JP6973874B2 - Super absorbent polymer and its manufacturing method - Google Patents

Super absorbent polymer and its manufacturing method Download PDF

Info

Publication number
JP6973874B2
JP6973874B2 JP2020518768A JP2020518768A JP6973874B2 JP 6973874 B2 JP6973874 B2 JP 6973874B2 JP 2020518768 A JP2020518768 A JP 2020518768A JP 2020518768 A JP2020518768 A JP 2020518768A JP 6973874 B2 JP6973874 B2 JP 6973874B2
Authority
JP
Japan
Prior art keywords
epoxy
weight
water
polymer
base resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020518768A
Other languages
Japanese (ja)
Other versions
JP2021510741A (en
Inventor
ホ、ヨン−チェ
ナム、テ−ウ
パク、ポヒ
キム、スチン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70910392&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6973874(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority claimed from PCT/KR2019/011994 external-priority patent/WO2020101167A1/en
Publication of JP2021510741A publication Critical patent/JP2021510741A/en
Application granted granted Critical
Publication of JP6973874B2 publication Critical patent/JP6973874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0281Sulfates of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/12Hydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters

Description

[関連出願との相互引用]
本出願は2018年11月13日付韓国特許出願第10−2018−0139103号および2019年9月16日付韓国特許出願第10−2019−0113734号に基づいた優先権の利益を主張し、当該韓国特許出願の文献に開示されたすべての内容は本明細書の一部として含まれている。
[Mutual citation with related applications]
This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0139103 dated November 13, 2018 and Korean Patent Application No. 10-2019-0113734 dated September 16, 2019. All content disclosed in the literature of the application is included as part of this specification.

本発明は、高吸水性樹脂およびその製造方法に関する。より詳細には、向上した再湿潤(rewet)特性および通液性を有する高吸水性樹脂およびその製造方法に関する。 The present invention relates to a super absorbent polymer and a method for producing the same. More specifically, the present invention relates to a superabsorbent polymer having improved rewet properties and liquid permeability, and a method for producing the same.

高吸水性樹脂(Super Absorbent Polymer,SAP)とは、自体重量の5百ないし1千倍程度の水分を吸収できる機能を有する合成高分子物質であって、開発業者ごとにSAM(Super Absorbency Material)、AGM(Absorbent Gel Material)などそれぞれ異なる名前で名付けている。前記のような高吸水性樹脂は生理用具として実用化され始め、現在は、子供用紙おむつや生理用ナプキンなど衛生用品の他に園芸用土壌保水剤、土木、建築用止水材、育苗用シート、食品流通分野での鮮度保持剤、および湿布用などの材料として広く使われている。 A super absorbent polymer (SAP) is a synthetic polymer substance having a function of absorbing about 500 to 1,000 times its weight of water, and is a SAM (Super Absorbent Polymer) for each developer. , AGM (Absorbent Gel Material), etc. are named with different names. Superabsorbent polymers such as those mentioned above have begun to be put into practical use as sanitary tools, and are currently used in addition to sanitary products such as children's disposable diapers and sanitary napkins, as well as soil water retention agents for gardening, civil engineering, water blocking materials for construction, and sheets for raising seedlings. , As a freshness preservative in the food distribution field, and as a material for poultices.

最も多くの場合に、このような高吸水性樹脂は、おむつや生理用ナプキンなど衛生材分野で広く使われているが、このような用途のために水分などに対する高い吸収力を示す必要があり、外部の圧力にも吸収された水分が抜け出てはならず、これに加え、水を吸収して体積膨張(膨潤)した状態でも形態をよく保って優れた通液性(permeability)を示す必要がある。 In most cases, such superabsorbent polymers are widely used in the field of sanitary materials such as diapers and sanitary napkins, but for such applications, they must exhibit high absorbency to moisture and the like. Moisture absorbed by external pressure must not escape, and in addition, it is necessary to maintain good morphology even in the state of absorbing water and expanding (swelling) in volume, and to show excellent permeability. There is.

しかし、前記高吸水性樹脂の基本的な吸収力および保水力を示す物性である保持能(CRC)と、外部の圧力にも吸収された水分をよく保持する特性を示す加圧下吸収能(AUP)は共に向上させにくいことが知られている。これは高吸水性樹脂の全体的な架橋密度が低く制御される場合、保持能は相対的に高くなり得るが、架橋構造が粗くなりゲル強度が低くなって加圧下吸収能は低下し得るからである。逆に、架橋密度を高く制御して加圧下吸収能を向上させる場合、密な架橋構造の間に水分が吸収されにくい状態になって基本的な保持能が低下し得る。上述した理由によって、保持能および加圧下吸収能が共に向上した高吸水性樹脂を提供するのに限界がある。 However, the superabsorbent polymer has a retention capacity (CRC), which is a physical property showing the basic absorption capacity and water retention capacity, and a pressure absorption capacity (AUP), which has a characteristic of well retaining water absorbed even under external pressure. ) Are known to be difficult to improve together. This is because if the overall crosslink density of the superabsorbent polymer is controlled to be low, the retention capacity can be relatively high, but the crosslink structure becomes coarse, the gel strength becomes low, and the absorption capacity under pressure can decrease. Is. On the contrary, when the cross-linking density is controlled to be high to improve the absorption capacity under pressure, it becomes difficult for water to be absorbed between the dense cross-linking structures, and the basic retention capacity may decrease. For the reasons described above, there is a limit in providing a superabsorbent polymer having both improved holding ability and absorption ability under pressure.

しかし、最近、おむつや生理用ナプキンなどのような衛生材の薄膜化につれ、高吸水性樹脂に対するより高い吸収性能が求められている。その中でも、相反する物性である保持能と加圧吸水能の同時向上と通液性の改善などが重要な課題として浮上している。 However, recently, with the thinning of sanitary materials such as diapers and sanitary napkins, higher absorption performance for superabsorbent polymers is required. Among them, the simultaneous improvement of the holding ability and the pressurized water absorption ability, which are contradictory physical properties, and the improvement of the liquid permeability have emerged as important issues.

また、おむつや生理用ナプキンなどの衛生材には使用者の体重によって圧力が加えられる。特に、おむつや生理用ナプキンなどの衛生材に適用される高吸水性樹脂が液体を吸収した後、これに使用者の体重による圧力が加えられると高吸水性樹脂に吸収された一部の液体が再び染み出る再湿潤(rewet)現象と、小便が漏れる漏出(leakage)現象が発生し得る。 In addition, pressure is applied to sanitary materials such as diapers and sanitary napkins depending on the weight of the user. In particular, after the super absorbent polymer applied to sanitary materials such as diapers and sanitary napkins has absorbed the liquid, some liquid absorbed by the superabsorbent polymer when pressure is applied by the weight of the user. A rewet phenomenon in which urine exudes again and a leakage phenomenon in which urine leaks can occur.

したがって、このような再湿潤現象を抑制すべく、様々な試みが進められてる。しかし、まだ再湿潤現象を効果的に抑制できる具体的な方案が提示されていない実情である。 Therefore, various attempts are being made to suppress such a rewetting phenomenon. However, the actual situation is that no concrete plan that can effectively suppress the rewetting phenomenon has been presented.

前記のような従来技術の問題点を解決するために、本発明は再湿潤および小便の漏出現象が抑制される高吸水性樹脂およびその製造方法を提供することを目的とする。 In order to solve the above-mentioned problems of the prior art, it is an object of the present invention to provide a superabsorbent polymer in which rewetting and urine leakage phenomena are suppressed and a method for producing the same.

前記の目的を達成するために、本発明の一側面によれば、
酸性基を有し、前記酸性基の少なくとも一部が中和されたアクリル酸系単量体および内部架橋剤が架橋重合されたベース樹脂(base resin)を準備する段階(段階1);
前記ベース樹脂に、無機フィラー、およびエポキシ系表面架橋剤を混合し、前記無機フィラーを先に前記ベース樹脂に乾式で混合し、次いでエポキシ系表面架橋剤を水に溶解して表面架橋溶液状態にて混合する段階(段階2);および
前記段階2の混合物を昇温して前記ベース樹脂に対する表面改質を行う段階(段階3)を含み、
前記エポキシ系表面架橋剤は、エポキシ当量が100g/eq以上130g/eq未満である第1エポキシ架橋剤およびエポキシ当量が130〜200g/eqである第2エポキシ架橋剤を含むものである、高吸水性樹脂の製造方法を提供する。
In order to achieve the above object, according to one aspect of the invention,
A step of preparing a base resin (base resin) having an acidic group and having an acrylic acid-based monomer in which at least a part of the acidic group is neutralized and an internal cross-linking agent cross-linked and polymerized (step 1);
The base resin is mixed with an inorganic filler and an epoxy-based surface cross-linking agent, the inorganic filler is first dry-mixed with the base resin, and then the epoxy-based surface cross-linking agent is dissolved in water to obtain a surface cross-linking solution. (Step 2); and a step (step 3) in which the mixture of the step 2 is heated to perform surface modification to the base resin.
The epoxy-based surface cross-linking agent contains a first epoxy cross-linking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq and a second epoxy cross-linking agent having an epoxy equivalent of 130 to 200 g / eq. Provides a manufacturing method for.

また、本発明の他の一側面によれば、
酸性基の少なくとも一部が中和されたアクリル酸系単量体が架橋重合された架橋重合体を含むベース樹脂;および
前記ベース樹脂の粒子表面に形成されており、前記架橋重合体がエポキシ当量が相異する2種のエポキシ系表面架橋剤を媒介として追加架橋されている二重の表面改質層を含み、
前記表面改質層は、無機フィラーを含み、
前記2種のエポキシ系表面架橋剤は、エポキシ当量が100g/eq以上130g/eq未満である第1エポキシ架橋剤およびエポキシ当量が130〜200g/eqである第2エポキシ架橋剤を含むものである、高吸水性樹脂を提供する。
Also, according to another aspect of the invention.
A base resin containing a crosslinked polymer in which an acrylic acid-based monomer in which at least a part of an acidic group is neutralized is crosslinked and polymerized; and the crosslinked polymer is formed on the particle surface of the base resin and has an epoxy equivalent. Includes a double surface modification layer that is additionally cross-linked via two different epoxy-based surface cross-linking agents.
The surface modification layer contains an inorganic filler and contains an inorganic filler.
The two epoxy-based surface cross-linking agents include a first epoxy cross-linking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq and a second epoxy cross-linking agent having an epoxy equivalent of 130 to 200 g / eq. Provide a water-absorbent resin.

本発明の高吸水性樹脂およびその製造方法によれば、優れた諸吸水物性を示しながらも再湿潤現象および小便漏出現象が抑制された高吸水性樹脂を提供することができる。 According to the highly water-absorbent resin of the present invention and the method for producing the same, it is possible to provide a highly water-absorbent resin in which the rewetting phenomenon and the urine leakage phenomenon are suppressed while exhibiting excellent water-absorbing physical characteristics.

本発明は多様な変更が加えられ、様々な形態を有し得ることから、特定の実施例を例示して下記に詳細に説明する。しかし、これは本発明を特定の開示形態に限定しようとするものではなく、本発明の思想および技術範囲に含まれるすべての変更、均等物ないし代替物を含むものとして理解しなければならない。 Since the present invention can be modified in various ways and can have various forms, specific examples will be illustrated below in detail. However, this is not intended to limit the invention to any particular form of disclosure, but should be understood as including all modifications, equivalents or alternatives contained within the ideas and technical scope of the invention.

以下、本発明の一実施形態による高吸水性樹脂の製造方法について詳細に説明する。 Hereinafter, a method for producing a super absorbent polymer according to an embodiment of the present invention will be described in detail.

本発明の一実施形態による高吸水性樹脂の製造方法は、
酸性基を有し、前記酸性基の少なくとも一部が中和されたアクリル酸系単量体および内部架橋剤が架橋重合されたベース樹脂(base resin)を準備する段階(段階1);
前記ベース樹脂に、無機フィラー、およびエポキシ系表面架橋剤を混合し、前記無機フィラーを先に前記ベース樹脂に乾式で混合し、次いでエポキシ系表面架橋剤を水に溶解して表面架橋溶液状態に混合する段階(段階2);および
前記段階2の混合物を昇温して前記ベース樹脂に対する表面改質を行う段階(段階3)を含み、
前記エポキシ系表面架橋剤は、エポキシ当量が100g/eq以上130g/eq未満である第1エポキシ架橋剤およびエポキシ当量が130〜200g/eqである第2エポキシ架橋剤を含む。
The method for producing a superabsorbent polymer according to an embodiment of the present invention is as follows.
A step of preparing a base resin (base resin) having an acidic group and having an acrylic acid-based monomer in which at least a part of the acidic group is neutralized and an internal cross-linking agent cross-linked and polymerized (step 1);
The base resin is mixed with an inorganic filler and an epoxy-based surface cross-linking agent, the inorganic filler is first dry-mixed with the base resin, and then the epoxy-based surface cross-linking agent is dissolved in water to obtain a surface cross-linking solution. A step of mixing (step 2); and a step of raising the temperature of the mixture of the step 2 to perform surface modification on the base resin (step 3) are included.
The epoxy-based surface cross-linking agent includes a first epoxy cross-linking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq, and a second epoxy cross-linking agent having an epoxy equivalent of 130 to 200 g / eq.

本発明の明細書において、「ベース樹脂」または「ベース樹脂粉末」は、水溶性エチレン系不飽和単量体が重合された重合体を乾燥および粉砕して粒子(particle)または 粉末(powder)形態にしたものであり、後述する表面改質または表面架橋段階を行わない状態の重合体を意味する。 In the specification of the present invention, the "base resin" or "base resin powder" is a polymer in which a water-soluble ethylene-based unsaturated monomer is polymerized, dried and pulverized, and in the form of particles or powder. This means a polymer in a state where the surface modification or surface cross-linking step described later is not performed.

アクリル酸系単量体の重合反応によって収得される含水ゲル状重合体は、乾燥、粉砕、分級、表面架橋などの工程を経て粉末状の製品である高吸水性樹脂として市販される。 The hydrogel polymer obtained by the polymerization reaction of the acrylic acid-based monomer is marketed as a superabsorbent polymer which is a powdery product through steps such as drying, pulverization, classification, and surface cross-linking.

最近、高吸水性樹脂において吸収能、通液性のような諸吸水物性だけでなく実際のおむつが使われる状況で表面の乾燥(dryness)状態がどれくらい保持されるかがおむつ特性を測る重要な尺度になっている。 Recently, it is important to measure the diaper characteristics not only for various water-absorbing physical properties such as absorbency and liquid permeability in superabsorbent polymers, but also for how long the dryness of the surface is maintained in the situation where actual diapers are used. It is a scale.

本発明の一実施形態による製造方法によって収得される高吸水性樹脂は、保持能、加圧吸水能、通液性などの物性に優れ、優れた諸吸収性能を示し、塩水によって膨潤された後にも乾燥した状態が保持され、高吸水性樹脂に吸収された小便が再び染み出る再湿潤(rewet)および小便漏出(leakage)現象を効果的に防止する可能性があることを確認して本発明に至った。 The superabsorbent polymer obtained by the production method according to the embodiment of the present invention has excellent physical properties such as retention ability, pressure water absorption ability, and liquid permeability, exhibits excellent absorption performance, and after being swollen with salt water. The present invention has been confirmed to have the potential to effectively prevent the rewet and leak (leakage) phenomena in which urine absorbed by the super absorbent polymer is exuded again while the dry state is maintained. It came to.

本発明の高吸水性樹脂の製造方法において、先に前記高吸水性樹脂の原料物質であるモノマー組成物は、酸性基を有して前記酸性基の少なくとも一部が中和されたアクリル酸系単量体、内部架橋剤および重合開始剤を含むモノマー組成物を重合して含水ゲル状重合体を収得し、これを乾燥、粉砕、分級してベース樹脂(base resin)を準備する(段階1)。 In the method for producing a highly water-absorbent resin of the present invention, the monomer composition which is the raw material of the highly water-absorbent resin has an acidic group, and at least a part of the acidic group is neutralized. A monomer composition containing a monomer, an internal cross-linking agent and a polymerization initiator is polymerized to obtain a hydrogel-like polymer, which is dried, pulverized and classified to prepare a base resin (step 1). ).

これについて下記でより詳細に説明する。 This will be described in more detail below.

前記高吸水性樹脂の原料物質であるモノマー組成物は酸性基を有して前記酸性基の少なくとも一部が中和されたアクリル酸系単量体および重合開始剤を含む。 The monomer composition which is a raw material of the highly water-absorbent resin contains an acrylic acid-based monomer which has an acidic group and at least a part of the acidic group is neutralized, and a polymerization initiator.

前記アクリル酸系単量体は、下記化学式1で表される化合物である: The acrylic acid-based monomer is a compound represented by the following chemical formula 1.

Figure 0006973874
Figure 0006973874

前記化学式1において、
は不飽和結合を含む炭素数2〜5のアルキルグループであり、
は水素原子、1価または2価金属、アンモニウム基または有機アミン塩である。
In the chemical formula 1,
R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond.
M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.

好ましくは、前記アクリル酸系単量体は、アクリル酸、メタクリル酸およびそれらの1価金属塩、2価金属塩、アンモニウム塩および有機アミン塩からなる群より選ばれる1種以上を含む。 Preferably, the acrylic acid-based monomer contains one or more selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts thereof, divalent metal salts, ammonium salts and organic amine salts.

ここで、前記アクリル酸系単量体は、酸性基を有し、前記酸性基の少なくとも一部が中和されたものであり得る。好ましくは前記単量体を水酸化ナトリウム、水酸化カリウム、水酸化アンモニウムなどのようなアルカリ物質で部分的に中和させたものが使用され得る。このとき、前記アクリル酸系単量体の中和度は40〜95モル%、または40〜80モル%、または45〜75モル%であり得る。前記中和度の範囲は最終物性に応じて調整することができる。しかし、前記中和度が過度に高いと中和された単量体が析出されて円滑な重合の進行が難しく、逆に中和度が過度に低いと高分子の吸収力が大きく低下するだけでなく取り扱いが困難な弾性ゴムのような性質を示し得る。 Here, the acrylic acid-based monomer has an acidic group, and at least a part of the acidic group may be neutralized. Preferably, the monomer is partially neutralized with an alkaline substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like. At this time, the degree of neutralization of the acrylic acid-based monomer may be 40 to 95 mol%, 40 to 80 mol%, or 45 to 75 mol%. The range of the degree of neutralization can be adjusted according to the final physical characteristics. However, if the degree of neutralization is excessively high, the neutralized monomer is precipitated and smooth progress of polymerization is difficult. On the contrary, if the degree of neutralization is excessively low, the absorbency of the polymer is greatly reduced. It may exhibit elastic rubber-like properties that are difficult to handle.

前記アクリル酸系単量体の濃度は、前記高吸水性樹脂の原料物質および溶媒を含むモノマー組成物に対して約20〜約60重量%、好ましくは約40〜約50重量%であり得、重合時間および反応条件などを考慮した適宜濃度調整し得る。ただし、前記単量体の濃度が過度に低いと高吸水性樹脂の収率が低く経済性に問題が生じ得、逆に濃度が過度に高くなると単量体の一部が析出されたり重合された含水ゲル状重合体の粉砕時、粉砕効率が低く示されるなど工程上の問題が生じ得、高吸水性樹脂の物性が低下し得る。 The concentration of the acrylic acid-based monomer can be about 20 to about 60% by weight, preferably about 40 to about 50% by weight, based on the monomer composition containing the raw material and the solvent of the super absorbent polymer. The concentration can be adjusted as appropriate in consideration of the polymerization time, reaction conditions and the like. However, if the concentration of the monomer is excessively low, the yield of the superabsorbent polymer is low and a problem may occur in terms of economy. On the contrary, if the concentration is excessively high, a part of the monomer is precipitated or polymerized. When the water-containing gel-like polymer is crushed, there may be a problem in the process such as the crushing efficiency being shown to be low, and the physical properties of the superabsorbent polymer may be deteriorated.

本発明の高吸水性樹脂製造方法において、重合時使用される重合開始剤は高吸水性樹脂の製造に一般的に使われるものであれば特に限定されない。 In the method for producing a superabsorbent polymer of the present invention, the polymerization initiator used at the time of polymerization is not particularly limited as long as it is generally used for producing a superabsorbent polymer.

具体的には、前記重合開始剤は重合方法によって熱重合開始剤またはUV照射による光重合開始剤を使用することができる。ただし、光重合方法によっても、紫外線照射などの照射によって一定量の熱が発生し、また、発熱反応である重合反応の進行によりある程度の熱が発生するので、追加的に熱重合開始剤を含むこともできる。 Specifically, as the polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator by UV irradiation can be used depending on the polymerization method. However, even with the photopolymerization method, a certain amount of heat is generated by irradiation such as ultraviolet irradiation, and a certain amount of heat is generated by the progress of the polymerization reaction which is an exothermic reaction. Therefore, a thermal polymerization initiator is additionally included. You can also do it.

前記光重合開始剤は紫外線のような光によってラジカルを形成できる化合物であれば、その構成の限定なく使用することができる。 The photopolymerization initiator can be used without limitation in its composition as long as it is a compound capable of forming radicals by light such as ultraviolet rays.

前記光重合開始剤としては、例えば、ベンゾインエーテル(benzoin ether)、ジアルキルアセトフェノン(dialkyl acetophenone)、ヒドロキシルアルキルケトン(hydroxyl alkylketone)、フェニルグリオキシレート(phenyl glyoxylate)、ベンジルジメチルケタール(Benzyl Dimethyl Ketal)、アシルホスフィン(acyl phosphine)およびα−アミノケトン(α−aminoketone)からなる群より選ばれる一つ以上を使用することができる。一方、アシルホスフィンの具体例として、商用のlucirin TPO、すなわち、2,4,6−トリメチル−ベンゾイル−トリメチルホスフィンオキシド(2,4,6−trimethyl−benzoyl−trimethyl phosphine oxide)を使用することができる。より多様な光開始剤についてはReinhold Schwalmの著書である「UV Coatings:Basics,Recent Developments and New Application(Elsevier 2007年)」p115によく明示されており、上述した例に限定されない。 Examples of the photopolymerization initiator include benzoin ether, dialalkyl acetatephenone, hydroxyyl alkylketone, phenylglycyllate, and benzyldimethylketal (Benz). One or more selected from the group consisting of acyl phosphine and α-aminoketone can be used. On the other hand, as a specific example of acylphosphine, a commercial lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethylphosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used. .. More diverse photoinitiators are well documented in Reinhold Schwarm's book "UV Coatings: Basics, Recent Developers and New Applications (Elsevier 2007)" p115, and are not limited to the examples described above.

前記光重合開始剤は、前記モノマー組成物に対して約0.01〜約1.0重量%の濃度で含まれ得る。このような光重合開始剤の濃度が過度に低い場合、重合速度が遅くなり、光重合開始剤の濃度が過度に高いと高吸水性樹脂の分子量が小さく物性が不均一になる。 The photopolymerization initiator may be contained in a concentration of about 0.01 to about 1.0% by weight with respect to the monomer composition. When the concentration of such a photopolymerization initiator is excessively low, the polymerization rate becomes slow, and when the concentration of the photopolymerization initiator is excessively high, the molecular weight of the highly water-absorbent resin is small and the physical properties become non-uniform.

また、前記熱重合開始剤としては、過硫酸塩系開始剤、アゾ系開始剤、過酸化水素およびアスコルビン酸からなる開始剤群より選ばれる一つ以上を使用することができる。具体的には、過硫酸塩系開始剤の例としては過硫酸ナトリウム(Sodium persulfate;Na)、過硫酸カリウム(Potassium persulfate;K)、過硫酸アンモニウム(Ammonium persulfate;(NH)などがあって、アゾ(Azo)系開始剤の例としては2,2−アゾビス−(2−アミジノプロパン)二塩酸塩(2,2−azobis(2−amidinopropane)dihydrochloride)、2,2−アゾビス−(N,N−ジメチレン)イソブチルアミジンジヒドロクロリド(2,2−azobis−(N,N−dimethylene)isobutyramidine dihydrochloride)、2−(カルバモイルアゾ)イソブチロニトリル(2−(carbamoylazo)isobutylonitril)、2,2−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]ジヒドロクロリド(2,2−azobis[2−(2−imidazolin−2−yl)propane] dihydrochloride)、4,4−アゾビス−(4−シアノバレリン酸)(4,4−azobis−(4−cyanovaleric acid))などがある。より多様な熱重合開始剤についてはOdianの著書である「Principle of Polymerization(Wiley、1981)」、p203によく明示されており、上述した例に限定されない。 Further, as the thermal polymerization initiator, one or more selected from the initiator group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide and ascorbic acid can be used. Specifically, examples of persulfate-based initiators include sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), and ammonium persulfate. (NH 4 ) 2 S 2 O 8 ), and examples of azo (Azo) -based initiators are 2,2-azobis- (2-amidinopropane) dihydrochloride (2,2-azobis (2). -Amidinopropane) dihydrochloride), 2,2-azobis- (N, N-dimethylene) isobutylamizin dihydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochlide), 2- (carbobisisobuty) Ninitrile (2- (carbamoylazo) isobutyloniril), 2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2,2-azobis [2- (2-imidazolin-2-yl) propane) ] Dihydrochlide), 4,4-azobis- (4-cyanovaleric acid) (4,4-azobis- (4-cyanovaleric acid)) and the like. More diverse thermal polymerization initiators are well documented in Odian's book "Principle of Polymerization (Wiley, 1981)", p203, and are not limited to the examples described above.

本発明の一実施例によれば、前記モノマー組成物は、高吸水性樹脂の原料物質として内部架橋剤を含む。前記内部架橋剤としては、前記アクリル酸系単量体と反応できる官能基を1個以上有し、かつエチレン性不飽和基を1個以上有する架橋剤;あるいは前記アクリル酸系単量体の置換基および/または単量体の加水分解によって形成された置換基と反応できる官能基を2個以上有する架橋剤を使用することができる。 According to one embodiment of the present invention, the monomer composition contains an internal cross-linking agent as a raw material for a superabsorbent polymer. The internal cross-linking agent is a cross-linking agent having one or more functional groups capable of reacting with the acrylic acid-based monomer and having one or more ethylenically unsaturated groups; or substitution of the acrylic acid-based monomer. A cross-linking agent having two or more functional groups capable of reacting with a substituent formed by hydrolysis of a group and / or a monomer can be used.

前記内部架橋剤は、アクリル酸系単量体が重合された重合体の内部を架橋させるためのものであって、前記重合体の表面を架橋させるための表面架橋剤と区分される。 The internal cross-linking agent is for cross-linking the inside of a polymer in which an acrylic acid-based monomer is polymerized, and is classified as a surface cross-linking agent for cross-linking the surface of the polymer.

前記内部架橋剤の具体的な例としては、N,N’−メチレンビスアクリルアミド、トリメチロールプロパントリ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジペンタエリスリトールペンタアクリレート、グリセリントリ(メタ)アクリレート、ペンタエリストールテトラアクリレート、トリアリールアミン、エチレングリコールジグリシジルエーテル、プロピレングリコール、グリセリン、およびエチレンカーボネートからなる群より選ばれた1種以上を使用することができる。 Specific examples of the internal cross-linking agent include N, N'-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, (meth) acrylate, and propylene glycol di (meth) acrylate. , Polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene Glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerintri (meth) acrylate, pentaeristol tetraacrylate, triarylamine, ethylene glycol diglycidyl ether, propylene glycol, glycerin, And one or more selected from the group consisting of ethylene carbonate can be used.

このような内部架橋剤は、前記モノマー組成物に対して約0.01〜約1.0重量%の濃度で含まれ、重合された高分子を架橋させることができる。 Such an internal cross-linking agent is contained in the monomer composition at a concentration of about 0.01 to about 1.0% by weight, and can cross-link the polymerized polymer.

本発明の製造方法において、高吸水性樹脂の前記モノマー組成物は必要に応じて増粘剤(thickener)、可塑剤、保存安定剤、酸化防止剤などの添加剤をさらに含み得る。 In the production method of the present invention, the monomer composition of a highly water-absorbent resin may further contain additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.

上述した酸性基を有して前記酸性基の少なくとも一部が中和されたアクリル酸系単量体、光重合開始剤、熱重合開始剤、内部架橋剤および添加剤のような原料物質は溶媒に溶解したモノマー組成物溶液の形態で準備される。 Raw materials such as acrylic acid-based monomers having the above-mentioned acidic groups and neutralizing at least a part of the acidic groups, photopolymerization initiators, thermal polymerization initiators, internal cross-linking agents and additives are solvents. Prepared in the form of a solution of the monomer composition dissolved in.

このとき使用できる前記溶媒は、上述した成分を溶解できればその構成の限定なく使用可能であり、例えば、水、エタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,4−ブタンジオール、プロピレングリコール、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、メチルエチルケトン、アセトン、メチルアミルケトン、シクロヘキサノン、シクロペンタノン、ジエチレングリコールモノメチルエーテル、ジエチレングリコールエチルエーテル、トルエン、キシレン、ブチロラクトン、カルビトール、メチルセロソルブアセテートおよびN,N−ジメチルアセトアミドなどより選ばれた1種以上を組み合わせて使用することができる。 The solvent that can be used at this time can be used without limitation in its composition as long as the above-mentioned components can be dissolved. For example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, and ethylene can be used. Glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate and One or more selected from N, N-dimethylacetamide and the like can be used in combination.

前記溶媒はモノマー組成物の総含有量に対して上述した成分を除いた残量で含まれ得る。 The solvent may be contained in a residual amount excluding the above-mentioned components with respect to the total content of the monomer composition.

一方、このようなモノマー組成物を熱重合または光重合して含水ゲル状重合体を形成する方法も通常用いられる重合方法であれば、特に構成の限定はない。 On the other hand, the composition of such a monomer composition is not particularly limited as long as it is a commonly used polymerization method by thermally polymerizing or photopolymerizing such a monomer composition to form a hydrogel-like polymer.

具体的には、重合方法は重合エネルギー源によって大きく熱重合および光重合に分かれ、通常熱重合を行う場合、ニーダー(kneader)のような攪拌軸を有する反応器で行うことができ、光重合を行う場合は移動可能なコンベヤーベルトを備えた反応器で行われるが、上述した重合方法は一例であり、本発明は上述した重合方法に限定されない。 Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization depending on the polymerization energy source, and when normal thermal polymerization is carried out, it can be carried out by a reactor having a stirring shaft such as a kneader, and photopolymerization can be carried out. When it is carried out, it is carried out in a reactor equipped with a movable conveyor belt, but the above-mentioned polymerization method is an example, and the present invention is not limited to the above-mentioned polymerization method.

一例として、前述したように攪拌軸を備えたニーダー(kneader)のような反応器に、熱風を供給したり反応器を加熱して熱重合を行い、含水ゲル状重合体を得ることができ、反応器に備えられた攪拌軸の形態に応じて、反応器の排出口に排出される含水ゲル状重合体は数センチメートル〜数ミリメートル形態であり得る。具体的には、得られる含水ゲル状重合体の大きさは、注入されるモノマー組成物の濃度および注入速度などに応じて多様に現れるが、通常重量平均粒径が2〜50mmの含水ゲル状重合体が得られる。 As an example, as described above, a water-containing gel-like polymer can be obtained by supplying hot air or heating the reactor to a reactor such as a kneader equipped with a stirring shaft for thermal polymerization. Depending on the form of the stirring shaft provided in the reactor, the hydrogel polymer discharged to the outlet of the reactor can be in the form of a few centimeters to a few millimeters. Specifically, the size of the obtained hydrogel-like polymer varies depending on the concentration of the monomer composition to be injected, the injection rate, and the like, but usually it is a hydrogel-like polymer having a weight average particle size of 2 to 50 mm. A polymer is obtained.

また、前述したように移動可能なコンベヤーベルトを備えた反応器で光重合を行う場合、通常得られる含水ゲル状重合体の形態はベルトの幅を有するシート状の含水ゲル状重合体であり得る。このとき、重合体シートの厚さは注入される単量体組成物の濃度および注入速度により変わるが、通常、約0.5〜約5cmの厚さを有するシート状の重合体が得られるように単量体組成物を供給することが好ましい。シート状の重合体の厚さが過度に薄い程度に単量体組成物を供給する場合、生産効率が低いため好ましくなく、シート状の重合体厚さが5cmを超える場合は過度に厚い厚さによって重合反応が全ての厚さにわたって等しく行われない。 Further, when photopolymerization is carried out in a reactor equipped with a movable conveyor belt as described above, the form of the normally obtained hydrogel-like polymer may be a sheet-like hydrogel-like polymer having a belt width. .. At this time, the thickness of the polymer sheet varies depending on the concentration of the monomer composition to be injected and the injection rate, but usually, a sheet-like polymer having a thickness of about 0.5 to about 5 cm can be obtained. It is preferable to supply the monomer composition to the above. When the monomer composition is supplied to such an extent that the thickness of the sheet-shaped polymer is excessively thin, it is not preferable because the production efficiency is low, and when the thickness of the sheet-shaped polymer exceeds 5 cm, the thickness is excessively thick. Due to the fact that the polymerization reaction is not carried out equally over all thicknesses.

このとき、このような方法で得られた含水ゲル状重合体の通常含水率は約40〜約80重量%であり得る。一方、本明細書全体で「含水率」は全体含水ゲル状重合体重量に対して占める水分の含有量であり、含水ゲル状重合体の重量から乾燥状態の重合体の重量を引いた値を意味する。具体的には、赤外線加熱によって重合体の温度を上げて乾燥する過程で重合体中の水分蒸発による重量減少分を測定して計算された値で定義する。このとき、乾燥条件は常温で約180℃まで温度を上昇させた後180℃で維持する方式で総乾燥時間は温度上昇段階の5分を含んで20分に設定し、含水率を測定する。 At this time, the normal water content of the water-containing gel-like polymer obtained by such a method can be about 40 to about 80% by weight. On the other hand, in the entire specification, the "moisture content" is the content of water in the total weight of the water-containing gel-like polymer, and is the value obtained by subtracting the weight of the dry polymer from the weight of the water-containing gel-like polymer. means. Specifically, it is defined by a value calculated by measuring the weight loss due to evaporation of water in the polymer in the process of raising the temperature of the polymer by infrared heating and drying. At this time, the drying condition is a method in which the temperature is raised to about 180 ° C. at room temperature and then maintained at 180 ° C., the total drying time is set to 20 minutes including 5 minutes in the temperature rise step, and the water content is measured.

次に、得られた含水ゲル状重合体を乾燥する段階を行う。 Next, a step of drying the obtained hydrogel-like polymer is performed.

このとき、必要に応じて前記乾燥段階の効率を高めるために乾燥前に粗粉砕する段階をさらに経る。 At this time, if necessary, a step of coarse pulverization before drying is further performed in order to increase the efficiency of the drying step.

このとき、用いらえる粉砕機は構成の限定はないが、具体的には、竪型粉砕機(Vertical pulverizer)、ターボカッター(Turbo cutter)、ターボグラインダー(Turbo grinder)、ロータリーカッターミル(Rotary cutter mill)、カッターミル(Cutter mill)、ディスクミル(Disc mill)、シュレッドクラッシャー(Shred crusher)、クラッシャー(Crusher)、チョッパー(chopper)およびディスクカッター(Disc cutter)からなる粉砕機器群より選ばれるいずれか一つを含み得るが、上述した例に限定されない。 At this time, the crusher that can be used is not limited in configuration, but specifically, a vertical crusher, a turbo cutter, a turbo grinder, and a rotary cutter. Any one selected from a group of crushing equipment consisting of a mill), a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter. It may include, but is not limited to, the example described above.

このとき、粉砕段階は含水ゲル状重合体の粒径が約2〜約10mmになるように粉砕することができる。 At this time, in the pulverization step, the hydrogel polymer can be pulverized so that the particle size is about 2 to about 10 mm.

粒径を2mm未満に粉砕することは含水ゲル状重合体の高い含水率のため技術的に容易でなく、また、粉砕された粒子間に互いに凝集する現象が現れることもある。一方、粒径が10mm超過に粉砕する場合、後に行われる乾燥段階の効率増大効果がわずかである。 It is not technically easy to pulverize the particle size to less than 2 mm due to the high water content of the hydrogel polymer, and the phenomenon of agglomeration between the pulverized particles may appear. On the other hand, when the particle size is pulverized to exceed 10 mm, the effect of increasing the efficiency in the subsequent drying step is slight.

上記のように粉砕されたり、あるいは粉砕段階を経ていない重合直後の含水ゲル状重合体に対して乾燥を行う。このとき、前記乾燥段階の乾燥温度は約150〜約250℃であり得る。乾燥温度が150℃未満である場合、乾燥時間が過度に長くなって最終形成される高吸水性樹脂の物性が低下する恐れがあり、乾燥温度が250℃を超える場合、過度に重合体表面のみ乾燥され、後に行われる粉砕工程で微粉が発生し得、最終形成される高吸水性樹脂の物性が低下する恐れがある。したがって、好ましくは前記乾燥は約150〜約200℃の温度で、さらに好ましくは約160〜約180℃の温度で行われる。 The hydrogel polymer immediately after polymerization, which has been pulverized as described above or has not undergone the pulverization step, is dried. At this time, the drying temperature in the drying step may be about 150 to about 250 ° C. If the drying temperature is less than 150 ° C, the drying time may become excessively long and the physical properties of the finally formed superabsorbent polymer may deteriorate, and if the drying temperature exceeds 250 ° C, only the polymer surface is excessively formed. Fine powder may be generated in the drying step and the subsequent pulverization step, and the physical properties of the finally formed superabsorbent polymer may be deteriorated. Therefore, the drying is preferably carried out at a temperature of about 150 to about 200 ° C, more preferably about 160 to about 180 ° C.

一方、乾燥時間の場合は工程効率などを考慮して約20〜約90分間行われるが、これに限定されない。 On the other hand, in the case of the drying time, it is carried out for about 20 to about 90 minutes in consideration of process efficiency and the like, but the drying time is not limited to this.

前記乾燥段階の乾燥方法も含水ゲル状重合体の乾燥工程で通常用いられるものであれば、その構成の限定なく選んで用いることができる。具体的には、熱風供給、赤外線照射、極超短波照射、または紫外線照射などの方法で乾燥段階を行うことができる。このような乾燥段階進行後の重合体の含水率は約0.1〜約10重量%であり得る。 As long as the drying method in the drying step is usually used in the drying step of the hydrogel polymer, it can be selected and used without limitation in its composition. Specifically, the drying stage can be performed by a method such as hot air supply, infrared irradiation, ultra-high frequency irradiation, or ultraviolet irradiation. The water content of the polymer after the progress of such a drying step can be about 0.1 to about 10% by weight.

次に、このような乾燥段階を経て得られた乾燥された重合体を粉砕する段階を行う。 Next, a step of pulverizing the dried polymer obtained through such a drying step is performed.

粉砕段階後に得られる重合体粉末は、粒径が約150〜約850μmであり得る。このような粒径に粉砕するために用いられる粉砕機は、具体的には、ピンミル(pin mill)、ハンマーミル(hammer mill)、スクリューミル(screw mill)、ロールミル(roll mill)、ディスクミル(disc mill)またはジョグミル(jog mill)などが用いられるが、本発明は上述した例に限定されない。 The polymer powder obtained after the pulverization step can have a particle size of about 150 to about 850 μm. Specific examples of the crusher used for pulverizing to such a particle size are a pin mill, a hammer mill, a screw mill, a roll mill, and a disc mill (a disc mill). Although disk mills, jog mills, and the like are used, the present invention is not limited to the above-mentioned examples.

そして、このような粉砕段階後に最終製品化される高吸水性樹脂粉末の物性を管理するために、粉砕後得られる重合体粉末を粒径に応じて分級する別途の過程を経ることができ、前記重合体粉末を粒径範囲に応じて一定の重量比になるように分級することができる。 Then, in order to control the physical properties of the superabsorbent polymer powder that is finally commercialized after such a pulverization step, it is possible to go through a separate process of classifying the polymer powder obtained after pulverization according to the particle size. The polymer powder can be classified so as to have a constant weight ratio according to the particle size range.

次に、前記ベース樹脂に、無機フィラー、およびエポキシ系表面架橋剤を混合する (段階2)。 Next, the inorganic filler and the epoxy-based surface cross-linking agent are mixed with the base resin (step 2).

一般的な高吸水性樹脂の製造方法において、乾燥および粉砕された重合体、すなわち、ベース樹脂に表面架橋剤を含む表面架橋溶液を混合した後、これらの混合物に熱を加えて昇温することによって前記粉砕された重合体に対して表面架橋反応を行う。 In a general method for producing a superabsorbent polymer, a dried and crushed polymer, that is, a surface cross-linking solution containing a surface cross-linking agent is mixed with a base resin, and then heat is applied to the mixture to raise the temperature. A surface cross-linking reaction is carried out on the pulverized polymer.

前記表面架橋段階は、表面架橋剤の存在下に前記粉砕された重合体の表面に架橋反応を誘導することによって、より向上した物性を有する高吸水性樹脂を形成させる段階である。このような表面架橋により前記粉砕された重合体粒子の表面には表面架橋層(表面改質層)が形成される。 The surface cross-linking step is a step of inducing a cross-linking reaction on the surface of the pulverized polymer in the presence of a surface cross-linking agent to form a super absorbent polymer having further improved physical properties. A surface cross-linking layer (surface modification layer) is formed on the surface of the pulverized polymer particles by such surface cross-linking.

一般に、表面架橋剤は高吸水性樹脂粒子の表面に塗布されるので、表面架橋反応は高吸水性樹脂粒子の表面上で起き、これは粒子の内部には実質的に影響を及ぼすことなく粒子の表面上での架橋結合性は改善させる。したがって、表面架橋結合された高吸水性樹脂粒子は内部でより表面付近でさらに高い架橋結合度を有する。 Generally, since the surface cross-linking agent is applied to the surface of the superabsorbent resin particles, the surface cross-linking reaction occurs on the surface of the superabsorbent resin particles, which does not substantially affect the inside of the particles. The cross-linking property on the surface of the material is improved. Therefore, the surface-crosslinked superabsorbent polymer particles have a higher degree of cross-linking near the surface inside.

一方、前記表面架橋剤としては重合体が有する官能基と反応可能な化合物を使用し、一例として多価アルコール化合物、エポキシ化合物、ポリアミン化合物、ハロエポキシ化合物、ハロエポキシ化合物の縮合産物、オキサゾリン化合物類、多価金属塩、またはアルキレンカーボネート化合物などを使用できることが知られている。 On the other hand, as the surface cross-linking agent, a compound capable of reacting with the functional group of the polymer is used, and as an example, a polyhydric alcohol compound, an epoxy compound, a polyamine compound, a haloepoxy compound, a condensate product of a haloepoxy compound, oxazoline compounds, etc. It is known that valent metal salts, alkylene carbonate compounds, and the like can be used.

一方、本発明の製造方法によれば、エポキシ系表面架橋剤を使用し、エポキシ当量が相異する2種のエポキシ系表面架橋剤を混合使用する。このように2種のエポキシ系表面架橋剤を混合使用すると、高吸水性樹脂の表面に架橋層が二重層で形成され、これにより、高吸水性樹脂の再湿潤特性が低下することなく、水が速やかに通過する性質である通液性をより改善することができる。 On the other hand, according to the production method of the present invention, an epoxy-based surface cross-linking agent is used, and two types of epoxy-based surface cross-linking agents having different epoxy equivalents are mixed and used. When two kinds of epoxy-based surface cross-linking agents are mixed and used in this way, a cross-linking layer is formed as a double layer on the surface of the super absorbent polymer, whereby water does not deteriorate in the rewetting property of the superabsorbent polymer. It is possible to further improve the liquid permeability, which is the property of passing through quickly.

具体的には、本発明の製造方法では、前記エポキシ系表面架橋剤としてエポキシ当量が100g/eq以上130g/eq未満である第1エポキシ架橋剤およびエポキシ当量が130〜200g/eqである第2エポキシ架橋剤を使用する。 Specifically, in the production method of the present invention, as the epoxy-based surface cross-linking agent, the first epoxy cross-linking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq and the second epoxy equivalent having an epoxy equivalent of 130 to 200 g / eq. Use an epoxy crosslinker.

一実施形態において、前記第1エポキシ架橋剤は、エポキシ当量が110〜125g/eq範囲であり得る。第1エポキシ架橋剤は、ベース樹脂の1次表面架橋による全般的な吸水特性の向上効果を得るために使用され、万一、第1エポキシ架橋剤のエポキシ当量が100g/eq未満であれば、上述した効果を十分に確保することはできない。 In one embodiment, the first epoxy crosslinker may have an epoxy equivalent in the range of 110-125 g / eq. The first epoxy cross-linking agent is used to obtain the effect of improving the overall water absorption characteristics by the primary surface cross-linking of the base resin, and if the epoxy equivalent of the first epoxy cross-linking agent is less than 100 g / eq, it should be used. The above-mentioned effects cannot be sufficiently ensured.

前記第1エポキシ架橋剤は、2官能性架橋剤が好ましい。第1エポキシ架橋剤として2官能性エポキシ架橋剤を使用するとき、架橋鎖の柔軟性を確保することができ、これにより、高吸水性樹脂の吸収性能を最大化することができる。 The first epoxy cross-linking agent is preferably a bifunctional cross-linking agent. When a bifunctional epoxy crosslinker is used as the first epoxy crosslinker, the flexibility of the crosslinked chain can be ensured, thereby maximizing the absorption performance of the superabsorbent polymer.

また、前記第1エポキシ架橋剤の含有量は、ベース樹脂100重量部に対して0.01〜0.1重量部、または0.02〜0.05重量部であり得る。仮に、第1エポキシ架橋剤の含有量がベース樹脂100重量部に対して0.01重量部未満であると、十分な表面架橋が行われず、加圧吸水能および通液性低下の問題があり得、0.1重量部を超えると高吸水性樹脂の再湿潤特性が低下する問題があり得る。 The content of the first epoxy cross-linking agent may be 0.01 to 0.1 parts by weight, or 0.02 to 0.05 parts by weight with respect to 100 parts by weight of the base resin. If the content of the first epoxy cross-linking agent is less than 0.01 parts by weight with respect to 100 parts by weight of the base resin, sufficient surface cross-linking is not performed, and there is a problem of reduced water absorption capacity and liquid permeability. If it exceeds 0.1 parts by weight, there may be a problem that the rewetting property of the highly water-absorbent resin is deteriorated.

前記第1エポキシ架橋剤の例としては、エチレングリコールジグリシジルエーテル(ethyleneglycol diglycidyl ether)およびジエチレングリコールジグリシジルエーテル(diethyleneglycol diglycidyl ether)からなる群より選ばれる1種以上が挙げられる。 Examples of the first epoxy cross-linking agent include one or more selected from the group consisting of ethylene glycol diglycidyl ether and diethylene glycol diglycidyl ether.

前記第2エポキシ架橋剤は、第1エポキシ架橋剤に比べてエポキシ当量が高いものであり、ベース樹脂の表面架橋時の第2エポキシ架橋剤の浸透の深さは第1エポキシ架橋剤と相異する。したがって、第1エポキシ架橋剤および第2エポキシ架橋剤を同時に使用して表面架橋を行うとベース樹脂表面が二重で架橋される効果が得られる。 The second epoxy cross-linking agent has a higher epoxy equivalent than the first epoxy cross-linking agent, and the depth of penetration of the second epoxy cross-linking agent at the time of surface cross-linking of the base resin is different from that of the first epoxy cross-linking agent. do. Therefore, when surface cross-linking is performed using the first epoxy cross-linking agent and the second epoxy cross-linking agent at the same time, the effect of double-cross-linking the surface of the base resin can be obtained.

一実施形態で前記第2エポキシ架橋剤のエポキシ当量は、135g/eq以上、150g/eq以上、または160g/eq以上であり、かつ195g/eq以下、または190g/eq以下であり得るが、これに制限されるものではない。 In one embodiment, the epoxy equivalent of the second epoxy crosslinker may be 135 g / eq or higher, 150 g / eq or higher, or 160 g / eq or higher and 195 g / eq or lower, or 190 g / eq or lower. It is not limited to.

前記第2エポキシ架橋剤の含有量は、ベース樹脂100重量部に対して0.001〜0.1重量部、または0.005〜0.05重量部であり得る。仮に、第2エポキシ架橋剤の含有量がベース樹脂100重量部に対して0.001重量部未満であると、二重で表面架橋効果を得ることができず、0.1重量部を超えると表面架橋強度が過度に強く、再湿潤特性が低下する問題があり得る。 The content of the second epoxy cross-linking agent may be 0.001 to 0.1 parts by weight, or 0.005 to 0.05 parts by weight, based on 100 parts by weight of the base resin. If the content of the second epoxy cross-linking agent is less than 0.001 part by weight with respect to 100 parts by weight of the base resin, the double surface cross-linking effect cannot be obtained, and if it exceeds 0.1 parts by weight. There may be a problem that the surface cross-linking strength is excessively strong and the rewetting property is deteriorated.

前記第2エポキシ架橋剤の例としては、グリセロールポリグリシジルエーテル(glycerol polyglycidyl ether)、ジグリセロールポリグリシジルエーテル(diglycerol polyglycidyl ether)、ポリグリセロールポリグリシジルエーテル(polyglycerol polyglycidyl ether)およびソルビトールポリグリシジルエーテル(sorbitol polyglycidyl ether)からなる群より選ばれる1種以上が挙げられる。前記ポリグリセロールポリグリシジルエーテルは、好ましくは繰り返し単位を3個有するトリグリセロールポリグリシジルエーテルであり得る。 Examples of the second epoxy cross-linking agent include glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether and polyglyceryl polysyl lycyllyl lycyllyl lycerol. One or more species selected from the group consisting of ether) can be mentioned. The polyglycerol polyglycidyl ether may preferably be a triglycerol polyglycidyl ether having 3 repeating units.

前記第2エポキシ架橋剤は、エポキシ官能基を3以上、または3〜4個含むことが好ましい。前記官能基数を満足する第2エポキシ架橋剤を使用するとき、追加的に高吸水性粒子の最外郭表面の架橋強度のみ向上させることができ、これにより、高吸水性樹脂の通液性および再湿潤特性がさらに向上することができる。 The second epoxy cross-linking agent preferably contains 3 or more or 3 to 4 epoxy functional groups. When the second epoxy cross-linking agent satisfying the number of functional groups is used, only the cross-linking strength of the outermost outer surface of the highly water-absorbent particles can be additionally improved, whereby the liquid permeability and the re-permeability of the high water-absorbent resin can be improved. Wet properties can be further improved.

前記エポキシ系表面架橋剤の添加時、追加で水を共に混合して表面架橋溶液の形態で添加することができる。水を添加する場合、表面架橋剤が重合体に均一に分散される利点がある。このとき、追加される水の含有量は表面架橋剤の均一な分散を誘導して重合体粉末の凝集現象を防止すると同時に表面架橋剤の表面浸透の深さを最適化するための目的で重合体100重量部に対して、約1〜約10重量部の割合で添加されることが好ましい。 When the epoxy-based surface cross-linking agent is added, water can be additionally mixed together and added in the form of a surface cross-linking solution. When water is added, there is an advantage that the surface cross-linking agent is uniformly dispersed in the polymer. At this time, the content of the added water is heavy for the purpose of inducing uniform dispersion of the surface cross-linking agent to prevent the aggregation phenomenon of the polymer powder and at the same time optimizing the depth of surface penetration of the surface cross-linking agent. It is preferable to add the mixture in a ratio of about 1 to about 10 parts by weight with respect to 100 parts by weight of the combined product.

一方、上述した前記表面架橋剤の他に多価金属塩、例えば、アルミニウム塩、より具体的にアルミニウムの硫酸塩、カリウム塩、アンモニウム塩、ナトリウム塩および塩酸塩からなる群より選ばれた1種以上をさらに含み得る。 On the other hand, in addition to the above-mentioned surface cross-linking agent, one selected from the group consisting of polyvalent metal salts such as aluminum salts, more specifically aluminum sulfates, potassium salts, ammonium salts, sodium salts and hydrochlorides. The above may be further included.

このような多価金属塩は、追加で使用することにより、一実施形態の方法で製造された高吸水性樹脂の通液性などをさらに向上させることができる。このような多価金属塩は、前記表面架橋剤とともに表面架橋溶液に添加され得、前記ベース樹脂100重量部に対して0.01〜4重量部の含有量で使用され得る。 By additionally using such a multivalent metal salt, the liquid permeability of the superabsorbent polymer produced by the method of one embodiment can be further improved. Such a polyvalent metal salt can be added to the surface cross-linking solution together with the surface cross-linking agent, and can be used in a content of 0.01 to 4 parts by weight with respect to 100 parts by weight of the base resin.

また、本発明の製造方法では、表面改質反応を行うための昇温以前に無機フィラーをベース樹脂に混合して凝集防止(anti−caking)効果を付与する。本発明において前記無機フィラーは表面架橋溶液を混合する前に乾式混合する方式で混合され、この場合ベース樹脂と無機フィラーがさらに均一に混合される。 Further, in the production method of the present invention, an inorganic filler is mixed with the base resin before the temperature rise for performing the surface modification reaction to impart an anti-aggregation (anti-caking) effect. In the present invention, the inorganic filler is mixed by a dry mixing method before mixing the surface cross-linking solution, in which case the base resin and the inorganic filler are further uniformly mixed.

前記無機フィラーは、疎水性または親水性のいずれでも混合可能であり、例えば、ヒュームドシリカ(fumed silica)、沈降シリカなどのようにシリカ粒子を使用できるが、本発明はこれに制限されるものではない。 The inorganic filler can be mixed either hydrophobically or hydrophilicly, and silica particles such as fumed silica and precipitated silica can be used, but the present invention is limited thereto. is not it.

また、前記無機フィラーは、前記ベース樹脂または高吸水性樹脂100重量部に対して約0.01〜約0.5重量部、または約0.02〜約0.2重量部の濃度で添加され得る。前記無機フィラーの使用量が0.5重量部を超える場合は、加圧吸水能のような吸収特性が低下し得、前記0.01重量部未満である場合は凝集防止効果がなく、このような観点から前記重量部範囲で使用ことが好ましい。 Further, the inorganic filler is added at a concentration of about 0.01 to about 0.5 parts by weight, or about 0.02 to about 0.2 parts by weight with respect to 100 parts by weight of the base resin or superabsorbent polymer. obtain. When the amount of the inorganic filler used exceeds 0.5 parts by weight, absorption characteristics such as pressurized water absorption capacity may deteriorate, and when it is less than 0.01 parts by weight, there is no aggregation preventing effect. From the above viewpoint, it is preferable to use the product in the range of parts by weight.

一方、このような表面架橋反応によって加圧吸水能と通液性(permeability)は改善できるが、再湿潤特性はさらに補完する必要がある。 On the other hand, although the pressurized water absorption capacity and the permeability can be improved by such a surface cross-linking reaction, the rewetting property needs to be further complemented.

本発明の製造方法によれば、ベース樹脂に表面架橋剤を混合して表面架橋反応を行うために昇温する前に疎水性物質を前記ベース樹脂に混合して再湿潤特性をより改善することができる。また、表面架橋効率が向上して疎水性物質を使用しない樹脂に比べて吸収速度、および通液性がさらに向上することができる。 According to the production method of the present invention, a hydrophobic substance is mixed with the base resin to further improve the rewetting property before the temperature is raised in order to mix the surface cross-linking agent with the base resin and carry out the surface cross-linking reaction. Can be done. In addition, the surface cross-linking efficiency is improved, and the absorption rate and the liquid permeability can be further improved as compared with the resin which does not use a hydrophobic substance.

前記疎水性物質は、HLBがその下限値として0以上、または1以上、または2以上であり、かつ上限値として6以下、または5以下、または5.5以下を満足する物質を使用することができる。また、前記疎水性物質は、表面架橋反応時に溶けてベース樹脂の表面改質層に位置しなければならないので、融解温度(melting point)が表面架橋の反応温度以下である物質を使用することができる。 As the hydrophobic substance, a substance having an HLB of 0 or more, 1 or more, or 2 or more as its lower limit value and 6 or less, 5 or less, or 5.5 or less as its upper limit value can be used. can. Further, since the hydrophobic substance must be melted during the surface cross-linking reaction and located in the surface modification layer of the base resin, it is possible to use a substance whose melting point is equal to or lower than the reaction temperature of the surface cross-linking. can.

使用可能な疎水性物質としては、例えば、グリセリルステアレート(glyceryl stearate)、グリコールステアレート(glycol stearate)、マグネシウムステアレート(magnesium stearate)、グリセリルラウレート(glyceryl laurate)、ソルビタンステアレート(sorbitan stearate)、ソルビタントリオレート(sorbitan trioleate)、またはPEG−4ジラウレート(PEG−4 dilaurate)などが挙げられ、好ましくはグリセリルステアレート、またはグリセリルラウレートを使用できるが、本発明はこれに制限されるものではない。 Examples of the hydrophobic substances that can be used include glyceryl stearate, glycol stearate, magnesium stearate, glyceryl laurate, and sorbitan stearate. , Sorbitan trioleate, PEG-4 dilaurate, etc., preferably glyceryl stearate, or glyceryl laurate, but the present invention is not limited thereto. No.

前記疎水性物質は、前記ベース樹脂の表面の表面改質層内に分布して高吸水性樹脂が液体を吸収して膨潤される過程で膨潤された樹脂粒子が高まった圧力によって互いに凝集したり固まったりすることを防止し、表面に疎水性を付与することによって液体の透過および拡散をより容易にすることができる。したがって、高吸水性樹脂の再湿潤特性の改善に寄与することができる。 The hydrophobic substances are distributed in the surface modification layer on the surface of the base resin, and the swelled resin particles aggregate with each other due to the increased pressure in the process of the highly water-absorbent resin absorbing the liquid and swelling. By preventing solidification and imparting hydrophobicity to the surface, it is possible to facilitate the permeation and diffusion of the liquid. Therefore, it can contribute to the improvement of the rewetting property of the super absorbent polymer.

前記疎水性物質は、前記ベース樹脂100重量部に対して約0.001重量部以上、または約0.005重量部以上、または約0.01重量部以上であり、かつ約0.5重量部以下、または約0.3重量部以下、または約0.1重量部以下になるように混合することができる。前記疎水性物質の含有量が過度に少ないと再湿潤特性を改善するには足りず、過度に多く含まれる場合、ベース樹脂と疎水性物質が互いに脱離して再湿潤改善効果がないか、不純物として作用する問題があり得るので、このような観点から前記重量部範囲が好ましい。 The hydrophobic substance is about 0.001 part by weight or more, about 0.005 part by weight or more, or about 0.01 part by weight or more, and about 0.5 part by weight with respect to 100 parts by weight of the base resin. It can be mixed below, or about 0.3 parts by weight or less, or about 0.1 parts by weight or less. If the content of the hydrophobic substance is excessively small, it is not enough to improve the rewetting property, and if it is excessively contained, the base resin and the hydrophobic substance are desorbed from each other and there is no effect of improving rewetting, or impurities. From this point of view, the weight range is preferable.

前記疎水性物質をベース樹脂と混合する方法は、特に制限されるものではないが、前記表面架橋溶液に表面架橋剤とともに分散させてベース樹脂に混合する方式で混合されるとき高吸水性樹脂粒子により均一にコートできるため好ましい。 The method for mixing the hydrophobic substance with the base resin is not particularly limited, but the superabsorbent polymer particles are mixed by a method in which the hydrophobic substance is dispersed in the surface cross-linking solution together with the surface cross-linking agent and mixed with the base resin. It is preferable because it can be coated more uniformly.

次に、前記ベース樹脂、およびエポキシ系表面架橋剤の混合物に熱を加えて昇温することによって、前記ベース樹脂に対して表面改質段階を行う(段階3)。 Next, a surface modification step is performed on the base resin by applying heat to the mixture of the base resin and the epoxy-based surface cross-linking agent to raise the temperature (step 3).

前記表面改質段階は、約120〜約190℃、好ましくは約130〜約180℃の温度で約10〜約90分、好ましくは約20〜約70分間加熱させることによって行われる。架橋反応温度が120℃未満でるか、反応時間が短すぎる場合、表面架橋反応が正しく起きず透過度が低くなり、190℃を超えるか反応時間が長すぎる場合、保持能が低下する問題が発生し得る。 The surface modification step is carried out by heating at a temperature of about 120 to about 190 ° C., preferably about 130 to about 180 ° C. for about 10 to about 90 minutes, preferably about 20 to about 70 minutes. If the crosslinking reaction temperature is less than 120 ° C or the reaction time is too short, the surface crosslinking reaction does not occur correctly and the permeability becomes low, and if it exceeds 190 ° C or the reaction time is too long, the retention capacity decreases. Can be.

表面改質反応のための昇温手段は特に限定されない。熱媒体を供給したり、熱源を直接供給して加熱することができる。このとき、使用可能な熱媒体の種類としては、スチーム、熱風、熱い油のような昇温した流体などを使用できるが、本発明はこれに限定されるものではなく、また供給される熱媒体の温度は熱媒体の手段、昇温速度および昇温目標温度を考慮して適宜選択することができる。一方、直接供給される熱源としては電気による加熱、ガスによる加熱方法が挙げられるが、本発明は上述した例に限定されるものではない。 The heating means for the surface modification reaction is not particularly limited. A heat medium can be supplied, or a heat source can be directly supplied for heating. At this time, as the type of heat medium that can be used, steam, hot air, a heated fluid such as hot oil, or the like can be used, but the present invention is not limited to this, and the heat medium to be supplied is also used. The temperature can be appropriately selected in consideration of the means of the heat medium, the rate of temperature rise and the target temperature of temperature rise. On the other hand, examples of the heat source directly supplied include heating by electricity and heating by gas, but the present invention is not limited to the above-mentioned examples.

前記のような表面改質段階によって、前記ベース樹脂の表面には2種の互いに異なるエポキシ系表面架橋剤がベース樹脂が有する官能基と反応して形成された二重の表面架橋構造が形成され、前記表面架橋構造内に前述した疎水性物質と無機フィラーが均一に分布した表面改質層が形成され得る。 By the surface modification step as described above, a double surface cross-linking structure formed by reacting two different epoxy-based surface cross-linking agents with the functional groups of the base resin is formed on the surface of the base resin. , A surface-modified layer in which the above-mentioned hydrophobic substance and the inorganic filler are uniformly distributed can be formed in the surface crosslinked structure.

したがって、前記本発明の製造方法で製造された高吸水性樹脂は、このような二重の表面改質層により保持能と加圧吸水能などの物性を低下させず向上した再湿潤および通液性を有することができる。 Therefore, the highly water-absorbent resin produced by the production method of the present invention has improved rewetting and liquid passage without deteriorating physical properties such as retention ability and pressure water absorption ability by such a double surface modification layer. Can have sex.

そこで、本発明の他の一実施形態によれば、酸性基の少なくとも一部が中和されたアクリル酸系単量体が架橋重合された架橋重合体を含むベース樹脂;および前記ベース樹脂の粒子表面に形成されており、前記架橋重合体がエポキシ当量が相異する2種のエポキシ系表面架橋剤を介して追加架橋されている二重の表面改質層を含み、前記表面改質層は、無機フィラーを含み、前記2種のエポキシ系表面架橋剤は、エポキシ当量が100g/eq以上130g/eq未満である第1エポキシ架橋剤およびエポキシ当量が130〜200g/eqである第2エポキシ架橋剤を含むものである、高吸水性樹脂が提供される。 Therefore, according to another embodiment of the present invention, a base resin containing a crosslinked polymer in which an acrylic acid-based monomer in which at least a part of acidic groups is neutralized is crosslinked and polymerized; and particles of the base resin. The cross-linked polymer comprises a double surface-modified layer formed on the surface and additionally cross-linked via two types of epoxy-based surface cross-linking agents having different epoxy equivalents, and the surface-modified layer includes a double surface-modified layer. The two epoxy-based surface cross-linking agents containing an inorganic filler include a first epoxy cross-linking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq, and a second epoxy cross-linking agent having an epoxy equivalent of 130 to 200 g / eq. A highly water-absorbent resin comprising an agent is provided.

前記高吸水性樹脂の具体的な製造方法および物性などに対する詳細な説明は、前記高吸水性樹脂の製造方法で上述したとおりである。 A detailed description of the specific manufacturing method and physical properties of the superabsorbent polymer is as described above in the superabsorbent polymer manufacturing method.

前記高吸水性樹脂は、EDANA法WSP 241.3に準拠して測定した遠心分離保持能(CRC)が、約25g/g以上、または約29g/g以上、または約30g/g以上であり、かつ約40g/g以下、または約38g/g以下、または約35g/g以下の範囲を有することができる。 The super absorbent polymer has a centrifugal separation retention capacity (CRC) measured in accordance with the EDANA method WSP 241.3 of about 25 g / g or more, or about 29 g / g or more, or about 30 g / g or more. And it can have a range of about 40 g / g or less, or about 38 g / g or less, or about 35 g / g or less.

また、前記高吸水性樹脂は、EDANA法WSP 242.3に準拠して測定した0.3psiの加圧吸水能(AUP)が、約20g/g以上、または約23g/g以上、または約25g/g以上であり、かつ約37g/g以下、または約35g/g以下、または約32g/g以下の範囲を有することができる。 Further, the super absorbent polymer has a pressurized water absorption capacity (AUP) of 0.3 psi measured in accordance with the EDANA method WSP 242.3 of about 20 g / g or more, about 23 g / g or more, or about 25 g. It can have a range of more than / g and less than or equal to about 37 g / g, or less than or equal to about 35 g / g, or less than or equal to about 32 g / g.

また、前記高吸水性樹脂は、吸収速度(vortex time)が40秒以下、または35秒以下、または約32秒以下であり得る。前記吸収速度はその値が小さいほど優れ、前記吸収速度の下限は理論上0秒であるが、一例として約5秒以上、または約10秒以上、または約12秒以上であり得る。 Further, the superabsorbent polymer may have an absorption time of 40 seconds or less, 35 seconds or less, or about 32 seconds or less. The smaller the value, the better the absorption rate, and the lower limit of the absorption rate is theoretically 0 seconds, but as an example, it may be about 5 seconds or more, or about 10 seconds or more, or about 12 seconds or more.

前記吸収速度は生理食塩水に高吸水性樹脂を加えて攪拌させたとき、速やかな吸収によって液体の渦(vortex)がなくなる時間(time、単位:秒)を意味するものであり、前記時間が短いほど高吸水性樹脂が速い初期吸収速度を有すると見ることができる。 The absorption rate means the time (time, unit: second) at which the liquid vortex disappears due to rapid absorption when a highly water-absorbent resin is added to physiological saline and stirred. It can be seen that the shorter the time, the faster the water-absorbent resin has a faster initial absorption rate.

また、前記高吸水性樹脂は、下記式1により測定される通液性(permeability、単位:秒)が約35秒以下、または約30秒以下であり得る。前記通液性はその値が小さいほど優れ、理論上下限値は0秒であるが、例えば、約5秒以上、または約10秒以上、または約12秒以上であり得る。 Further, the superabsorbent polymer may have a permeability (permeability, unit: second) measured by the following formula 1 of about 35 seconds or less, or about 30 seconds or less. The smaller the value, the better the liquid permeability, and the theoretical lower limit is 0 seconds, but it may be, for example, about 5 seconds or more, or about 10 seconds or more, or about 12 seconds or more.

Figure 0006973874
Figure 0006973874

前記式1において、
T1は、クロマトグラフィー管内に分級(300〜600μm)した高吸水性樹脂試料0.2±0.0005gを入れて塩水を加えて塩水体積が50mLになるようにした後、30分間放置後、液面高さが40mLから20mLまで減るのにかかる時間であり、Bは、塩水が満たされたクロマトグラフィー管で液面高さが40mLから20mLまで減るのにかかる時間である。
In the above formula 1,
For T1, put 0.2 ± 0.0005 g of a classified (300 to 600 μm) highly water-absorbent resin sample in a chromatography tube, add salt water to make the salt water volume 50 mL, leave it for 30 minutes, and then liquid. It is the time it takes for the surface height to decrease from 40 mL to 20 mL, and B is the time it takes for the liquid level height to decrease from 40 mL to 20 mL in a chromatographic tube filled with salt water.

また、前記高吸水性樹脂は、優れた吸収特性を示しながらも、より向上した再湿潤特性を示すことができる。 Further, the superabsorbent polymer can exhibit further improved rewetting characteristics while exhibiting excellent absorption characteristics.

より具体的には、前記高吸水性樹脂4gを水道水200gに浸漬させて2時間膨潤させた後、膨潤された前記高吸水性樹脂を0.75psiの圧力下に1分間濾過紙上で放置してから、前記高吸水性樹脂から前記濾過紙に再び染み出てきた水の重量で定義される再湿潤特性(加圧水道水の長期再湿潤)が1.0g以下、または0.9g以下、または0.8g以下であり得る。前記水の重量はその値が小さいほど優れ、理論上下限値は0gであるが、例えば0.1g以上、または0.2g以上、または0.3g以上であり得る。 More specifically, after immersing 4 g of the highly water-absorbent resin in 200 g of tap water and inflating it for 2 hours, the swollen high water-absorbent resin is left on a filter paper for 1 minute under a pressure of 0.75 psi. Then, the rewetting property (long-term rewetting of pressurized tap water) defined by the weight of water that has re-exuded from the highly water-absorbent resin into the filter paper is 1.0 g or less, or 0.9 g or less, or It can be 0.8 g or less. The smaller the value of the water, the better, and the theoretical lower limit is 0 g, but it can be, for example, 0.1 g or more, 0.2 g or more, or 0.3 g or more.

前記再湿潤物性評価で使用した水道水は電気伝導度が140〜150μS/cmである。水道水の電気伝導度は測定物性に大きな影響を与えるので、同等水準の電気伝導度を有する水道水を使用して再湿潤などの物性を測定する必要がある。 The tap water used in the rewetting property evaluation has an electric conductivity of 140 to 150 μS / cm. Since the electric conductivity of tap water has a great influence on the measured physical properties, it is necessary to measure the physical properties such as rewetting using tap water having the same level of electric conductivity.

上記のように本発明の高吸水性樹脂は、優れた吸収能を有し、多量の小便を吸収した場合にも再湿潤および小便漏出現象を抑制することができる。 As described above, the superabsorbent polymer of the present invention has an excellent absorbency and can suppress the rewetting and urine leakage phenomena even when a large amount of urine is absorbed.

本発明を下記の実施例でより詳細に説明する。ただし、下記の実施例は本発明を例示するだけであり、本発明の詳細な説明は下記の実施例によって限定されない。 The present invention will be described in more detail with reference to the following examples. However, the following examples merely illustrate the present invention, and the detailed description of the present invention is not limited to the following examples.

[高吸水性樹脂の製造]
(実施例1)
(1)ベース樹脂の製造
攪拌機、窒素投入器、温度計が取り付けられた3Lガラス容器にアクリル酸518g、ポリエチレングリコールジアクリレート(Polyethyleneglycol (400) diacrylate)3.2gとジフェニル(2,4,6−トリメチルベンゾイル)−ホスフィンオキシド0.04gを添加して溶解させた後、24.5%水酸化ナトリウム溶液822.2gを添加して窒素を連続的に投入しながら水溶性不飽和単量体水溶液を製造した。前記水溶性不飽和単量体水溶液を40℃で冷却した。この水溶液500gを横250mm、縦250mm、高さ30mmのステンレス材質の容器に加えて紫外線を照射(照射量:10mV/cm)して90秒間UV重合を実施して含水ゲル状重合体を収得した。収得した含水ゲル状重合体を2mm*2mm大きさに粉砕した後、得られたゲル状樹脂を600μmの孔径を有するステンレス製金網の上に約30mm厚さで広げて180℃熱風オーブンで30分間乾燥した。このように得られた乾燥重合体を粉砕機を用いて粉砕し、ASTM規格の標準網ふるいで分級して150〜850μmの粒子の大きさを有するベース樹脂を得た。
[Manufacturing of super absorbent polymer]
(Example 1)
(1) Production of base resin 518 g of acrylic acid, 3.2 g of polyethylene glycol diacrylate (400) diacrylate, and diphenyl (2,4,6-) in a 3 L glass container equipped with a stirrer, nitrogen input device, and thermometer. After adding 0.04 g of trimethylbenzoyl) -phosphine oxide to dissolve it, add 822.2 g of a 24.5% sodium hydroxide solution to continuously add nitrogen to make a water-soluble unsaturated monomer aqueous solution. Manufactured. The aqueous solution of the water-soluble unsaturated monomer was cooled at 40 ° C. 500 g of this aqueous solution is added to a stainless steel container having a width of 250 mm, a length of 250 mm and a height of 30 mm, and irradiated with ultraviolet rays (irradiation amount: 10 mV / cm 2 ) to carry out UV polymerization for 90 seconds to obtain a hydrogel-like polymer. bottom. After crushing the obtained hydrogel-like polymer to a size of 2 mm * 2 mm, the obtained gel-like resin is spread on a stainless steel wire mesh having a pore size of 600 μm to a thickness of about 30 mm and placed in a 180 ° C. hot air oven for 30 minutes. It was dry. The dried polymer thus obtained was pulverized using a pulverizer and classified by an ASTM standard standard mesh sieve to obtain a base resin having a particle size of 150 to 850 μm.

(2)高吸水性樹脂の製造
前記ベース樹脂100重量部にシリカ0.1重量部を乾式で混合した後、エチレングリコールジグリシジルエーテル(エポキシ当量113〜125g/eq)0.02重量部、グリセロールポリグリシジルエーテル(エポキシ当量135〜155g/eq、3官能性)0.01重量部、水6.2重量部、硫酸アルミニウム0.2重量部、グリセリルステアレート(HLB 3.8)0.03重量部を含む表面架橋溶液を噴射して混合し、これを攪拌機と二重ジャケットからなる容器に入れて140℃で35分間表面架橋反応を行った。その後表面処理された粉末をASTM規格の標準網ふるいで分級して150〜850μmの粒子の大きさを有する高吸水性樹脂粉末を得た。
(2) Production of highly water-absorbent resin After mixing 0.1 part by weight of silica dryly with 100 parts by weight of the base resin, 0.02 part by weight of ethylene glycol diglycidyl ether (epoxy equivalent 113 to 125 g / eq), glycerol. Polyglycidyl ether (epoxy equivalent 135-155 g / eq, trifunctional) 0.01 parts by weight, 6.2 parts by weight of water, 0.2 parts by weight of aluminum sulfate, 0.03 parts by weight of glyceryl stearate (HLB 3.8) A surface cross-linking solution containing a portion was sprayed and mixed, and this was placed in a container consisting of a stirrer and a double jacket to carry out a surface cross-linking reaction at 140 ° C. for 35 minutes. Then, the surface-treated powder was classified by an ASTM standard mesh sieve to obtain a superabsorbent polymer powder having a particle size of 150 to 850 μm.

(実施例2)
(2)段階でグリセロールポリグリシジルエーテルをベース樹脂100重量部に対して0.005重量部で使用したことを除いては実施例1と同様の方法で高吸水性樹脂粉末を得た。
(Example 2)
A highly water-absorbent resin powder was obtained by the same method as in Example 1 except that glycerol polyglycidyl ether was used in an amount of 0.005 part by weight based on 100 parts by weight of the base resin in the step (2).

(実施例3)
(2)段階でグリセロールポリグリシジルエーテルをベース樹脂100重量部に対して0.03重量部で使用したことを除いては実施例1と同様の方法で高吸水性樹脂粉末を得た。
(Example 3)
A highly water-absorbent resin powder was obtained by the same method as in Example 1 except that glycerol polyglycidyl ether was used in an amount of 0.03 part by weight based on 100 parts by weight of the base resin in the step (2).

(実施例4)
(2)段階でグリセロールポリグリシジルエーテルをベース樹脂100重量部に対して0.05重量部で使用したことを除いては実施例1と同様の方法で高吸水性樹脂粉末を得た。
(Example 4)
A highly water-absorbent resin powder was obtained in the same manner as in Example 1 except that glycerol polyglycidyl ether was used in an amount of 0.05 parts by weight based on 100 parts by weight of the base resin in the step (2).

(実施例5)
(2)段階でグリセロールポリグリシジルエーテルの代わりにポリグリセロールポリグリシジルエーテル(エポキシ当量168g/eq)をベース樹脂100重量部に対して0.01重量部で使用したことを除いては実施例1と同様の方法で高吸水性樹脂粉末を得た。
(Example 5)
Example 1 and Example 1 except that polyglycerol polyglycidyl ether (epoxy equivalent 168 g / eq) was used in 0.01 parts by weight with respect to 100 parts by weight of the base resin in the step (2) instead of glycerol polyglycidyl ether. A highly water-absorbent resin powder was obtained by the same method.

(実施例6)
(2)段階でグリセロールポリグリシジルエーテルの代わりにソルビトールポリグリシジルエーテル(エポキシ当量160〜190g/eq)をベース樹脂100重量部に対して0.01重量部で使用したことを除いては実施例1と同様の方法で高吸水性樹脂粉末を得た。
(Example 6)
Example 1 except that sorbitol polyglycidyl ether (epoxy equivalent 160 to 190 g / eq) was used in 0.01 parts by weight with respect to 100 parts by weight of the base resin in the step (2) instead of glycerol polyglycidyl ether. A highly water-absorbent resin powder was obtained in the same manner as in the above method.

(比較例1)
(1)ベース樹脂の製造
攪拌機、窒素投入器、温度計が取り付けられた3Lガラス容器にアクリル酸518g、ポリエチレングリコールジアクリレート(Polyethyleneglycol (400)diacrylate)3.2gとジフェニル(2,4,6−トリメチルベンゾイル)−ホスフィンオキシド0.04gを添加して溶解させた後、24.5%水酸化ナトリウム溶液822.2gを添加して窒素を連続的に投入しながら水溶性不飽和単量体水溶液を製造した。前記水溶性不飽和単量体水溶液を40℃で冷却した。この水溶液500gを横250mm、縦250mm、高さ30mmのステンレス材質の容器に加えて紫外線を照射(照射量:10mV/cm)して90秒間UV重合を実施して含水ゲル状重合体を収得した。収得した含水ゲル状重合体を2mm*2mm大きさに粉砕した後、得られたゲル状樹脂を600μmの孔径を有するステンレス製金網の上に約30mm厚さで広げて180℃熱風オーブンで30分間乾燥した。このように得られた乾燥重合体を粉砕機を用いて粉砕し、ASTM規格の標準網ふるいで分級して150〜850μmの粒子の大きさを有するベース樹脂を得た。
(Comparative Example 1)
(1) Production of base resin 518 g of acrylic acid, 3.2 g of polyethylene glycol diacrylate (400) diacrylate, and diphenyl (2,4,6-) in a 3 L glass container equipped with a stirrer, nitrogen input device, and thermometer. After adding 0.04 g of trimethylbenzoyl) -phosphine oxide to dissolve it, add 822.2 g of a 24.5% sodium hydroxide solution to continuously add nitrogen to make a water-soluble unsaturated monomer aqueous solution. Manufactured. The aqueous solution of the water-soluble unsaturated monomer was cooled at 40 ° C. 500 g of this aqueous solution is added to a stainless steel container having a width of 250 mm, a length of 250 mm and a height of 30 mm, and irradiated with ultraviolet rays (irradiation amount: 10 mV / cm 2 ) to carry out UV polymerization for 90 seconds to obtain a hydrogel-like polymer. bottom. After crushing the obtained hydrogel-like polymer to a size of 2 mm * 2 mm, the obtained gel-like resin is spread on a stainless steel wire mesh having a pore size of 600 μm to a thickness of about 30 mm and placed in a 180 ° C. hot air oven for 30 minutes. It was dry. The dried polymer thus obtained was pulverized using a pulverizer and classified by an ASTM standard standard mesh sieve to obtain a base resin having a particle size of 150 to 850 μm.

(2)高吸水性樹脂の製造
前記ベース樹脂100重量部にシリカ0.1重量部を乾式で混合した後、エチレングリコールジグリシジルエーテル(エポキシ当量113〜125g/eq)0.02重量部、水6.2重量部、硫酸アルミニウム0.2重量部、グリセリルステアレート(HLB 3.8)0.03重量部を含む表面架橋溶液を噴射して混合し、これを攪拌機と二重ジャケットからなる容器に入れて140℃で35分間表面架橋反応を行った。その後表面処理された粉末をASTM規格の標準網ふるいで分級して150〜850μmの粒子の大きさを有する高吸水性樹脂粉末を得た。
(2) Production of highly water-absorbent resin After mixing 0.1 part by weight of silica dryly with 100 parts by weight of the base resin, 0.02 part by weight of ethylene glycol diglycidyl ether (epoxy equivalent 113 to 125 g / eq), water. A surface cross-linked solution containing 6.2 parts by weight, 0.2 parts by weight of aluminum sulfate, and 0.03 parts by weight of glyceryl stearate (HLB 3.8) is sprayed and mixed, and this is mixed by a container consisting of a stirrer and a double jacket. The surface cross-linking reaction was carried out at 140 ° C. for 35 minutes. Then, the surface-treated powder was classified by an ASTM standard mesh sieve to obtain a superabsorbent polymer powder having a particle size of 150 to 850 μm.

(比較例2)
(2)段階でエチレングリコールジグリシジルエーテルをベース樹脂100重量部に対して0.03重量部で使用したことを除いては比較例1と同様の方法で高吸水性樹脂粉末を得た。
(Comparative Example 2)
A highly water-absorbent resin powder was obtained in the same manner as in Comparative Example 1 except that ethylene glycol diglycidyl ether was used in an amount of 0.03 part by weight based on 100 parts by weight of the base resin in the step (2).

(比較例3)
(2)段階でエチレングリコールジグリシジルエーテルをベース樹脂100重量部に対して0.05重量部で使用したことを除いては比較例1と同様の方法で高吸水性樹脂粉末を得た。
(Comparative Example 3)
A highly water-absorbent resin powder was obtained in the same manner as in Comparative Example 1 except that ethylene glycol diglycidyl ether was used in an amount of 0.05 parts by weight based on 100 parts by weight of the base resin in the step (2).

<実験例>
前記実施例および比較例で製造した高吸水性樹脂に対して、次のような方法で物性を評価した。
<Experimental example>
The physical properties of the superabsorbent polymers produced in the above Examples and Comparative Examples were evaluated by the following methods.

他に表記しない限り、下記物性評価は、いずれも恒温恒湿(23±1℃,相対湿度50±10%)で行い、生理食塩水または塩水は0.9重量%塩化ナトリウム(NaCl)水溶液を意味する。 Unless otherwise stated, all of the following physical property evaluations are performed at constant temperature and humidity (23 ± 1 ° C., relative humidity 50 ± 10%), and for physiological saline or salt water, use a 0.9 wt% sodium chloride (NaCl) aqueous solution. means.

また、下記再湿潤物性評価で使用した水道水は、Orion Star A222(Thermo Scientific社製)を用いて測定したとき、電気伝導度が140〜150μS/cmであるものを使用した。 The tap water used in the following re-wet property evaluation was one having an electrical conductivity of 140 to 150 μS / cm when measured using Orion Star A222 (manufactured by Thermo Scientific).

(1)遠心分離保持能(CRC:Centrifuge Retention Capacity)
各樹脂の無荷重下吸収倍率による保持能をEDANA WSP 241.3に準拠して測定した。
(1) Centrifugal Retention Capacity (CRC)
The holding capacity of each resin under no load absorption ratio was measured according to EDANA WSP 241.3.

具体的には、高吸水性樹脂W(g)(約0.2g)を不織布製の封筒に均一に入れて密封(seal)した後、常温で生理食塩水(0.9重量%)に浸水させた。30分経過後、遠心分離機を用いて250gの条件下で前記封筒から3分間水気を取り、封筒の質量W(g)を測定した。また、樹脂を使用せずに同じ操作をした後、その時の質量W(g)を測定した。得られた各質量を用いて次のような式によりCRC(g/g)を算出した。 Specifically, the super absorbent polymer W 0 (g) (about 0.2 g) is uniformly placed in a non-woven fabric envelope, sealed, and then made into physiological saline (0.9% by weight) at room temperature. It was flooded. After 30 minutes, the envelope was drained for 3 minutes under the condition of 250 g using a centrifuge, and the mass W 2 (g) of the envelope was measured. Further, after performing the same operation without using a resin, the mass W 1 (g) at that time was measured. Using each mass obtained, CRC (g / g) was calculated by the following formula.

Figure 0006973874
Figure 0006973874

(2)吸収速度(Vortex time)
吸収速度(vortex time)は、国際公開出願第1987−003208号に記載された方法に準じて秒単位で測定した。
(2) Absorption rate (Vortex time)
The absorption time was measured in seconds according to the method described in International Publication No. 1987-003208.

具体的には、23℃の50mLの生理食塩水に2gの高吸水性樹脂を入れて、マグネットバー(直径8mm、長さ30mm)を600rpmで攪拌して渦流(vortex)が消えるまでの時間を秒単位で測定して算出された。 Specifically, 2 g of highly water-absorbent resin is put in 50 mL of physiological saline at 23 ° C., and the magnet bar (diameter 8 mm, length 30 mm) is stirred at 600 rpm until the vortex disappears. Calculated by measuring in seconds.

(3)加圧吸水能(AUP:Absorption Under Pressure)
各樹脂の0.3psiの加圧吸水能を、EDANA法WSP 242.3に準拠して測定した。
(3) Pressurized water absorption capacity (AUP: Absorption Under Pressure)
The pressurized water absorption capacity of 0.3 psi of each resin was measured according to the EDANA method WSP 242.3.

具体的には、内径60mmのプラスチックの円筒底にステンレス製400 mesh金網を取り付けた。常温および湿度50%の条件下で金網上に高吸水性樹脂W(g)(0.90g)を均一に散布し、その上に0.3psiの荷重を均一にさらに付与できるピストンは外径60mmより若干小さく、円筒の内壁との隙間がなく、上下動きが妨げられないようにした。このとき、前記装置の重量W(g)を測定した。
直径150mmのペトリ皿の内側に直径90mmおよび厚さ5mmのガラスフィルタを置き、0.9重量%塩化ナトリウムで構成された生理食塩水をガラスフィルタの上面と同一レベルになるようにした。その上に直径90mmの濾過紙1枚を載せた。濾過紙上に前記測定装置を載せて、液を荷重下で1時間吸収させた。1時間後測定装置を持ち上げて、その重量W(g)を測定した。
Specifically, a stainless steel 400 mesh wire mesh was attached to the bottom of a plastic cylinder having an inner diameter of 60 mm. The outer diameter of the piston that can evenly spray the highly water-absorbent resin W 0 (g) (0.90 g) on the wire mesh under the conditions of normal temperature and humidity 50% and further apply a load of 0.3 psi evenly on it. It is slightly smaller than 60 mm, and there is no gap with the inner wall of the cylinder so that the vertical movement is not hindered. At this time, the weight W 3 (g) of the device was measured.
A glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a Petri dish having a diameter of 150 mm so that a saline solution composed of 0.9% by weight sodium chloride was at the same level as the upper surface of the glass filter. A sheet of filter paper having a diameter of 90 mm was placed on it. The measuring device was placed on a filter paper, and the liquid was absorbed under a load for 1 hour. After 1 hour, the measuring device was lifted and its weight W 4 (g) was measured.

得られた各質量を用いて次の式により加圧吸水能(g/g)を算出した。 The pressurized water absorption capacity (g / g) was calculated by the following formula using each mass obtained.

Figure 0006973874
Figure 0006973874

(4)通液性(Permeability)
クロマトグラフィー管(F20mm)にピストンを入れた状態での液量20mLおよび40mLの液面に線を表示した。その後、クロマトグラフィー管下部のガラスフィルタとコックとの間に気泡が生じないように逆に水を投入して約10mLを満たして塩水で2〜3回洗浄し、40mL以上まで0.9%塩水を満たした。クロマトグラフィー管にピストンを入れて下部弁を開いて液面が40mLから20mL表示線まで減る時間(B)を記録した。
(4) Permeability
Lines were displayed on the liquid levels of 20 mL and 40 mL with the piston placed in the chromatography tube (F20 mm). After that, water is poured in the opposite direction so that bubbles do not occur between the glass filter at the bottom of the chromatography tube and the cock, fill about 10 mL, wash with salt water 2-3 times, and 0.9% salt water up to 40 mL or more. Meet. The time (B) was recorded when the piston was placed in the chromatography tube and the lower valve was opened and the liquid level decreased from 40 mL to the 20 mL display line.

クロマトグラフィー管に塩水を10mL残し、分級(300〜600μm)した高吸水性樹脂試料0.2±0.0005gを入れて塩水を加えて塩水体積が50mLになるようにした後、30分間放置した。その後、クロマトグラフィー管内に重り付きのピストン(0.3psi=106.26g)を入れて1分間放置後、クロマトグラフィー管の下部弁を開いて液面が40mLから20mL表示線まで減る時間(T1)を記録して、T1−Bの時間(単位:秒)を計算した。 Leave 10 mL of salt water in the chromatography tube, add 0.2 ± 0.0005 g of the classified (300 to 600 μm) highly water-absorbent resin sample, add salt water to make the salt water volume 50 mL, and then leave it for 30 minutes. .. Then, a piston with a weight (0.3 psi = 106.26 g) is placed in the chromatography tube and left for 1 minute, and then the lower valve of the chromatography tube is opened to reduce the liquid level from 40 mL to the 20 mL display line (T1). Was recorded, and the time (unit: seconds) of T1-B was calculated.

(5)加圧水道水の長期再湿潤(2hrs)
(1)直径13cmペトリ皿(petri dish)に高吸水性樹脂4gを均一に撒いて分散させて水道水200gを注いだ後2時間膨潤させた。
(5) Long-term rewetting of pressurized tap water (2hrs)
(1) 4 g of a highly water-absorbent resin was uniformly sprinkled on a Petri dish having a diameter of 13 cm, dispersed, and 200 g of tap water was poured and then swollen for 2 hours.

(2)2時間膨潤させた高吸水性樹脂をフィルタペーパー(whatman社製,catalog No.1004−110,pore size 20−25μm、直径11cm)20枚上に敷いて直径11cm、5kgの重り(0.75psi)で1分間加圧した。 (2) A highly water-absorbent resin that has been swollen for 2 hours is laid on 20 sheets of filter paper (catalog No. 1004-110, pore size 20-25 μm, diameter 11 cm) manufactured by hatman, and a weight of 11 cm in diameter and 5 kg (0). Pressurized at .75 psi) for 1 minute.

(3)1分間加圧後フィルタペーパーに付いた水道水の量(単位:g)を測定した。 (3) After pressurizing for 1 minute, the amount of tap water (unit: g) attached to the filter paper was measured.

前記実施例と比較例に関する物性値を下記表1に記載した。 The physical property values of the Examples and Comparative Examples are shown in Table 1 below.

Figure 0006973874
Figure 0006973874

表1を参照すると、本発明の実施例1〜6はいずれも優れた再湿潤特性および通液性を示すことを確認することができる。これに対し、エポキシ当量が100g/eq以上130g/eq未満である第1エポキシ架橋剤のみを使用した比較例1〜2は通液性および再湿潤特性が実施例より良くないことがわかる。すなわち、同量のエポキシ系表面架橋剤を使用した場合を比較するとき、比較例に比べて実施例の場合が優れた通液性および再湿潤特性を示すことが確認された。
With reference to Table 1, it can be confirmed that all of Examples 1 to 6 of the present invention exhibit excellent rewetting properties and liquid permeability. On the other hand, it can be seen that Comparative Examples 1 and 2 using only the first epoxy cross-linking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq are not better in liquid permeability and rewetting characteristics than the examples. That is, when comparing the cases where the same amount of the epoxy-based surface cross-linking agent was used, it was confirmed that the case of the example showed excellent liquid permeability and rewetting characteristics as compared with the comparative example.

Claims (13)

酸性基を有し、前記酸性基の少なくとも一部が中和されたアクリル酸系単量体および内部架橋剤が架橋重合されたベース樹脂(base resin)を準備する段階(段階1);
前記ベース樹脂に、無機フィラー、エポキシ系表面架橋剤および多価金属塩を混合し、前記無機フィラーを先に前記ベース樹脂に乾式で混合し、次いでエポキシ系表面架橋剤および多価金属塩を水に溶解して表面架橋溶液状態にて混合する段階(段階2);および
前記段階2の混合物を昇温して前記ベース樹脂に対する表面改質を行う段階(段階3)を含み、
前記エポキシ系表面架橋剤は、エポキシ当量が100g/eq以上130g/eq未満である第1エポキシ架橋剤およびエポキシ当量が130〜200g/eqである第2エポキシ架橋剤を含むものであり、
前記第1エポキシ架橋剤はベース樹脂100重量部に対して0.02〜0.05重量部で含まれ、第2エポキシ架橋剤はベース樹脂100重量部に対して0.005〜0.05重量部で含まれる、高吸水性樹脂の製造方法。
A step of preparing a base resin (base resin) having an acidic group and having an acrylic acid-based monomer in which at least a part of the acidic group is neutralized and an internal cross-linking agent cross-linked and polymerized (step 1);
The base resin, an inorganic filler, e epoxy based surface crosslinking agent and a mixture of polyvalent metal salt, the inorganic filler were mixed in dry forward to the base resin, followed by an epoxy-based surface-crosslinking agent and a polyvalent metal salt It comprises a step of dissolving in water and mixing in a surface crosslinked solution state (step 2); and a step of raising the temperature of the mixture of the step 2 to perform surface modification on the base resin (step 3).
The epoxy surface crosslinking agent state, and are not the first epoxy crosslinking agent and an epoxy equivalent of the epoxy equivalent is less than 100 g / eq or more 130 g / eq includes a second epoxy crosslinking agent is a 130~200g / eq,
The first epoxy cross-linking agent is contained in an amount of 0.02 to 0.05 parts by weight based on 100 parts by weight of the base resin, and the second epoxy cross-linking agent is contained in an amount of 0.005 to 0.05 parts by weight based on 100 parts by weight of the base resin. A method for producing a superabsorbent polymer contained in a part.
第1エポキシ架橋剤は、エチレングリコールジグリシジルエーテル(ethyleneglycol diglycidyl ether)およびジエチレングリコールジグリシジルエーテル(diethyleneglycol diglycidyl ether)からなる群より選ばれる1種以上である、請求項に記載の高吸水性樹脂の製造方法。 The highly water-absorbent resin according to claim 1 , wherein the first epoxy cross-linking agent is one or more selected from the group consisting of ethylene glycol diglycidyl ether and diethylene glycol diglycidyl ether. Production method. 第2エポキシ架橋剤は、グリセロールポリグリシジルエーテル(glycerol polyglycidyl ether)、ジグリセロールポリグリシジルエーテル(diglycerol polyglycidyl ether)、ポリグリセロールポリグリシジルエーテル(polyglycerol polyglycidyl ether)およびソルビトールポリグリシジルエーテル(sorbitol polyglycidyl ether)からなる群より選ばれる1種以上である、請求項1または2に記載の高吸水性樹脂の製造方法。 The second epoxy cross-linking agent is glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether (polyglyceryl polyester) The method for producing a highly water-absorbent resin according to claim 1 or 2 , which is one or more selected from the group. 前記段階2において、HLBが0以上6以下の疎水性物質をさらに混合する、請求項1〜のいずれかに記載の高吸水性樹脂の製造方法。 The method for producing a superabsorbent polymer according to any one of claims 1 to 3 , wherein in the step 2, a hydrophobic substance having an HLB of 0 or more and 6 or less is further mixed. 前記疎水性物質は、グリセリルステアレート(glyceryl stearate)、グリコールステアレート(glycol stearate)、マグネシウムステアレート(magnesium stearate)、グリセリルラウレート(glyceryl laurate)、ソルビタンステアレート(sorbitan stearate)、ソルビタントリオレート(sorbitan trioleate)、およびPEG−4ジラウレート(PEG−4 dilaurate)からなる群より選ばれる1種以上を含む、請求項に記載の高吸水性樹脂の製造方法。 The hydrophobic substances include glyceryl stearate, glycol stearate, magnesium stearate, glyceryl laurate, sorbitan stearate, and sorbitan stearate. The method for producing a highly water-absorbent resin according to claim 4 , which comprises at least one selected from the group consisting of sterbitan trioleate) and PEG-4 dilaurate. 前記疎水性物質は、前記ベース樹脂100重量部に対して0.001〜0.5重量部で混合する、請求項またはに記載の高吸水性樹脂の製造方法。 The method for producing a highly water-absorbent resin according to claim 4 or 5 , wherein the hydrophobic substance is mixed in an amount of 0.001 to 0.5 parts by weight with respect to 100 parts by weight of the base resin. 前記段階3は、120〜190℃の温度で行う、請求項1〜のいずれかに記載の高吸水性樹脂の製造方法。 The method for producing a superabsorbent polymer according to any one of claims 1 to 6 , wherein the step 3 is performed at a temperature of 120 to 190 ° C. 前記段階1は、
酸性基を有し、前記酸性基の少なくとも一部が中和されたアクリル酸系単量体、内部架橋剤、および重合開始剤を含むモノマー組成物を重合して含水ゲル状重合体を形成する段階;
前記含水ゲル状重合体を乾燥する段階;
前記乾燥された重合体を粉砕する段階;および
前記粉砕された重合体を分級する段階を含む、請求項1〜のいずれかに記載の高吸水性樹脂の製造方法。
The first step is
A water-containing gel-like polymer is formed by polymerizing a monomer composition having an acidic group and containing at least a part of the acidic group neutralized with an acrylic acid-based monomer, an internal cross-linking agent, and a polymerization initiator. step;
The stage of drying the hydrogel polymer;
The method for producing a superabsorbent polymer according to any one of claims 1 to 7 , which comprises a step of pulverizing the dried polymer; and a step of classifying the pulverized polymer.
酸性基の少なくとも一部が中和されたアクリル酸系単量体が架橋重合された架橋重合体を含むベース樹脂;および
前記ベース樹脂の粒子表面に形成されており、前記架橋重合体がエポキシ当量が相異する2種のエポキシ系表面架橋剤を介して追加架橋されている二重の表面改質層を含み、
前記表面改質層は、無機フィラーおよび多価金属塩を含み、
前記2種のエポキシ系表面架橋剤は、エポキシ当量が100g/eq以上130g/eq未満である第1エポキシ架橋剤およびエポキシ当量が130〜200g/eqである第2エポキシ架橋剤を含み、
前記第1エポキシ架橋剤はベース樹脂100重量部に対して0.02〜0.05重量部で含まれ、第2エポキシ架橋剤はベース樹脂100重量部に対して0.005〜0.05重量部で含まれる、高吸水性樹脂。
A base resin containing a crosslinked polymer in which an acrylic acid-based monomer in which at least a part of an acidic group is neutralized is crosslinked and polymerized; and the crosslinked polymer is formed on the particle surface of the base resin and has an epoxy equivalent. Includes a double surface modification layer that is additionally crosslinked via two different epoxy-based surface crosslinkers.
The surface modification layer contains an inorganic filler and a polyvalent metal salt and contains.
The two epoxy-based surface-crosslinking agent is seen containing an epoxy equivalent second epoxy crosslinking agent first epoxy crosslinking agent and an epoxy equivalent weight less than 100 g / eq or more 130 g / eq is 130~200g / eq,
The first epoxy cross-linking agent is contained in an amount of 0.02 to 0.05 parts by weight based on 100 parts by weight of the base resin, and the second epoxy cross-linking agent is contained in an amount of 0.005 to 0.05 parts by weight based on 100 parts by weight of the base resin. Super absorbent polymer contained in the part.
前記高吸水性樹脂は、吸収速度(vortex time)が40秒以下である、請求項に記載の高吸水性樹脂。 The superabsorbent polymer according to claim 9 , wherein the superabsorbent polymer has an absorption time of 40 seconds or less. 前記高吸水性樹脂は、下記式1により測定される通液性(permeability、単位:秒)が35秒以下である、請求項または10に記載の高吸水性樹脂:
Figure 0006973874
前記式1において、
T1は、クロマトグラフィー管内に分級(300〜600μm)した高吸水性樹脂試料0.2±0.0005gを入れて塩水を加えて塩水体積が50mLになるようにした後、30分間放置後、液面高さが40mLから20mLまで減るのにかかる時間であり、Bは、塩水が満たされたクロマトグラフィー管で液面高さが40mLから20mLまで減るのにかかる時間である。
The superabsorbent polymer according to claim 9 or 10 , wherein the superabsorbent polymer has a permeability (unit: second) measured by the following formula 1 of 35 seconds or less.
Figure 0006973874
In the above formula 1,
For T1, put 0.2 ± 0.0005 g of a classified (300 to 600 μm) highly water-absorbent resin sample in a chromatography tube, add salt water to make the salt water volume 50 mL, leave it for 30 minutes, and then liquid. It is the time it takes for the surface height to decrease from 40 mL to 20 mL, and B is the time it takes for the liquid level height to decrease from 40 mL to 20 mL in a chromatographic tube filled with salt water.
前記高吸水性樹脂は、遠心分離保持能(CRC)が25g/g以上である、請求項11のいずれかに記載の高吸水性樹脂。 The superabsorbent polymer according to any one of claims 9 to 11 , wherein the superabsorbent polymer has a centrifugation retention capacity (CRC) of 25 g / g or more. 前記高吸水性樹脂は、前記高吸水性樹脂4gを水道水200gに浸漬させて2時間膨潤させた後、膨潤された前記高吸水性樹脂を0.75psiの圧力下に1分間濾過紙上で放置してから、前記高吸水性樹脂から前記濾過紙に再び染み出てきた水の重量で定義される再湿潤特性(加圧水道水の長期再湿潤)が1.0g以下である、請求項12のいずれかに記載の高吸水性樹脂。 The highly water-absorbent resin is obtained by immersing 4 g of the highly water-absorbent resin in 200 g of tap water and inflating it for 2 hours, and then leaving the swollen high water-absorbent resin on a filter paper for 1 minute under a pressure of 0.75 psi. Then, claim 9 to the rewetting property (long-term rewetting of pressurized tap water) defined by the weight of water that has exuded from the highly water-absorbent resin into the filter paper again is 1.0 g or less. The highly water-absorbent resin according to any one of 12.
JP2020518768A 2018-11-13 2019-09-17 Super absorbent polymer and its manufacturing method Active JP6973874B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20180139103 2018-11-13
KR10-2018-0139103 2018-11-13
KR1020190113734A KR102418591B1 (en) 2018-11-13 2019-09-16 Super absorbent polymer and preparation method for the same
KR10-2019-0113734 2019-09-16
PCT/KR2019/011994 WO2020101167A1 (en) 2018-11-13 2019-09-17 Superabsorbent polymer and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2021510741A JP2021510741A (en) 2021-04-30
JP6973874B2 true JP6973874B2 (en) 2021-12-01

Family

ID=70910392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020518768A Active JP6973874B2 (en) 2018-11-13 2019-09-17 Super absorbent polymer and its manufacturing method

Country Status (5)

Country Link
US (1) US11466131B2 (en)
EP (1) EP3680277A4 (en)
JP (1) JP6973874B2 (en)
KR (1) KR102418591B1 (en)
CN (1) CN111436201B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568226B1 (en) * 2017-12-11 2023-08-18 주식회사 엘지화학 Super absorbent polymer and preparation method for the same
KR102418591B1 (en) 2018-11-13 2022-07-07 주식회사 엘지화학 Super absorbent polymer and preparation method for the same
JP2024501988A (en) * 2021-06-18 2024-01-17 エルジー・ケム・リミテッド Super absorbent resin manufacturing method and super absorbent resin
WO2022265475A1 (en) * 2021-06-18 2022-12-22 주식회사 엘지화학 Preparation method of super absorbent polymer and super absorbent polymer
US20230381744A1 (en) * 2021-06-18 2023-11-30 Lg Chem, Ltd. Preparation method of superabsorbent polymer
WO2022265472A1 (en) * 2021-06-18 2022-12-22 주식회사 엘지화학 Preparation method of super absorbent polymer, and super absorbent polymer
WO2022265471A1 (en) * 2021-06-18 2022-12-22 주식회사 엘지화학 Preparation method of super absorbent polymer, and super absorbent polymer
BR112023025097A2 (en) * 2021-06-18 2024-02-20 Lg Chemical Ltd PREPARATION METHOD OF SUPERABSORBENT POLYMER AND SUPERABSORBENT POLYMER
WO2023075482A1 (en) * 2021-10-29 2023-05-04 주식회사 엘지화학 Super absorbent polymer composition and preparation method thereof

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US625488A (en) 1899-05-23 auspitz
US4755562A (en) 1986-06-10 1988-07-05 American Colloid Company Surface treated absorbent polymers
JPS60163956A (en) * 1984-02-04 1985-08-26 Arakawa Chem Ind Co Ltd Production of water-absorptive resin
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
JPH078882B2 (en) 1985-08-30 1995-02-01 花王株式会社 Manufacturing method of highly water-absorbent resin with excellent durability
KR920000785B1 (en) 1987-12-21 1992-01-23 한국과학기술원 Process for producing acrylic alkali metal salt absorbent resin having good properties
JPH0678390B2 (en) 1988-12-23 1994-10-05 東亞合成化学工業株式会社 Production of water-absorbing polymer
JPH0710922B2 (en) 1989-04-26 1995-02-08 日本合成化学工業株式会社 Granulation method of super absorbent polymer
JPH0710923B2 (en) 1989-05-24 1995-02-08 日本合成化学工業株式会社 Super absorbent polymer granulation method
JPH0639485B2 (en) 1989-06-27 1994-05-25 東亞合成化学工業株式会社 Water absorbent resin manufacturing method
JP2722695B2 (en) 1989-08-01 1998-03-04 東亞合成株式会社 Method for producing water-absorbing polymer
JPH03192142A (en) 1989-12-21 1991-08-22 Sumitomo Seika Chem Co Ltd Water-and moisture-absorbing composition and water-and moisture-absorbing material
AU7863091A (en) 1990-05-19 1991-12-10 Dow Chemical Company, The Water-absorbent resin particles for absorbent structures
DE69231774T2 (en) 1991-09-11 2001-11-22 Kimberly Clark Co Composite absorbent materials and absorbent articles containing them
JP3406019B2 (en) 1993-06-24 2003-05-12 積水化学工業株式会社 Method for producing modified polyvinyl acetal resin
DE4333056C2 (en) 1993-09-29 1998-07-02 Stockhausen Chem Fab Gmbh Powdery, aqueous liquid-absorbing polymers, processes for their preparation and their use as absorbents
US5610208A (en) 1994-02-17 1997-03-11 Nippon Shokubai Co., Ltd. Water-absorbent agent, method for production thereof, and water-absorbent composition
US5599335A (en) 1994-03-29 1997-02-04 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
JPH08157531A (en) 1994-12-07 1996-06-18 Nippon Synthetic Chem Ind Co Ltd:The Production of highly water-absorbing resin
JPH08157606A (en) 1994-12-07 1996-06-18 Nippon Synthetic Chem Ind Co Ltd:The Production of highly water-absorbing resin
DE19524724A1 (en) 1995-07-07 1997-01-09 Hoechst Ag Hydrophilic, highly swellable hydrogels
JPH0967522A (en) 1995-09-04 1997-03-11 Sanyo Chem Ind Ltd Production of water-absorbing resin
JPH10244151A (en) 1997-03-06 1998-09-14 Sanyo Chem Ind Ltd Production of water absorbent and water absorbent
DE19807502B4 (en) 1998-02-21 2004-04-08 Basf Ag Process for post-crosslinking hydrogels with 2-oxazolidinones, hydrogels made therefrom and their use
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
JPH11279287A (en) 1998-03-31 1999-10-12 Nippon Shokubai Co Ltd Water-absorption agent composition and its production
CA2342886A1 (en) 1998-10-15 2000-04-20 E.I. Du Pont De Nemours And Company Polymers, containing a fluorocyclobutyl ring and their preparation
EP0999238B1 (en) 1998-11-05 2008-07-09 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor
DE19854574A1 (en) 1998-11-26 2000-05-31 Basf Ag Process for post-crosslinking hydrogels with N-acyl-2-oxazolidinones
DE19854573A1 (en) 1998-11-26 2000-05-31 Basf Ag Process for post-crosslinking hydrogels with 2-oxo-tetrahydro-1,3-oxazines
DE19909653A1 (en) 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Powdery, crosslinked, aqueous liquids and blood-absorbing polymers, processes for their preparation and their use
DE19909838A1 (en) 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Powdery, crosslinked, aqueous liquids and blood-absorbing polymers, processes for their preparation and their use
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
CN1277583C (en) 2001-06-08 2006-10-04 株式会社日本触媒 Water-absorbing agent, its production and sanitary material
EP1563002B2 (en) 2002-10-25 2017-12-13 Evonik Degussa GmbH Absorbent polymer structure provided with an improved retention capacity and permeability
MXPA04009978A (en) 2003-02-10 2004-12-13 Nippon Catalytic Chem Ind Particulate water absorbent containing water absorbent resin as a main component.
US7169843B2 (en) 2003-04-25 2007-01-30 Stockhausen, Inc. Superabsorbent polymer with high permeability
EP1510229B1 (en) 2003-08-27 2010-07-14 Nippon Shokubai Co., Ltd. Process for production of surface-treated particulate water-absorbent resin
US7163966B2 (en) 2003-12-19 2007-01-16 Stockhausen, Inc. Superabsorbent polymer having increased rate of water absorption
KR100858387B1 (en) 2004-02-05 2008-09-11 가부시키가이샤 닛폰 쇼쿠바이 Particulate water absorbing agent and method for production thereof, and water absorbing article
JP4758669B2 (en) 2004-03-29 2011-08-31 株式会社日本触媒 Amorphous crushed particulate water-absorbing agent
WO2006078046A2 (en) 2005-01-18 2006-07-27 Nippon Shokubai Co., Ltd. Water absorbent and method for production thereof
JP5039513B2 (en) 2006-12-28 2012-10-03 花王株式会社 Absorbent articles
JP5959794B2 (en) 2007-03-05 2016-08-02 株式会社日本触媒 Water absorbing agent and method for producing the same
JP5162160B2 (en) * 2007-06-04 2013-03-13 サンダイヤポリマー株式会社 Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article
JP2009051952A (en) 2007-08-28 2009-03-12 San-Dia Polymer Ltd Absorptive resin particle, absorber, and absorptive article
US8318306B2 (en) 2008-01-30 2012-11-27 Evonik Stockhausen, Llc Superabsorbent polymer compositions having a triggering composition
JP5149654B2 (en) 2008-02-28 2013-02-20 サンダイヤポリマー株式会社 Absorbent resin particles and absorbent articles
BRPI0918389B1 (en) 2008-12-26 2019-05-07 San-Dia Polymers, Ltd ABSORBENT, ABSORBENT RESIN PARTICLE, ABSORBENT ARTICLE AND PROCESS FOR PRODUCING ABSORBENT RESIN PARTICLE
US8410221B2 (en) 2009-06-26 2013-04-02 Basf Se Process for producing water-absorbing polymer particles with low caking tendency and high absorption under pressure
CN102548654A (en) 2009-09-29 2012-07-04 株式会社日本触媒 Particulate water absorbent and process for production thereof
KR101763439B1 (en) 2009-11-27 2017-07-31 스미또모 세이까 가부시키가이샤 Process for production of water-absorbing resin particles, water-absorbing resin particles, water-stopping material, and absorbent article
JP5649336B2 (en) 2010-06-02 2015-01-07 Sdpグローバル株式会社 Method for producing absorbent resin particles
JP5731763B2 (en) 2010-06-24 2015-06-10 Sdpグローバル株式会社 Absorbent resin particles, absorber containing the same, and absorbent article
JP2011080069A (en) * 2010-11-04 2011-04-21 Sumitomo Seika Chem Co Ltd Water-absorbing resin
JP5511092B2 (en) 2011-10-07 2014-06-04 サミー株式会社 Pachinko machine
JP6013730B2 (en) 2011-12-27 2016-10-25 株式会社リブドゥコーポレーション Absorbent articles
JP2013213083A (en) 2012-03-30 2013-10-17 Kao Corp Modified water absorbing resin particle
JP6412298B2 (en) 2012-07-27 2018-10-24 株式会社リブドゥコーポレーション Absorbent articles
KR102269376B1 (en) * 2012-08-30 2021-06-25 가부시키가이샤 닛폰 쇼쿠바이 Particulate water-absorbing agent and method for manufacturing same
CN104703691B (en) 2012-10-03 2018-03-02 株式会社日本触媒 Water absorbing agent and its manufacture method
JP6226522B2 (en) 2012-11-30 2017-11-08 株式会社リブドゥコーポレーション Absorber and absorbent article using the same
US9302248B2 (en) 2013-04-10 2016-04-05 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
KR101680830B1 (en) * 2013-12-06 2016-11-29 주식회사 엘지화학 Super Absorbent Polymer Resin and the Method for Preparing of the Same
CN105814089B (en) 2013-12-11 2018-05-22 株式会社Lg化学 Super absorbent polymer resin and preparation method thereof
WO2015093594A1 (en) 2013-12-20 2015-06-25 株式会社日本触媒 Polyacrylic acid (salt) water absorbent, and method for producing same
JP2015178099A (en) * 2014-02-25 2015-10-08 日立化成株式会社 Water-absorbing resin particle, method of producing water-absorbing resin particle and absorber
US20150283284A1 (en) 2014-04-07 2015-10-08 Evonik Corporation Superabsorbent polymer having fast absorption
JP5893116B2 (en) 2014-07-11 2016-03-23 住友精化株式会社 Water absorbent resin and method for producing water absorbent resin
JP2016028131A (en) * 2014-07-11 2016-02-25 住友精化株式会社 Water-absorbent resin and water-absorbent resin production method
CN106715543B (en) 2014-09-29 2020-10-30 株式会社日本触媒 Water-absorbent resin powder and method for measuring elastic modulus of water-absorbent resin powder
KR101769100B1 (en) 2014-11-27 2017-08-30 주식회사 엘지화학 Super absorbent polymer with fast absorption rate under load and preparation method thereof
KR20160067725A (en) 2014-12-04 2016-06-14 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
KR102011926B1 (en) 2014-12-22 2019-08-20 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
KR101642497B1 (en) 2014-12-31 2016-07-25 한국기술교육대학교 산학협력단 The manufacturing method of super absorbent acrylate resin coated with poly(styrene-etyleneglycol acrylate) copolymer
US10285866B2 (en) 2015-01-16 2019-05-14 Lg Chem, Ltd. Super absorbent polymer
WO2016143739A1 (en) 2015-03-10 2016-09-15 Sdpグローバル株式会社 Method for producing aqueous liquid absorbent resin particles, and absorbent body and absorbent article
US11535689B2 (en) 2015-06-19 2022-12-27 Nippon Shokubai Co., Ltd. Poly (meth) acrylic acid (salt)-based particulate water-absorbing agent and production method therefor
KR101855351B1 (en) 2015-08-13 2018-05-04 주식회사 엘지화학 Preparation method for super absorbent polymer
KR101943031B1 (en) * 2016-02-25 2019-01-28 주식회사 엘지화학 Super absorbent polymer and method for preparation thereof
KR101958014B1 (en) 2016-03-14 2019-03-13 주식회사 엘지화학 Preparation method of super absorbent polymer
KR101959547B1 (en) 2016-03-25 2019-03-18 주식회사 엘지화학 Preparation method for super absorbent polymer
JP6692410B2 (en) 2016-03-28 2020-05-13 株式会社日本触媒 Particulate water absorbing agent
JP6980398B2 (en) * 2016-03-31 2021-12-15 株式会社日本触媒 Water absorbent and its manufacturing method
JP2017206646A (en) 2016-05-20 2017-11-24 Sdpグローバル株式会社 Water-absorptive resin particles and absorber and absorptive article containing the same
KR102077816B1 (en) 2016-10-12 2020-02-14 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
KR20180067940A (en) 2016-12-13 2018-06-21 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
KR102162500B1 (en) 2016-12-13 2020-10-06 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
KR102086053B1 (en) * 2016-12-13 2020-03-06 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
DE112016007373T5 (en) 2016-12-21 2019-07-11 Borgwarner Inc. FILTER CONSTRUCTION AT THE PRESSURE RELIEF VALVE FOR A HYDRAULIC SPANNER
KR102094453B1 (en) 2016-12-23 2020-03-27 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
WO2018147317A1 (en) * 2017-02-10 2018-08-16 Sdpグローバル株式会社 Water-absorbent resin particles, and absorber and absorbent article in which same are used
KR20200033897A (en) 2017-07-21 2020-03-30 코닝 인코포레이티드 Method and device for adjustable glass ribbon heat transfer
KR102565748B1 (en) 2017-12-11 2023-08-11 주식회사 엘지화학 Super absorbent polymer and preparation method for the same
KR102566286B1 (en) 2017-12-11 2023-08-11 주식회사 엘지화학 Super absorbent polymer and preparation method for the same
KR102418591B1 (en) 2018-11-13 2022-07-07 주식회사 엘지화학 Super absorbent polymer and preparation method for the same
KR102625756B1 (en) 2019-09-18 2024-01-16 주식회사 엘지화학 Super absorbent polymer and preparation method for the same

Also Published As

Publication number Publication date
JP2021510741A (en) 2021-04-30
CN111436201B (en) 2023-03-24
US11466131B2 (en) 2022-10-11
EP3680277A1 (en) 2020-07-15
US20210147640A1 (en) 2021-05-20
KR20200055648A (en) 2020-05-21
KR102418591B1 (en) 2022-07-07
CN111436201A (en) 2020-07-21
EP3680277A4 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6973874B2 (en) Super absorbent polymer and its manufacturing method
JP7038825B2 (en) Highly absorbent resin and its manufacturing method
US10807067B2 (en) Method for producing super absorbent polymer and super absorbent polymer
JP6837141B2 (en) Highly water-absorbent resin and its manufacturing method
JP7247187B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
JP7184443B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
CN108884240B (en) Method for producing superabsorbent polymer and superabsorbent polymer
JP7039105B2 (en) Highly absorbent resin and its manufacturing method
KR101680830B1 (en) Super Absorbent Polymer Resin and the Method for Preparing of the Same
JP7046413B2 (en) Highly absorbent resin and its manufacturing method
JP2022514512A (en) Highly absorbent resin and its manufacturing method
JP7191403B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
JP7305247B2 (en) Method for producing super absorbent polymer
JP2020500229A (en) Superabsorbent resin and method for producing the same
KR20180071933A (en) Super absorbent polymer and preparation method for the same
JP2022505023A (en) Highly water-absorbent resin composition and its manufacturing method
KR20230037444A (en) Preparation method for super absorbent polymer
KR20220049961A (en) Super absorbent polymer and its preparation method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20201005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211028

R150 Certificate of patent or registration of utility model

Ref document number: 6973874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157