JP2006110558A - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP2006110558A
JP2006110558A JP2004297518A JP2004297518A JP2006110558A JP 2006110558 A JP2006110558 A JP 2006110558A JP 2004297518 A JP2004297518 A JP 2004297518A JP 2004297518 A JP2004297518 A JP 2004297518A JP 2006110558 A JP2006110558 A JP 2006110558A
Authority
JP
Japan
Prior art keywords
continuous casting
mold
casting mold
casting
cast material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004297518A
Other languages
Japanese (ja)
Inventor
Kenichi Hirukawa
謙一 蛭川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004297518A priority Critical patent/JP2006110558A/en
Publication of JP2006110558A publication Critical patent/JP2006110558A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting mold with which even in the case of continuously casting molten metal for long time, a cast material having good surface characteristic can be produced at high productivity without causing any roughening and the rip on its surface. <P>SOLUTION: The continuous casting mold 1 is formed into an inversely tapered shape widened toward the casting direction at 0.1-1.3° inclining angle on the inner surface thereof and composed of a material having ≥0.7 cal/cm<SP>.</SP>sec<SP>.</SP>°C thermal conductivity and ≥250 MPa yield stress. Further, the mold 1 is made of a material of copper alloy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルミニウム又はアルミニウム合金(以下、アルミニウム合金という)の連続鋳造用鋳型に関する。   The present invention relates to a casting mold for continuous casting of aluminum or aluminum alloy (hereinafter referred to as aluminum alloy).

従来、効率よく生産することができる鋳造方法として連続鋳造がある。この連続鋳造では、アルミニウム合金の溶湯を筒状の鋳型に導入し、アルミニウム合金を冷却しながら鋳型の内面を滑らせて外部に徐々に排出することで、所定の径の鋳造材を連続して製造することができる。連続鋳造としては、一般的に縦(垂直)型連続鋳造と横(水平)型連続鋳造とが行われている。   Conventionally, there is continuous casting as a casting method that can be produced efficiently. In this continuous casting, molten aluminum alloy is introduced into a cylindrical mold, and while the aluminum alloy is cooled, the inner surface of the mold is slid and gradually discharged to the outside, thereby continuously casting a casting material having a predetermined diameter. Can be manufactured. As continuous casting, vertical (vertical) type continuous casting and horizontal (horizontal) type continuous casting are generally performed.

縦型連続鋳造では、上下が開放された鋳型の上部から溶湯を導入し、鋳造材を下部の開口から自重によって排出、あるいは、下方向に引き抜くことで、連続的に鋳造材が製造される。また、横型連続鋳造では、水平方向に開放された鋳型の一方の開口から溶湯を導入し、他方の開口側から鋳造材を支えながら引き抜くことで、連続的に鋳造材が製造される。横型連続鋳造は、縦型連続鋳造に比べて、鋳型内においてアルミニウム合金が自重で下がるために鋳型の内面に供給された潤滑油の潤滑皮膜の分布が不均一になりやすく、鋳造材を引き抜く際の制御を厳密に行う必要が生じる一方、鉛直方向に小さい設備となるため、設備にかかるコストが小さく、また、長い鋳造材を製造しやすいという特徴がある。   In the vertical continuous casting, the molten metal is introduced from the upper part of the mold whose upper and lower sides are opened, and the cast material is discharged from the lower opening by its own weight or drawn downward, whereby the cast material is continuously produced. In horizontal continuous casting, a cast material is continuously produced by introducing molten metal from one opening of a mold opened in the horizontal direction and pulling out the cast material while supporting the cast material from the other opening side. In horizontal continuous casting, compared to vertical continuous casting, the aluminum alloy falls under its own weight in the mold, so the distribution of the lubricating film of the lubricating oil supplied to the inner surface of the mold tends to be non-uniform, and the casting material is pulled out. On the other hand, since it is necessary to strictly control the above, the facility is small in the vertical direction, so that the cost for the facility is small and it is easy to manufacture a long cast material.

また、自動車用サスペンション等の鍛造部品を鍛造する前の鍛造素材として、従来、押出加工によって加工された押出材が一般的に使用されてきたが、近年、更にコストダウンを図るため、鍛造素材として押出材に替わり鋳造材が用いられるようになってきた。そのため、押出材のサイズである直径50〜100(mm)程度の従来よりも比較的小さい径の鋳造材を連続鋳造によって製造する必要が生じている。   In addition, as a forging material before forging a forged part such as a suspension for automobiles, conventionally, an extruded material processed by extrusion has been generally used, but in recent years, as a forging material in order to further reduce the cost. Cast materials have come to be used instead of extruded materials. Therefore, it is necessary to manufacture a cast material having a diameter smaller than the conventional one having a diameter of about 50 to 100 (mm), which is the size of the extruded material, by continuous casting.

そして、従来の連続鋳造では、鋳造材の直径が小さいと鋳造中に冷却の不均一等により鋳造材がちぎれやすくなり、生産性や品質を著しく損なうという問題があった。このような問題点を解決する技術として、鋳型の内径を鋳造材の鋳造時の収縮にあわせた冷却構造とすることや(特許文献1参照)、鋳型部において潤滑油を均一に分布させて鋳造材表面性状の低下を防止することが(特許文献2参照)開示されている。
特開昭56−39152号公報(第1頁右下欄第12行目〜第2頁右下欄第18行目、図面) 特開平11−170009号公報(段落番号0006〜0009)
In the conventional continuous casting, if the diameter of the cast material is small, the cast material is likely to be broken due to non-uniform cooling during the casting, and the productivity and quality are significantly impaired. As a technique for solving such problems, a cooling structure in which the inner diameter of the mold is matched with the shrinkage at the time of casting of the cast material (see Patent Document 1), and the lubricant is uniformly distributed in the mold portion and cast. It has been disclosed to prevent deterioration of the material surface properties (see Patent Document 2).
JP-A-56-39152 (first page, lower right column, line 12 to page 2, lower right column, line 18; drawing) JP-A-11-170009 (paragraph numbers 0006 to 0009)

しかしながら、鋳型に特許文献1に記載されるような冷却構造を設けても、アルミニウム合金は鋳造時の収縮が小さいため、鋳造材がアルミニウム合金の場合には鋳型と鋳造材との間に隙間ができず、鋳型内部において接触抵抗が大きくなることがあり、鋳造時に鋳造材がちぎれるという問題があった。   However, even if the cooling structure as described in Patent Document 1 is provided in the mold, the aluminum alloy has a small shrinkage at the time of casting. Therefore, when the cast material is an aluminum alloy, there is a gap between the mold and the cast material. However, there is a problem that the contact resistance increases inside the mold, and the cast material is broken during casting.

また、特許文献2に記載されるように潤滑油を供給しても、アルミニウム合金の引き抜き時の荷重や鋳型内における鋳造材の位置にバラつきが生じる場合があり、これによって潤滑油の分布が不均一になり、冷却・抜熱が不均一となることがあった。そしてこのとき、数時間連続で鋳造すると鋳造材の表面に荒れが生じ、やがてちぎれが生じるという問題があった。   Further, even if the lubricating oil is supplied as described in Patent Document 2, there may be variations in the load when the aluminum alloy is drawn and the position of the cast material in the mold, which results in an uneven distribution of the lubricating oil. It became uniform, and cooling and heat removal might become uneven. At this time, if the casting is continued for several hours, there is a problem that the surface of the cast material is roughened and eventually torn off.

本発明は前記の問題点に鑑みて創案されたものであり、長時間連続で鋳造しても鋳造材に表面の荒れやちぎれが生じず、良好な表面性状を有する鋳造材を高い生産性で生産することができる連続鋳造用鋳型を提供することを目的とする。   The present invention was devised in view of the above-mentioned problems, and even when casting for a long time, the cast material does not cause surface roughening or tearing, and a cast material having good surface properties can be produced with high productivity. An object is to provide a continuous casting mold that can be produced.

前記課題を解決するため、請求項1に記載の連続鋳造用鋳型は、内面が、テーパ角度0.1度以上、1.3度以下で鋳造方向に向かって広がるテーパ状に形成され、熱伝導率が0.7(cal/cm・sec・℃)以上、かつ、降伏応力が250(MPa)以上の材料からなる構成とした。   In order to solve the above-mentioned problem, the continuous casting mold according to claim 1 has an inner surface formed in a taper shape having a taper angle of 0.1 degrees or more and 1.3 degrees or less and extending toward the casting direction, and heat conduction. The structure is made of a material having a rate of 0.7 (cal / cm · sec · ° C.) or more and a yield stress of 250 (MPa) or more.

また、請求項2に記載の連続鋳造用鋳型は、請求項1に記載の連続鋳造用鋳型において、前記材料が銅合金である構成とした。   A continuous casting mold according to claim 2 is the continuous casting mold according to claim 1, wherein the material is a copper alloy.

このように構成すれば、鋳造材の引き抜きの際の鋳型との接触抵抗を小さくできるとともに、抜熱・冷却が均一に行われ、良好な表面性状を有する鋳造材を長時間連続して生産できる連続鋳造用鋳型を提供することができる。   If comprised in this way, while being able to reduce the contact resistance with the casting_mold | template at the time of extraction of a casting material, heat extraction and cooling are performed uniformly and the casting material which has favorable surface property can be produced continuously for a long time. A continuous casting mold can be provided.

本発明に係る連続鋳造用鋳型では、テーパ角度及び鋳型の材質を適正に設定しているので、長時間鋳造しても表面性状の良い鋳造材を得ることができる。そのため、鋳造材を高い生産性で生産することができる。   In the casting mold for continuous casting according to the present invention, since the taper angle and the material of the casting mold are set appropriately, a cast material having a good surface property can be obtained even if casting is performed for a long time. Therefore, the cast material can be produced with high productivity.

以下、本発明の実施の形態について図面を参照して説明する。なお、ここでは、本発明に係る連続鋳造用鋳型を横型連続鋳造を行う連続鋳造装置に装着した場合について説明する。
[連続鋳造装置の構成]
まず、図1を参照して、本発明に係る連続鋳造用鋳型1を備える連続鋳造装置Aの構成について説明する。図1は、本発明に係る連続鋳造用鋳型を備える連続鋳造装置の構成を模式的に示す側面断面図である。
Embodiments of the present invention will be described below with reference to the drawings. Here, the case where the continuous casting mold according to the present invention is mounted on a continuous casting apparatus that performs horizontal continuous casting will be described.
[Configuration of continuous casting equipment]
First, with reference to FIG. 1, the structure of the continuous casting apparatus A provided with the casting mold 1 for continuous casting which concerns on this invention is demonstrated. FIG. 1 is a side sectional view schematically showing a configuration of a continuous casting apparatus including a continuous casting mold according to the present invention.

連続鋳造装置Aは、横型連続鋳造によって、アルミニウム合金の鋳造材Bを製造するものである。連続鋳造装置Aは、連続鋳造用鋳型1と、セラミックノズル2と、溶湯溜槽3と、固定手段4と、引抜手段5とを備える。また、連続鋳造装置Aは、図示しない冷却水輸送管と潤滑油輸送管とを介して、後記する連続鋳造用鋳型1の冷却水供給孔12、12、…(図2参照)と潤滑油供給孔13、13、…とに外部から冷却水と潤滑油とが導入されている。   The continuous casting apparatus A is for producing an aluminum alloy casting material B by horizontal continuous casting. The continuous casting apparatus A includes a continuous casting mold 1, a ceramic nozzle 2, a molten metal reservoir 3, a fixing means 4, and a drawing means 5. Further, the continuous casting apparatus A is connected to cooling water supply holes 12, 12,... (See FIG. 2) of the continuous casting mold 1 and lubricating oil supplied via a cooling water transport pipe and a lubricating oil transport pipe (not shown). Cooling water and lubricating oil are introduced from the outside into the holes 13, 13,.

連続鋳造用鋳型1は、セラミックノズル2から導入されたアルミニウム合金の溶湯Mを冷却し、所定の径の鋳造材Bを製造するものである。連続鋳造用鋳型1は、水平方向に開放された筒状の形状を有し、一方の開口にはセラミックノズル2が接続されている。   The casting mold 1 for continuous casting cools the molten aluminum M introduced from the ceramic nozzle 2 to produce a casting material B having a predetermined diameter. The continuous casting mold 1 has a cylindrical shape opened in the horizontal direction, and a ceramic nozzle 2 is connected to one opening.

セラミックノズル2は、耐熱性を有するセラミックからなるノズルであり、溶湯溜槽3内のアルミニウム合金の溶湯Mを連続鋳造用鋳型1に供給するものである。セラミックノズル2は、溶湯溜槽3の側面を貫通して設けられている。   The ceramic nozzle 2 is a nozzle made of ceramic having heat resistance, and supplies the molten aluminum M of the aluminum alloy in the molten metal reservoir 3 to the continuous casting mold 1. The ceramic nozzle 2 is provided through the side surface of the molten metal reservoir 3.

溶湯溜槽3は、アルミニウム合金の溶湯Mを貯留するものである。固定手段4は、溶湯溜槽3の外部側面に取り付けられ、連続鋳造用鋳型1とセラミックノズル2とを、溶湯溜槽3に固定するものである。   The molten metal reservoir 3 stores a molten metal M of an aluminum alloy. The fixing means 4 is attached to the outer side surface of the molten metal reservoir 3 and fixes the continuous casting mold 1 and the ceramic nozzle 2 to the molten metal reservoir 3.

引抜手段5は、鋳造材Bを支持するとともに、連続鋳造用鋳型1から引き抜くものである。この引抜手段5は、連続鋳造用鋳型1内において冷却され所定の径に鋳造された鋳造材Bを一定の速度で水平方向に引き抜くため、鋳造材Bが連続鋳造される。   The drawing means 5 supports the casting material B and pulls it from the continuous casting mold 1. The drawing means 5 continuously casts the casting material B in order to draw the casting material B cooled in the continuous casting mold 1 and cast to a predetermined diameter in the horizontal direction at a constant speed.

[連続鋳造用鋳型の構成]
次に、図2を参照(適宜図1参照)して、連続鋳造用鋳型1の構成について説明する。図2は、本発明に係る連続鋳造鋳型の構成を模式的に示す模式図、(a)は、連続鋳造用鋳型とセラミックノズルの一部とを模式的に示す側面断面図、(b)は、(a)においてCで示した連続鋳造用鋳型の内面の一部を拡大して示す模式図である。連続鋳造用鋳型1は、鋳造材B(図1参照)に冷却水を供給するための冷却水供給孔12、12、…と、当該連続鋳造用鋳型1の内面1aと鋳造材Bとの間に潤滑油を供給するための潤滑油供給孔13、13、…とが形成されている。この冷却水供給孔12、12、…と潤滑油供給孔13、13、…は、連続鋳造用鋳型1を貫通して複数設けられている。
[Construction of continuous casting mold]
Next, the configuration of the continuous casting mold 1 will be described with reference to FIG. 2 (refer to FIG. 1 as appropriate). FIG. 2 is a schematic view schematically showing a configuration of a continuous casting mold according to the present invention, (a) is a side sectional view schematically showing a continuous casting mold and a part of a ceramic nozzle, and (b) is a side view. It is a schematic diagram which expands and shows a part of inner surface of the casting mold for continuous casting shown by C in (a). The continuous casting mold 1 is provided between the cooling water supply holes 12, 12,... For supplying cooling water to the casting material B (see FIG. 1), and the inner surface 1a of the continuous casting mold 1 and the casting material B. Are provided with lubricating oil supply holes 13, 13,. The cooling water supply holes 12, 12,... And the lubricating oil supply holes 13, 13,.

ここで、連続鋳造用鋳型1は、テーパ状の内面1aを有する。この内面1aは、図2(b)に示すように、鋳造進行方向に向かって径が大きくなるテーパ状に形成され、そのテーパ角度(勾配)θは0.1度以上、1.3度以下に設定される。更に、連続鋳造用鋳型1は、熱伝導率が0.7(cal/cm・sec・℃)以上であり、降伏応力が250(MPa)以上の材料からなる。なお、ここでは、連続鋳造用鋳型1は、冷却水供給孔12、12、…の出口付近から鋳造方向に向かって、内面1aより大きいテーパ角度で広がるようにテーパ状に形成された出口側開口部1bを更に有することとした。   Here, the continuous casting mold 1 has a tapered inner surface 1a. As shown in FIG. 2B, the inner surface 1a is formed in a taper shape whose diameter increases in the casting progress direction, and the taper angle (gradient) θ is not less than 0.1 degrees and not more than 1.3 degrees. Set to Further, the continuous casting mold 1 is made of a material having a thermal conductivity of 0.7 (cal / cm · sec · ° C.) or more and a yield stress of 250 (MPa) or more. Here, the continuous casting mold 1 has an outlet-side opening formed in a tapered shape so as to spread at a taper angle larger than the inner surface 1a from the vicinity of the outlet of the cooling water supply holes 12, 12,... It has decided to have further part 1b.

次に、本発明に係る連続鋳造用鋳型1の内面1aのテーパ角度θと、連続鋳造用鋳型1を構成する材料の熱伝導率及び降伏応力を数値限定した理由について説明する。   Next, the reason why the taper angle θ of the inner surface 1a of the continuous casting mold 1 according to the present invention and the thermal conductivity and yield stress of the material constituting the continuous casting mold 1 are limited numerically will be described.

(テーパ角度θ:0.1〜1.3度)
連続鋳造用鋳型1のテーパ角度θが0.1度未満であると、鋳造材Bの引き抜き時における連続鋳造用鋳型1と鋳造材Bとの接触抵抗が大きくなるとともに、連続鋳造用鋳型1と鋳造材Bとの間の潤滑油の分布に偏りが生じる。そのため、鋳造材Bに不均一な潤滑皮膜が形成され、鋳造開始から数時間後にちぎれが生じる。一方、テーパ角度θが1.3度より大きいと、鋳造材Bの表面と連続鋳造用鋳型1の内面1aとの隙間が広くなり、冷却水供給孔12、12、…から供給している冷却水が連続鋳造用鋳型1内に流れ込み、鋳造不能となる。従って、テーパ角度θは、0.1度以上、1.3度以下とする必要がある。なお、このテーパ角度θは、本発明の目的をよりよく達成するためには、0.1度以上、1.0度以下であることがより好ましく、0.3度以上、0.7度以下であることが更に好ましい。
(Taper angle θ: 0.1 to 1.3 degrees)
When the taper angle θ of the continuous casting mold 1 is less than 0.1 degree, the contact resistance between the continuous casting mold 1 and the casting material B when the casting material B is drawn increases, and the continuous casting mold 1 The distribution of the lubricating oil with the casting material B is biased. Therefore, a non-uniform lubricating film is formed on the cast material B, and tearing occurs several hours after the start of casting. On the other hand, if the taper angle θ is larger than 1.3 degrees, the gap between the surface of the casting material B and the inner surface 1a of the continuous casting mold 1 becomes wide, and the cooling supplied from the cooling water supply holes 12, 12,. Water flows into the continuous casting mold 1 and casting becomes impossible. Therefore, the taper angle θ needs to be 0.1 degrees or more and 1.3 degrees or less. In order to better achieve the object of the present invention, the taper angle θ is more preferably 0.1 degree or more and 1.0 degree or less, and 0.3 degree or more and 0.7 degree or less. More preferably.

(熱伝導率:0.7(cal/cm・sec・℃)以上)
連続鋳造用鋳型1を構成する材料の熱伝導率が0.7(cal/cm・sec・℃)より低いと、鋳造材Bの凝固時の抜熱が不充分となり、鋳造材Bの表面が荒れ、数時間鋳造すると鋳造材Bにちぎれが生じる。従って、連続鋳造用鋳型1の熱伝導率は0.7(cal/cm・sec・℃)以上とする必要がある。なお、連続鋳造用鋳型1の熱伝導率は、本発明の目的をよりよく達成するためには、0.8(cal/cm・sec・℃)以上とすることが更に好ましい。
(Thermal conductivity: 0.7 (cal / cm · sec · ° C) or more)
When the thermal conductivity of the material constituting the continuous casting mold 1 is lower than 0.7 (cal / cm · sec · ° C.), the heat removal at the time of solidification of the cast material B becomes insufficient, and the surface of the cast material B becomes If it is rough and casts for several hours, the cast material B is torn off. Therefore, the thermal conductivity of the continuous casting mold 1 needs to be 0.7 (cal / cm · sec · ° C.) or more. The thermal conductivity of the continuous casting mold 1 is more preferably 0.8 (cal / cm · sec · ° C.) or more in order to better achieve the object of the present invention.

(降伏応力:250(MPa)以上)
降伏応力が250(MPa)より低い材料を用いると、鋳造中に連続鋳造用鋳型1が変形し、鋳造時間が進むにつれて鋳造材Bの表面が荒れ、最終的にはちぎれが生じる。従って、連続鋳造用鋳型1の降伏応力250(MPa)以上とすることが必要である。なお、この降伏応力は、本発明の目的をよりよく達成するためには、300(MPa)以上であることが更に好ましい。
(Yield stress: 250 (MPa) or more)
When a material having a yield stress lower than 250 (MPa) is used, the continuous casting mold 1 is deformed during casting, and the surface of the cast material B becomes rough as the casting time progresses, and finally, tearing occurs. Therefore, the yield stress of the continuous casting mold 1 needs to be 250 (MPa) or more. The yield stress is more preferably 300 (MPa) or more in order to better achieve the object of the present invention.

以上のように、連続鋳造用鋳型1の内面1aのテーパ角度θと、連続鋳造用鋳型1を構成する材料の熱伝導率及び降伏応力を規制することで、長時間鋳造しても鋳造材B(図1参照)にちぎれが生じず、表面性状の良い鋳造材Bを得ることができる連続鋳造用鋳型1とすることができる。   As described above, by controlling the taper angle θ of the inner surface 1a of the continuous casting mold 1 and the thermal conductivity and yield stress of the material constituting the continuous casting mold 1, the cast material B can be cast even for a long time. (See FIG. 1) No tearing occurs, and it is possible to obtain a continuous casting mold 1 capable of obtaining a cast material B having a good surface property.

[連続鋳造装置の動作]
次に、図1及び図2を参照して、本発明に係る連続鋳造用鋳型1を備える連続鋳造装置Aの動作について説明する。
[Operation of continuous casting machine]
Next, with reference to FIG.1 and FIG.2, operation | movement of the continuous casting apparatus A provided with the casting_mold | template 1 for continuous casting which concerns on this invention is demonstrated.

図1に示すように、連続鋳造装置Aにおいて、溶湯溜槽3に貯留されたアルミニウム合金の溶湯Mが、溶湯溜槽3からセラミックノズル2を通り、連続鋳造用鋳型1内に導入される。そして、連続鋳造用鋳型1内において内面1aを介して抜熱され、アルミニウム合金は内面1aと接触する面(表面)から凝固する。   As shown in FIG. 1, in the continuous casting apparatus A, the molten aluminum M stored in the molten metal reservoir 3 is introduced from the molten metal reservoir 3 through the ceramic nozzle 2 into the continuous casting mold 1. Then, heat is removed through the inner surface 1a in the continuous casting mold 1, and the aluminum alloy solidifies from the surface (surface) in contact with the inner surface 1a.

ここで、アルミニウム合金の表面と連続鋳造用鋳型1の内面1aとの間には、潤滑油供給孔13、13、…から供給された潤滑油によって、潤滑皮膜が形成されている。また、引抜手段5によって鋳造材Bが所定の速度で引かれているため、凝固したアルミニウム合金は、連続鋳造用鋳型1の内面1aに沿って所定の速度で移動する。そして、内面1aはテーパ状に形成されているので、アルミニウム合金が鋳造方向に進むにつれて接触抵抗が低くなるとともに、接触している連続鋳造用鋳型1の内面1aから抜熱され、アルミニウム合金は内部に向かって徐々に凝固する。そして、冷却水供給孔12、12、…の出口付近において、アルミニウム合金は、冷却水供給孔12、12、…から供給された冷却水によって強制冷却される。   Here, a lubricating film is formed between the surface of the aluminum alloy and the inner surface 1a of the continuous casting mold 1 by the lubricating oil supplied from the lubricating oil supply holes 13, 13,. Further, since the cast material B is drawn at a predetermined speed by the drawing means 5, the solidified aluminum alloy moves at a predetermined speed along the inner surface 1 a of the continuous casting mold 1. Since the inner surface 1a is formed in a tapered shape, the contact resistance decreases as the aluminum alloy advances in the casting direction, and heat is removed from the inner surface 1a of the continuous casting mold 1 that is in contact with the aluminum alloy. It gradually solidifies towards. In the vicinity of the outlet of the cooling water supply holes 12, 12,..., The aluminum alloy is forcibly cooled by the cooling water supplied from the cooling water supply holes 12, 12,.

以上の動作により、連続鋳造装置Aによって、連続的に鋳造材Bが鋳造される。なお、ここでは、本発明に係る連続鋳造用鋳型1を、横型連続鋳造を行う連続鋳造装置Aに適用する場合について説明したが、縦型連続鋳造を行う連続鋳造装置(図示せず)に適用することとしてもよい。   With the above operation, the casting material B is continuously cast by the continuous casting apparatus A. Here, although the case where the continuous casting mold 1 according to the present invention is applied to the continuous casting apparatus A that performs horizontal continuous casting has been described, it is applied to a continuous casting apparatus (not shown) that performs vertical continuous casting. It is good to do.

以下、本発明に係る実施例について具体的に説明する。まず、表1に示すようなテーパ角度と材質の鋳型を作製した。また、各々の材料について、熱伝導率と、JIS−Z−2241に従って降伏応力を測定した。   Examples according to the present invention will be specifically described below. First, a mold having a taper angle and a material as shown in Table 1 was prepared. Moreover, about each material, the thermal conductivity and the yield stress were measured according to JIS-Z-2241.

Figure 2006110558
Figure 2006110558

実施例1〜4は、0.1重量%のクロム(実施例1)又は鉄(実施例2〜4)を含む銅合金を材料に用い、いずれも本発明で規制した条件を満足するものである。一方、比較例1は材料にT651の調質が施された6061アルミニウム合金(6061−T651、JIS−H−4000に規定)を使用し、熱伝導率及び降伏応力が本発明で数値限定した範囲の下限値未満のものであり、比較例2は、材料に純銅を使用し、降伏応力が本発明で数値限定した範囲の下限値未満のものである。また、比較例3は、テーパ角度が本発明で数値限定した範囲の下限値未満のものであり、比較例4は、テーパ角度が本発明で数値限定した範囲の上限値を超えたものである。   Examples 1-4 use the copper alloy containing 0.1 weight% chromium (Example 1) or iron (Examples 2-4) as a material, and all satisfy the conditions regulated by this invention. is there. On the other hand, Comparative Example 1 uses 6061 aluminum alloy (6061-T651, specified in JIS-H-4000) whose material is tempered T651, and the thermal conductivity and yield stress are numerically limited in the present invention. In Comparative Example 2, pure copper is used as the material, and the yield stress is less than the lower limit value of the range numerically limited in the present invention. Comparative Example 3 has a taper angle that is less than the lower limit value of the range limited by the present invention, and Comparative Example 4 has a taper angle that exceeds the upper limit value of the range limited by the present invention. .

このようにして製造された本発明に係る実施例1〜4及び本発明で規制した条件を満足しない比較例1〜4の鋳型を水平型の連続鋳造装置に設置して、6ストランドで連続鋳造した。鋳造材の原料には、6000系アルミニウム合金(合金番号6061)を使用し、直径70(mm)の丸棒の鋳造材を作製した。鋳造速度は、300〜400(mm/分)とし、潤滑油量を5〜20(ml/分/本)の範囲で行い、また、冷却水量は100〜120(l/分/本)の範囲で行った。以下、各々の鋳型及び鋳造材について行った評価方法について説明する。   The casting molds of Examples 1 to 4 according to the present invention and Comparative Examples 1 to 4 that do not satisfy the conditions regulated by the present invention were installed in a horizontal continuous casting apparatus and continuously cast with 6 strands. did. A 6000 series aluminum alloy (alloy number 6061) was used as a raw material for the cast material, and a round bar cast material having a diameter of 70 (mm) was produced. The casting speed is 300 to 400 (mm / min), the amount of lubricating oil is 5 to 20 (ml / min / line), and the amount of cooling water is 100 to 120 (l / min / line). I went there. Hereinafter, the evaluation method performed about each casting_mold | template and cast material is demonstrated.

(連続鋳造時間)
各々の鋳型について、ちぎれを生じることなく連続して鋳造できた連続鋳造時間を計測した。そして、連続鋳造時間を最長48時間まで測定し、48時間以上であれば実用上問題がないと判断した。
(Continuous casting time)
For each mold, the continuous casting time during which casting was possible without tearing was measured. Then, the continuous casting time was measured up to 48 hours, and if it was 48 hours or longer, it was determined that there was no practical problem.

(鋳造材表面性状)
各々の鋳型によって作製された鋳造材の表面性状(鋳造材表面性状)の評価を目視で行い、表面に荒れが生じていない場合は「○(良好)」、荒れが生じているものにはその度合いに応じて「△(やや不良)」又は「×(不良)」とした。
(Cast material surface properties)
Visually evaluate the surface properties (cast material surface properties) of the cast material produced by each mold. If the surface is not rough, it is “Good”. Depending on the degree, “△ (somewhat poor)” or “× (bad)” was set.

表1に示すように、本発明で規制した条件を満足しない比較例(比較例1〜4)では、前記評価項目のすべてを満足するものは得られなかった。   As shown in Table 1, in Comparative Examples (Comparative Examples 1 to 4) that do not satisfy the conditions regulated by the present invention, those that satisfy all of the evaluation items were not obtained.

すなわち、比較例1は、鋳造時の抜熱効率が悪く、また、鋳造中に鋳型が変形するため、連続鋳造時間が5時間と短く、また、鋳造材表面性状が「×(不良)」であった。また、比較例2は、鋳型の変形のため、鋳造時間が20時間と短く、鋳造材表面性状が「△(やや不良)」であった。比較例3は、潤滑油の分布に偏りが生じるため、連続鋳造時間が5時間と短く、また、鋳造材表面性状が「×(不良)」であった。比較例4は、冷却水が鋳型内に流れ込み、鋳造不能となった。   That is, in Comparative Example 1, the heat removal efficiency during casting was poor, the mold was deformed during casting, the continuous casting time was as short as 5 hours, and the surface quality of the cast material was “x (defect)”. It was. Further, in Comparative Example 2, due to the deformation of the mold, the casting time was as short as 20 hours, and the cast material surface property was “Δ (somewhat poor)”. In Comparative Example 3, since the distribution of the lubricating oil was uneven, the continuous casting time was as short as 5 hours, and the surface quality of the cast material was “x (defect)”. In Comparative Example 4, the cooling water flowed into the mold and became impossible to cast.

一方、本発明に係る実施例(実施例1〜4)は、連続鋳造時間、鋳造材表面性状のいずれの評価項目においてなんら問題のないものであった。   On the other hand, the examples (Examples 1 to 4) according to the present invention had no problems in any evaluation items of continuous casting time and cast material surface properties.

本発明に係る連続鋳造用鋳型を備える連続鋳造装置の構成を模式的に示す側面断面図である。It is side surface sectional drawing which shows typically the structure of the continuous casting apparatus provided with the casting_mold | template for continuous casting which concerns on this invention. 本発明に係る連続鋳造鋳型の構成を模式的に示す模式図、(a)は、連続鋳造用鋳型とセラミックノズルの一部とを模式的に示す側面断面図、(b)は、(a)においてCで示した連続鋳造用鋳型の内面の一部を拡大して示す模式図である。The schematic diagram which shows typically the structure of the continuous casting mold which concerns on this invention, (a) is side sectional drawing which shows typically a casting mold and a part of ceramic nozzle, (b) is (a). It is a schematic diagram which expands and shows a part of inner surface of the casting mold for continuous casting shown by C in FIG.

符号の説明Explanation of symbols

1 連続鋳造用鋳型
1a 内面
1b 出口側開口部
12 冷却水供給孔
13 潤滑油供給孔
2 セラミックノズル
3 溶湯溜槽
4 固定手段
5 引抜手段
A 連続鋳造装置
B 鋳造材
M 溶湯
DESCRIPTION OF SYMBOLS 1 Mold for continuous casting 1a Inner surface 1b Outlet side opening 12 Cooling water supply hole 13 Lubricating oil supply hole 2 Ceramic nozzle 3 Molten metal reservoir 4 Fixing means 5 Drawing means A Continuous casting apparatus B Cast material M Molten metal

Claims (2)

鋳造材を連続して鋳造する連続鋳造装置に使用する連続鋳造用鋳型において、
内面が、テーパ角度0.1度以上、1.3度以下で鋳造方向に向かって広がるテーパ状に形成され、
熱伝導率が0.7cal/cm・sec・℃以上、かつ、降伏応力が250MPa以上の材料からなる連続鋳造用鋳型。
In a continuous casting mold used in a continuous casting apparatus for continuously casting a cast material,
The inner surface is formed in a taper shape having a taper angle of 0.1 degrees or more and 1.3 degrees or less and extending toward the casting direction,
A continuous casting mold made of a material having a thermal conductivity of 0.7 cal / cm · sec · ° C. or more and a yield stress of 250 MPa or more.
前記材料が銅合金であることを特徴とする請求項1に記載の連続鋳造用鋳型。   The continuous casting mold according to claim 1, wherein the material is a copper alloy.
JP2004297518A 2004-10-12 2004-10-12 Continuous casting mold Pending JP2006110558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297518A JP2006110558A (en) 2004-10-12 2004-10-12 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297518A JP2006110558A (en) 2004-10-12 2004-10-12 Continuous casting mold

Publications (1)

Publication Number Publication Date
JP2006110558A true JP2006110558A (en) 2006-04-27

Family

ID=36379504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297518A Pending JP2006110558A (en) 2004-10-12 2004-10-12 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP2006110558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078433A1 (en) 2007-12-18 2009-06-25 Showa Denko K.K. Molten metal pouring nozzle and continuous molding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078433A1 (en) 2007-12-18 2009-06-25 Showa Denko K.K. Molten metal pouring nozzle and continuous molding device
US8776863B2 (en) 2007-12-18 2014-07-15 Showa Denko K.K. Molten metal pouring nozzle and continuous molding device

Similar Documents

Publication Publication Date Title
JP5091185B2 (en) Continuous casting equipment
JP6947737B2 (en) Continuous steel casting method
US6627055B2 (en) Manufacture of fine-grained electroplating anodes
JP2006110558A (en) Continuous casting mold
JP2017131961A (en) Continuous casting method for aluminum alloy
WO2018056322A1 (en) Continuous steel casting method
JP4248085B2 (en) Hollow billet casting core and method for hot top continuous casting of hollow billet using the core
JP6435810B2 (en) Casting method and casting mold
JP5712685B2 (en) Continuous casting method
JPH11170014A (en) Horizontal continuous casting machine
JP5822519B2 (en) Melting furnace for metal melting
JP5021199B2 (en) Horizontal continuous casting apparatus, horizontal continuous casting method, and aluminum alloy casting rod
JP3805708B2 (en) Horizontal continuous casting method
US3338296A (en) Method of casting aluminum
JP2003340553A (en) Continuous casting method for magnesium alloy sheet
JP5691949B2 (en) Continuous casting method for large-section slabs
EP0042995B1 (en) Apparatus and method for continuous casting of metallic strands at exceptionally high speeds using oscillating mold assembly
JP2018069324A (en) Mold device for continuous casting for steel and manufacturing method of surface layer-modified cast slab using the same
US3920064A (en) Mandrel for continuous casting of hollow ingots
JP2005028452A (en) CONTINUOUS CASTING METHOD OF Al-Mg-Si ALLOY AND Al-Mg-Si ALLOY INGOT, MANUFACTURING METHOD OF Al-Mg-Si ALLOY SHEET AND Al-Mg-Si ALLOY SHEET, AND MANUFACTURING METHOD OF HEAT RADIATION MATERIAL AND HEAT RADIATION MATERIAL
RU2245754C1 (en) Metal semi-continuous casting process
JP3976323B2 (en) Continuous casting alloy rod, continuous casting method and continuous casting apparatus
JP5798945B2 (en) Continuous casting mold and continuous casting equipment
JP2000508243A (en) Continuous casting method of metal and ingot mold for implementing it
JP3643460B2 (en) Continuous casting mold and continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080402

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090317

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090818

Free format text: JAPANESE INTERMEDIATE CODE: A02