JP6977207B1 - Wastewater treatment system for pyridine multicyclic compounds and their processes - Google Patents

Wastewater treatment system for pyridine multicyclic compounds and their processes Download PDF

Info

Publication number
JP6977207B1
JP6977207B1 JP2021032183A JP2021032183A JP6977207B1 JP 6977207 B1 JP6977207 B1 JP 6977207B1 JP 2021032183 A JP2021032183 A JP 2021032183A JP 2021032183 A JP2021032183 A JP 2021032183A JP 6977207 B1 JP6977207 B1 JP 6977207B1
Authority
JP
Japan
Prior art keywords
reaction
wastewater
pyridine
storage tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021032183A
Other languages
Japanese (ja)
Other versions
JP2022054384A (en
Inventor
呂路
王林平
▲るい▼傑
黄前霖
張▲うぇい▼銘
潘丙才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Application granted granted Critical
Publication of JP6977207B1 publication Critical patent/JP6977207B1/en
Publication of JP2022054384A publication Critical patent/JP2022054384A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/065Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

【課題】廃水中のピリジン複数環汚染物を効果的に分解できるだけでなく、フィラー吸収塔内のフィラーの損失を回避することもできる、ピリジン複数環式化合物の廃水処理システムおよびそのプロセスを提供する。【解決手段】順に接続された廃液貯蔵タンク1、固定床反応器2、熱交換器3、フィラー吸収塔4および一次貯水タンク5を含み、ルテニウム基触媒を含む固定床反応器を設置することで、廃水中のピリジン複数環式化合物との還元反応を容易に引き起こし、ピリジン環中の窒素をアンモニアの形で分解し、廃水中のピリジン複数環汚染物を除去する。各反応分岐管の外部に2層らせん状保温ジャケットが設けられ、温度分布をより均一にし、熱による反応分岐管の側壁との直接接触により引き起こされる反応分岐管内の触媒局所的な焦げ、それによる触媒性能への影響を回避することができる。【選択図】図1PROBLEM TO BE SOLVED: To provide a wastewater treatment system for a pyridine polycyclic compound and a process thereof, which can not only effectively decompose pyridine polycyclic contaminants in wastewater but also avoid the loss of filler in a filler absorption tower. .. SOLUTION: A fixed bed reactor including a waste liquid storage tank 1, a fixed bed reactor 2, a heat exchanger 3, a filler absorption tower 4 and a primary water storage tank 5 connected in order, and containing a ruthenium-based catalyst is installed. , The reduction reaction with the pyridine polycyclic compound in the waste water is easily caused, the nitrogen in the pyridine ring is decomposed in the form of ammonia, and the pyridine polycyclic contaminant in the waste water is removed. A two-layer spiral thermal insulation jacket is provided on the outside of each reaction branch tube to make the temperature distribution more uniform and to cause local charring of the catalyst in the reaction branch tube caused by direct contact with the side wall of the reaction branch tube by heat. It is possible to avoid the influence on the catalyst performance. [Selection diagram] Fig. 1

Description

本発明は、廃水処理の技術分野に属し、具体的には、ピリジン複数環式化合物の廃水処理
システムおよびそのプロセスに関する。
The present invention belongs to the technical field of wastewater treatment, and specifically relates to a wastewater treatment system for a pyridine polycyclic compound and a process thereof.

ピリジンおよびピリジン誘導体は非常に重要なクラスの微細化学原料または製品であり、
工業用溶剤、医薬品、農薬、飼料、染料、その他の分野で広く使用されており、複素環式
薬剤、農薬、獣用医薬品の「チップ」として知られている。その幅広い用途のために、ピ
リジンおよびピリジン誘導体は多くの産業廃水で検出することができる。ピリジンおよび
ピリジン誘導体は、しばしば悪臭を放ち、刺激性があり、それらのいくつかは、潜在的な
発癌効果、生体内蓄積または高い移動性を有し、人体および天然微生物に特定の毒性作用
を有するため、このような有機廃水を効率的に除去することができる重要である。
Pyridines and pyridine derivatives are a very important class of microchemical raw materials or products.
Widely used in industrial solvents, pharmaceuticals, pesticides, feeds, dyes and other fields, it is known as the "chip" for heterocyclic drugs, pesticides and veterinary drugs. Due to its wide range of applications, pyridine and pyridine derivatives can be detected in many industrial wastewaters. Pyridines and pyridine derivatives are often malodorous and irritating, some of which have potential carcinogenic effects, bioaccumulation or high mobility, and have specific toxic effects on the human body and natural microorganisms. Therefore, it is important to be able to efficiently remove such organic wastewater.

リジン複素環式化合物の化学的性質が安定しているため、ピリジン複素環式化合物を含む
有機廃水を工業的に処理できる唯一の方法は焼却である。しかし、ピリジン環には窒素原
子が含まれているため、焼却処理時に大量のCOが発生するだけでなく、大量のNOx
が発生するため、焼却炉の排気ガス処理負荷や排出濃度が高くなると同時に、焼却処理に
も大量のエネルギーが必要になり、ある程度、その欠点は焼却技術のさらなる開発を制限
する。したがって、ピリジン複数環式化合物の廃水処理の応用ニーズおよびピリジン複数
環式化合物の特性を考慮すると、高い処理効率、徹底的な分解、省エネおよび環境保護を
備えた廃水処理システムおよびそのプロセスの開発は、良好な応用展望が期待されている
Due to the stable chemistry of lysine heterocyclic compounds, incineration is the only method that can industrially treat organic wastewater containing pyridine heterocyclic compounds. However, since the pyridine ring contains nitrogen atoms , not only a large amount of CO 2 is generated during the incineration process, but also a large amount of NOx
As a result, the exhaust gas treatment load and emission concentration of the incinerator increase, and at the same time, a large amount of energy is required for the incinerator treatment, and to some extent, its drawbacks limit the further development of incinerator technology. Therefore, considering the application needs of wastewater treatment of pyridine polycyclic compounds and the characteristics of pyridine polycyclic compounds, the development of wastewater treatment systems and their processes with high treatment efficiency, thorough decomposition, energy saving and environmental protection has been developed. , Good application prospects are expected.

本発明の目的は、廃水中のピリジン複数環汚染物を効果的に分解できるだけでなく、フィ
ラー吸収塔内のフィラーの損失を回避することもできる、ピリジン複数環式化合物の廃水
処理システムおよびそのプロセスを提供することである。
An object of the present invention is a wastewater treatment system for a pyridine polycyclic compound and a process thereof, which can not only effectively decompose pyridine polycyclic contaminants in wastewater but also avoid the loss of filler in a filler absorption column. Is to provide.

本発明の技術的解決策として、以下を含むピリジン複数環式化合物の廃水処理システムを
提供する。
廃液貯蔵タンクは、一時的に貯蔵された廃水を濾過・攪拌し、廃水中の大きな固形不純物
を除去し、不純物がパイプラインを詰まらせたり後続の機器に侵入したりして、洗浄の難
しさを増やすのを防ぐ一方、廃水を継続的に攪拌することにより、廃水の処理の遅れによ
る水底端の酸素不足に起因して、廃水の汚染を悪化させるのを回避することができる。
前記廃液貯蔵タンクに接続された固定床反応器は、廃液貯蔵タンクとの接続箇所にそれぞ
れ流量計および廃液給料ポンプが設けられ、前記流量計は電子流量計であり、流量計およ
び廃液給料ポンプが外部のインテリジェント制御素子に電気的に接続され、外部のインテ
リジェント制御素子は、流量計の水流の大きさを検知し、廃液給料ポンプのオンオフを制
御し、同時に、明細書におkる他の電気素子も外部のインテリジェント制御素子に電気的
に接続され、固定床反応器は、内部に上から下へ順に第1の反応チャンバー、仕切りチャ
ンバーおよび第2の反応チャンバーを含む反応シェルと、それぞれ前記第1の反応チャン
バーと第2の反応チャンバー内に設けられた反応管ラックと、仕切りチャンバー内に設け
られた加熱素子とを含み、第1の反応チャンバーおよび第2の反応チャンバーの側壁にそ
れぞれ廃水入口と排出バブルが設けられ、第1の反応チャンバーおよび第2の反応チャン
バーの底端に出口が設けられ、第1の反応チャンバーおよび第2の反応チャンバーは2バ
ッチで廃水を同時に処理し、廃水の処理効率を高める。
As a technical solution of the present invention, there is provided a wastewater treatment system for a pyridine polycyclic compound including the following.
The wastewater storage tank filters and agitates the temporarily stored wastewater, removes large solid impurities in the wastewater, and the impurities clog the pipeline or invade subsequent equipment, making cleaning difficult. By continuously stirring the wastewater, it is possible to avoid exacerbating the pollution of the wastewater due to the lack of oxygen at the bottom end due to the delay in the treatment of the wastewater.
The fixed-bed reactor connected to the waste liquid storage tank is provided with a flow meter and a waste liquid charge pump at the connection points with the waste liquid storage tank, respectively, and the flow meter is an electronic flow meter, and the flow meter and the waste liquid charge pump are provided. Electrically connected to an external intelligent control element, the external intelligent control element detects the magnitude of the water flow in the flow chamber, controls the on / off of the waste liquid feed pump, and at the same time, other electricity as described in the specification. The element is also electrically connected to an external intelligent control element, and the fixed bed reactor is a reaction shell including a first reaction chamber, a partition chamber and a second reaction chamber in order from top to bottom, respectively. A reaction tube rack provided in the first reaction chamber and the second reaction chamber, and a heating element provided in the partition chamber are included, and waste water inlets are provided on the side walls of the first reaction chamber and the second reaction chamber, respectively. And a discharge bubble is provided, outlets are provided at the bottom ends of the first reaction chamber and the second reaction chamber, and the first reaction chamber and the second reaction chamber simultaneously treat waste water in two batches and waste water. Increase processing efficiency.

前記反応管ラックは、上部接続板、下部接続板および前記上部接続板と下部接続板間に位
置し上下両端がそれぞれ前記上部接続板および下部接続板を貫通して設けられた複数の反
応分岐管を含み、各前記反応分岐管内に垂直方向に沿って複数の案内板が交差して分布さ
れ、反応分岐管の外部に内から外へそれぞれらせん状保温ジャケット1およびらせん状保
温ジャケット2が設けられ、前記らせん状保温ジャケット1とらせん状保温ジャケット2
間にらせん状保温加熱チャンバーが構成され、らせん状保温加熱チャンバーの設置により
、熱が直接反応分岐管内の触媒に直接接触し、接触箇所の温度が高すぎて局所的な焦げ現
象が引き起こされ、触媒の触媒性能に影響を与え、廃水処理システム全体の処理効果を低
下させるのを回避する。
The reaction tube rack is located between the upper connection plate, the lower connection plate, and the upper connection plate and the lower connection plate, and a plurality of reaction branch tubes are provided so that both upper and lower ends penetrate the upper connection plate and the lower connection plate, respectively. A plurality of guide plates are cross-distributed along the vertical direction in each of the reaction branch pipes, and a spiral heat insulating jacket 1 and a spiral heat insulating jacket 2 are provided outside the reaction branch pipe from the inside to the outside, respectively. , The spiral heat insulating jacket 1 and the spiral heat insulating jacket 2
A spiral heat-retaining heating chamber is configured between them, and the installation of the spiral heat-retaining heating chamber causes heat to come into direct contact with the catalyst in the reaction branch tube, causing the temperature at the contact point to be too high and causing a local burning phenomenon. It affects the catalytic performance of the catalyst and avoids reducing the treatment effect of the entire wastewater treatment system.

前記加熱素子はそれぞれ各らせん状保温加熱チャンバーの底端に貫通して接続される。
固定床反応器に接続された熱交換器は、固定床反応器との間で循環ループを形成し、循環
ループの設計により、触媒反応処理後の水が熱交換器熱で交換され、水の熱を収集し、循
環ループ重新を介して固定床反応器内に流れ込んで再利用でき、省エネおよび環境保護と
いう利点を有する。
Each of the heating elements is connected to penetrate the bottom end of each spiral heat insulating heating chamber.
The heat exchanger connected to the fixed bed reactor forms a circulation loop with the fixed bed reactor, and by designing the circulation loop, the water after the catalytic reaction treatment is exchanged by the heat exchanger heat, and the water is replaced. Heat can be collected and flowed into the fixed bed reactor through the circulation loop weight and reused, which has the advantages of energy saving and environmental protection.

熱交換器に接続されたフィラー吸収塔は、水封タンクを介してガソメーターが接続される

フィラー吸収塔に接続され接続箇所に補水循環ポンプが設けられた一次貯水タンクは、水
封タンクに水を供給し、一次貯水タンクに液面計が設けられる。
A gasometer is connected to the filler absorption tower connected to the heat exchanger via a water-sealed tank.
The primary water storage tank connected to the filler absorption tower and provided with a water replenishment circulation pump at the connection point supplies water to the water-sealed tank, and a liquid level gauge is provided in the primary water storage tank.

さらに、前記第1の反応チャンバーの第2の反応チャンバーに対応する廃水入口の底端に
それぞれ均一化ディスクが設けられ、各前記均一化ディスクの底端に、反応分岐管と1対
1に対応する差込口が設けられ、各反応分岐管の上端はそれぞれ上部接続板を貫通して外
部に延伸し、前記差込口は対応する反応分岐管の上端の外壁に差し込まれ、均一化ディス
クにより、第1の反応チャンバーおよび第2の反応チャンバー内に進入した廃水が反応管
ラックの上端に均一に分布され、同時に、各反応分岐管の上端が対応する差込口に接続さ
れ、廃水が均一に分布される同時に、より正確に対応する反応分岐管内に進入でき、廃水
の処理効果を高め、廃水が固定床反応器の内壁にこぼれて内部デバイスの汚染を引き起こ
すのを回避する。
Further, a homogenizing disk is provided at the bottom end of the wastewater inlet corresponding to the second reaction chamber of the first reaction chamber, and a one-to-one correspondence with the reaction branch pipe is provided at the bottom end of each homogenizing disk. An outlet is provided, the upper end of each reaction branch tube penetrates the upper connection plate and extends outward, and the outlet is inserted into the outer wall of the upper end of the corresponding reaction branch tube and is provided with a uniformized disk. , The wastewater that has entered the first reaction chamber and the second reaction chamber is evenly distributed at the upper end of the reaction tube rack, and at the same time, the upper end of each reaction branch tube is connected to the corresponding outlet, and the wastewater is uniform. At the same time, it can enter the corresponding reaction branch pipe more accurately, enhance the treatment effect of wastewater, and prevent the wastewater from spilling on the inner wall of the fixed bed reactor and causing contamination of internal devices.

さらに、前記第1の反応チャンバー、仕切りチャンバーおよび第2の反応チャンバーの側
壁に、それぞれアクセスポートが設けられ、各前記反応分岐管内にそれぞれルテニウム基
触媒が配置され、ピリジン複数環式化合物が酸化されにくいが、容易に還元され、還元反
応しやすいルテニウム基触媒を選択し、ピリジン環中の窒素をアンモニアの形で脱出し、
その他の炭素、水素、酸素原子もCO、CH、HOの形で放出され、廃水中のピリ
ジン複数環汚染物を除去する目的を達成し、アクセスポートの設置により各前記反応分岐
管内に配置されたルテニウム基触媒を必要に応じて交換し、廃水の処理効果を高める。
さらに、前記廃液貯蔵タンク内に水平フィルターが設けられ、廃液貯蔵タンクの底端の中
心にスラッジ排出口が設けられ、廃液貯蔵タンクの底端は円弧状の構造であり、且つ底端
に前記スラッジ排出口の周方向に沿って分布された複数本のスラッジ案内溝が設けられ、
水平フィルターにより廃水中の固形不純物を濾過し、スラッジ排出口の周方向に沿って分
布された複数本のスラッジ案内溝により、廃水中の沈殿したスラッジが各スラッジ案内溝
を介してスラッジ排出口に案内されて排出され、スラッジ排出効率を高める。
Further, access ports are provided on the side walls of the first reaction chamber, the partition chamber and the second reaction chamber, respectively, a ruthenium-based catalyst is arranged in each of the reaction branch tubes, and the pyridine plural cyclic compound is oxidized. Select a ruthenium-based catalyst that is difficult but easily reduced and easily undergoes a reduction reaction, and escapes nitrogen in the pyridine ring in the form of ammonia.
Other carbon, hydrogen, and oxygen atoms are also released in the form of CO 2 , CH 4 , and H 2 O, achieving the purpose of removing pyridine multi-ring contaminants in wastewater, and by installing access ports in each reaction branch tube. The ruthenium-based catalysts placed in the water are replaced as needed to enhance the treatment effect of wastewater.
Further, a horizontal filter is provided in the waste liquid storage tank, a sludge discharge port is provided in the center of the bottom end of the waste liquid storage tank, the bottom end of the waste liquid storage tank has an arcuate structure, and the sludge is at the bottom end. Multiple sludge guide grooves distributed along the circumferential direction of the discharge port are provided, and
Solid impurities in the wastewater are filtered by a horizontal filter, and the settled sludge in the wastewater is sent to the sludge discharge port through each sludge guide groove by the multiple sludge guide grooves distributed along the circumferential direction of the sludge discharge port. It is guided and discharged to improve sludge discharge efficiency.

さらに、前記フィラー吸収塔は、底端に空気入口が設けられ上端に空気出口が設けられた
吸収シェル、上から下へ順に前記吸収シェル内に分布されたスプレー部材、フィラープレ
ス部材およびフィラー層を含み、前記フィラープレス部材は、吸収シェルの左右両側に対
称的に設けられ側壁に上から下へに複数の係合用円形穴が均一に設けられた調節フレーム
、吸収シェル内であってフィラー層の上端に位置するプレスフレーム、それぞれ吸収シェ
ルの外壁の左右両側に設けられ前記プレスフレームの左右両側にそれぞれ固定に接続され
た2つの円弧状のバックルプレートを含み、前記吸収シェルの側壁であって2つの円弧状
のバックルプレートの位置に垂直制限溝が設けられ、前記円弧状のバックルプレートはス
ライドスリーブを介して調節フレームの外壁に接続され、前記スライドスリーブ上に固定
用円形穴が設けられ、前記固定用円形穴が係合用円形穴とボルトを介して接続され、スラ
イドスリーブの調節フレームからの高さを調節することで、プレスフレームとフィラー層
間の距離を調節し、フィラー層を交換する必要があると、スライドスリーブを調節フレー
ム上で上向きに移動させ、ボルトを対応の高さの固定用円形穴と係合用円形穴に挿入して
固定を行い、プレスフレームとフィラー層を分離した後交換を行い、交換が完了すると、
スライドスリーブを調節フレーム上で下向きに移動させ、ボルトを対応の高さの固定用円
形穴と係合用円形穴に挿入して固定を行い、プレスフレームでフィラー層をプレスし、フ
ィラー吸収塔の下から上昇する気流が大きい場合でも、プレスフレームがずれず、フィラ
ー層を十分にプレスすることができる。
Further, the filler absorption tower includes an absorption shell having an air inlet at the bottom end and an air outlet at the upper end, and a spray member, a filler press member and a filler layer distributed in the absorption shell in order from top to bottom. The filler press member is an adjustment frame provided symmetrically on both the left and right sides of the absorption shell and uniformly provided with a plurality of engaging circular holes from top to bottom on the side wall, and the filler layer in the absorption shell. A press frame located at the upper end, each of which includes two arcuate buckle plates provided on the left and right sides of the outer wall of the absorption shell and fixedly connected to each of the left and right sides of the press frame, and is a side wall of the absorption shell. A vertical limiting groove is provided at the position of the arcuate buckle plate, the arcuate buckle plate is connected to the outer wall of the adjustment frame via a slide sleeve, and a fixing circular hole is provided on the slide sleeve. The fixing circular hole is connected to the engaging circular hole via a bolt, and by adjusting the height of the slide sleeve from the adjustment frame, it is necessary to adjust the distance between the press frame and the filler layer and replace the filler layer. If there is, move the slide sleeve upwards on the adjustment frame, insert the bolt into the fixing circular hole and the engaging circular hole of the corresponding height to fix, separate the press frame and the filler layer, and then replace. Once done and the exchange is complete,
Move the slide sleeve downwards on the adjustment frame and insert bolts into the fixing and engaging circular holes of the corresponding height for fixation, press the filler layer with the press frame and under the filler absorption tower. Even when the airflow rising from is large, the press frame does not shift and the filler layer can be sufficiently pressed.

さらに、前記垂直制限溝の高さは、最上端と最下端の係合用円形穴間の距離と等しく、円
弧状のバックルプレートの高さが垂直制限溝の高さよりも高く、円弧状のバックルプレー
トの内壁にシール密着層が設けられ、長さが垂直制限溝よりも大きい円弧状のバックルプ
レートを設置することで、プレスフレームの上下移動中、垂直制限溝が遮断されず、空気
漏れが発生し、フィラー吸収塔の通常使用に影響を与えるのを回避することができる。
またさらに、前記一次貯水タンク内に水質検出器、攪拌素子が設けられ、前記攪拌素子は
既存の攪拌パドルであればよく、水質検出器により、処理された水の質が基準を満たして
いるかどうかを検出し、二次汚染を防止し、攪拌素子により、処理された水を攪拌して、
処理の遅れによる水の底端の酸素不足に起因する二次汚染を回避することができる。
Further, the height of the vertical limiting groove is equal to the distance between the uppermost and lowermost engaging circular holes, the height of the arcuate buckle plate is higher than the height of the vertical limiting groove, and the arcuate buckle plate. By installing an arc-shaped buckle plate whose length is larger than the vertical limiting groove, the vertical limiting groove is not blocked while the press frame is moving up and down, and air leakage occurs. , It is possible to avoid affecting the normal use of the filler absorption tower.
Furthermore, a water quality detector and a stirring element are provided in the primary water storage tank, and the stirring element may be an existing stirring paddle, and whether the quality of the water treated by the water quality detector meets the standard. Is detected, secondary contamination is prevented, and the treated water is agitated by a stirring element.
Secondary pollution due to lack of oxygen at the bottom of the water due to treatment delays can be avoided.

上記のピリジン複数環式化合物の廃水処理システムのプロセスは、具体的に以下のステッ
プを含む。
S1:廃水が廃液貯蔵タンクに流入すると、水平フィルターで廃水中の固形不純物を濾過
した後、廃液貯蔵タンクに一時的に貯蔵される。
S2:加熱素子を始動し、加熱素子により固定床反応器を加熱し、この時、熱が各らせん
状保温加熱チャンバーの底端を通ってその内部に流れ込み、らせん状保温加熱チャンバー
に沿ってらせん状に上向きに広がり、らせん状保温ジャケット2は反応分岐管から離れて
配置され、熱がらせん状保温ジャケット2を介して間接的に反応分岐管に伝達されてその
内部を加熱でき、熱が直接反応分岐管の側壁に接触し反応分岐管内の触媒の局所的な焦げ
を招き、その触媒性能に影響を与えることを回避する。
S3:固定床反応器内の温度が350℃に達したとき、30〜60min安定させ、廃液
給料ポンプを始動し、廃液給料ポンプを使用して廃水を廃液貯蔵タンクから2つの廃水入
口を介して、それぞれ第1の反応チャンバーおよび第2の反応チャンバーの内部の上端に
汲み上げる同時に、固定床触媒床層の温度の安定性を確保できるように、流量計で汲上量
を制御し、この時、水流が均一化ディスクの底端の差込口からそれぞれ様々な反応分岐管
内に均一に分散し、廃水が反応分岐管内のルテニウム基触媒と反応し、還元反応後の水が
熱交換器に進入し、熱交換および冷却の後フィラー吸収塔に入り、フィラー吸収塔内の水
が反応後のアンモニアを吸収してアンモニア水となり収集され、メタン、二酸化炭素を含
むガスがガソメーターに入り貯蔵され、処理後の水が一次貯水タンクに進入し貯蔵される

S4:上記の熱交換器内の熱を回収し、固定床反応器に再投入でき、水質検出器を使用し
て処理後の水質が基準を満たしたかどうかを検出し、基準を満たしていない場合、補水循
環ポンプにより水をフィラー吸収塔に再度汲み上げればよい。
The process of the wastewater treatment system for the above pyridine polycyclic compound specifically comprises the following steps.
S1: When the wastewater flows into the wastewater storage tank, the solid impurities in the wastewater are filtered by a horizontal filter and then temporarily stored in the wastewater storage tank.
S2: The heating element is started, and the fixed bed reactor is heated by the heating element. At this time, heat flows into the inside of each spiral heat insulation heating chamber through the bottom end of each spiral heat insulation heating chamber, and spirals along the spiral heat insulation heating chamber. The spiral heat insulating jacket 2 is arranged away from the reaction branch tube, and heat is indirectly transferred to the reaction branch tube via the spiral heat insulating jacket 2 to heat the inside thereof, and heat can be directly transferred to the inside of the reaction branch tube. It avoids contacting the side wall of the reaction branch tube and causing local charring of the catalyst in the reaction branch tube, which affects the catalytic performance.
S3: When the temperature inside the fixed bed reactor reaches 350 ° C, stabilize for 30 to 60 minutes, start the waste liquid feed pump, and use the waste liquid charge pump to drain the waste water from the waste liquid storage tank through the two waste water inlets. At the same time, the pumping amount is controlled by a flow meter so that the temperature stability of the fixed bed catalyst bed layer can be ensured at the same time as pumping to the upper end inside the first reaction chamber and the second reaction chamber, respectively, and at this time, the water flow is controlled. Is uniformly dispersed in various reaction branch pipes from the insertion port at the bottom end of the homogenized disk, waste water reacts with the ruthenium-based catalyst in the reaction branch pipe, and the water after the reduction reaction enters the heat exchanger. After heat exchange and cooling, it enters the filler absorption tower, the water in the filler absorption tower absorbs the ammonia after the reaction and is collected as ammonia water, and the gas containing methane and carbon dioxide enters the gasometer and is stored, and after treatment. Water enters and is stored in the primary water storage tank.
S4: When the heat in the above heat exchanger can be recovered and re-injected into the fixed bed reactor, and the water quality detector is used to detect whether the treated water quality meets the standard and does not meet the standard. , Water may be pumped up to the filler absorption tower again by the water replenishment circulation pump.

本発明は以下の有益な効果を有する。
(1)本発明のピリジン複数環式化合物は、ルテニウム基触媒の固定床反応器で還元反応
を起こし、ピリジン環中の窒素をアンモニアの形で脱出し、そのほかの炭素、水素、酸素
原子もCO、CH、HOの形で放出され、廃水中のピリジン複数環汚染物を効果的
に分解し、ピリジン複数環を含む有機廃水の処理が難しい業界の問題を解決するとともに
、本発明のシステムは高い処理効率、徹底的な分解および省エネおよび環境保護という利
点を有するため、広い分野で応用され得る。
(2)本発明の固定床反応器内に2つの反応チャンバーが設けられ、廃水を2バッチで別
々に処理する同時に、各反応チャンバー内にルテニウム基触媒を含む複数の反応分岐管が
設けられ、各反応分岐管の上端が対応する差込口に接続され、廃水が均一に分布される同
時に、対応する反応分岐管内により正確に進入でき、廃水の処理効果を高め、廃水が固定
床反応器の内壁にこぼれて内部デバイスの汚染が発生するのを回避し、各反応分岐管の外
部にまた2層のらせん状保温ジャケットが設けられ、温度の分布がより均一にし、熱が直
接反応分岐管の側壁に直接接触するによる反応分岐管内の触媒局所的な焦げを引き起こし
、その触媒性能に影響することを回避し、らせん状の保温ジャケットにより、熱がらせん
状保温加熱チャンバーを通過する時間を延長し、十分な加熱を確保する。
(3)本発明の各反応分岐管内に垂直方向に沿って複数の案内板が交差して分布され、案
内板の設置により、廃水が十分な滞留時間で反応分岐管を通過し、その内部の汚染物を完
全に分解することができる。
(4)本発明は、フィラー吸収塔内にプレスフレームを設ける同時に、プレスフレームと
フィラー層間の距離を調節可能であるため、フィラー吸収塔の下から上昇する気流が大き
い場合でも、プレスフレームのずれによるフィラーの損失を引き起こし問題を回避するこ
とができる。
The present invention has the following beneficial effects.
(1) The pyridine multicyclic compound of the present invention undergoes a reduction reaction in a fixed bed reactor of a ruthenium-based catalyst, escapes nitrogen in the pyridine ring in the form of ammonia, and other carbon, hydrogen, and oxygen atoms are also CO. 2, CH 4, is released in the form of H 2 O, effectively degrade pyridine plurality rings contaminants in waste water, with the solution to treatment of the organic waste water is difficult industry problems including pyridine plurality ring, the present invention The system has the advantages of high processing efficiency, thorough disassembly and energy saving and environmental protection, so it can be applied in a wide range of fields.
(2) Two reaction chambers are provided in the fixed bed reactor of the present invention, and wastewater is treated separately in two batches, and at the same time, a plurality of reaction branch tubes containing a ruthenium-based catalyst are provided in each reaction chamber. The upper end of each reaction branch pipe is connected to the corresponding outlet, and at the same time, the waste water is evenly distributed, and at the same time, it can enter more accurately in the corresponding reaction branch pipe, enhancing the treatment effect of the waste water, and the waste water is discharged from the fixed bed reactor. To avoid spilling on the inner wall and contaminating the internal devices, a two-layer spiral heat insulating jacket is also provided on the outside of each reaction branch tube to make the temperature distribution more uniform and heat is directly applied to the reaction branch tube. The direct contact with the side wall causes local charring of the catalyst in the reaction branch tube, avoiding affecting its catalytic performance, and the spiral heat-retaining jacket prolongs the time it takes for heat to pass through the spiral heat-retaining heating chamber. , Ensuring sufficient heating.
(3) A plurality of guide plates are cross-distributed in each reaction branch pipe of the present invention along the vertical direction, and by installing the guide plates, wastewater passes through the reaction branch pipe with a sufficient residence time, and inside the guide plate. The contaminants can be completely decomposed.
(4) In the present invention, since the press frame is provided in the filler absorption tower and the distance between the press frame and the filler layer can be adjusted at the same time, the press frame is displaced even when the airflow rising from the bottom of the filler absorption tower is large. This can cause filler loss and avoid problems.

本発明の構造概略図である。It is a structural schematic diagram of this invention. 本発明の廃液貯蔵タンクの内部上面図である。It is an internal top view of the waste liquid storage tank of this invention. 本発明の固定床反応器の内部構造の概略図である。It is a schematic diagram of the internal structure of the fixed bed reactor of this invention. 本発明の反応分岐管の断面図である。It is sectional drawing of the reaction branch tube of this invention. 本発明のフィラー吸収塔の構造概略図である。It is a structural schematic diagram of the filler absorption tower of this invention. 本発明の円弧状のバックルプレートの構造概略図である。It is a structural schematic diagram of the arc-shaped buckle plate of this invention.

[符号の説明]
1 廃液貯蔵タンク
10 水平フィルター
11 スラッジ排出口
110 スラッジ案内溝
2 固定床反応器
20 流量計
21 廃液給料ポンプ
22 反応シェル
220 第1の反応チャンバー
221 仕切りチャンバー
222 第2の反応チャンバー
223 廃水入口
224 排出バブル
225 出口
226 均一化ディスク
2260 差込口
227 アクセスポート
23 反応管ラック
230 上部接続板
231 下部接続板
232 反応分岐管
2320 案内板
2321 らせん状保温ジャケット1
2322 らせん状保温ジャケット2
2323 らせん状保温加熱チャンバー
24 加熱素子
3 熱交換器
4 フィラー吸収塔
40 吸収シェル
400 空気入口
401 空気出口
402 垂直制限溝
41 スプレー部材
42 フィラープレス部材
420 調節フレーム
4200 係合用円形穴
421 プレスフレーム
422 円弧状のバックルプレート
4220 スライドスリーブ
4221 固定用円形穴
4222 シール密着層
43 フィラー層
5 一次貯水タンク
50 補水循環ポンプ
51 液面計
52 水質検出器
53 攪拌素子
6 水封タンク
60 ガソメーター
[Explanation of sign]
1 Wastewater storage tank 10 Horizontal filter 11 Sludge discharge port 110 Sludge guide groove 2 Fixed floor reactor 20 Flow meter 21 Wastewater supply pump 22 Reaction shell 220 First reaction chamber 221 Partition chamber 222 Second reaction chamber 223 Wastewater inlet 224 Discharge Bubble 225 Outlet 226 Uniformized disk 2260 Outlet 227 Access port 23 Reaction tube rack 230 Upper connection plate 231 Lower connection plate 232 Reaction branch tube 2320 Guide plate 2321 Spiral heat insulation jacket 1
2322 Spiral heat insulation jacket 2
2323 Spiral heat insulation heating chamber 24 Heating element 3 Heat exchanger 4 Filler absorption tower 40 Absorption shell 400 Air inlet 401 Air outlet 402 Vertical limiting groove 41 Spray member 42 Filler press member 420 Adjustment frame 4200 Engagement circular hole 421 Press frame 422 yen Arc-shaped buckle plate 4220 Slide sleeve 4221 Fixing circular hole 4222 Seal adhesion layer 43 Filler layer 5 Primary water storage tank 50 Supplementary water circulation pump 51 Liquid level gauge 52 Water quality detector 53 Stirring element 6 Water sealing tank 60 Gasometer

実施例1
ピリジン複数環式化合物の廃水処理システムは、以下を含む:
廃液貯蔵タンク1は、その内部に水平フィルター10が設けられ、廃液貯蔵タンク1の底
端の中心にスラッジ排出口11が設けられ、廃液貯蔵タンク1の底端は円弧状の構造であ
り、底端にスラッジ排出口11の周方向の沿って分布された複数本のスラッジ案内溝11
0が設けられ、
廃液貯蔵タンク1に接続された固定床反応器2は、廃液貯蔵タンク1との接続箇所にそれ
ぞれ流量計20および廃液給料ポンプ21が設けられ、固定床反応器2は、内部に上から
下へ順に第1の反応チャンバー220、仕切りチャンバー221および第2の反応チャン
バー222が設けられた反応シェル22、それぞれ第1の反応チャンバー220および第
2の反応チャンバー222内に設けられた反応管ラック23、仕切りチャンバー221内
に設けられた加熱素子24を含み、第1の反応チャンバー220および第2の反応チャン
バー222の側壁に廃水入口223と排出バブル224が設けられ、第1の反応チャンバ
ー220と第2の反応チャンバー222の底端に出口225が設けられ、
反応管ラック23は上部接続板230、下部接続板231および上部接続板230と下部
接続板231間に位置し上下両端がそれぞれ上部接続板230および下部接続板231を
貫通して設けられた複数の反応分岐管232を含み、各反応分岐管232内に垂直方向に
沿って複数の案内板2320が交差して分布され、反応分岐管232の外部に内から外へ
それぞれらせん状保温ジャケット1 2321およびらせん状保温ジャケット2 232
2が設けられ、らせん状保温ジャケット1 2321とらせん状保温ジャケット2 23
22間でらせん状保温加熱チャンバー2323が構成され、
加熱素子24はそれぞれ各らせん状保温加熱チャンバー2323の底端を貫通して接続さ
れ、第1の反応チャンバー220の第2の反応チャンバー222に対応する廃水入口22
3の底端にそれぞれ均一化ディスク226が設けられ、各均一化ディスク226の底端に
反応分岐管232と1対1に対応する差込口2260が設けられ、各反応分岐管232の
上端がそれぞれ上部接続板230を貫通して外部に延伸し、差込口2260が対応する反
応分岐管232の上端の外壁に差し込まれ、
固定床反応器2に接続された熱交換器3は、固定床反応器2との間で循環ループが構成さ
れ、第1の反応チャンバー220、仕切りチャンバー221および第2の反応チャンバー
222の側壁にそれぞれアクセスポート227が設けられ、各反応分岐管232内にニッ
ケル触媒が配置され、
熱交換器3に接続されたフィラー吸収塔4は、水封タンク6を介してガソメーター60が
接続され、フィラー吸収塔4は既存のフィラー吸収塔を採用し、
フィラー吸収塔4に接続され接続箇所に補水循環ポンプ50が設けられた一次貯水タンク
5は、水封タンク6に水を供給し、一次貯水タンク5上に液面計51が設けられ、一次貯
水タンク5内に水質検出器52および攪拌素子53が設けられ、攪拌素子53は既存の攪
拌パドルであればよい。
Example 1
Wastewater treatment systems for pyridine multicyclic compounds include:
The waste liquid storage tank 1 is provided with a horizontal filter 10 inside, a sludge discharge port 11 is provided at the center of the bottom end of the waste liquid storage tank 1, and the bottom end of the waste liquid storage tank 1 has an arcuate structure. A plurality of sludge guide grooves 11 distributed along the circumferential direction of the sludge discharge port 11 at the ends.
0 is provided,
The fixed floor reactor 2 connected to the waste liquid storage tank 1 is provided with a flow meter 20 and a waste liquid supply pump 21 at the connection points with the waste liquid storage tank 1, respectively, and the fixed floor reactor 2 is internally from top to bottom. The first reaction chamber 220, the reaction shell 22 provided with the partition chamber 221 and the second reaction chamber 222, and the reaction tube rack 23 provided in the first reaction chamber 220 and the second reaction chamber 222, respectively, in this order. A heating element 24 provided in the partition chamber 221 is included, and a waste water inlet 223 and a discharge bubble 224 are provided on the side walls of the first reaction chamber 220 and the second reaction chamber 222, and the first reaction chamber 220 and the second reaction chamber 220 are provided. An outlet 225 is provided at the bottom end of the reaction chamber 222 of the above.
The reaction tube rack 23 is located between the upper connection plate 230, the lower connection plate 231 and the upper connection plate 230, and the lower connection plate 231. A plurality of guide plates 2320 intersecting and distributed along the vertical direction in each reaction branch tube 232 including the reaction branch tube 232, and the spiral heat insulating jacket 1 2321 and the spiral heat insulating jacket 1 2321 from the inside to the outside of the reaction branch tube 232, respectively. Spiral heat insulation jacket 2 232
2 is provided, and the spiral heat insulating jacket 1 2321 and the spiral heat insulating jacket 2 23
A spiral heat insulating heating chamber 2323 is configured between 22.
The heating elements 24 are connected through the bottom end of each spiral heat insulating heating chamber 2323, and the wastewater inlet 22 corresponding to the second reaction chamber 222 of the first reaction chamber 220 is connected.
A homogenizing disk 226 is provided at the bottom end of each of 3, a reaction branch tube 232 and a one-to-one corresponding insertion port 2260 are provided at the bottom end of each homogenizing disk 226, and the upper end of each reaction branch tube 232 is provided. Each of them penetrates the upper connecting plate 230 and extends to the outside, and the insertion port 2260 is inserted into the outer wall of the upper end of the corresponding reaction branch pipe 232.
The heat exchanger 3 connected to the fixed bed reactor 2 has a circulation loop formed with the fixed bed reactor 2 on the side walls of the first reaction chamber 220, the partition chamber 221 and the second reaction chamber 222. Each access port 227 is provided, and a nickel catalyst is arranged in each reaction branch tube 232.
The filler absorption tower 4 connected to the heat exchanger 3 is connected to the gasometer 60 via the water sealing tank 6, and the filler absorption tower 4 adopts the existing filler absorption tower.
The primary water storage tank 5 connected to the filler absorption tower 4 and provided with a water replenishment circulation pump 50 at the connection point supplies water to the water sealing tank 6, and a liquid level gauge 51 is provided on the primary water storage tank 5 to provide primary water storage. A water quality detector 52 and a stirring element 53 are provided in the tank 5, and the stirring element 53 may be an existing stirring paddle.

上記ピリジン複数環式化合物の廃水処理システムのプロセスは、具体的に以下のステップ
を含む:
S1:廃水が廃液貯蔵タンク1に流入すると、水平フィルター10で廃水中の固形不純物
を濾過した後、廃液貯蔵タンク1に一時的に貯蔵される、
S2:加熱素子24を始動し、加熱素子24により固定床反応器2を加熱し、この時、熱
が各らせん状保温加熱チャンバー2323の底端を通ってその内部に流れ込み、らせん状
保温加熱チャンバー2323に沿ってらせん状に上向きに広がり、らせん状保温ジャケッ
ト2 2322は反応分岐管232から離れて配置され、熱がらせん状保温ジャケット2
2322を介して間接的に反応分岐管232に伝達されてその内部を加熱でき、熱が直
接反応分岐管232の側壁に接触し反応分岐管232内の触媒の局所的な焦げを招き、そ
の触媒性能に影響を与えることを回避する、
S3:固定床反応器2内の温度が250℃に達したとき、30min安定させ、廃液給料
ポンプ21を始動し、廃液給料ポンプ21を使用して廃水を廃液貯蔵タンク1から2つの
廃水入口223を介して、それぞれ第1の反応チャンバー220および第2の反応チャン
バー222の内部の上端に汲み上げる同時に、固定床触媒床層の温度の安定性を確保でき
るように、流量計20で汲上量を制御し、この時、水流が均一化ディスク226の底端の
差込口2260からそれぞれ様々な反応分岐管232内に均一に分散し、廃水が反応分岐
管232内のルテニウム基触媒と反応し、還元反応後の水が熱交換器3に進入し、熱交換
および冷却の後フィラー吸収塔4に入り、フィラー吸収塔4内の水が反応後のアンモニア
を吸収してアンモニア水となり収集され、メタン、二酸化炭素を含むガスがガソメーター
に入り貯蔵され、処理後の水が一次貯水タンク5に進入し貯蔵される、
S4:上記の熱交換器3内の熱を回収し、固定床反応器2に再投入でき、水質検出器52
を使用して処理後の水質が基準を満たしたかどうかを検出し、基準を満たしていない場合
、補水循環ポンプ50により水をフィラー吸収塔4に再度汲み上げればよい。
既存のフィラー吸収塔4を使用して廃水を処理する場合、
The process of the wastewater treatment system for the above pyridine multicyclic compound specifically comprises the following steps:
S1: When the wastewater flows into the wastewater storage tank 1, the solid impurities in the wastewater are filtered by the horizontal filter 10 and then temporarily stored in the wastewater storage tank 1.
S2: The heating element 24 is started, and the fixed bed reactor 2 is heated by the heating element 24. At this time, heat flows into the spiral heat insulating heating chamber 2323 through the bottom end of each spiral heat insulating heating chamber, and the spiral heat insulating heating chamber is heated. Spiral upwards along 2323, spiral insulation jacket 2 2322 is located away from the reaction branch tube 232 and heat is spiral insulation jacket 2
It is indirectly transmitted to the reaction branch tube 232 via 2322 and can heat the inside thereof, and the heat directly contacts the side wall of the reaction branch tube 232 and causes local charring of the catalyst in the reaction branch tube 232, and the catalyst thereof. Avoid affecting performance,
S3: When the temperature in the fixed bed reactor 2 reaches 250 ° C., stabilize for 30 minutes, start the waste liquid charge pump 21, and use the waste liquid charge pump 21 to drain the waste water from the waste liquid storage tank 1 to the two waste water inlets 223. The pumping amount is controlled by the flow meter 20 so that the temperature stability of the fixed bed catalyst bed layer can be ensured at the same time as pumping to the upper end of the inside of the first reaction chamber 220 and the second reaction chamber 222, respectively. At this time, the water flow is uniformly dispersed in various reaction branch tubes 232 from the insertion port 2260 at the bottom end of the homogenizing disk 226, and the waste water reacts with the ruthenium-based catalyst in the reaction branch tube 232 to reduce the water flow. The water after the reaction enters the heat exchanger 3, and after heat exchange and cooling, it enters the filler absorption column 4, and the water in the filler absorption column 4 absorbs the ammonia after the reaction to become ammonia water, which is collected and collected. Gas containing carbon dioxide enters the gasometer and is stored, and the treated water enters the primary water storage tank 5 and is stored.
S4: The heat in the heat exchanger 3 can be recovered and recharged into the fixed bed reactor 2, and the water quality detector 52 can be recharged.
Is used to detect whether or not the treated water quality meets the standard, and if the standard is not met, water may be pumped up to the filler absorption tower 4 again by the water replenishment circulation pump 50.
When treating wastewater using the existing filler absorption tower 4

実施例2
本実施例は以下のところを除いて実施例1とほぼ同じである。
フィラー吸収塔4は、底端に空気入口400が設けられ上端に空気出口401が設けられ
た吸収シェル40、上から下へ順に吸収シェル40内に分布されたスプレー部材41、フ
ィラープレス部材42およびフィラー層43を含み、フィラープレス部材42は、吸収シ
ェル40の左右両側に対称的に設けられ側壁に上から下へ複数の係合用円形穴4200が
均一に設けられた調節フレーム420、吸収シェル40内に設けられフィラー層43の上
端に位置するプレスフレーム421、それぞれ吸収シェル40の外壁の左右両側に設けら
れプレスフレーム421の左右両側にそれぞれ固定に接続された2つの円弧状のバックル
プレート422を含み、吸収シェル40の側壁であって2つの円弧状のバックルプレート
422の位置に垂直制限溝402が設けられ、円弧状のバックルプレート422はスライ
ドスリーブ4220を介して調節フレーム420の外壁に接続され、スライドスリーブ4
220上に固定用円形穴4221が設けられ、固定用円形穴4221は係合用円形穴42
00とボルトを介して接続され、
垂直制限溝402の高さは最上端と最下端の係合用円形穴4200間の距離と等しく、円
弧状のバックルプレート422の高さが垂直制限溝402の高さよりも大きく、円弧状の
バックルプレート422の内壁にシール密着層4222が設けられる。
上記フィラー吸収塔4は以下のように動作する:
スライドスリーブ4220の調節フレーム420からの高さを調節することで、プレスフ
レーム421とフィラー層43間の距離を調節し、フィラー層43を交換する必要がある
と、スライドスリーブ4220を調節フレーム420上で上向きに移動させ、ボルトを対
応の高さの固定用円形穴4221と係合用円形穴4200に挿入して固定を行い、プレス
フレーム421とフィラー層43を分離した後交換を行い、交換が完了すると、スライド
スリーブ4220を調節フレーム420上で下向きに移動させ、ボルトを対応の高さの固
定用円形穴4221と係合用円形穴4200に挿入して固定を行い、プレスフレーム42
1でフィラー層43をプレスし、フィラー吸収塔4の下から上昇する気流が大きい場合で
も、プレスフレーム421がずれない。
上記の実施例1〜2の結果を統計学的に分析したところ、廃水中の汚染物の処理効果に対
する異なるフィラー吸収塔4の影響を得て、具体的には以下の通りである。
結論1:従来の市販されているフィラー吸収塔4を使用する時、フィラー吸収塔4の下か
ら上昇する気流が大きい場合、その内部フィラーが損失しやすい問題があるため、廃水中
の汚染物の全体的な除去率はわずか46.23%であるが、本願のフィラー吸収塔4は内
部にプレスフレームがある同時に、プレスフレームとフィラー層間の距離が調節可能であ
り、フィラーの損失可能性を大幅に低減できるため、廃水中の汚染物の全体的な除去率は
59.6%である。
Example 2
This embodiment is almost the same as that of Example 1 except for the following points.
The filler absorption tower 4 includes an absorption shell 40 having an air inlet 400 at the bottom end and an air outlet 401 at the upper end, a spray member 41 distributed in the absorption shell 40 in order from top to bottom, a filler press member 42, and the filler absorption tower 4. The adjusting frame 420 and the absorbing shell 40, which include the filler layer 43, are symmetrically provided on the left and right sides of the absorbing shell 40, and a plurality of engaging circular holes 4200 are uniformly provided on the side wall from top to bottom. A press frame 421 provided inside and located at the upper end of the filler layer 43, and two arc-shaped buckle plates 422 provided on both the left and right sides of the outer wall of the absorption shell 40 and fixedly connected to the left and right sides of the press frame 421, respectively. A vertical limiting groove 402 is provided at the position of the two arcuate buckle plates 422 on the side wall of the absorption shell 40, and the arcuate buckle plate 422 is connected to the outer wall of the adjustment frame 420 via a slide sleeve 4220. , Slide sleeve 4
A fixing circular hole 4221 is provided on the 220, and the fixing circular hole 4221 is an engaging circular hole 42.
Connected to 00 via bolts
The height of the vertical limiting groove 402 is equal to the distance between the uppermost and lowermost engaging circular holes 4200, the height of the arcuate buckle plate 422 is larger than the height of the vertical limiting groove 402, and the arcuate buckle plate. A seal adhesion layer 4222 is provided on the inner wall of the 422.
The filler absorption tower 4 operates as follows:
By adjusting the height of the slide sleeve 4220 from the adjustment frame 420, the distance between the press frame 421 and the filler layer 43 is adjusted, and when the filler layer 43 needs to be replaced, the slide sleeve 4220 is adjusted on the adjustment frame 420. Move upward with, insert the bolt into the fixing circular hole 4221 and the engaging circular hole 4200 at the corresponding height to fix it, separate the press frame 421 and the filler layer 43, and then replace it to complete the replacement. Then, the slide sleeve 4220 is moved downward on the adjustment frame 420, and the bolt is inserted into the fixing circular hole 4221 and the engaging circular hole 4200 at the corresponding heights to fix the press frame 42.
Even when the filler layer 43 is pressed in step 1 and the airflow rising from under the filler absorption tower 4 is large, the press frame 421 does not shift.
Statistical analysis of the results of Examples 1 and 2 above revealed that the effects of different filler absorption towers 4 on the treatment effect of contaminants in wastewater were obtained, and the specifics are as follows.
Conclusion 1: When using a conventional commercially available filler absorption tower 4, if the airflow rising from under the filler absorption tower 4 is large, there is a problem that the internal filler is likely to be lost. Although the overall removal rate is only 46.23%, the filler absorption tower 4 of the present application has a press frame inside, and at the same time, the distance between the press frame and the filler layer can be adjusted, which greatly increases the possibility of filler loss. The overall removal rate of pollutants in wastewater is 59.6%.

実施例3
本実施例は以下のことを除いて実施例2とほぼ同じである。
各反応分岐管232内に配置された触媒はルテニウム基触媒であり、廃水中のピリジン複
数環式化合物の除去率は76.58%である。
上記の実施例2〜3の結果を統計的に分析したところ、廃水中の主要汚染物であるピリジ
ン複数環式化合物の処理効果に対する様々な触媒の影響を得、具体的な結論は以下の通り
である。
結論2:その他の機器およびパラメータが同じである場合、ニッケル触媒による廃水中の
主要汚染物であるピリジン複数環式化合物に対する除去率は59.6%であり、ルテニウ
ム基触媒による廃水中の主要汚染物であるピリジン複数環式化合物に対する除去率は76
.58%であるため、ルテニウム基触媒を使用した場合の効果がより高い。
Example 3
This embodiment is almost the same as that of Example 2 except for the following.
The catalyst arranged in each reaction branch tube 232 is a ruthenium-based catalyst, and the removal rate of the pyridine polycyclic compound in the wastewater is 76.58%.
Statistical analysis of the results of Examples 2 and 3 above revealed the effects of various catalysts on the treatment effect of the pyridine multicyclic compound, which is a major contaminant in wastewater, and the specific conclusions are as follows. Is.
Conclusion 2: With the same other equipment and parameters, the removal rate for the pyridine multicyclic compound, which is the main pollutant in the wastewater by the nickel catalyst, is 59.6%, and the main pollution in the wastewater by the ruthenium-based catalyst. The removal rate for the pyridine polycyclic compound, which is a product, is 76.
.. Since it is 58%, the effect when a ruthenium-based catalyst is used is higher.

実施例4
本実施例は以下のことを除いて実施例3とほぼ同じである。
加熱素子24の固定床反応器2に対する加熱温度が300℃であり、安定時間が30mi
nであり、廃水中のピリジン複数環式化合物の除去率が78.26%であった。
Example 4
This embodiment is almost the same as that of Example 3 except for the following.
The heating temperature of the heating element 24 with respect to the fixed bed reactor 2 is 300 ° C., and the stabilization time is 30 mi.
It was n, and the removal rate of the pyridine polycyclic compound in the wastewater was 78.26%.

実施例5
本実施例は以下のことを除いて実施例4とほぼ同じである。
加熱素子24の固定床反応器2に対する加熱温度が320℃であり、安定時間が30mi
nであり、廃水中のピリジン複数環式化合物の除去率が80.12%であった。
Example 5
This embodiment is almost the same as that of Example 4 except for the following.
The heating temperature of the heating element 24 with respect to the fixed bed reactor 2 is 320 ° C., and the stabilization time is 30 mi.
It was n, and the removal rate of the pyridine polycyclic compound in the wastewater was 80.12%.

実施例6
本実施例は以下のことを除いて実施例4とほぼ同じである。
加熱素子24の固定床反応器2に対する加熱温度が350℃であり、安定時間が30mi
nであり、廃水中のピリジン複数環式化合物の除去率が89.36%であった。
Example 6
This embodiment is almost the same as that of Example 4 except for the following.
The heating temperature of the heating element 24 for the fixed bed reactor 2 is 350 ° C., and the stabilization time is 30 mi.
It was n, and the removal rate of the pyridine polycyclic compound in the wastewater was 89.36%.

実施例7
本実施例は以下のことを除いて実施例4とほぼ同じである。
加熱素子24の固定床反応器2に対する加熱温度が400℃であり、安定時間が30mi
nであり、廃水中のピリジン複数環式化合物の除去率が68.12%であった。
上記の実施例4〜7の結果を統計的に分析したところ、廃水中の主要汚染物であるピリジ
ン複数環式化合物の処理効果に対する異なる加熱温度の影響を得て、具体的な結論は以下
の通りである。
結論3:その他の機器および関連するパラメータが一定の場合、加熱温度が上昇すると、
廃水中の主要汚染物であるピリジン複数環式化合物の除去率が徐々に増加し、加熱温度が
350℃の場合、除去率が最大に達し、具体的には89.36%であり、その後、温度の
さらなる上昇につれて、廃水中のピリジン複数環式化合物の除去率が徐々に低下するため
、加熱温度が350℃の場合、加熱温度が最大に達した。
Example 7
This embodiment is almost the same as that of Example 4 except for the following.
The heating temperature of the heating element 24 with respect to the fixed bed reactor 2 is 400 ° C., and the stabilization time is 30 mi.
It was n, and the removal rate of the pyridine polycyclic compound in the wastewater was 68.12%.
Statistical analysis of the results of Examples 4-7 above revealed the effects of different heating temperatures on the treatment effects of the pyridine multicyclic compounds, which are the major contaminants in wastewater, and the specific conclusions are as follows: It's a street.
Conclusion 3: If the heating temperature rises, with other equipment and related parameters constant,
The removal rate of the pyridine polycyclic compound, which is the main contaminant in the waste water, gradually increased, and when the heating temperature was 350 ° C., the removal rate reached the maximum, specifically 89.36%, and then. As the temperature was further increased, the removal rate of the pyridine polycyclic compound in the waste water gradually decreased, so that the heating temperature reached the maximum when the heating temperature was 350 ° C.

実施例8
本実施例は以下のことを除いて実施例6とほぼ同じである。
固定床反応器2を加熱した後、安定時間が45minであり、廃水中のピリジン複数環式
化合物の除去率が90.13%であった。
Example 8
This embodiment is almost the same as that of Example 6 except for the following.
After heating the fixed bed reactor 2, the stabilization time was 45 min, and the removal rate of the pyridine polycyclic compound in the wastewater was 90.13%.

実施例9
本実施例は以下のことを除いて実施例6とほぼ同じである。
固定床反応器2を加熱した後、安定時間が50minであり、廃水中のピリジン複数環式
化合物の除去率が91.16%であった。
Example 9
This embodiment is almost the same as that of Example 6 except for the following.
After heating the fixed bed reactor 2, the stabilization time was 50 min, and the removal rate of the pyridine polycyclic compound in the wastewater was 91.16%.

実施例10
本実施例は以下のことを除いて実施例6とほぼ同じである。
固定床反応器2を加熱した後、安定時間が55minであり、廃水中のピリジン複数環式
化合物の除去率が93.26%であった。
Example 10
This embodiment is almost the same as that of Example 6 except for the following.
After heating the fixed bed reactor 2, the stabilization time was 55 min, and the removal rate of the pyridine polycyclic compound in the wastewater was 93.26%.

実施例11
本実施例は以下のことを除いて実施例6とほぼ同じである。
固定床反応器2を加熱した後、安定時間が60minであり、廃水中のピリジン複数環式
化合物の除去率が96.58%であった。
Example 11
This embodiment is almost the same as that of Example 6 except for the following.
After heating the fixed bed reactor 2, the stabilization time was 60 min, and the removal rate of the pyridine polycyclic compound in the wastewater was 96.58%.

実施例12
本実施例は以下のことを除いて実施例6とほぼ同じである。
固定床反応器2を加熱した後、安定時間が65minであり、廃水中のピリジン複数環式
化合物の除去率が86.95%であった。
Example 12
This embodiment is almost the same as that of Example 6 except for the following.
After heating the fixed bed reactor 2, the stabilization time was 65 min, and the removal rate of the pyridine polycyclic compound in the wastewater was 86.95%.

実施例13
本実施例は以下のことを除いて実施例6とほぼ同じである。
固定床反応器2を加熱した後、安定時間が70minであり、廃水中のピリジン複数環式
化合物の除去率が76.56%であった。
上記の実施例8〜13の結果を統計的に分析したところ、廃水中の主要汚染物であるピリ
ジン複数環式化合物の処理効果に対する様々な温度および時間の影響を得て、具体的な結
論は以下の通りである。
結論4:その他の機器および関連するパラメータが一定の場合、安定時間の増加につれて
、廃水中の主要汚染物であるピリジン複数環式化合物の除去率が徐々に増加し、安定時間
が60minの場合、ピリジン複数環式化合物の除去率が最大に達し、具体的に96.5
8%であり、安定時間が60minを超えると、ピリジン複数環式化合物の除去率が徐々
に低下し、これは、安定時間が長くなるほど温度が上昇し続け、最適な加熱温度を超える
と、ピリジン複数環式化合物の除去率が低下するため、最適な安定時間が60minであ
る。
Example 13
This embodiment is almost the same as that of Example 6 except for the following.
After heating the fixed bed reactor 2, the stabilization time was 70 min, and the removal rate of the pyridine polycyclic compound in the wastewater was 76.56%.
Statistical analysis of the results of Examples 8-13 above yielded the effects of various temperatures and times on the treatment effects of the pyridine multicyclic compounds, which are the major contaminants in wastewater, and the specific conclusions are: It is as follows.
Conclusion 4: With constant other equipment and related parameters, the removal rate of the major contaminants in the wastewater, the pyridine multicyclic compound, gradually increases with increasing stabilization time, with a stabilization time of 60 min. The removal rate of the pyridine polycyclic compound reached the maximum, specifically 96.5.
It is 8%, and when the stabilization time exceeds 60 min, the removal rate of the pyridine polycyclic compound gradually decreases, which means that the temperature continues to rise as the stabilization time becomes longer, and when the stabilization time exceeds the optimum heating temperature, the pyridine gradually decreases. Since the removal rate of the polycyclic compound is lowered, the optimum stability time is 60 min.

試験例
350℃の温度条件下で、本実施例の廃水処理システムおよび従来の廃水処理システムを
使用して、ピリジン有機物の同量の廃水をそれぞれ処理し、処理時間が2hであり、ピリ
ジン有機物を含む廃水の検出指標パラメータテーブルは表1に示され、両者の廃水処理性
能の比較表は表2に示される。
表1:ピリジン有機物を含む廃水の検出指標パラメータテーブル
Test Example Under the temperature condition of 350 ° C., the wastewater treatment system of this example and the conventional wastewater treatment system were used to treat the same amount of wastewater of the pyridine organic matter, respectively, and the treatment time was 2 hours, and the pyridine organic matter was treated. The included wastewater detection index parameter table is shown in Table 1, and a comparison table of both wastewater treatment performances is shown in Table 2.
Table 1: Detection index parameter table of wastewater containing pyridine organic matter

Figure 0006977207
Figure 0006977207

表2:本実施例のシステムと従来技術システムの廃水処理性能の比較表 Table 2: Comparison table of wastewater treatment performance between the system of this embodiment and the conventional technology system

Figure 0006977207
Figure 0006977207

以上のように、同じ温度で、本実施例の廃水処理システムおよび従来技術の廃水処理シス
テムを使用して、同じピリジン有機物を含む廃水を同じ時間で処理する場合、本実施例の
効果は従来技術の廃水処理効果よりも著しく良好であることが分かる。
As described above, when the wastewater containing the same pyridine organic matter is treated in the same time by using the wastewater treatment system of the present embodiment and the wastewater treatment system of the prior art at the same temperature, the effect of the present embodiment is the prior art. It can be seen that it is significantly better than the wastewater treatment effect of.

Claims (6)

廃液貯蔵タンク(1)と、
前記廃液貯蔵タンク(1)に接続され、ルテニウム触媒またはニッケル触媒が固定されて
いる固定床反応器(2)と、
固定床反応器(2)に接続され、固定床反応器(2)の間に循環ループが構成される熱交
換器(3)と、
熱交換器(3)に接続され、水封タンク(6)を介してガソメーター(60)が接続され
アンモニアを吸収するフィラー吸収塔(4)と、
フィラー吸収塔(4)に接続され、接続箇所に補水循環ポンプ(50)が設けられた一次
貯水タンク(5)と、を備え、
前記固定床反応器(2)と廃液貯蔵タンク(1)の接続箇所に、それぞれ流量計(20)
および廃液汲み上げポンプ(21)が設けられ、固定床反応器(2)は、内部に上から下
へに順に第1の反応チャンバー(220)、仕切りチャンバー(221)および第2の反
応チャンバー(222)が設けられた反応シェル(22)と、前記第1の反応チャンバー
(220)および第2の反応チャンバー(222)内にそれぞれ設けられた反応管ラック
(23)と、仕切りチャンバー(221)内に設けられた加熱素子(24)を含み、第1
の反応チャンバー(220)と第2の反応チャンバー(222)の側壁にそれぞれ廃水入
口(223)および排出バブル(224)が設けられ、第1の反応チャンバー(220)
と第2の反応チャンバー(222)の底端に出口(225)が設けられ、前記反応管ラッ
ク(23)は、上部接続板(230)、下部接続板(231)、および前記上部接続板(
230)と下部接続板(231)の間に位置し上下両端がそれぞれ前記上部接続板(23
0)および下部接続板(231)を貫通して設けられた複数の反応分岐管(232)を含
み、各前記反応分岐管(232)内に垂直方向に沿って複数の案内板(2320)が交差
して分布され、反応分岐管(232)の外部に、内から外へそれぞれらせん状保温ジャケ
ット1(2321)およびらせん状保温ジャケット2(2322)が設けられ、前記らせ
ん状保温ジャケット1(2321)とらせん状保温ジャケット2(2322)の間にらせ
ん状保温加熱チャンバー(2323)が構成され、前記加熱素子(24)はそれぞれ各ら
せん状保温加熱チャンバー(2323)の底端を貫通して接続され、
前記一次貯水タンク(5)は水封タンク(6)に水を供給し、かつ一次貯水タンク(5)
上に液面計(51)が設けられ、
各反応分岐管内(232)に触媒が配置され、前記触媒はニッケル触媒またはルテニウム
触媒であり、
前記フィラー吸収塔(4)は、底端に空気入口(400)が設けられ上端に空気出口(4
01)が設けられる吸収シェル(40)、上から下へ順に前記吸収シェル(40)内に分
布されたスプレー部材(41)、フィラープレス部材(42)およびフィラー層(43)
を含み、前記フィラープレス部材(42)は、吸収シェル(40)の左右両側に対称的に
配置され側壁に上から下へに均一に複数の係合用円形穴(4200)が設けられた調節フ
レーム(420)、吸収シェル(40)内に設けられフィラー層(43)の上端に位置す
るプレスフレーム(421)、それぞれ吸収シェル(40)の外壁の左右両側に設けられ
前記プレスフレーム(421)の左右両側にそれぞれ固定に接続された2つの円弧状のバ
ックルプレート(422)を含み、前記吸収シェル(40)の側壁であって、2つの円弧
状のバックルプレート(422)の位置に垂直制限溝(402)が設けられ、前記円弧状
のバックルプレート(422)はスライドスリーブ(4220)を介して調節フレーム(
420)の外壁に接続され、且つ前記スライドスリーブ(4220)上に固定用円形穴(
4221)が設けられ、前記固定用円形穴(4221)は係合用円形穴(4200)とボ
ルトを介して接続される
ことを特徴とするピリジン複数環式化合物の廃水処理システム。
Waste liquid storage tank (1) and
It is connected to the waste liquid storage tank (1), and a ruthenium catalyst or a nickel catalyst is fixed.
Fixed bed reactors have a (2),
A heat exchanger (3) connected to the fixed bed reactor (2) and having a circulation loop formed between the fixed bed reactors (2).
A filler absorption tower (4) that absorbs ammonia, which is connected to the heat exchanger (3) and to which the gasometer (60) is connected via the water-sealed tank (6).
It is equipped with a primary water storage tank (5) connected to the filler absorption tower (4) and provided with a water replenishment circulation pump (50) at the connection point.
A flow meter (20) is connected to the fixed bed reactor (2) and the waste liquid storage tank (1), respectively.
And a waste liquid pump (21) is provided, and the fixed bed reactor (2) has a first reaction chamber (220), a partition chamber (221) and a second reaction chamber (222) in this order from top to bottom. ), The reaction tube rack (23) provided in the first reaction chamber (220) and the second reaction chamber (222), respectively, and the partition chamber (221). Including the heating element (24) provided in the first
A wastewater inlet (223) and a discharge bubble (224) are provided on the side walls of the reaction chamber (220) and the second reaction chamber (222), respectively, and the first reaction chamber (220) is provided.
And an outlet (225) is provided at the bottom end of the second reaction chamber (222), and the reaction tube rack (23) has an upper connection plate (230), a lower connection plate (231), and the upper connection plate (23).
It is located between the lower connection plate (231) and the upper and lower ends, respectively, of the upper connection plate (23).
0) and a plurality of reaction branch pipes (232) provided through the lower connecting plate (231), and a plurality of guide plates (2320) are provided along the vertical direction in each of the reaction branch pipes (232). The spiral heat insulating jacket 1 (2321) and the spiral heat insulating jacket 2 (2322) are provided from the inside to the outside of the reaction branch tube (232) so as to cross each other, and the spiral heat insulating jacket 1 (2321) is provided. ) And the spiral heat insulating jacket 2 (2322), a spiral heat insulating heating chamber (2323) is configured, and the heating elements (24) are connected through the bottom end of each spiral heat insulating heating chamber (2323). Being done
The primary water storage tank (5) supplies water to the water-sealed tank (6), and the primary water storage tank (5)
Liquid level meter (51) is provided, et al is on,
A catalyst is placed in each reaction branch tube (232), and the catalyst is a nickel catalyst or ruthenium.
It ’s a catalyst,
The filler absorption tower (4) is provided with an air inlet (400) at the bottom end and an air outlet (4) at the upper end.
The absorption shell (40) provided with 01) is divided into the absorption shells (40) in order from top to bottom.
Clothed spray member (41), filler press member (42) and filler layer (43)
The filler press member (42) is symmetrical on the left and right sides of the absorption shell (40).
An adjustment flap that is arranged and uniformly provided with a plurality of engaging circular holes (4200) on the side wall from top to bottom.
Located in the ram (420), absorption shell (40) and at the top of the filler layer (43)
Press frame (421), each provided on the left and right sides of the outer wall of the absorption shell (40)
Two arc-shaped bars fixedly connected to the left and right sides of the press frame (421), respectively.
A side wall of the absorption shell (40), including a tackle plate (422), with two arcs.
A vertical limiting groove (402) is provided at the position of the buckle plate (422), and the arc shape is described.
Buckle plate (422) is adjustable frame (4220) via slide sleeve (4220)
A circular hole for fixing (4220) connected to the outer wall of 420) and on the slide sleeve (4220).
4221) is provided, and the fixing circular hole (4221) is provided with an engaging circular hole (4200).
Connected via Lut ,
A wastewater treatment system for pyridine polycyclic compounds.
前記第1の反応チャンバー(220)の第2の反応チャンバー(222)に対応する廃水
入口(223)の底端にそれぞれ均一化ディスク(226)が設けられ、各前記均一化デ
ィスク(226)の底端に、反応分岐管(232)と1対1に対応する差込口(2260
)が設けられ、各反応分岐管(232)の上端はそれぞれ上部接続板(230)を貫通し
て外部に延伸し、前記差込口(2260)は対応する反応分岐管(232)の上端の外壁
に差し込まれる、ことを特徴とする請求項1に記載のピリジン複数環式化合物の廃水処理
システム。
A homogenizing disk (226) is provided at the bottom end of the wastewater inlet (223) corresponding to the second reaction chamber (222) of the first reaction chamber (220), and the homogenizing disk (226) is provided. At the bottom end, there is a one-to-one correspondence with the reaction branch tube (232) (2260).
) Is provided, the upper end of each reaction branch tube (232) extends outward through the upper connection plate (230), and the insertion port (2260) is the upper end of the corresponding reaction branch tube (232). The wastewater treatment system for a pyridine polycyclic compound according to claim 1, wherein the wastewater is inserted into an outer wall.
前記第1の反応チャンバー(220)、仕切りチャンバー(221)および第2の反応チ
ャンバー(222)の側壁に、それぞれアクセスポート(227)が設けられ、各前記反
応分岐管(232)内にルテニウム基触媒が配置される、ことを特徴とする請求項1に記
載のピリジン複数環式化合物の廃水処理システム。
Access ports (227) are provided on the side walls of the first reaction chamber (220), the partition chamber (221) and the second reaction chamber (222), respectively, and a ruthenium group is provided in each reaction branch tube (232). The wastewater treatment system for a pyridine polycyclic compound according to claim 1, wherein a catalyst is arranged.
前記廃液貯蔵タンク(1)内に、水平フィルター(10)が設けられ、廃液貯蔵タンク(
1)の底端の中心にスラッジ排出口(11)が設けられ、廃液貯蔵タンク(1)の底端は
円弧状の構造であり、且つ底端に前記スラッジ排出口(11)の周方向に沿って分布され
た複数本のスラッジ案内溝(110)が設けられる、ことを特徴とする請求項1に記載の
ピリジン複数環式化合物の廃水処理システム。
A horizontal filter (10) is provided in the waste liquid storage tank (1), and a waste liquid storage tank (1) is provided.
A sludge discharge port (11) is provided at the center of the bottom end of 1), the bottom end of the wastewater storage tank (1) has an arcuate structure, and the bottom end is in the circumferential direction of the sludge discharge port (11). The wastewater treatment system for a pyridine polycyclic compound according to claim 1, wherein a plurality of sludge guide grooves (110) distributed along the sludge guide grooves (110) are provided.
前記垂直制限溝(402)の高さは、最上端と最下端の係合用円形穴(4200)間の距
離と等しく、円弧状のバックルプレート(422)の高さは垂直制限溝(402)の高さ
よりも高く、円弧状のバックルプレート(422)の内壁にシール密着層(4222)が
設けられる、ことを特徴とする請求項に記載のピリジン複数環式化合物の廃水処理シス
テム。
The height of the vertical limiting groove (402) is equal to the distance between the uppermost and lowermost engaging circular holes (4200), and the height of the arcuate buckle plate (422) is that of the vertical limiting groove (402). wastewater treatment system of pyridine a heterocyclic compound according to claim 1, higher than that, the sealing adhesive layer (4222) is provided on the inner wall of the arc-shaped buckle plate (422), it is characterized.
S1:廃水が廃液貯蔵タンク(1)に流入すると、水平フィルター(10)で廃水中の固
形不純物を濾過した後、廃液貯蔵タンク(1)に一時的に貯蔵されるステップと、
S2:加熱素子(24)を始動し、加熱素子(24)により固定床反応器(2)を加熱し
、この時、熱が各らせん状保温加熱チャンバー(2323)の底端を通ってその内部に流
れ込み、らせん状保温加熱チャンバー(2323)に沿ってらせん状に上向きに広がり、
らせん状保温ジャケット2(2322)は反応分岐管(232)から離れて配置され、熱
がらせん状保温ジャケット2(2322)を介して間接的に反応分岐管(232)に伝達
されてその内部を加熱でき、熱が直接反応分岐管(232)の側壁に接触し反応分岐管(
232)内の触媒の局所的な焦げを招き、その触媒性能に影響を与えることを回避するス
テップと、
S3:固定床反応器(2)内の温度が350℃に達したとき、30〜60min安定させ
廃液汲み上げポンプ(21)を始動し、廃液汲み上げポンプ(21)を使用して廃水を
廃液貯蔵タンク(1)から2つの廃水入口(223)を介して、それぞれ第1の反応チャ
ンバー(220)および第2の反応チャンバー(222)の内部の上端に汲み上げる
時に、固定床触媒床層の温度の安定性を確保できるように、流量計(20)で汲上量を制
御し、この時、水流が均一化ディスク(226)の底端の差込口(2260)からそれぞ
れ様々な反応分岐管(232)内に均一に分散し、廃水が反応分岐管(232)内のルテ
ニウム基触媒と反応し、還元反応後の水が熱交換器(3)に進入し、熱交換および冷却の
後フィラー吸収塔(4)に入り、フィラー吸収塔(4)内の水が反応後のアンモニアを吸
収してアンモニア水となり収集され、メタン、二酸化炭素を含むガスがガソメーターに入
り貯蔵され、処理後の水が一次貯水タンク(5)に進入し貯蔵されるステップと、
S4:上記の熱交換器(3)内の熱を回収し、固定床反応器(2)に再投入でき、水質検
出器(52)を使用して処理後の水質が基準を満たしたかどうかを検出し、基準を満たし
ていない場合、補水循環ポンプ(50)により水をフィラー吸収塔(4)に再度汲み上げ
るステップと、を含むことを特徴とする請求項1〜のいずれか1項に記載のシステムを
使用してピリジン複数環式化合物を含む廃水を処理するプロセス。
S1: When the wastewater flows into the wastewater storage tank (1), the solid impurities in the wastewater are filtered by the horizontal filter (10) and then temporarily stored in the wastewater storage tank (1).
S2: The heating element (24) is started, and the fixed bed reactor (2) is heated by the heating element (24). At this time, heat passes through the bottom end of each spiral heat insulating heating chamber (2323) and is inside the fixed bed reactor (2). And spreads upward in a spiral along the spiral heat insulating heating chamber (2323).
The spiral heat insulating jacket 2 (2322) is arranged away from the reaction branch tube (232), and heat is indirectly transferred to the reaction branch tube (232) via the spiral heat insulating jacket 2 (2322) to enter the inside thereof. It can be heated, and the heat directly contacts the side wall of the reaction branch tube (232) and the reaction branch tube (
A step to avoid causing local charring of the catalyst in 232) and affecting its catalytic performance.
S3: When the temperature of the fixed bed reactor (2) within reached 350 ℃, 30~60min stabilize, waste pumping start the pump (21), waste liquid pumped waste water effluent storage using a pump (21) through the tank (1) from two wastewater inlet (223), at first the <br/> and pumped into the interior of the upper end of the reaction chamber (220) and a second reaction chamber (222), respectively, fixed bed The pumping amount is controlled by the flow meter (20) so that the temperature stability of the catalyst bed layer can be ensured, and at this time, the water flow varies from the insertion port (2260) at the bottom end of the uniformized disk (226). The wastewater is uniformly dispersed in the reaction branch tube (232), the wastewater reacts with the ruthenium-based catalyst in the reaction branch tube (232), and the water after the reduction reaction enters the heat exchanger (3) to exchange heat and heat. After cooling, it enters the filler absorption tower (4), and the water in the filler absorption tower (4) absorbs the reacted ammonia and becomes ammonia water, which is collected, and the gas containing methane and carbon dioxide enters the gasometer and is stored. The step in which the treated water enters and is stored in the primary water storage tank (5),
S4: Whether the heat in the heat exchanger (3) can be recovered and re-injected into the fixed bed reactor (2), and the water quality after treatment meets the standard by using the water quality detector (52). The invention according to any one of claims 1 to 5, comprising: The process of treating waste water containing pyridine polycyclic compounds using the system of.
JP2021032183A 2020-09-25 2021-03-01 Wastewater treatment system for pyridine multicyclic compounds and their processes Active JP6977207B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011024573.X 2020-09-25
CN202011024573.XA CN112079513B (en) 2020-09-25 2020-09-25 System and process for treating wastewater containing pyridine heterocyclic compounds

Publications (2)

Publication Number Publication Date
JP6977207B1 true JP6977207B1 (en) 2021-12-08
JP2022054384A JP2022054384A (en) 2022-04-06

Family

ID=73739072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021032183A Active JP6977207B1 (en) 2020-09-25 2021-03-01 Wastewater treatment system for pyridine multicyclic compounds and their processes

Country Status (2)

Country Link
JP (1) JP6977207B1 (en)
CN (1) CN112079513B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116293741A (en) * 2023-03-10 2023-06-23 唐山市蓝欣玻璃有限公司 High-temperature treatment process for combustible flue gas
CN117735660A (en) * 2024-02-06 2024-03-22 爱德士制鞋(枣庄)有限责任公司 Rinsing wastewater treatment equipment for clothing production
CN118253195A (en) * 2024-05-30 2024-06-28 河南永新科技有限公司 Hydrogenation catalyst recovery filter and application thereof in cyclohexanol preparation process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602393B (en) * 2022-03-21 2023-05-26 南平青华科技有限公司 Device and method for removing eucalyptol in p-cymene through continuous reaction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277471A (en) * 1992-03-30 1993-10-26 Kurita Water Ind Ltd Treatment of ammonium fluoride-containing water
JPH08299970A (en) * 1995-05-09 1996-11-19 Nippon Shokubai Co Ltd Treatment of waste water including nitrogen-containing compound
JPH11300374A (en) * 1998-04-23 1999-11-02 Nippon Shokubai Co Ltd Treatment of waste water
JP2004033929A (en) * 2002-07-03 2004-02-05 Nippon Shokubai Co Ltd Treatment method and treatment apparatus for waste water
JP2008207102A (en) * 2007-02-27 2008-09-11 Nippon Shokubai Co Ltd Wastewater treatment method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59307919D1 (en) * 1992-09-06 1998-02-12 Solvay Deutschland Process for the treatment of organic substances, in particular wastewater from the production of epichlorohydrin containing chloroorganic compounds
WO2011077955A1 (en) * 2009-12-22 2011-06-30 株式会社日本触媒 Catalyst for treatment of waste water, and method for treatment of waste water using the catalyst
CN102671597A (en) * 2011-12-15 2012-09-19 河南科技大学 Gas-lift loop photo-catalytic reactor for fluidized beds
CN102583593B (en) * 2012-02-21 2015-12-16 北京纬纶华业环保科技股份有限公司 A kind of method and apparatus processing high concentrated organic wastewater production methane gas
CN103964623A (en) * 2013-02-06 2014-08-06 逸展系统生技有限公司 High-performance ammonia recovery system
CN103523786A (en) * 2013-04-16 2014-01-22 江苏中能硅业科技发展有限公司 Fluidized bed reactor and method thereof for preparing high-purity granular polysilicon
CN105108695A (en) * 2015-09-18 2015-12-02 山东钢铁股份有限公司 Replacing device for fillings of circulating ammonia water plug valve of coke oven
US10501347B2 (en) * 2015-11-30 2019-12-10 Hamilton Sundstrand Space Systems International, Inc. Catalytic oxidation of aqueous organic contaminants
CN108939823A (en) * 2018-08-28 2018-12-07 江门市江海区吉安顺化工有限公司 A kind of Ammonia recovery processing system
CN209952536U (en) * 2018-10-29 2020-01-17 四达氟塑股份有限公司 Packing pressing plate mounting structure and packing absorption tower
CN109264844B (en) * 2018-11-16 2021-08-27 佛山科学技术学院 Catalytic wet oxidation treatment device of recoverable catalyst for industrial wastewater
CN111362336B (en) * 2020-03-31 2021-02-26 南京大学 Device for treating high-concentration organic wastewater by catalytic hydrothermal gasification
CN111533377A (en) * 2020-05-11 2020-08-14 恩宜瑞(江苏)环境发展有限公司 High-concentration phenolic resin wastewater recycling treatment system and process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277471A (en) * 1992-03-30 1993-10-26 Kurita Water Ind Ltd Treatment of ammonium fluoride-containing water
JPH08299970A (en) * 1995-05-09 1996-11-19 Nippon Shokubai Co Ltd Treatment of waste water including nitrogen-containing compound
JPH11300374A (en) * 1998-04-23 1999-11-02 Nippon Shokubai Co Ltd Treatment of waste water
JP2004033929A (en) * 2002-07-03 2004-02-05 Nippon Shokubai Co Ltd Treatment method and treatment apparatus for waste water
JP2008207102A (en) * 2007-02-27 2008-09-11 Nippon Shokubai Co Ltd Wastewater treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116293741A (en) * 2023-03-10 2023-06-23 唐山市蓝欣玻璃有限公司 High-temperature treatment process for combustible flue gas
CN116293741B (en) * 2023-03-10 2024-01-16 唐山市蓝欣玻璃有限公司 High-temperature treatment process for combustible flue gas
CN117735660A (en) * 2024-02-06 2024-03-22 爱德士制鞋(枣庄)有限责任公司 Rinsing wastewater treatment equipment for clothing production
CN117735660B (en) * 2024-02-06 2024-05-24 爱德士制鞋(枣庄)有限责任公司 Rinsing wastewater treatment equipment for clothing production
CN118253195A (en) * 2024-05-30 2024-06-28 河南永新科技有限公司 Hydrogenation catalyst recovery filter and application thereof in cyclohexanol preparation process

Also Published As

Publication number Publication date
CN112079513A (en) 2020-12-15
JP2022054384A (en) 2022-04-06
CN112079513B (en) 2021-11-23

Similar Documents

Publication Publication Date Title
JP6977207B1 (en) Wastewater treatment system for pyridine multicyclic compounds and their processes
CN100427414C (en) Magnetic separation and coupling air-lifting suspension photocatalytic treatment method and its device
JPH02997B2 (en)
AU2013286401B2 (en) Apparatus and method for biological sewage treatment
CN101259412A (en) Process for preparing Fe/inorganic carrier catalyst
CN209652056U (en) Ozone coupling CO catalytic oxidation D reaction unit
CN112661314B (en) Subcritical fluidized bed reactor and method for treating high-concentration organic waste liquid
RU2501600C1 (en) Device to produce sulfur
CN105541012A (en) Sewage nitrogen and phosphorus removal device with internal circulating biological aerated filter
TWI414509B (en) Process for preparing cyanohydrins and their use in the preparation of alkyl methacrylates
CN101148304B (en) Highly effective double-element nitration reactor
CN103214146B (en) Biological-physicochemical combined process for controlling N2O discharge in sewage treatment process
CN102976567B (en) A kind of technique of the multistage photocatalysis treatment paint waste water of ultraviolet visible light
CN206580614U (en) A kind of gas stripping circulation type Fenton reactor
CN214654289U (en) IC anaerobic tower
CN112254557B (en) Plate-shell type heat exchanger integrated with gas-liquid mixer and method and device system for treating organic wastewater by using plate-shell type heat exchanger
KR100491351B1 (en) Method and apparatus for treating waste gas containing pfc and/or hfc
CN208632327U (en) A kind of advanced oxidation processes treatment process device of the waste water containing sodium phenolate
KR100822860B1 (en) Apparatus for plasma reaction
CN216863768U (en) Anaerobic denitrification reactor
CN214611894U (en) Reaction system for treating high-concentration organic waste liquid
CN117466361B (en) A high-efficient photocatalytic oxidation equipment for waste water carbon removal attenuation
CN215049045U (en) Intermittent expansion anaerobic biological filtering equipment
CN219860807U (en) Ozone catalytic oxidation integrated wastewater treatment device
CN216039146U (en) Pharmacy effluent disposal system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211002

R150 Certificate of patent or registration of utility model

Ref document number: 6977207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150