surface of the ingot can be easily controlled, that is, the quality of the ingot can be easily improved.

【0008】[0008]

【実施例】以下に本発明を実施例により詳細に説明する
。 実施例1 図1に例示した横型連続鋳造方法により8%燐青銅合金
の板状鋳塊を連続鋳造した。鋳造条件は、鋳造温度を1
135℃、鋳造速度を160mm/分(引出し0.5秒
,停止2.0秒,1回の引出距離6.7mm,引出サイ
クル数24回/分)とした。鋳塊1の断面寸法は厚さを
15mmとし幅は種々に変えた。冷却鋳型12には高さ
50mm,長さ300mmの黒鉛鋳型8の上下にそれぞ
れ高さ50mm,長さ250mmの銅製クーラー10を
配置したものを用いた。前記鋳型12の幅は鋳造する鋳
塊の幅に合わせて種々に変えた。前記クーラー10に流
す冷却水は上下別々に調節できるよう配管した。又幅広
の鋳塊を鋳造する場合は前記クーラー10の冷却水通路
を幅方向に複数のゾーンに分割して各々個別に水量調節
ができるように配管した。鋳型出口1mのところに超音
波厚み計11を配置して鋳塊1の上下両面の段差を測定
した。冷却ゾーンが幅方向に複数設けられている時は冷
却ゾーン毎にその中央部分に相当する鋳塊表面について
段差を測定した。鋳塊の段差の大きさの測定とその結果
に基づく冷却条件の調節は、電算機を用い図7に示した
フローチャートに従って処理した。即ち、鋳塊の上面と
下面の段差厚さをそれぞれ2n番目と2n+1番目のデ
ータとして電算機に取り込み、これを10分間プールし
て平均値をだし、この平均値が0.2mm以下の時は鋳
造をそのままの条件で継続した。平均値が0.2mmを
超え、0.3mm未満の時は冷却水量を増やして凝固層
4の厚さを増加させ、又平均値が0.3mm以上の時は
冷却水を減らして凝固層4の厚さを減少させて、それぞ
れ2分毎に前記操作の効果を確認し、10分後に段差の
大きさが0.2mm以下になっていればその条件で鋳造
を続け、段差の大きさが0.2mmを超えていれば再び
前記の操作を繰り返した。このようにして連続100時
間鋳造した。冷却水量は、図8に示した段差並びに抽出
熱量と、冷却水量との関係線図を用いて決定した。 比較例1 鋳塊の上下面の温度を赤外線温度計を用いて連続測定し
、それぞれの温度が予め求めておいた健全鋳塊が得られ
る所定温度範囲内に入るようにクーラーの水量を調節し
て鋳造した他は、実施例1と同じ方法により鋳造した。 このようにして得られた各々の鋳塊からサンプルを切り
出して曲げ試験を行った。サンプルは20時間鋳造毎に
幅方向に3等分した各々の中央箇所の裏表から5本づつ
計30本採取した。結果は表1に示した。
[Examples] The present invention will be explained in detail below using examples. Example 1 A plate-shaped ingot of an 8% phosphor bronze alloy was continuously cast by the horizontal continuous casting method illustrated in FIG. The casting conditions are casting temperature 1
The temperature was 135° C., and the casting speed was 160 mm/min (drawing 0.5 seconds, stopping 2.0 seconds, one drawing distance 6.7 mm, number of drawing cycles 24 times/minute). The cross-sectional dimensions of the ingot 1 were 15 mm thick and varied in width. The cooling mold 12 used was a graphite mold 8 having a height of 50 mm and a length of 300 mm, with copper coolers 10 each having a height of 50 mm and a length of 250 mm arranged above and below. The width of the mold 12 was varied depending on the width of the ingot to be cast. The cooling water flowing into the cooler 10 was piped so that it could be adjusted separately for the upper and lower parts. When casting a wide ingot, the cooling water passage of the cooler 10 is divided into a plurality of zones in the width direction, and the piping is arranged so that the water amount can be adjusted individually in each zone. An ultrasonic thickness gauge 11 was placed at a distance of 1 m from the mold outlet to measure the difference in level between the upper and lower surfaces of the ingot 1. When a plurality of cooling zones were provided in the width direction, the level difference was measured on the ingot surface corresponding to the central portion of each cooling zone. The measurement of the step size of the ingot and the adjustment of the cooling conditions based on the results were carried out using a computer according to the flowchart shown in FIG. That is, the step thickness of the upper and lower surfaces of the ingot is input into a computer as the 2nth and 2n+1st data, respectively, and this is pooled for 10 minutes to calculate the average value. If this average value is 0.2 mm or less, Casting continued under the same conditions. When the average value exceeds 0.2 mm and is less than 0.3 mm, increase the amount of cooling water to increase the thickness of the coagulated layer 4, and when the average value exceeds 0.3 mm, reduce the amount of cooling water to increase the thickness of the coagulated layer 4. Check the effect of the above operation every 2 minutes, and if the size of the step is 0.2 mm or less after 10 minutes, continue casting under those conditions and check the effect of the above operation every 2 minutes. If it exceeded 0.2 mm, the above operation was repeated again. Casting was continued in this manner for 100 hours. The amount of cooling water was determined using the relationship diagram between the level difference and the amount of extracted heat shown in FIG. 8 and the amount of cooling water. Comparative Example 1 The temperature of the upper and lower surfaces of the ingot was continuously measured using an infrared thermometer, and the amount of water in the cooler was adjusted so that each temperature fell within a predetermined temperature range that would yield a healthy ingot. Casting was performed in the same manner as in Example 1, except for casting. Samples were cut out from each ingot thus obtained and subjected to a bending test. After every 20 hours of casting, a total of 30 samples were taken, 5 samples each from the front and back of the center of each of the three equal parts in the width direction. The results are shown in Table 1.

【0009】[0009]

【表1】[Table 1]

【0010】表1より明らかなように、本発明方法品(
NO1〜7)はいずれも曲げ角度が大きく品質に優れ、
しかも経時変化が極めて少ないものであった。NO1〜
4について見ると、鋳塊幅が広くなるにつれ、鋳塊の左
右端部から採取したサンプルは中央部のサンプルに較べ
て曲げ角度がやや低下したが、これは鋳塊幅が広くなる
と中央と端とで凝固形態に幾分差が生じるのに、中央部
分の段差厚さのみを計測して鋳型全体の冷却条件を一括
調節した為であり、このことは、NO5〜7に見られる
ように、クーラーの冷却水通路を幅方向に複数のゾーン
に分けてそれぞれを個々に調節することにより改善され
るものである。他方、比較例品(NO8)は、曲げ角度
が始めのうちは高い値を示したが次第に低下した。これ
は鋳塊表面が変色して放射率が変化して測定温度に狂い
が生じた為である。以上8%燐青銅合金を鋳造する例に
ついて説明したが、本発明方法は他の銅合金やアルミ合
金の鋳造にも適用できることは言うまでもない。
As is clear from Table 1, the method of the present invention (
Nos. 1 to 7) all have large bending angles and are of excellent quality.
Moreover, there was extremely little change over time. NO1~
Regarding No. 4, as the ingot width increases, the bending angle of the samples taken from the left and right ends of the ingot decreases slightly compared to the center sample; This is because the cooling conditions for the entire mold were adjusted at once by measuring only the thickness of the step in the center part, although there was a slight difference in the solidification form between the two molds.As seen in Nos. 5 to 7, This can be improved by dividing the cooling water passage of the cooler into a plurality of zones in the width direction and adjusting each zone individually. On the other hand, in the comparative example (NO8), the bending angle initially showed a high value, but gradually decreased. This is because the surface of the ingot changed color and the emissivity changed, causing errors in the measured temperature. Although the example of casting an 8% phosphor bronze alloy has been described above, it goes without saying that the method of the present invention can also be applied to casting other copper alloys and aluminum alloys.

【0011】[0011]

【効果】以上述べたように、本発明方法では、鋳塊表面
に形成される段差の大きさを計測することにより鋳塊品
質を迅速且つ的確に判定でき、しかもこの判定結果をも
とに鋳型の冷却水量を調節して品質を容易に改善するこ
とができるので、製造歩留りが向上して工業上顕著な効
果を奏する。
[Effect] As described above, in the method of the present invention, the quality of the ingot can be determined quickly and accurately by measuring the size of the step formed on the surface of the ingot, and based on this determination result, the quality of the ingot can be determined quickly and accurately. Since the quality can be easily improved by adjusting the amount of cooling water, the production yield is improved, which has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明方法の態様例を示す工程説明図である。FIG. 1 is a process explanatory diagram showing an embodiment of the method of the present invention.

【図2】従来の横型連続鋳造方法の工程説明図である。FIG. 2 is a process explanatory diagram of a conventional horizontal continuous casting method.

【図3】横型連続鋳造方法における凝固形態の説明図で
ある。
FIG. 3 is an explanatory diagram of a solidification form in a horizontal continuous casting method.

【図4】黒鉛鋳型の抽出熱量パターンの説明図である。FIG. 4 is an explanatory diagram of an extracted heat amount pattern of a graphite mold.

【図5】鋳塊表面に形成される引出マークの説明図であ
る。
FIG. 5 is an explanatory diagram of pull-out marks formed on the surface of the ingot.

【図6】横型連続鋳造方法における凝固形態の部分拡大
説明図である。
FIG. 6 is a partially enlarged explanatory diagram of the solidification form in the horizontal continuous casting method.

【図7】本発明方法を電算機を用いて実施する際のフロ
ーチャートの態様例である。
FIG. 7 is an example of a flowchart when the method of the present invention is implemented using a computer.

【図8】段差並びに抽出熱量と、冷却水量との関係線図
である。
FIG. 8 is a diagram showing the relationship between the level difference, the amount of extracted heat, and the amount of cooling water.

【符号の説明】[Explanation of symbols]

1  鋳塊 2  引出マーク 3  段差 4  初期凝固層 5  溶融金属 6  二次凝固層 7  旧凝固層 8  黒鉛鋳型 9  再溶融部 10  銅製クーラー 11  超音波厚み計 12  冷却鋳型 13  鋳造炉 14  ピンチロール 15  二次冷却装置 1 Ingot 2 Drawer mark 3 Steps 4 Initial solidification layer 5 Molten metal 6 Secondary solidified layer 7 Old solidified layer 8 Graphite mold 9 Remelting section 10 Copper cooler 11 Ultrasonic thickness gauge 12 Cooling mold 13 Casting furnace 14 Pinch roll 15 Secondary cooling device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  溶融金属を貯留した鋳造炉の側壁に両
端開放の冷却鋳型の一端を前記鋳造炉に連通して取付け
、鋳造炉から供給される溶融金属を冷却鋳型内で冷却し
凝固させて鋳塊となし、この鋳塊を冷却鋳型の他端より
引出しと停止を交互に繰返して水平方向に引出す横型連
続鋳造方法において、引出し周期毎に鋳塊表面に形成さ
れる引出マーク部分の段差の大きさを計測し、この段差
の大きさが所定の範囲内に入るように、冷却鋳型の冷却
条件を調節することを特徴とする横型連続鋳造方法。
Claim 1: One end of a cooling mold with both ends open is attached to the side wall of a casting furnace storing molten metal so as to communicate with the casting furnace, and the molten metal supplied from the casting furnace is cooled and solidified within the cooling mold. In the horizontal continuous casting method, in which the ingot is drawn out horizontally from the other end of the cooling mold by repeating pulling and stopping alternately, the difference in level of the drawing mark part formed on the surface of the ingot at each drawing cycle is A horizontal continuous casting method characterized by measuring the size of the step and adjusting the cooling conditions of the cooling mold so that the size of the step falls within a predetermined range.
【請求項2】  冷却鋳型を幅方向に複数のゾーンに区
分し、各々のゾーン毎に製出する鋳塊の引出マーク部分
の段差の大きさを計測するとともに、冷却鋳型の冷却水
路を前記ゾーンに合わせて分割して各々のゾーン毎に冷
却鋳型の冷却条件を調節することを特徴とする請求項1
記載の横型連続鋳造方法。
2. The cooling mold is divided into a plurality of zones in the width direction, and the size of the level difference in the drawer mark portion of the ingot produced in each zone is measured, and the cooling channel of the cooling mold is divided into a plurality of zones. Claim 1 characterized in that the cooling condition of the cooling mold is adjusted for each zone by dividing the cooling mold according to the zone.
The horizontal continuous casting method described.
JP17715691A 1991-06-20 1991-06-20 Horizontal type continuous casting method Pending JPH04371351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17715691A JPH04371351A (en) 1991-06-20 1991-06-20 Horizontal type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17715691A JPH04371351A (en) 1991-06-20 1991-06-20 Horizontal type continuous casting method

Publications (1)

Publication Number Publication Date
JPH04371351A true JPH04371351A (en) 1992-12-24

Family

ID=16026168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17715691A Pending JPH04371351A (en) 1991-06-20 1991-06-20 Horizontal type continuous casting method

Country Status (1)

Country Link
JP (1) JPH04371351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041224A (en) * 2016-01-29 2020-03-19 昭和電工株式会社 Aluminum alloy ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041224A (en) * 2016-01-29 2020-03-19 昭和電工株式会社 Aluminum alloy ingot

Similar Documents

Publication Publication Date Title
US4054173A (en) Apparatus for producing completely recrystallized metal sheet
US5242010A (en) Method for controlling the taper of narrow faces of a liquid-cooled mold
JPH01170550A (en) Mold for continuously casting steel
JPH08505811A (en) Steel strip casting
CN113953479B (en) Method for improving flanging of thin strip steel coil
JPS5939220B2 (en) Continuous steel casting method and equipment
JPH04371351A (en) Horizontal type continuous casting method
Yukumoto et al. Thin strip casting of Ni base alloys by twin roll process
JPH02307652A (en) Method for controlling crown in thin continuous casting
JPH026037A (en) Method for continuously casting steel
JPS58103941A (en) Production of metallic material having specular surface
US7059384B2 (en) Apparatus and method for metal strip casting
JPH07132349A (en) Twin roll type continuous casting method
CN115401178A (en) Screw-down process determination method for improving internal quality of gear steel
CN108031809B (en) Narrow-edge taper control method for electric width adjusting device of crystallizer
JPS5970449A (en) Continuous casting method
JPH01170551A (en) Mold for continuously casting steel
KR100349152B1 (en) A method of continuous casting using optimization of primary and secondary cooling in the austenite stainless steel
JPS62101354A (en) Casting method for copper and copper alloy
WO2000072995A1 (en) Casting slab for shadow mask, method for heat treatment therof and material for shadow mask
JP2000117405A (en) Method for continuously casting billet and apparatus therefor
JPS58179541A (en) Method and device for continuous casting of metallic material having smooth surface
SU595058A1 (en) Continuous metal casting method
JPS6127147B2 (en)
JP3398608B2 (en) Continuous casting method and mold for continuous casting