JP6975863B2 - Light diffusion member, and light diffusion structure and light emission structure using this - Google Patents

Light diffusion member, and light diffusion structure and light emission structure using this Download PDF

Info

Publication number
JP6975863B2
JP6975863B2 JP2020536397A JP2020536397A JP6975863B2 JP 6975863 B2 JP6975863 B2 JP 6975863B2 JP 2020536397 A JP2020536397 A JP 2020536397A JP 2020536397 A JP2020536397 A JP 2020536397A JP 6975863 B2 JP6975863 B2 JP 6975863B2
Authority
JP
Japan
Prior art keywords
light
light diffusing
diffusing member
rare earth
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020536397A
Other languages
Japanese (ja)
Other versions
JPWO2020031598A1 (en
Inventor
佳弘 米田
和彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2020031598A1 publication Critical patent/JPWO2020031598A1/en
Application granted granted Critical
Publication of JP6975863B2 publication Critical patent/JP6975863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Description

本発明は、光拡散部材、並びにこれを用いた光拡散構造体及び発光構造体に関する。 The present invention relates to a light diffusing member, and a light diffusing structure and a light emitting structure using the same.

透明な樹脂中に光拡散粒子が含有されてなる光拡散部材は、テレビやスマートフォンに使用される液晶表示装置のバックライトモジュール、プロジェクションテレビジョン等の画像表示装置のスクリーン、ヘッドアップディスプレイ等に用いられる透明スクリーン、カバーや封止材等として用いられる照明器具等の様々な光学デバイスで用いられている。このような光拡散部材には、光透過性を確保しつつ光拡散性に優れる特性が求められている。これらの特性を発現させる材料として、例えば特許文献1には、希土類リン酸塩の凝集体粒子が開示されている。 The light diffusing member, which contains light diffusing particles in a transparent resin, is used for backlight modules of liquid crystal display devices used in televisions and smartphones, screens of image display devices such as projection televisions, and head-up displays. It is used in various optical devices such as transparent screens, lighting fixtures used as covers and encapsulants. Such a light diffusing member is required to have characteristics of excellent light diffusing property while ensuring light transmissiveness. As a material for exhibiting these characteristics, for example, Patent Document 1 discloses aggregate particles of rare earth phosphate.

国際公開第2018/025800号パンフレットInternational Publication No. 2018/025800 Pamphlet

しかし、特許文献1に記載の希土類リン酸塩粒子を用いた光拡散部材は、光透過性と光拡散性とのバランスを考慮したものであるが、例えば発光ダイオード(LED)光源を用いた照明器具等のような平行透過光が点状に強く観察される用途に該光拡散部材を用いた場合には、ホットスポット等の発光ムラが生じやすくなっており、改善の余地があった。 However, the light diffusing member using the rare earth phosphate particles described in Patent Document 1 takes into consideration the balance between light transmission and light diffusivity. For example, illumination using a light emitting diode (LED) light source. When the light diffusing member is used for applications such as appliances in which parallel transmitted light is strongly observed in dots, uneven light emission such as hot spots is likely to occur, and there is room for improvement.

したがって、本発明の課題は、光透過性を備えつつホットスポット等の発光ムラが少ない光拡散部材を提供することにある。 Therefore, an object of the present invention is to provide a light diffusing member having light transmittance and less light emission unevenness such as hot spots.

本発明は、希土類化合物粒子とマトリクス樹脂とを含んでなる光拡散部材であって、
前記光拡散部材の厚みをT(μm)とし、前記マトリクス樹脂に対する前記粒子の添加量をC(質量%)としたとき、
厚みTと添加量Cとの積が200以上3000以下であり、
厚みTが2μm以上50μm未満のとき、添加量Cが10質量%以上600質量%以下であり、
厚みTが50μm以上3000μm以下のとき、添加量Cが0.1質量%以上60質量%以下である、光拡散部材を提供するものである。
The present invention is a light diffusing member including rare earth compound particles and a matrix resin.
When the thickness of the light diffusing member is T (μm) and the amount of the particles added to the matrix resin is C (mass%).
The product of the thickness T and the addition amount C is 200 or more and 3000 or less.
When the thickness T is 2 μm or more and less than 50 μm, the addition amount C is 10% by mass or more and 600% by mass or less.
Provided is a light diffusing member having an addition amount C of 0.1% by mass or more and 60% by mass or less when the thickness T is 50 μm or more and 3000 μm or less.

更に本発明は、前記光拡散部材が基材上に配されてなる光拡散構造体を提供するものである。 Further, the present invention provides a light diffusing structure in which the light diffusing member is arranged on a base material.

更に本発明は、前記光拡散部材及び発光デバイスを備えてなる発光構造体を提供するものである。 Further, the present invention provides a light emitting structure including the light diffusing member and a light emitting device.

図1は、本発明の光拡散構造体の一実施形態を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the light diffusion structure of the present invention. 図2は、本発明の発光構造体の一実施形態を示す概略図である。FIG. 2 is a schematic view showing an embodiment of the light emitting structure of the present invention.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の光拡散部材は、希土類化合物粒子と、マトリクス樹脂とを含むものである。 Hereinafter, the present invention will be described based on the preferred embodiment thereof. The light diffusing member of the present invention contains rare earth compound particles and a matrix resin.

希土類化合物粒子は、光拡散部材の内部に配置されて光拡散を生じさせるために用いられるものである。詳細には、希土類化合物粒子は、マトリクス樹脂に分散した状態で配置され、光拡散部材に入射した光を拡散させるために用いられる。入射した光の拡散には一般に前方拡散と後方拡散とがある。光を拡散させることに関し、希土類化合物粒子は、前方拡散及び後方拡散のいずれか又は双方に用いられる。以下の説明において単に「拡散」というときには、前方拡散及び後方拡散の双方を包含する。また、以下の説明において「光」というときには、可視光の波長領域を含む光のことを意味する。 Rare earth compound particles are arranged inside a light diffusing member and used to cause light diffusing. Specifically, the rare earth compound particles are arranged in a dispersed state in the matrix resin and are used to diffuse the light incident on the light diffusing member. Diffusion of incident light generally includes forward diffusion and backward diffusion. With respect to diffusing light, rare earth compound particles are used for either forward diffusion and / or backward diffusion. In the following description, the term "diffusion" includes both anterior diffusion and posterior diffusion. Further, in the following description, the term "light" means light including the wavelength region of visible light.

希土類化合物は、一般的に高い屈折率を有する材料である。このことに起因して、希土類化合物粒子をマトリクス樹脂に分散させて配置すると、光の拡散が好適となる。 Rare earth compounds are generally materials with a high refractive index. Due to this, when the rare earth compound particles are dispersed and arranged in the matrix resin, the diffusion of light becomes suitable.

本発明に用いられる希土類化合物粒子は、希土類リン酸塩、希土類ケイ酸塩及び希土類酸化物等を含む粒子などが挙げられる。希土類リン酸塩は、希土類元素をLnとして、一般式がLn(PO又はLnPOで表されるものである。希土類ケイ酸塩は、希土類元素をLnとして、一般式がLn10Si27で表されるものである。希土類酸化物は、希土類元素をLnとして、一般式がLnで表されるものである。これらのうち、希土類化合物粒子として、希土類リン酸塩粒子を用いることが光拡散性を高める観点から好ましく、特に、希土類リン酸塩として一般式がLnPOを用いると、光透過性と光拡散性とを両立させやすくする観点から更に好ましい。Examples of the rare earth compound particles used in the present invention include particles containing rare earth phosphate, rare earth silicate, rare earth oxide and the like. The rare earth phosphate is represented by the general formula Ln (PO 3 ) 3 or LnPO 4 with the rare earth element as Ln. The rare earth silicate is represented by the general formula Ln 10 Si 6 O 27 , where the rare earth element is Ln. The rare earth oxide is represented by the general formula Ln 2 O 3 with the rare earth element as Ln. Of these, it is preferable to use rare earth phosphate particles as the rare earth compound particles from the viewpoint of enhancing light diffusivity, and in particular, when LnPO 4 having the general formula is used as the rare earth phosphate, light transmittance and light diffusivity are used. It is more preferable from the viewpoint of making it easy to achieve both.

また、希土類リン酸塩等の希土類化合物は一般に高アッベ数を有する材料でもあるところ、ジルコニア等の他の高アッベ数材料と比較して、屈折率の波長依存性が小さいものである。つまり様々な波長を含む光が入射した場合に、屈折の程度のばらつきが小さい。その結果、希土類化合物粒子を用いることで色ムラの少ない拡散光を得ることができる。 Further, a rare earth compound such as a rare earth phosphate is also a material having a high Abbe number in general, but has a smaller wavelength dependence of the refractive index than other materials having a high Abbe number such as zirconia. That is, when light containing various wavelengths is incident, the variation in the degree of refraction is small. As a result, diffused light with less color unevenness can be obtained by using rare earth compound particles.

希土類化合物は、上述した一般式で表される希土類化合物からなる一次粒子が複数凝集してなる凝集体粒子である。前記各一般式中、Lnは、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuからなる群より選ばれる少なくとも一種の元素を表すものであることが好ましく、Y、La、Eu,Gd、Dy,Yb及びLuから選択される少なくとも一種の元素を表すものであることが更に好ましい。これらの希土類化合物は、一種を単独で、又は二種以上を組み合わせて用いることができる。 The rare earth compound is an agglomerate particle formed by aggregating a plurality of primary particles made of the rare earth compound represented by the above-mentioned general formula. In each of the general formulas, Ln represents at least one element selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb and Lu. It is preferable that it represents at least one element selected from Y, La, Eu, Gd, Dy, Yb and Lu. These rare earth compounds can be used alone or in combination of two or more.

上述した一次粒子は、希土類化合物の多結晶体又は単結晶体であり得る。一次粒子の凝集は、例えば分子間力、化学結合、又はバインダによる結合等に起因して生じるものであり、凝集体粒子は、一次粒子が2個以上凝集したものから構成されている。このような凝集体粒子は、例えば後述する方法によって好適に製造することができる。 The primary particles described above can be polycrystalline or single crystals of rare earth compounds. Aggregation of primary particles is caused by, for example, intermolecular force, chemical bonding, bonding by a binder, or the like, and aggregate particles are composed of two or more primary particles aggregated. Such agglomerate particles can be suitably produced, for example, by a method described later.

希土類化合物は、結晶質のものであってもよく、あるいはアモルファス(非晶質)のものであってもよい。希土類化合物が結晶質のものである場合、その屈折率が高くなる点から好ましい。希土類化合物として、例えば後述する方法で希土類リン酸塩粒子を製造すると、結晶質の希土類リン酸塩が得られる。 The rare earth compound may be crystalline or amorphous. When the rare earth compound is crystalline, it is preferable because its refractive index is high. As the rare earth compound, for example, when the rare earth phosphate particles are produced by the method described later, a crystalline rare earth phosphate can be obtained.

希土類化合物粒子は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が0.1μm以上5μm以下であることが好ましく、0.2μm以上2μm以下であることが更に好ましい。D50を上述の範囲に設定することによって、ホットスポット等の発光ムラを防ぎつつ、光透過性及びヘーズが一層向上した高輝度の光拡散部材を得ることができる。このような粒径を有する粒子は、例えば後述する方法によって好適に製造することができる。 For rare earth compound particles, the volume cumulative particle size D 50 at a cumulative volume of 50% by volume measured by a laser diffraction / scattering particle size distribution measurement method is preferably 0.1 μm or more and 5 μm or less, and more preferably 0.2 μm or more and 2 μm or less. preferable. By setting D 50 in the above range, it is possible to obtain a high-brightness light diffusing member having further improved light transmission and haze while preventing light emission unevenness such as hot spots. Particles having such a particle size can be suitably produced, for example, by a method described later.

体積累積粒径D50は次の方法で測定される。希土類化合物粒子を水と混合し、一般的な超音波バスを用いて1分間超音波による分散処理を行う。体積累積粒径D50は測定装置としてベックマンコールター社製LS13 320を用いて測定することができる。The volume cumulative particle size D 50 is measured by the following method. Rare earth compound particles are mixed with water and subjected to ultrasonic dispersion treatment for 1 minute using a general ultrasonic bath. The volume cumulative particle size D 50 can be measured using an LS13 320 manufactured by Beckman Coulter Co., Ltd. as a measuring device.

希土類化合物粒子は、そのBET比表面積が1m/g以上50m/g以下であることが好ましく、1m/g以上30m/g以下であることが更に好ましい。BET比表面積の測定は、例えば、島津製作所社製の「フローソーブ2300」を用い、BET一点法で測定することができる。例えば、測定試料の量は0.3gとし、吸着ガスとして窒素とヘリウムの混合ガスを用い、予備脱気条件は大気圧下、120℃で10分間とする。The rare earth compound particles preferably have a BET specific surface area of 1 m 2 / g or more and 50 m 2 / g or less, and more preferably 1 m 2 / g or more and 30 m 2 / g or less. The BET specific surface area can be measured by the BET one-point method using, for example, "Flow Sorb 2300" manufactured by Shimadzu Corporation. For example, the amount of the measurement sample is 0.3 g, a mixed gas of nitrogen and helium is used as the adsorbed gas, and the preliminary degassing condition is 120 ° C. for 10 minutes under atmospheric pressure.

本発明の光拡散部材は、希土類化合物粒子と、マトリクス樹脂とを含んで構成されてなる。光拡散部材の形態に特に制限はなく、シート、フィルム、膜、板等の成形体や、分散液(塗布液)、インク、ペースト等の流動体やペレット(マスターバッチ)等を成形して上述の成形体としたものが挙げられるが、シートの形態であると、光拡散部材を備える構造体への適用を容易に行えることから有利である。光拡散部材は、これを単独で用いてもよく、例えば発光ダイオード(LED)といった光源等の他の部材と組み合わせて、LED光源における封止材用成形体として用いることもできる。 The light diffusing member of the present invention is composed of rare earth compound particles and a matrix resin. The form of the light diffusing member is not particularly limited, and a molded body such as a sheet, a film, a film, or a plate, a fluid such as a dispersion liquid (coating liquid), an ink, or a paste, a pellet (master batch), or the like is molded and described above. However, the sheet form is advantageous because it can be easily applied to a structure provided with a light diffusing member. The light diffusing member may be used alone, or may be used as a molded body for a sealing material in an LED light source in combination with another member such as a light source such as a light emitting diode (LED).

光拡散部材に含まれるマトリクス樹脂の種類に特に制限はなく、所望の形状に成形可能な樹脂を用いることができ、例えば熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂及び二液混合硬化性樹脂を用いることができる。これらの樹脂のうち、厚みがあるシートへの成形加工が容易である観点からは、マトリクス樹脂として熱可塑性樹脂を用いることが好ましい。また、厚みが薄いシートへの成形加工が容易である観点からは、マトリクス樹脂として熱硬化性樹脂、電離放射線硬化性樹脂及び二液混合硬化性樹脂のうち少なくとも一つ以上を用いることが好ましい。 The type of matrix resin contained in the light diffusing member is not particularly limited, and a resin that can be molded into a desired shape can be used. For example, a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, and a two-component mixed curing can be used. A sex resin can be used. Of these resins, it is preferable to use a thermoplastic resin as the matrix resin from the viewpoint of easy molding into a thick sheet. Further, from the viewpoint of easy molding into a thin sheet, it is preferable to use at least one of a thermosetting resin, an ionizing radiation curable resin and a two-component mixed curable resin as the matrix resin.

熱可塑性樹脂の例としては、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル系樹脂、ポリカーボネート樹脂、ポリアクリル酸又はそのエステルやポリメタクリル酸又はそのエステル等のポリアクリル酸系樹脂、ポリスチレンやポリ塩化ビニル等のポリビニル系樹脂、トリアセチルセルロース等のセルロース系樹脂、ポリウレタン等のウレタン樹脂などが挙げられる。 Examples of thermoplastic resins include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate resins, polyacrylic acids or esters thereof, and polyacrylic acids such as polymethacrylic acid or esters thereof. Examples thereof include based resins, polyvinyl-based resins such as polystyrene and polyvinyl chloride, cellulose-based resins such as triacetyl cellulose, and urethane resins such as polyurethane.

また、熱硬化性樹脂の例としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂、ポリイミド樹脂などが挙げられる。電離放射線硬化性樹脂の例としては、アクリル樹脂、ウレタン樹脂、ビニルエステル樹脂、ポリエステルアルキド樹脂などが挙げられる。これらの樹脂は、ポリマーだけでなく、オリゴマー、モノマーも使用することができる。二液混合硬化性樹脂の例としては、エポキシ樹脂が挙げられる。 Examples of the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane resin, and polyimide resin. Examples of the ionizing radiation curable resin include acrylic resin, urethane resin, vinyl ester resin, polyester alkyd resin and the like. As these resins, not only polymers but also oligomers and monomers can be used. An example of a two-component mixed curable resin is an epoxy resin.

本発明の光拡散部材は、光透過性を備えつつ高いヘーズを確保してホットスポット等の発光ムラを防止する観点から、光拡散部材の厚みT(μm)とマトリクス樹脂に対する希土類化合物粒子の添加量C(質量%)とが特定の範囲であることが好ましい。すなわち、厚みTと添加量Cとの積(以下、これをT×Cともいう。)が200以上3000以下であることが好ましい。 The light diffusing member of the present invention has a thickness T (μm) of the light diffusing member and addition of rare earth compound particles to the matrix resin from the viewpoint of ensuring high haze and preventing light emission unevenness such as hot spots. It is preferable that the amount C (% by mass) is in a specific range. That is, it is preferable that the product of the thickness T and the addition amount C (hereinafter, also referred to as T × C) is 200 or more and 3000 or less.

特に、厚みTと添加量Cとの積(T×C)が200以上3000以下の範囲において、厚みTが2μm以上50μm未満のとき、添加量Cが10質量%以上600質量%以下であることが好ましい。或いは、厚みTが50μm以上3000μm以下のとき、添加量Cが0.1質量%以上60質量%以下であることが好ましい。いずれの場合であっても、光透過性を備えつつ高いヘーズを確保することができ、その結果、ホットスポット等の発光ムラを好適に防止することができる。 In particular, when the product (T × C) of the thickness T and the addition amount C is 200 or more and 3000 or less and the thickness T is 2 μm or more and less than 50 μm, the addition amount C is 10% by mass or more and 600% by mass or less. Is preferable. Alternatively, when the thickness T is 50 μm or more and 3000 μm or less, the addition amount C is preferably 0.1% by mass or more and 60% by mass or less. In any case, it is possible to secure a high haze while providing light transmission, and as a result, it is possible to suitably prevent uneven light emission such as hot spots.

光拡散部材がシート、フィルム、膜又は板の形状を有している場合、その厚みTは2μm以上3000μm以下であることが好ましい。光拡散部材の厚みTがこの範囲にあることによって、光透過性、ヘーズ及び取扱いの容易性を兼ね備えたものとなる。なお、後述する基材上に配された光拡散部材から構成される光拡散構造体の場合には、基材上に配された光拡散部材の厚みをいう。また、後述する発光構造体における光拡散部材の厚みは、発光デバイスの光軸方向に沿う最短の長さをいう。したがって、同一形状の部材であっても、光拡散部材の厚みは、発光デバイスとの配置位置によって異なる場合がある。 When the light diffusing member has the shape of a sheet, film, film or plate, its thickness T is preferably 2 μm or more and 3000 μm or less. When the thickness T of the light diffusing member is within this range, the light transmissiveness, the haze, and the ease of handling are combined. In the case of a light diffusing structure composed of a light diffusing member arranged on a base material described later, it means the thickness of the light diffusing member arranged on the base material. Further, the thickness of the light diffusing member in the light emitting structure described later means the shortest length along the optical axis direction of the light emitting device. Therefore, even if the members have the same shape, the thickness of the light diffusing member may differ depending on the arrangement position with the light emitting device.

ここで、光拡散部材の厚みTが2μm以上50μm未満である場合、マトリクス樹脂に対する希土類化合物粒子の添加量Cは、100質量%以上400質量%以下であることが更に好ましい。また、厚みTと添加量Cとの積(T×C)は、500以上3000以下であることが更に好ましい。このような範囲とすることで、より高い光透過性を備えつつ高いヘーズを確保することができ、その結果、ホットスポット等の発光ムラを効果的に防止できる。なお、厚みTが5μm以上50μm未満である光拡散部材の典型的な形状は、フィルム状及びシート状の薄膜状部材である。 Here, when the thickness T of the light diffusing member is 2 μm or more and less than 50 μm, the addition amount C of the rare earth compound particles to the matrix resin is more preferably 100% by mass or more and 400% by mass or less. Further, the product (T × C) of the thickness T and the addition amount C is more preferably 500 or more and 3000 or less. By setting it in such a range, it is possible to secure a high haze while providing higher light transparency, and as a result, it is possible to effectively prevent light emission unevenness such as hot spots. The typical shape of the light diffusing member having a thickness T of 5 μm or more and less than 50 μm is a film-shaped or sheet-shaped thin film-shaped member.

一方、光拡散部材の厚みTが50μm以上3000μm以下である場合、厚みTと添加量Cとの積(T×C)は、500以上3000以下とすることが更に好ましい。このような範囲とすることで、厚みTが厚い場合であっても高い光透過性を備えつつ高いヘーズを確保することができ、その結果、ホットスポット等の発光ムラを効果的に防止できる。なお、厚みTが50μm以上3000μm以下である光拡散部材の典型的な形状は、シート状又は板状の厚膜状部材である。 On the other hand, when the thickness T of the light diffusing member is 50 μm or more and 3000 μm or less, the product (T × C) of the thickness T and the addition amount C is more preferably 500 or more and 3000 or less. By setting it in such a range, it is possible to secure a high haze while providing high light transmission even when the thickness T is thick, and as a result, it is possible to effectively prevent light emission unevenness such as hot spots. The typical shape of the light diffusing member having a thickness T of 50 μm or more and 3000 μm or less is a sheet-shaped or plate-shaped thick film-shaped member.

本発明の光拡散部材は、希土類化合物粒子以外の他の粒子を含有させても良い。他の粒子としては、無機酸化物粒子、無機硫化物粒子、無機窒化物粒子、無機炭化物粒子、無機リン酸塩粒子等が挙げられる。他の粒子の混合量は、マトリクス樹脂に対する混合量として、50質量%以下含まれることが好ましく、10質量%以下含まれることがより好ましい。 The light diffusing member of the present invention may contain particles other than the rare earth compound particles. Examples of other particles include inorganic oxide particles, inorganic sulfide particles, inorganic nitride particles, inorganic carbide particles, and inorganic phosphate particles. The mixing amount of the other particles is preferably 50% by mass or less, more preferably 10% by mass or less, as the mixing amount with respect to the matrix resin.

本発明に用いられる希土類化合物粒子は、マトリクス樹脂中での分散性を良好にする観点から、カップリング剤処理や有機酸処理等の親油性処理を該粒子の表面に行うことができる。 The rare earth compound particles used in the present invention can be subjected to lipophilic treatment such as coupling agent treatment and organic acid treatment on the surface of the particles from the viewpoint of improving dispersibility in the matrix resin.

カップリング剤処理として、例えばシランカップリング剤、ジルコニウムカップリング剤、チタンカップリング剤、アルミニウムカップリング剤等の1種又は2種以上のカップリング剤を用いた処理を希土類化合物粒子に対して行うことができる。希土類化合物粒子のマトリクス樹脂への分散性を高める観点から、シランカップリング剤を用いた場合、前記処理によって希土類化合物粒子の表面に形成されたシラン化合物は、親油基を更に有していることが好ましい。親油基としては、炭素数が1以上20以下であり、直鎖又は分枝鎖の無置換又は置換のアルキル基が挙げられる。置換基としてはアミノ基、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基などが挙げられる。同様の観点から、シラン化合物の量は、希土類化合物粒子の質量に対して0.01質量%以上200質量%以下、特に0.1質量%以上100質量%以下であることが好ましい。 As the coupling agent treatment, for example, a treatment using one or more kinds of coupling agents such as a silane coupling agent, a zirconium coupling agent, a titanium coupling agent, an aluminum coupling agent, etc. is performed on the rare earth compound particles. be able to. When a silane coupling agent is used from the viewpoint of enhancing the dispersibility of the rare earth compound particles in the matrix resin, the silane compound formed on the surface of the rare earth compound particles by the above treatment further has a lipophilic group. Is preferable. Examples of the lipophilic group include an unsubstituted or substituted alkyl group having 1 or more and 20 or less carbon atoms and a straight chain or a branched chain. Examples of the substituent include an amino group, a vinyl group, an epoxy group, a styryl group, a methacrylic group, an acrylic group, a ureido group, a mercapto group, a sulfide group and an isocyanate group. From the same viewpoint, the amount of the silane compound is preferably 0.01% by mass or more and 200% by mass or less, particularly 0.1% by mass or more and 100% by mass or less with respect to the mass of the rare earth compound particles.

有機酸処理として、例えばカルボン酸又はスルホン酸等の有機酸を用いた処理を希土類化合物粒子に対して行うことができる。マトリクス樹脂との親和性を良好にする観点から、カルボン酸は、炭素数が1以上20以下であり、直鎖又は分枝鎖の無置換又は置換のアルキル基を有することが好ましい。このようなカルボン酸としては、例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、cis−9−オクタデセン酸、cis,cis−9,12−オクタデカジエン酸などを用いることができる。 As the organic acid treatment, a treatment using an organic acid such as a carboxylic acid or a sulfonic acid can be performed on the rare earth compound particles. From the viewpoint of improving the affinity with the matrix resin, the carboxylic acid preferably has 1 or more and 20 or less carbon atoms and has a straight-chain or branched-chain unsubstituted or substituted alkyl group. Examples of such carboxylic acids include butanoic acid, pentanoic acid, hexanoic acid, heptanic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, cis-9-. Octadecenoic acid, cis, cis-9,12-octadecylic acid and the like can be used.

光透過性を高めて輝度を高くする観点から、光拡散部材は、その全光線透過率が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。また、光拡散部材は、ホットスポット等の輝度ムラを防止しうる観点から、そのヘーズが50%以上であることが好ましく、65%以上であることがより好ましく、80%以上であることが更に好ましい。 From the viewpoint of increasing the light transmittance and increasing the brightness, the total light transmittance of the light diffusing member is preferably 50% or more, more preferably 60% or more, and more preferably 70% or more. More preferred. Further, the light diffusing member preferably has a haze of 50% or more, more preferably 65% or more, and further preferably 80% or more, from the viewpoint of preventing uneven brightness such as hot spots. preferable.

特に、光拡散部材は、その全光線透過率が50%以上且つヘーズが50%以上であることが好ましく、全光線透過率が60%以上且つヘーズが65%以上であることがより好ましく、全光線透過率が70%以上且つヘーズが80%以上であることが更に好ましい。光拡散部材がこのような物性を備えることによって、高い輝度を発現しつつ、光源からの直射光を効果的に拡散させてホットスポット等の発光ムラを生じにくくさせることができる。なお、全光線透過率が70%以上且つヘーズが80%以上であると、高い光透過性を備えつつホットスポット等の発光ムラが生じにくい光拡散部材として特に好適である。 In particular, the light diffusing member preferably has a total light transmittance of 50% or more and a haze of 50% or more, and more preferably a total light transmittance of 60% or more and a haze of 65% or more. It is more preferable that the light transmittance is 70% or more and the haze is 80% or more. When the light diffusing member has such physical characteristics, it is possible to effectively diffuse the direct light from the light source and make it difficult for uneven emission such as hot spots to occur while exhibiting high brightness. When the total light transmittance is 70% or more and the haze is 80% or more, it is particularly suitable as a light diffusing member having high light transmittance and less likely to cause light emission unevenness such as hot spots.

本発明の光拡散部材は単体で用いることもでき、あるいはこれをコート層として基材上に配して、図1に示す光拡散構造体とすることもできる。同図に示す光拡散構造体20は、光拡散部材10が基材21上に配された積層構造となっている。この光拡散構造体は、基材の光透過性を維持しつつ、ヘーズの値が高くなったものとなる。光拡散構造体における光拡散部材の厚みは、目的とする製品に応じて変更可能であり、特に光拡散部材の厚みT及び希土類化合物粒子の添加量Cが上述した関係式の範囲であれば、本発明の効果は十分に奏される。 The light diffusing member of the present invention can be used alone, or can be arranged as a coat layer on the substrate to form the light diffusing structure shown in FIG. The light diffusing structure 20 shown in the figure has a laminated structure in which the light diffusing member 10 is arranged on the base material 21. This light diffusing structure has a high haze value while maintaining the light transmittance of the base material. The thickness of the light diffusing member in the light diffusing structure can be changed according to the target product, and particularly if the thickness T of the light diffusing member and the addition amount C of the rare earth compound particles are within the range of the above-mentioned relational expression. The effect of the present invention is fully achieved.

光拡散構造体に用いられる基材は、光透過性を有する材料からなる基材であることが好ましい。光透過性を有する材料としては、例えばポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート等のポリエステル系樹脂、ポリカーボネート樹脂、ポリアクリル酸又はそのエステルやポリメタクリル酸又はそのエステル等のポリアクリル酸系樹脂、ポリスチレンやポリ塩化ビニル等のポリビニル系樹脂、トリアセチルセルロース等のセルロース系樹脂等が挙げられる。 The base material used for the light diffusion structure is preferably a base material made of a light-transmitting material. Examples of the light-transmitting material include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate, polycarbonate resins, polyacrylic acid or its esters, and polymethacrylic acid or its esters. Examples thereof include polyacrylic acid-based resins such as, polyvinyl-based resins such as polystyrene and polyvinyl chloride, and cellulose-based resins such as triacetyl cellulose.

基材の厚みは、光拡散構造体としての耐久性や作製時の作業性の観点から、20μm以上1000μm以下とすることが好ましい。 The thickness of the base material is preferably 20 μm or more and 1000 μm or less from the viewpoint of durability as a light diffusion structure and workability at the time of fabrication.

本発明の光拡散部材は、光源からの直射光に起因したホットスポット等の発光ムラを低減しつつ、高い輝度を発現することができるものである。本発明の光拡散部材は、これをそのままで又は光拡散構造体として、例えばディスプレイ、照明用部材、窓用部材、電飾部材、導光板部材、プロジェクタのスクリーン、ビニールハウス等の農業用資材などに好適に用いられる。 The light diffusing member of the present invention can exhibit high brightness while reducing light emission unevenness such as hot spots caused by direct light from a light source. The light diffusing member of the present invention can be used as it is or as a light diffusing structure, for example, a display, a lighting member, a window member, an electric decoration member, a light guide plate member, a projector screen, an agricultural material such as a greenhouse, and the like. It is suitably used for.

また光拡散部材は、電球や、LED素子、μLED素子等の光源を有する発光デバイスや光学デバイスを単体で又は複数備えた発光構造体として用いることもできる。これらのうち、光源としてLED素子及びμLED素子等を用いた場合、他の光源と比較して平行透過光を発する割合が高いため、ホットスポット等の発光ムラが生じ易くなる。この点に関して、本発明の光拡散部材を、特にLED素子及びμLED素子等の光源の封止材として用いることによって、ホットスポット等の発光ムラを効果的に防止しつつ、高い輝度を発現することができる。 Further, the light diffusing member can also be used as a light emitting structure including a light bulb, a light emitting device having a light source such as an LED element or a μLED element, or an optical device as a single unit or a plurality of optical devices. Of these, when an LED element, a μLED element, or the like is used as the light source, the ratio of emitting parallel transmitted light is higher than that of other light sources, so that uneven emission such as hot spots is likely to occur. In this regard, by using the light diffusing member of the present invention as a sealing material for a light source such as an LED element and a μLED element, high brightness can be exhibited while effectively preventing light emission unevenness such as hot spots. Can be done.

図2に示す発光構造体30は、LED素子等の発光デバイス31を複数備えており、該発光デバイス31の発光面上に光拡散部材10が配された構造を有している。このような構成を有する発光構造体としては、例えばディスプレイ等の画像表示機器や、液晶TV、パソコン、タブレット、スマートフォン等のモバイル機器、照明器具などが挙げられる。 The light emitting structure 30 shown in FIG. 2 includes a plurality of light emitting devices 31 such as LED elements, and has a structure in which a light diffusing member 10 is arranged on a light emitting surface of the light emitting device 31. Examples of the light emitting structure having such a configuration include an image display device such as a display, a mobile device such as a liquid crystal TV, a personal computer, a tablet, and a smartphone, and a lighting fixture.

発光構造体が光拡散部材を備える態様として用いる場合、高い輝度を発現しつつ、特定の色の発光を高める観点から、光拡散部材には、希土類化合物粒子及びマトリクス樹脂に加えて、更に蛍光体材料を混合することが好ましい。蛍光体材料としては、例えばYAG(イットリウムアルミニウムガーネット)、TAG(テルルアルミニウムガーネット)、サイアロン、硫化物系材料及びシリケート系材料等を一種又は二種以上組み合わせて用いることができる。このような材料を添加することによって、発光デバイスからの青色の発色に加えて、発光デバイスからの赤色及び緑色の発色効率を高めることができ、その結果、光のコントラストを高いものとすることができる。蛍光体材料の混合量は、光拡散部材におけるマトリクス樹脂に対して1質量%以上100質量%以下であることが好ましく、10質量%以上60質量%以下であることが更に好ましい。 When the light emitting structure is used as an embodiment including a light diffusing member, the light diffusing member includes rare earth compound particles and a matrix resin, as well as a fluorescent substance, from the viewpoint of enhancing the light emission of a specific color while exhibiting high brightness. It is preferable to mix the materials. As the phosphor material, for example, YAG (yttrium aluminum garnet), TAG (tellurium aluminum garnet), sialon, sulfide-based material, silicate-based material and the like can be used alone or in combination of two or more. By adding such a material, in addition to the blue color development from the light emitting device, the red and green color development efficiency from the light emitting device can be enhanced, and as a result, the contrast of light can be enhanced. can. The mixing amount of the phosphor material is preferably 1% by mass or more and 100% by mass or less, and more preferably 10% by mass or more and 60% by mass or less with respect to the matrix resin in the light diffusing member.

次に、光拡散部材の製造方法を説明する。光拡散部材の製造方法は、希土類化合物粒子を用意する工程と、該粒子とマトリクス樹脂とを混合して成形する工程に大別される。 Next, a method of manufacturing the light diffusing member will be described. The method for manufacturing the light diffusing member is roughly classified into a step of preparing rare earth compound particles and a step of mixing and molding the particles and a matrix resin.

まず、希土類化合物粒子を用意する。以下の説明では、希土類化合物として希土類リン酸塩を用いる場合を例にとり、希土類リン酸塩粒子の製造方法を説明する。希土類リン酸塩は、1種又は2種以上の希土類元素源を含む水溶液と、リン酸根を含む水溶液とを混合して、1種又は2種以上の希土類リン酸塩の沈殿物を生成させたあと、その沈殿物をスプレードライ等によって乾燥して、然る後にその乾燥物を焼成して、希土類リン酸塩粒子を得る。これに代えて、希土類化合物粒子は、上述した物性を満たすものであれば市販のものを用いることもできる。 First, rare earth compound particles are prepared. In the following description, a method for producing rare earth phosphate particles will be described by taking as an example a case where a rare earth phosphate is used as a rare earth compound. The rare earth phosphate was prepared by mixing an aqueous solution containing one or more rare earth element sources with an aqueous solution containing a phosphate root to form a precipitate of one or more rare earth phosphates. Then, the precipitate is dried by spray drying or the like, and then the dried product is calcined to obtain rare earth phosphate particles. Instead of this, commercially available rare earth compound particles can be used as long as they satisfy the above-mentioned physical characteristics.

希土類リン酸塩の沈殿物を生成させる際には、室温付近の水温で実施しても良く、加熱して実施しても良い。特に、希土類元素源を含む水溶液を加熱した状態で実施することが好ましい。希土類元素源を含む水溶液を加熱する場合、その加熱温度は、湿式合成や水熱合成する場合も考慮して、例えば50℃以上400℃以下であることが好ましい。希土類元素源を含む水溶液の加熱温度は50℃以上100℃以下とすることが好ましく、70℃以上95℃以下とすることが更に好ましい。このような条件で実施することで、所望のD50及び比表面積を有し、且つ結晶性の高い希土類リン酸塩粒子を得ることができる。When forming a rare earth phosphate precipitate, it may be carried out at a water temperature near room temperature, or it may be carried out by heating. In particular, it is preferable to carry out the procedure in a heated state of an aqueous solution containing a rare earth element source. When an aqueous solution containing a rare earth element source is heated, the heating temperature is preferably 50 ° C. or higher and 400 ° C. or lower, for example, in consideration of wet synthesis or hydrothermal synthesis. The heating temperature of the aqueous solution containing the rare earth element source is preferably 50 ° C. or higher and 100 ° C. or lower, and more preferably 70 ° C. or higher and 95 ° C. or lower. By carrying out under such conditions, rare earth phosphate particles having a desired D50 and a specific surface area and having high crystallinity can be obtained.

希土類リン酸塩の粒子を首尾よく得る観点から、希土類元素源を含む水溶液は、該水溶液中における希土類元素の濃度が、0.01mol/L以上1.5mol/L以下、特に0.01mol/L以上1mol/L以下、とりわけ0.01mol/L以上0.5mol/L以下のものを用いることが好ましい。この水溶液中において、希土類元素は三価のイオンの状態になっているか、又は三価のイオンに配位子が配位した錯イオンの状態になっていることが好ましい。希土類元素源を含む水溶液を調製するためには、例えば硝酸水溶液に希土類酸化物(例えばLn等)を添加してこれを溶解させればよい。From the viewpoint of successfully obtaining the rare earth phosphate particles, the aqueous solution containing the rare earth element source has a concentration of the rare earth element in the aqueous solution of 0.01 mol / L or more and 1.5 mol / L or less, particularly 0.01 mol / L. It is preferable to use 1 mol / L or less, particularly 0.01 mol / L or more and 0.5 mol / L or less. In this aqueous solution, the rare earth element is preferably in the state of a trivalent ion or in the state of a complex ion in which a ligand is coordinated to the trivalent ion. In order to prepare an aqueous solution containing a rare earth element source, for example, a rare earth oxide (for example, Ln 2 O 3 or the like) may be added to a nitric acid aqueous solution to dissolve it.

同様の観点から、リン酸根を含む水溶液においては、該水溶液中におけるリン酸化学種の合計の濃度を、0.01mol/L以上3mol/L以下、特に0.01mol/L以上1mol/L以下、とりわけ0.01mol/L以上0.5mol/L以下とすることが好ましい。pH調整のために、アルカリ種を添加することもできる。アルカリ種としては、例えばアンモニア、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸ナトリウム、エチルアミン、プロピルアミン、水酸化ナトリウム、水酸化カリウム等の塩基性化合物を用いることができる。 From the same viewpoint, in the aqueous solution containing phosphoric acid root, the total concentration of the phosphate chemical species in the aqueous solution is 0.01 mol / L or more and 3 mol / L or less, particularly 0.01 mol / L or more and 1 mol / L or less. In particular, it is preferably 0.01 mol / L or more and 0.5 mol / L or less. Alkaline seeds can also be added for pH adjustment. As the alkaline species, for example, basic compounds such as ammonia, ammonium hydrogen carbonate, ammonium carbonate, sodium hydrogen carbonate, sodium carbonate, ethylamine, propylamine, sodium hydroxide and potassium hydroxide can be used.

希土類元素源を含む水溶液及びリン酸根を含む水溶液は、希土類元素イオンに対するリン酸イオンのモル比が、0.5以上10以下、特に1以上10以下、とりわけ1以上5以下となるように混合することが、効率よく沈殿生成物が得られる点から好ましい。 The aqueous solution containing the rare earth element source and the aqueous solution containing the phosphate root are mixed so that the molar ratio of the phosphate ion to the rare earth element ion is 0.5 or more and 10 or less, particularly 1 or more and 10 or less, particularly 1 or more and 5 or less. This is preferable from the viewpoint that a precipitate product can be efficiently obtained.

以上のようにして希土類リン酸塩粒子が得られたら、これを濾過やデカンテーション等の固液分離法によって固液分離した後、1回又は複数回水洗する。水洗は、上澄み液の導電率が例えば2000μS/cm以下になるまで行うことが好ましい。 When the rare earth phosphate particles are obtained as described above, they are separated into solid and liquid by a solid-liquid separation method such as filtration or decantation, and then washed with water once or multiple times. It is preferable to wash with water until the conductivity of the supernatant is, for example, 2000 μS / cm or less.

希土類リン酸塩の沈殿物の焼成は、大気等の酸素含有雰囲気で行うことができる。焼成条件は、焼成温度が好ましくは80℃以上1500℃以下であり、更に好ましくは400℃以上1300℃以下である。焼成時間は、焼成温度が上述の範囲内であることを条件として、好ましくは1時間以上20時間以下、更に好ましくは1時間以上10時間以下である。 The calcining of the rare earth phosphate precipitate can be performed in an oxygen-containing atmosphere such as the atmosphere. The firing conditions are such that the firing temperature is preferably 80 ° C. or higher and 1500 ° C. or lower, and more preferably 400 ° C. or higher and 1300 ° C. or lower. The firing time is preferably 1 hour or more and 20 hours or less, and more preferably 1 hour or more and 10 hours or less, provided that the firing temperature is within the above range.

続いて、上述の工程で得られた希土類化合物粒子、マトリクス樹脂、並びに必要に応じて蛍光体材料及び他の成分を混合して所望の形状に成形する。本工程に用いられる希土類化合物粒子は、マトリクス樹脂との混合に先立ち、ペイントシェーカー等の粉砕手段を用いて粒度調整を行ってもよい。 Subsequently, the rare earth compound particles obtained in the above step, the matrix resin, and if necessary, the phosphor material and other components are mixed and molded into a desired shape. The particle size of the rare earth compound particles used in this step may be adjusted by using a pulverizing means such as a paint shaker prior to mixing with the matrix resin.

本工程で行われる成形は、例えば溶融状態のマトリクス樹脂に希土類化合物粒子を添加して練り込んだ後、インフレーション法、Tダイ法及びカレンダー法等によって行なわれる(以下、この成形方法を「練り込み成形」ともいう。)。このような方法によって製造された光拡散部材は、これをそのまま用いてもよく、又はこれに代えて、成形した光拡散部材を基材上に配置して光拡散構造体としたり、光拡散部材をLED素子等の発光デバイスと組み合わせて発光構造体を製造することができる。いずれの形態であっても、本発明の効果は十分に奏される。なお、光拡散部材、光拡散構造体及び発光構造体は、これらを併用して用いても構わない。 The molding performed in this step is performed by, for example, adding rare earth compound particles to a molten matrix resin and kneading them, and then using an inflation method, a T-die method, a calendar method, or the like (hereinafter, this molding method is “kneaded”). Also called "molding"). The light diffusing member manufactured by such a method may be used as it is, or instead, the molded light diffusing member may be arranged on the base material to form a light diffusing structure, or the light diffusing member may be used. Can be combined with a light emitting device such as an LED element to manufacture a light emitting structure. In any form, the effect of the present invention is fully exhibited. The light diffusing member, the light diffusing structure, and the light emitting structure may be used in combination.

他の成形として、希土類化合物粒子とマトリクス樹脂とを含む液状の混合物を基材又は発光デバイスの表面に配置して、基材上又は発光デバイス上に光拡散部材を直接成形することもできる(以下、この成形方法を「直接成形」ともいう。)。このようにして、光拡散部材が基材上に配された光拡散構造体、並びにLED素子等の発光デバイス上に光拡散部材を備えた発光構造体を製造することができる。本方法は、例えば希土類化合物粒子とマトリクス樹脂と有機溶媒とを混合してコート液を作製し、該コート液をスクリーン印刷、グラビア印刷、オフセット印刷、フレキソ法等の各種印刷方法、バーやローラーやスプレーガン等を用いて基材又は発光デバイスの表面に塗工又は噴霧し、乾燥する方法が挙げられる。 As another molding, a liquid mixture containing rare earth compound particles and a matrix resin can be placed on the surface of the base material or the light emitting device to directly mold the light diffusing member on the base material or the light emitting device (hereinafter,). , This molding method is also referred to as "direct molding"). In this way, it is possible to manufacture a light diffusing structure in which the light diffusing member is arranged on the base material, and a light emitting structure having the light diffusing member on a light emitting device such as an LED element. In this method, for example, a coating liquid is prepared by mixing rare earth compound particles, a matrix resin, and an organic solvent, and the coating liquid is used for various printing methods such as screen printing, gravure printing, offset printing, flexographic printing, bars, rollers, and the like. Examples thereof include a method of coating or spraying on the surface of a base material or a light emitting device using a spray gun or the like and drying.

製造効率向上の観点から、練り込み成形によって光拡散部材を製造する場合は、光拡散部材の厚みTが50μm以上3000μm以下となるように成形することが好ましい。同様の観点から、直接成形によって光拡散部材を製造する場合は、光拡散部材の厚みTが2μm以上50μm未満となるように成形することが好ましい。 From the viewpoint of improving production efficiency, when the light diffusing member is manufactured by kneading, it is preferable to mold the light diffusing member so that the thickness T is 50 μm or more and 3000 μm or less. From the same viewpoint, when the light diffusing member is manufactured by direct molding, it is preferable to mold the light diffusing member so that the thickness T is 2 μm or more and less than 50 μm.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は上述した実施形態に限定されない。 Although the present invention has been described above based on the preferred embodiment thereof, the present invention is not limited to the above-described embodiment.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 Hereinafter, the present invention will be described in more detail by way of examples. However, the scope of the invention is not limited to such examples.

〔実施例1〕
希土類化合物粒子であるリン酸イットリウムの粒子と、マトリクス樹脂であるアクリル樹脂とを用いて、光拡散部材を製造した。
[Example 1]
A light diffusing member was manufactured using particles of yttrium phosphate, which is a rare earth compound particle, and an acrylic resin, which is a matrix resin.

リン酸イットリウムからなる希土類リン酸塩粒子の製造方法は以下のとおりである。すなわち、ガラス容器1に水600gを計量し、60質量%硝酸(和光純薬工業社製)61.7g、Y(日本イットリウム社製)18.8gを添加し、80℃に加温して溶解させた。別のガラス容器2には、水600gを計量し、85質量%リン酸18.8gを添加した。次いで、ガラス容器2の内容物をガラス容器1内に添加し、1時間エージングを行って沈殿物を得た。得られた沈殿物についてデカンテーション洗浄を行って、上澄み液の導電率が100μS/cm以下になるまで洗浄を行った。洗浄後、減圧濾過で固液分離し、分離した固形分を大気中で120℃、5時間乾燥させたのち、大気中で900℃、3時間焼成して、リン酸イットリウム粒子を得た。この粒子のD50は1μmであり、比表面積は2m/gであった。The method for producing rare earth phosphate particles made of yttrium phosphate is as follows. That is, a glass container 1 was weighed water 600 g, (manufactured by Wako Pure Chemical Industries, Ltd.) 60 wt% nitric acid 61.7g, Y 2 O 3 (manufactured by Nippon Yttrium Co., Ltd.) 18.8 g was added, heated to 80 ° C. And dissolved. In another glass container 2, 600 g of water was weighed and 18.8 g of 85% by mass phosphoric acid was added. Next, the contents of the glass container 2 were added into the glass container 1 and aged for 1 hour to obtain a precipitate. The obtained precipitate was decanted and washed until the conductivity of the supernatant was 100 μS / cm or less. After washing, solid-liquid separation was performed by vacuum filtration, and the separated solid content was dried in the air at 120 ° C. for 5 hours and then baked in the air at 900 ° C. for 3 hours to obtain yttrium phosphate particles. The D 50 of the particles is 1 [mu] m, a specific surface area of 2m 2 / g.

続いて、得られたリン酸イットリウム粒子と、アクリル樹脂(DIC社製、品名:A−165)とを、マトリクス樹脂に対するリン酸イットリウム粒子の添加量Cが100質量%となるように配合し、2−ブタノン(MEK溶媒)にて希釈し、ペイントシェイカーで60分間混合して、塗工液を調製した。 Subsequently, the obtained yttrium phosphate particles and an acrylic resin (manufactured by DIC, product name: A-165) were blended so that the addition amount C of the yttrium phosphate particles to the matrix resin was 100% by mass. Dilute with 2-butanone (MEK solvent) and mix with a paint shaker for 60 minutes to prepare a coating solution.

次に、この塗工液を、PET基材(厚み:100μm)にバーコーターを用いて塗膜厚みが5μmになるよう塗工し、80℃で5分間乾燥させ、光拡散部材とPET基材とからなる光拡散構造体を得た。 Next, this coating liquid is applied to a PET substrate (thickness: 100 μm) using a bar coater so that the coating film thickness becomes 5 μm, dried at 80 ° C. for 5 minutes, and the light diffusing member and the PET substrate are used. A light diffusion structure consisting of

〔実施例2ないし4及び比較例1ないし3〕
マトリクス樹脂に対する粒子の添加量C、及び光拡散部材の厚みTを以下の表1に示すとおりに変更したほかは、実施例1と同様に製造した。
[Examples 2 to 4 and Comparative Examples 1 to 3]
It was manufactured in the same manner as in Example 1 except that the amount of particles added to the matrix resin C and the thickness T of the light diffusing member were changed as shown in Table 1 below.

〔実施例5〕
実施例1で得られたリン酸イットリウムの粒子と、ポリカーボネート樹脂(住化ポリカーボネート社製、301−22)とを、マトリクス樹脂に対する粒子の添加量Cが5質量%となるように予備混合した後、該混合物を押し出し成形して、縦100mm×横100mm、厚みTが75μmのシート状の光拡散部材を作製した。
[Example 5]
After premixing the particles of yttrium phosphate obtained in Example 1 and the polycarbonate resin (manufactured by Sumika Polycarbonate Limited, 301-22) so that the amount C of the particles added to the matrix resin is 5% by mass. The mixture was extruded to prepare a sheet-shaped light diffusing member having a length of 100 mm × a width of 100 mm and a thickness T of 75 μm.

〔実施例6ないし18及び比較例4ないし6〕
マトリクス樹脂に対する粒子の添加量C、及び光拡散部材の厚みTを以下の表1に示すとおりに変更したほかは、実施例5と同様に製造した。
[Examples 6 to 18 and Comparative Examples 4 to 6]
It was manufactured in the same manner as in Example 5 except that the amount of particles added to the matrix resin C and the thickness T of the light diffusing member were changed as shown in Table 1 below.

〔実施例19ないし27〕
リン酸イットリウム粒子について、その粒径D50が0.3μmに、比表面積が8m/gになるよう製造した。マトリクス樹脂に対する粒子の添加量C、及び光拡散部材の厚みTを以下の表1に示すとおりに変更したほかは、実施例1と同様に製造した。
[Examples 19 to 27]
For yttrium phosphate particles, its particle size D 50 of 0.3 [mu] m, a specific surface area was prepared so as to be 8m 2 / g. It was manufactured in the same manner as in Example 1 except that the amount of particles added to the matrix resin C and the thickness T of the light diffusing member were changed as shown in Table 1 below.

〔実施例28及び29〕
リン酸イットリウムに代えて、希土類酸化物である酸化イットリウム粒子(日本イットリウム社製:D50:0.3μm、比表面積:10m/g)を用いた。マトリクス樹脂に対する粒子の添加量C、及び光拡散部材の厚みTを以下の表1に示すとおりに変更したほかは、実施例1と同様に製造した。
[Examples 28 and 29]
Instead of yttrium phosphate, yttrium oxide particles (manufactured by Yttrium Japan, D 50 : 0.3 μm, specific surface area: 10 m 2 / g), which are rare earth oxides, were used. It was manufactured in the same manner as in Example 1 except that the amount of particles added to the matrix resin C and the thickness T of the light diffusing member were changed as shown in Table 1 below.

〔光透過性及びヘーズ〕
ヘーズメーター(日本電色工業株式会社製、NDH2000)を用いて測定した。光透過性は全光線透過率(%)として評価した。また、光透過性及びヘーズの総合評価を以下の基準で評価した。これらの結果を以下の表1に示す。
[Light transmission and haze]
The measurement was performed using a haze meter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.). The light transmittance was evaluated as the total light transmittance (%). In addition, the comprehensive evaluation of light transmission and haze was evaluated according to the following criteria. These results are shown in Table 1 below.

〔ホットスポットの有無〕
LED光源として朝日電器社製AS−LC01を用いた。LED光源上1cmの位置に、実施例及び比較例の光拡散部材又は光拡散構造体を配置し、LED光源の発光を高輝度モードにしてホットスポットの有無を確認した。ホットスポットの有無の評価は、LED光源を光拡散部材又は光拡散構造体越しに目視確認した際に、LED光源の輪郭(ホットスポット)がはっきり見えなかったものを「○」とし、該輪郭がはっきり見えたものを「×」とした。評価結果を以下の表1に示す。
[Presence / absence of hotspot]
AS-LC01 manufactured by Asahi Electric Co., Ltd. was used as the LED light source. The light diffusing members or light diffusing structures of Examples and Comparative Examples were placed at a position 1 cm above the LED light source, and the light emission of the LED light source was set to the high luminance mode to confirm the presence or absence of hot spots. In the evaluation of the presence or absence of hot spots, when the LED light source is visually confirmed through the light diffusing member or the light diffusing structure, the contour (hot spot) of the LED light source is not clearly visible, and the contour is marked with "○". The one that was clearly visible was marked as "x". The evaluation results are shown in Table 1 below.

また、光透過性、ヘーズ及びホットスポットの評価を総合して、以下の基準で評価した。評価結果を以下の表1に示す。
<総合評価>
A:全光線透過率が70%以上であり、ヘーズが80%以上であり、且つホットスポットがはっきり見えない。
B:全光線透過率が50%以上であり、且つホットスポットがはっきり見えない。
C:全光線透過率が50%未満であるか、又はホットスポットがはっきり見える。
In addition, the evaluation of light transmission, haze and hotspot was comprehensively evaluated according to the following criteria. The evaluation results are shown in Table 1 below.
<Comprehensive evaluation>
A: The total light transmittance is 70% or more, the haze is 80% or more, and the hot spot is not clearly visible.
B: The total light transmittance is 50% or more, and the hot spot is not clearly visible.
C: Total light transmittance is less than 50%, or hot spots are clearly visible.

Figure 0006975863
Figure 0006975863

表1に示すとおり、光拡散部材の厚みT、マトリクス樹脂に対する希土類化合物粒子の添加量C及びこれらの積(T×C)が適切な範囲となっている実施例1ないし29は、比較例1ないし6と比較して、光透過性と光拡散性とを兼ね備え、且つホットスポットがはっきり見えない光拡散部材であることが判る。したがって、本発明の光拡散部材、並びに該光拡散部材を備える光拡散構造体及び発光構造体は、高い光透過性及び高いヘーズが両立し、ホットスポット等の発光ムラが少ないものであることが判る。 As shown in Table 1, Examples 1 to 29 in which the thickness T of the light diffusing member, the addition amount C of the rare earth compound particles to the matrix resin, and the product (T × C) of these are in an appropriate range are shown in Comparative Example 1. It can be seen that the light diffusing member has both light transmittance and light diffusivity as compared with 6 or 6, and the hot spot is not clearly visible. Therefore, the light diffusing member of the present invention, and the light diffusing structure and the light emitting structure provided with the light diffusing member have both high light transmittance and high haze, and have less light emission unevenness such as hot spots. I understand.

本発明によれば、光透過性を備えつつホットスポット等の発光ムラが少ない光拡散部材、並びにこれを用いた光拡散構造体及び発光構造体が提供される。
According to the present invention, there is provided a light diffusing member having light transmissivity and less light emission unevenness such as hot spots, and a light diffusing structure and a light emitting structure using the same.

Claims (6)

希土類リン酸塩粒子とマトリクス樹脂とを含んでなる光拡散部材であって、
前記粒子は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D 50 が、0.2μm以上2μm以下であり、
前記粒子のBET比表面積が、1m /g以上8m /g以下であり、
前記光拡散部材の厚みをT(μm)とし、前記マトリクス樹脂に対する前記粒子の添加量をC(質量%)としたとき、
厚みTと添加量Cとの積が500以上3000以下であり、
厚みTが1000μm以上3000μm以下であり、且つ
添加量Cが0.3質量%以上2質量%以下である、光拡散部材。
A light diffusing member containing rare earth phosphate particles and a matrix resin.
The particles have a volume cumulative particle size D 50 of 0.2 μm or more and 2 μm or less at a cumulative volume of 50% by volume measured by a laser diffraction / scattering type particle size distribution measurement method.
The BET specific surface area of the particles is 1 m 2 / g or more and 8 m 2 / g or less.
When the thickness of the light diffusing member is T (μm) and the amount of the particles added to the matrix resin is C (mass%).
The product of the thickness T and the addition amount C is 500 or more and 3000 or less.
A light diffusing member having a thickness T of 1000 μm or more and 3000 μm or less and an addition amount C of 0.3% by mass or more and 2% by mass or less.
全光線透過率が50%以上であり、且つヘーズが50%以上である、請求項に記載の光拡散部材。 The light diffusing member according to claim 1 , wherein the total light transmittance is 50% or more and the haze is 50% or more. 前記粒子は、Ln(PO又はLnPOで表されてなり、式中のLnは、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuからなる群より選ばれる少なくとも一種の元素からなる請求項1又は2に記載の光拡散部材。 The particles are represented by Ln (PO 3 ) 3 or LnPO 4 , and Ln in the formula is Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er. The light diffusing member according to claim 1 or 2, which comprises at least one element selected from the group consisting of, Yb and Lu. 請求項1ないしのいずれか一項に記載の光拡散部材が基材上に配されてなる光拡散構造体。 A light diffusion structure in which the light diffusion member according to any one of claims 1 to 3 is arranged on a base material. 請求項1ないしのいずれか一項に記載の光拡散部材及び発光デバイスを備えてなる発光構造体。 A light emitting structure comprising the light diffusing member and a light emitting device according to any one of claims 1 to 3. 前記発光デバイスは、発光ダイオードである請求項に記載の発光構造体。
The light emitting structure according to claim 5 , wherein the light emitting device is a light emitting diode.
JP2020536397A 2018-08-07 2019-07-10 Light diffusion member, and light diffusion structure and light emission structure using this Active JP6975863B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018148248 2018-08-07
JP2018148248 2018-08-07
PCT/JP2019/027280 WO2020031598A1 (en) 2018-08-07 2019-07-10 Light diffusion member, and light diffusion structure and light emitting structure, each of which uses same

Publications (2)

Publication Number Publication Date
JPWO2020031598A1 JPWO2020031598A1 (en) 2021-03-18
JP6975863B2 true JP6975863B2 (en) 2021-12-01

Family

ID=69415503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020536397A Active JP6975863B2 (en) 2018-08-07 2019-07-10 Light diffusion member, and light diffusion structure and light emission structure using this

Country Status (4)

Country Link
JP (1) JP6975863B2 (en)
KR (1) KR20210040362A (en)
TW (1) TW202017857A (en)
WO (1) WO2020031598A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230378403A1 (en) * 2020-10-20 2023-11-23 Dai Nippon Printing Co., Ltd. Surface-emitting device, display device, sealing member sheet for surface-emitting device, and method for producing surface-emitting device
JP7436893B2 (en) * 2021-11-01 2024-02-22 日亜化学工業株式会社 Light emitting device and diffusion member used therein

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049881C (en) * 1995-12-15 2000-03-01 国家建筑材料工业局人工晶体研究所 Method for preparing transparent polycrystalline spinel
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP2003177236A (en) * 2001-12-12 2003-06-27 Nitto Denko Corp Interference semitransmissive reflection plate and polarizing plate attached with interference semitransmissive reflection plate using the same, transflective liquid crystal substrate and transflective liquid crystal display device
JP2004029648A (en) * 2002-06-28 2004-01-29 Takiron Co Ltd Light diffusing sheet
JP4554172B2 (en) * 2003-07-03 2010-09-29 株式会社きもと Transmission screen
JP2008003625A (en) * 2007-08-10 2008-01-10 Dainippon Printing Co Ltd Polarizing plate with planar film-shaped diffusion layer and liquid crystal display apparatus using the polarizing plate
DE102008041055A1 (en) * 2008-08-06 2010-02-18 Carl Zeiss Smt Ag Transmitting optical element of magnesium-aluminum spinel
JP6510824B2 (en) * 2015-01-27 2019-05-08 日本イットリウム株式会社 Thermal spray powder and thermal spray material
JP2019053093A (en) * 2016-01-25 2019-04-04 Agc株式会社 Light diffusion plate
EP3495319A4 (en) * 2016-08-02 2020-01-29 Mitsui Mining & Smelting Co., Ltd. Rare earth phosphate particles, method for improving scattering property using same
CN106896567B (en) * 2017-03-17 2019-06-14 京东方科技集团股份有限公司 A kind of polaroid and display device

Also Published As

Publication number Publication date
JPWO2020031598A1 (en) 2021-03-18
KR20210040362A (en) 2021-04-13
TW202017857A (en) 2020-05-16
WO2020031598A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
KR101686210B1 (en) Diffusion sheet comprising yellow phosphor
TWI504723B (en) Fluorinite,led luminescent element and light source device
KR101775260B1 (en) Fluorescent films having adjustable color location and color gamut
TWI679780B (en) Wavelength conversion material and light emitting device
TWI632224B (en) Green phosphor and method for manufacturing the same, phosphor sheet, and lighting device
CN105449074A (en) Light-emitting device
JP6975863B2 (en) Light diffusion member, and light diffusion structure and light emission structure using this
KR20180044895A (en) Wavelength conversion member, fluorescent sheet, white light source device, and display device
Lai et al. High-efficiency robust free-standing composited phosphor films with 2D and 3D nanostructures for high-power remote white LEDs
WO2015081692A1 (en) Light guide plate, backlight source and liquid crystal display apparatus
CN103869391A (en) Color reinforcing film, and utilization structure, utilization method and manufacturing method of the color reinforcing film
CN101684914B (en) Backlight source lamp group
JP2013067710A (en) Method of manufacturing coating fluorescent substance, coating fluorescent substance, and white light source
JPWO2014162893A1 (en) Light conversion member, method for manufacturing the same, illumination light source, and liquid crystal display device
JP2021191858A (en) Green phosphor, phosphor sheet, and light-emitting device
TWI782156B (en) Particle mixture, method for improving light scattering properties using the same, and light scattering member and optical device containing the same
JP2006265012A (en) High-luminance and wide band glass phosphor and optical device using the same
JP7050814B2 (en) Rare earth phosphate particles, methods for improving light scattering using them, and light scattering members and optical devices containing them.
KR102659182B1 (en) Rare earth phosphate particles, method for improving light scattering using the same, and light scattering member and optical device containing the same
TW201910490A (en) Fluorescent substance, production method thereof, fluorescent substance sheet, and lighting device
US20190353828A1 (en) Light scattering sheet
JP2015201565A (en) Manufacturing method of optical conversion member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201106

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6975863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250