WO2020101167A1 - Superabsorbent polymer and preparation method thereof - Google Patents

Superabsorbent polymer and preparation method thereof Download PDF

Info

Publication number
WO2020101167A1
WO2020101167A1 PCT/KR2019/011994 KR2019011994W WO2020101167A1 WO 2020101167 A1 WO2020101167 A1 WO 2020101167A1 KR 2019011994 W KR2019011994 W KR 2019011994W WO 2020101167 A1 WO2020101167 A1 WO 2020101167A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy
polymer
crosslinking agent
base resin
weight
Prior art date
Application number
PCT/KR2019/011994
Other languages
French (fr)
Korean (ko)
Inventor
허영재
남대우
박보희
김수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190113734A external-priority patent/KR102418591B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020518768A priority Critical patent/JP6973874B2/en
Priority to CN201980004784.6A priority patent/CN111436201B/en
Priority to US16/756,921 priority patent/US11466131B2/en
Priority to EP19863965.0A priority patent/EP3680277A4/en
Publication of WO2020101167A1 publication Critical patent/WO2020101167A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/12Hydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings

Definitions

  • the present invention relates to a super absorbent polymer and a method for manufacturing the same. More particularly, it relates to a super absorbent polymer having improved rewet characteristics and liquid permeability, and a method for manufacturing the same.
  • Super Absorbent Polymer is a synthetic polymer material that has the ability to absorb about 500 to 1,000 times its own weight, and SAM (Super Absorbency Material), AGM (Absorbent Gel) for each developer Material).
  • SAM Super Absorbency Material
  • AGM Absorbent Gel
  • the superabsorbent polymer as described above began to be put into practical use as a sanitary tool, and now, in addition to sanitary products such as children's paper diapers and sanitary napkins, soil repair agents for horticulture, civil engineering, construction materials, nursery sheets, and freshness retention agents in the food distribution field , And is widely used as a material for poultice.
  • these superabsorbent polymers are widely used in the field of sanitary materials such as diapers and sanitary napkins. For this purpose, it is necessary to exhibit high absorbency for moisture, etc., and the absorbed moisture should not escape even under external pressure. In addition to this, it is necessary to show good permeability by absorbing water and maintaining the shape well even in a volume expanded (swelled) state.
  • pressure may be applied to a hygiene material such as a diaper or a sanitary napkin according to a user's weight.
  • a hygiene material such as a diaper or a sanitary napkin according to a user's weight.
  • the superabsorbent polymer applied to sanitary materials such as diapers or sanitary napkins absorbs the liquid
  • some liquid absorbed in the superabsorbent polymer is re-wet. And, leakage of urine may occur.
  • an object of the present invention is to provide a super absorbent polymer and a manufacturing method thereof, in which re-wetting and urine leakage are suppressed.
  • step 1 Preparing a base resin having an acidic group and having at least a portion of the acidic group neutralized and an internal crosslinking agent crosslinked and polymerized (step 1);
  • the base resin, the base resin, an inorganic filler, and an epoxy-based surface crosslinking agent are mixed, but the inorganic filler is first dry-mixed to the base resin, and then the epoxy-based surface crosslinking agent is dissolved in water to form a surface crosslinking solution. Mixing with (step 2); And
  • step 3 Including the step of performing the surface modification to the base resin by heating the mixture of step 2 (step 3),
  • the epoxy-based surface crosslinking agent comprises a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq.
  • a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq
  • a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq.
  • a base resin comprising a crosslinked polymer obtained by crosslinking and polymerizing an acrylic acid monomer in which at least a part of the acidic group is neutralized;
  • the crosslinked polymer includes a double surface modification layer that is additionally crosslinked through two epoxy-based surface crosslinking agents having different epoxy equivalents,
  • the surface modification layer includes an inorganic filler
  • the two types of epoxy-based surface crosslinking agent include a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq, and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq. Provide resin.
  • the superabsorbent polymer of the present invention and a method for producing the superabsorbent polymer, it is possible to provide a superabsorbent polymer having excellent absorption properties while suppressing rewetting and urine leakage.
  • step 1 Preparing a base resin having an acidic group and having at least a portion of the acidic group neutralized and an internal crosslinking agent crosslinked and polymerized (step 1);
  • Step 2 Mixing an inorganic filler and an epoxy-based surface crosslinking agent in the base resin, but mixing the inorganic filler first in the base resin dryly, followed by dissolving an epoxy-based surface crosslinking agent in water and mixing in a surface crosslinking solution state ( Step 2); And
  • step 3 Including the step of performing the surface modification to the base resin by heating the mixture of step 2 (step 3),
  • the epoxy-based surface crosslinking agent includes a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq, and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq.
  • base resin or “base resin powder” is made of particles or powder by drying and pulverizing a polymer in which a water-soluble ethylenically unsaturated monomer is polymerized, or a surface modification described later or Refers to a polymer without performing a surface crosslinking step.
  • the hydrogel polymer obtained by the polymerization reaction of an acrylic acid monomer is marketed as a superabsorbent polymer that is a powdery product through processes such as drying, grinding, classification, and surface crosslinking.
  • the superabsorbent polymer obtained by the manufacturing method according to an embodiment of the present invention exhibits excellent water absorption performance due to excellent physical properties such as water retention capacity, pressure absorption capacity, and liquid permeability, and remains dry even after being swollen with brine. It has been confirmed that the urine absorbed by the superabsorbent polymer can effectively prevent rewet and urine leakage from re-embedding.
  • a monomer composition that is a raw material of the superabsorbent polymer has an acidic group and a monomer composition comprising an acrylic acid-based monomer, an internal crosslinking agent, and a polymerization initiator in which at least a portion of the acidic group is neutralized.
  • the monomer composition which is a raw material of the super absorbent polymer, has an acidic group and includes an acrylic acid-based monomer and a polymerization initiator in which at least a portion of the acidic group is neutralized.
  • the acrylic acid monomer is a compound represented by Formula 1 below:
  • R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the acrylic acid-based monomer includes at least one selected from the group consisting of acrylic acid, methacrylic acid and their monovalent metal salt, divalent metal salt, ammonium salt and organic amine salt.
  • the acrylic acid monomer may have an acidic group and at least a part of the acidic group may be neutralized.
  • the monomer may be partially neutralized with an alkali material such as sodium hydroxide, potassium hydroxide, or ammonium hydroxide.
  • the neutralization degree of the acrylic acid-based monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%.
  • the range of the neutralization degree can be adjusted according to the final physical properties. However, if the degree of neutralization is too high, the neutralized monomer may be precipitated and polymerization may be difficult to proceed smoothly. On the other hand, if the degree of neutralization is too low, it may exhibit properties such as elastic rubber that is not only poorly absorbed but also difficult to handle. have.
  • the concentration of the acrylic acid-based monomer may be from about 20 to about 60% by weight, preferably from about 40 to about 50% by weight relative to the monomer composition containing the raw material and solvent of the superabsorbent polymer, polymerization time and It may be an appropriate concentration in consideration of reaction conditions and the like. However, if the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and economic problems may occur. Conversely, if the concentration is too high, a part of the monomer precipitates or the grinding efficiency of the polymerized hydrogel polymer is low. Such problems may occur in the process and physical properties of the super absorbent polymer may be deteriorated.
  • the polymerization initiator used in polymerization in the superabsorbent polymer production method of the present invention is not particularly limited as long as it is generally used for the production of superabsorbent polymers.
  • the polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • a thermal polymerization initiator may be additionally included.
  • the photopolymerization initiator is a compound capable of forming radicals by light such as ultraviolet rays
  • the composition may be used without limitation.
  • the photopolymerization initiator includes, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine and one or more selected from the group consisting of alpha-aminoketone.
  • acylphosphine a commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used.
  • 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide
  • the photopolymerization initiator may be included in a concentration of about 0.01 to about 1.0% by weight relative to the monomer composition. If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow, and if the concentration of the photopolymerization initiator is too high, the molecular weight of the super absorbent polymer may be small and the properties may be uneven.
  • thermal polymerization initiator one or more selected from the initiator group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used.
  • the persulfate-based initiator are sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), ammonium persulfate (Ammonium persulfate; (NH 4 ) 2 S 2 O 8
  • examples of the azo-based initiator are 2, 2-azobis- (2-amidinopropane) dihydrochloride (2, 2-azobis (2-amidinopropane) dihydrochloride), 2 , 2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride (2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2- (carbamoyl azo) isobutyronit
  • the monomer composition includes an internal crosslinking agent as a raw material of a super absorbent polymer.
  • an internal crosslinking agent while having at least one functional group capable of reacting with the acrylic acid monomer, a crosslinking agent having at least one ethylenically unsaturated group;
  • a crosslinking agent having two or more functional groups capable of reacting with the substituents of the acrylic acid-based monomers and / or the substituents formed by hydrolysis of the monomers may be used.
  • the internal crosslinking agent is for crosslinking the interior of a polymer in which an acrylic acid monomer is polymerized, and is different from a surface crosslinking agent for crosslinking the surface of the polymer.
  • the internal crosslinking agent examples include N, N'-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, (meth) acrylate, and propylene glycol di (meth) acrylic Rate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate , Triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate, pentaerythritol tetra One or more selected from the group consisting of acrylate, triarylamine, ethylene
  • Such an internal crosslinking agent may be included in a concentration of about 0.01 to about 1.0% by weight relative to the monomer composition, thereby crosslinking the polymerized polymer.
  • the monomer composition of the super absorbent polymer may further include additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
  • Raw materials such as an acrylic acid-based monomer, a photopolymerization initiator, a thermal polymerization initiator, an internal crosslinking agent, and an additive having an acidic group and neutralizing at least a portion of the acidic group may be prepared in the form of a solution of a monomer composition dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation of its composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol Ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate and N, N-dimethylacetamide can be used in combination.
  • the solvent may be included in the remaining amount excluding the above-mentioned components with respect to the total content of the monomer composition.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and in general, when performing thermal polymerization, it can be carried out in a reactor having a stirring axis such as a kneader, and when performing photopolymerization, it is movable Although it may be carried out in a reactor equipped with a conveyor belt, the polymerization method described above is an example, and the present invention is not limited to the polymerization method described above.
  • a reactor such as a kneader having a stirring shaft may be supplied with hot air or heated to heat-polymerize the reactor to obtain a hydrogel polymer, depending on the shape of the stirring shaft provided in the reactor,
  • the hydrogel polymer discharged to the reactor outlet may be in the form of several centimeters to several millimeters.
  • the size of the hydrogel polymer obtained may vary depending on the concentration and injection speed of the monomer composition to be injected, and a hydrogel polymer having a weight average particle diameter of 2 to 50 mm can be usually obtained.
  • the shape of the hydrogel polymer usually obtained may be a hydrogel polymer on a sheet having a belt width.
  • the thickness of the polymer sheet varies depending on the concentration and the injection rate of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 5 cm can be obtained.
  • the monomer composition is supplied to such an extent that the thickness of the polymer on the sheet is too thin, production efficiency is low, which is undesirable.
  • the thickness of the polymer on the sheet exceeds 5 cm, due to the excessively thick thickness, the polymerization reaction does not occur evenly over the entire thickness. It may not.
  • the normal water content of the hydrogel polymer obtained in this way may be about 40 to about 80% by weight.
  • water content refers to a value obtained by subtracting the weight of the polymer in a dry state from the weight of the hydrogel polymer as the content of moisture to the total weight of the hydrogel polymer. Specifically, it is defined as a calculated value by measuring the weight loss due to evaporation of water in the polymer during the drying process by raising the temperature of the polymer through infrared heating.
  • the drying condition is a method of raising the temperature from room temperature to about 180 ° C and then maintaining it at 180 ° C.
  • the total drying time is set to 20 minutes including 5 minutes of the temperature rise step to measure the water content.
  • the step of coarsely pulverizing before drying may be further performed.
  • the used grinder is not limited in configuration, but specifically, a vertical cutter (Vertical pulverizer), a turbo cutter (Turbo cutter), a turbo grinder (Turbo grinder), a rotary cutting mill (Rotary cutter mill), cutting Cutter mill, disc mill, shred crusher, crusher, chopper, and disc cutter
  • a vertical cutter Very pulverizer
  • turbo cutter Turbo cutter
  • Turbo grinder turbo grinder
  • rotary cutting mill Rotary cutting mill
  • cutting Cutter mill disc mill
  • shred crusher crusher
  • chopper chopper
  • disc cutter rotary cutting mill
  • the grinding step may be pulverized such that the particle diameter of the hydrogel polymer is about 2 to about 10 mm.
  • the drying temperature of the drying step may be about 150 to about 250 °C.
  • the drying temperature is less than 150 ° C, the drying time is too long and there is a fear that the physical properties of the superabsorbent resin to be formed are lowered.
  • the drying temperature exceeds 250 ° C, only the polymer surface is dried excessively, and a subsequent grinding process is performed. In the fine powder may be generated, there is a fear that the physical properties of the superabsorbent polymer to be formed finally decreases. Therefore, preferably, the drying may be performed at a temperature of about 150 to about 200 ° C, more preferably at a temperature of about 160 to about 180 ° C.
  • process efficiency may be considered, and may be performed for about 20 to about 90 minutes, but is not limited thereto.
  • the drying method of the drying step may also be selected and used without limitation, as long as it is commonly used as a drying process for the hydrogel polymer. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the moisture content of the polymer after the drying step may be about 0.1 to about 10% by weight.
  • the polymer powder obtained after the grinding step may have a particle size of about 150 to about 850 ⁇ m.
  • the pulverizer used for pulverizing to such a particle size is specifically, a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill or a jog. A mill may be used, but the present invention is not limited to the examples described above.
  • a separate process of classifying the polymer powder obtained after pulverization according to the particle diameter may be performed, and the polymer powder may be subjected to a certain weight ratio according to the particle size range. You can classify as possible.
  • an inorganic filler and an epoxy-based surface crosslinking agent are mixed with the base resin (step 2).
  • a surface crosslinking reaction is performed on the pulverized polymer by mixing the dried and pulverized polymer, that is, a surface crosslinking solution containing a surface crosslinking agent in a base resin, and then heating the mixture by heating. Perform.
  • the surface crosslinking step is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a surface crosslinking agent, thereby forming a superabsorbent polymer having improved physical properties.
  • a surface crosslinking layer (surface modification layer) is formed on the surface of the pulverized polymer particles.
  • the surface crosslinking agent is applied to the surface of the superabsorbent polymer particles, so that the surface crosslinking reaction occurs on the surface of the superabsorbent polymer particles, which improves the crosslinkability on the surface of the particles without substantially affecting the inside of the particles. Therefore, the surface-crosslinked superabsorbent polymer particles have a higher degree of crosslinking near the surface than from the inside.
  • a compound capable of reacting with a functional group of the polymer for example, a polyhydric alcohol compound, an epoxy compound, a polyamine compound, a haloepoxy compound, a condensation product of a haloepoxy compound, an oxazoline compound, a polyvalent metal salt, Or it is known that an alkylene carbonate compound or the like can be used.
  • an epoxy-based surface crosslinking agent is used, and two epoxy-based surface crosslinking agents having different epoxy equivalents are mixed and used.
  • two types of epoxy-based surface crosslinking agents are mixed in this way, a crosslinking layer is formed on the surface of the superabsorbent polymer as a double layer, and accordingly, the water repellent property of the superabsorbent polymer is not deteriorated, and the water passes through quickly. Liquidity can be further improved.
  • a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq are used. do.
  • the first epoxy crosslinking agent may have an epoxy equivalent of 110 to 125 g / eq.
  • the first epoxy crosslinking agent is used to obtain an effect of improving the overall absorption property through primary surface crosslinking of the base resin. If the epoxy equivalent of the first epoxy crosslinking agent is less than 100 g / eq, the above-described effect cannot be sufficiently secured.
  • the first epoxy crosslinking agent is preferably a bifunctional crosslinking agent.
  • a bifunctional epoxy crosslinking agent is used as the first epoxy crosslinking agent, flexibility of the crosslinking chain can be secured, thereby maximizing the absorption performance of the superabsorbent polymer.
  • the content of the first epoxy crosslinking agent may be 0.01 to 0.1 parts by weight, or 0.02 to 0.05 parts by weight based on 100 parts by weight of the base resin. If the content of the first epoxy crosslinking agent is less than 0.01 part by weight based on 100 parts by weight of the base resin, sufficient surface crosslinking may not proceed, and there may be a problem of reduced pressure absorption capacity and liquid permeability. There may be a problem that the wetting characteristics are deteriorated.
  • Examples of the first epoxy crosslinking agent include one or more selected from the group consisting of ethylene glycol diglycidyl ether and diethylene glycol diglycidyl ether.
  • the second epoxy crosslinking agent has a higher epoxy equivalent than that of the first epoxy crosslinking agent, and the penetration depth of the second epoxy crosslinking agent is different from that of the first epoxy crosslinking agent upon surface crosslinking of the base resin. Therefore, when surface crosslinking is performed using the first epoxy crosslinking agent and the second epoxy crosslinking agent at the same time, an effect of double crosslinking of the base resin surface is obtained.
  • the epoxy equivalent of the second epoxy crosslinking agent is 135 g / eq or more, 150 g / eq or more, or 160 g / eq or more, and may be 195 g / eq or less, or 190 g / eq or less, but is not limited thereto. It does not work.
  • the content of the second epoxy crosslinking agent may be 0.001 to 0.1 parts by weight, or 0.005 to 0.05 parts by weight based on 100 parts by weight of the base resin. If the content of the second epoxy crosslinking agent is less than 0.001 part by weight based on 100 parts by weight of the base resin, a double surface crosslinking effect cannot be obtained, and if it exceeds 0.1 part by weight, the surface crosslinking strength is too strong, and there may be a problem of deterioration of rewetting properties. have.
  • Examples of the second epoxy crosslinking agent include glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether and sorbitol polyglycidyl. And one or more selected from the group consisting of sorbitol polyglycidyl ether.
  • the polyglycerol polyglycidyl ether may preferably be triglycerol polyglycidyl ether having three repeating units.
  • the second epoxy crosslinking agent may preferably include 3 or more or 3 or 4 epoxy functional groups.
  • a second epoxy crosslinking agent that satisfies the functional group number it is possible to additionally improve only the crosslinking strength of the outermost surface of the superabsorbent particles, and accordingly, the liquid permeability and rewetting properties of the superabsorbent resin may be further improved.
  • water When adding the epoxy-based surface crosslinking agent, water may be additionally mixed together and added in the form of a surface crosslinking solution.
  • water there is an advantage that the surface crosslinking agent can be evenly dispersed in the polymer.
  • the content of water to be added induces even dispersion of the surface crosslinking agent and prevents agglomeration of the polymer powder, and at the same time, for the purpose of optimizing the surface penetration depth of the surface crosslinking agent, about 1 to about 10 weight by weight of the polymer It is preferably added in a proportion of negative.
  • a multivalent metal salt for example, an aluminum salt, more specifically, may further include at least one selected from the group consisting of sulfate, potassium salt, ammonium salt, sodium salt, and hydrochloride salt of aluminum.
  • the liquid permeability of the superabsorbent polymer produced by the method of one embodiment can be further improved.
  • the polyvalent metal salt may be added to the surface crosslinking solution together with the surface crosslinking agent, and may be used in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the base resin.
  • an inorganic filler is mixed with a base resin before raising the temperature to perform a surface modification reaction, thereby providing an anti-caking effect.
  • the inorganic filler is mixed in a dry mixing method before mixing the surface crosslinking solution, in which case the base resin and the inorganic filler may be more uniformly mixed.
  • the inorganic filler may be mixed with either hydrophobic or hydrophilic, and for example, silica particles such as fumed silica and precipitated silica may be used, but the present invention is not limited thereto.
  • the inorganic filler may be added in a concentration of about 0.01 to about 0.5 parts by weight, or about 0.02 to about 0.2 parts by weight based on 100 parts by weight of the base resin or super absorbent polymer.
  • the amount of the inorganic filler exceeds 0.5 parts by weight, absorption characteristics such as pressure absorption capacity may be deteriorated, and when it is less than 0.01 parts by weight, there may be no effect of preventing aggregation, and thus it is preferable to use it in the range of parts by weight from this point of view. can do.
  • the pressure absorption capacity and permeability may be improved by the surface crosslinking reaction, but the rewetting characteristics need to be supplemented.
  • the manufacturing method of the present invention it is possible to further improve the rewetting property by mixing the base resin with a hydrophobic material in the base resin prior to heating to perform a surface crosslinking reaction by mixing a surface crosslinking agent.
  • the surface cross-linking efficiency is improved, so that the absorption rate and liquid permeability can be further improved compared to resins that do not use hydrophobic materials.
  • the hydrophobic material may be a material whose HLB is 0 or more, or 1 or more, or 2 or more as its lower limit, and 6 or less, or 5 or less, or 5.5 or less as its upper limit.
  • the hydrophobic material is melted during the surface cross-linking reaction and must be located in the surface-modified layer of the base resin, so a material having a melting point below the surface cross-linking reaction temperature may be used.
  • Hydrophobic materials that can be used include, for example, glyceryl stearate, glycol stearate, magnesium stearate, glyceryl laurate, sorbitan stearate stearate), sorbitan trioleate, or PEG-4 dilaurate, and the like, and preferably glyceryl stearate or glyceryl laurate.
  • the present invention is not limited to this.
  • the hydrophobic material is distributed in the surface modification layer of the surface of the base resin to prevent the swelling resin particles from agglomerating or agglomerating with each other according to the increased pressure in the process of absorbing the liquid and swelling the superabsorbent resin, and the hydrophobicity on the surface.
  • liquid permeation and diffusion can be made easier. Therefore, it can contribute to improving the re-wetting properties of the super absorbent polymer.
  • the hydrophobic material is at least about 0.001 part by weight, or at least about 0.005 part by weight, or at least about 0.01 part by weight, or less than about 0.5 part by weight, or about 0.3 part by weight or less, or about 0.1 part by weight relative to 100 parts by weight of the base resin It can mix so as to be the following. If the content of the hydrophobic material is too small, it may be insufficient to improve the rewetting properties, and if it is included too much, the base resin and the hydrophobic material may be detached from each other, so that there is no effect of improving rewetting or there may be a problem of acting as an impurity. In the range by weight may be preferred.
  • the method of mixing the hydrophobic material with the base resin is not particularly limited, but can be more uniformly coated on the superabsorbent polymer particles when mixed in a manner that is mixed with the base resin by dispersing it with the surface crosslinking agent in the surface crosslinking solution. desirable.
  • a surface modification step is performed on the base resin by heating the mixture of the base resin and the epoxy-based surface crosslinking agent by heating (step 3).
  • the surface modification step may be performed by heating at a temperature of about 120 to about 190 ° C, preferably about 130 to about 180 ° C for about 10 to about 90 minutes, preferably about 20 to about 70 minutes. If the cross-linking reaction temperature is less than 120 ° C or the reaction time is too short, the surface cross-linking reaction does not occur properly, and thus the permeability may be lowered. If the temperature exceeds 190 ° C or the reaction time is too long, a problem that water retention capacity may be lowered may occur.
  • the heating means for the surface modification reaction is not particularly limited.
  • the heating medium may be supplied or a heat source may be directly supplied to heat.
  • a heated fluid such as steam, hot air, and hot oil may be used, but the present invention is not limited to this
  • the temperature of the heat medium supplied is the means of the heat medium, the rate of temperature increase, and the temperature increase. It can be appropriately selected in consideration of the target temperature.
  • the heat source directly supplied may include a heating method through electricity or a gas, but the present invention is not limited to the above-described example.
  • a double surface crosslinking structure formed by reacting two different epoxy-based surface crosslinking agents with a functional group of the base resin is formed on the surface of the base resin, and the above-described surface crosslinking structure is used.
  • a surface modification layer evenly distributed with a hydrophobic material and an inorganic filler may be formed.
  • the superabsorbent polymer produced by the manufacturing method of the present invention can have improved rewetting and liquid permeability without deteriorating physical properties such as water retention capacity and pressure absorption capacity due to the dual surface modification layer.
  • a base resin comprising a crosslinked polymer in which an acrylic acid monomer in which at least a portion of an acidic group is neutralized is crosslinked; And a double surface modification layer formed on the particle surface of the base resin, wherein the crosslinking polymer is additionally crosslinked through two epoxy-based surface crosslinking agents having different epoxy equivalents, and the surface modification layer is an inorganic filler.
  • the two epoxy-based surface crosslinking agent includes a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq, and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq. Phosphorus, superabsorbent resin is provided.
  • the superabsorbent polymer has a water retention capacity (CRC) of about 25 g / g or more, or about 29 g / g or more, or about 30 g / g or more, and about 40 g / g or less, measured according to EDANA method WSP 241.3. , Or about 38 g / g or less, or about 35 g / g or less.
  • CRC water retention capacity
  • the superabsorbent polymer the pressure absorption capacity (AUP) of 0.3 psi measured in accordance with EDANA method WSP 242.3 is about 20 g / g or more, or about 23 g / g or more, or about 25 g / g or more, and about 37 g / g or less, or about 35 g / g or less, or about 32 g / g or less.
  • AUP pressure absorption capacity
  • the superabsorbent polymer may have a vortex time of 40 seconds or less, or 35 seconds or less, or about 32 seconds or less.
  • the absorption rate refers to a time (time, unit: second) in which a vortex of a liquid disappears due to rapid absorption when a superabsorbent resin is added to a physiological saline solution and stirred.
  • time time, unit: second
  • the superabsorbent polymer may have a permeability (unit: second) measured according to Equation 1 below about 35 seconds or less, or about 30 seconds or less.
  • T1 is 0.2 ⁇ 0.0005 g of a superabsorbent polymer sample (300 to 600 ⁇ m) classified in a chromatography tube, brine is added to make the volume of the brine 50 ml, and after standing for 30 minutes, the liquid level is 40 ml to 20 The time it takes to reduce to ml, and B is the time it takes for the liquid level to decrease from 40 ml to 20 ml in a saline-filled chromatography tube.
  • the superabsorbent polymer may exhibit excellent resorption characteristics while exhibiting excellent absorption characteristics.
  • the re-wetting properties (long-term re-wetting of pressurized tap water), defined as the weight of water that has re-emerged back to the filter paper from may be 1.0 g or less, or 0.9 g or less, or 0.8 g or less.
  • the tap water used in the evaluation of the rewet properties has an electrical conductivity of 140 to 150 ⁇ S / cm. Since the electrical conductivity of tap water greatly affects the measurement properties, it is necessary to measure properties such as rewetting using tap water having an equal level of electrical conductivity.
  • the superabsorbent polymer of the present invention has an excellent absorbing ability, and even when a large amount of urine is absorbed, rewetting and urine leakage can be suppressed.
  • the superabsorbent polymer powder was obtained in the same manner as in Example 1, except that in step (2), glycerol polyglycidyl ether was used in an amount of 0.005 parts by weight based on 100 parts by weight of the base resin.
  • the superabsorbent polymer powder was obtained in the same manner as in Example 1, except that in step (2), glycerol polyglycidyl ether was used in an amount of 0.03 parts by weight based on 100 parts by weight of the base resin.
  • the superabsorbent polymer powder was obtained in the same manner as in Example 1, except that in step (2), glycerol polyglycidyl ether was used in 0.05 parts by weight based on 100 parts by weight of the base resin.
  • step (2) instead of glycerol polyglycidyl ether, polyglycerol polyglycidyl ether (epoxy equivalent 168 g / eq) was used as 0.01 part by weight based on 100 parts by weight of the base resin. A superabsorbent polymer powder was obtained.
  • step (2) sorbitol polyglycidyl ether (epoxy equivalent 160-190 g / eq) was used as 0.01 part by weight based on 100 parts by weight of the base resin instead of glycerol polyglycidyl ether. As a result, a super absorbent polymer powder was obtained.
  • the superabsorbent polymer powder was obtained in the same manner as in Comparative Example 1, except that in step (2), ethylene glycol diglycidyl ether was used in an amount of 0.03 parts by weight based on 100 parts by weight of the base resin.
  • step (2) superabsorbent polymer powder was obtained in the same manner as in Comparative Example 1, except that 0.05 parts by weight of ethylene glycol diglycidyl ether was used in 100 parts by weight of the base resin.
  • physiological saline or saline means 0.9 wt% sodium chloride (NaCl) aqueous solution.
  • tap water used in the evaluation of the re-wet properties was used when measured using Orion Star A222 (Company: Thermo Scientific) with electrical conductivity of 140 to 150 ⁇ S / cm.
  • the super absorbent polymer W 0 (g) (about 0.2 g) was uniformly put in a nonwoven fabric bag, sealed, and then immersed in physiological saline (0.9 wt%) at room temperature. After 30 minutes, the bag was drained for 3 minutes under the condition of 250 G using a centrifuge, and the mass W 2 (g) of the envelope was measured. Moreover, the mass W 1 (g) at that time was measured after performing the same operation without using a resin. CRC (g / g) was calculated according to the following equation using each obtained mass.
  • the vortex time was measured in seconds according to the method described in International Publication No. 1987-003208.
  • the pressure absorption capacity of 0.3 psi of each resin was measured according to EDANA method WSP 242.3.
  • a 400 mesh wire mesh made of stainless steel was mounted on a cylindrical bottom of a plastic having an inner diameter of 60 mm.
  • a piston capable of uniformly spreading super absorbent polymer W 0 (g) (0.90 g) on a wire mesh under conditions of normal temperature and humidity of 50%, and a piston capable of uniformly applying a load of 0.3 psi thereon is slightly smaller than an outer diameter of 60 mm. It is small and has no gap with the inner wall of the cylinder, and the vertical movement is not disturbed. At this time, the weight W 3 (g) of the device was measured.
  • a glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a 150 mm diameter petri dish, and the physiological saline composed of 0.9% by weight sodium chloride was brought to the same level as the top surface of the glass filter.
  • a sheet of filter paper having a diameter of 90 mm was placed thereon.
  • the measuring device was mounted on a filter paper, and the liquid was absorbed for 1 hour under a load. After 1 hour, the measuring device was lifted, and the weight W 4 (g) was measured.
  • the line was marked on the liquid level of 20 ml and 40 ml of the liquid amount in a state where a piston was put in a chromatography tube (F20 mm). Thereafter, water was added in reverse to fill up about 10 ml and washed 2-3 times with brine to prevent bubbles from forming between the glass filter and the bottom of the chromatography tube, and 0.9% brine was added up to 40 ml or more.
  • the piston was placed in the chromatography tube and the lower valve was opened to record the time (B) at which the liquid level decreased from 40 ml to 20 ml mark.
  • Table 1 shows the physical properties of the examples and comparative examples.
  • Examples 1 to 6 of the present invention all exhibit excellent rewetting properties and liquid permeability.
  • Comparative Examples 1 to 2 using only the first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq have poor liquid-permeability and re-wetting properties than in Examples. That is, when comparing the case where the same amount of epoxy-based surface crosslinking agent was used, it was confirmed that the case of the example exhibited superior liquid permeability and rewetting properties compared to the comparative example.

Abstract

The present invention relates to a superabsorbent polymer and a preparation method thereof. The preparation method of a superabsorbent polymer according to the present invention can provide a superabsorbent polymer having improved rewettability and liquid permeability.

Description

고흡수성 수지 및 이의 제조 방법Super absorbent polymer and method for manufacturing the same
관련 출원(들)과의 상호 인용Cross-citation with relevant application (s)
본 출원은 2018년 11월 13일자 한국 특허 출원 제10-2018-0139103호 및 2019년 9월 16일자 한국 특허 출원 제10-2019-0113734호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0139103 filed on November 13, 2018 and Korean Patent Application No. 10-2019-0113734 filed on September 16, 2019. All content disclosed in the literature is incorporated as part of this specification.
본 발명은 고흡수성 수지 및 이의 제조 방법에 관한 것이다. 보다 상세하게는, 향상된 재습윤(rewet) 특성 및 통액성을 갖는 고흡수성 수지 및 이의 제조방법에 관한 것이다.The present invention relates to a super absorbent polymer and a method for manufacturing the same. More particularly, it relates to a super absorbent polymer having improved rewet characteristics and liquid permeability, and a method for manufacturing the same.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀나 생리대 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.Super Absorbent Polymer (SAP) is a synthetic polymer material that has the ability to absorb about 500 to 1,000 times its own weight, and SAM (Super Absorbency Material), AGM (Absorbent Gel) for each developer Material). The superabsorbent polymer as described above began to be put into practical use as a sanitary tool, and now, in addition to sanitary products such as children's paper diapers and sanitary napkins, soil repair agents for horticulture, civil engineering, construction materials, nursery sheets, and freshness retention agents in the food distribution field , And is widely used as a material for poultice.
가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수력을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않아야 하며, 이에 더하여, 물을 흡수하여 부피 팽창(팽윤)된 상태에서도 형태를 잘 유지하여 우수한 통액성(permeability)을 나타낼 필요가 있다.In most cases, these superabsorbent polymers are widely used in the field of sanitary materials such as diapers and sanitary napkins. For this purpose, it is necessary to exhibit high absorbency for moisture, etc., and the absorbed moisture should not escape even under external pressure. In addition to this, it is necessary to show good permeability by absorbing water and maintaining the shape well even in a volume expanded (swelled) state.
그런데, 상기 고흡수성 수지의 기본적인 흡수력 및 보수력을 나타내는 물성인 보수능(CRC)과, 외부의 압력에도 흡수된 수분을 잘 보유하는 특성을 나타내는 가압하 흡수능(AUP)은 함께 향상시키기 어려운 것으로 알려져 있다. 이는 고흡수성 수지의 전체적인 가교 밀도가 낮게 제어될 경우, 보수능은 상대적으로 높아질 수 있지만, 가교 구조가 성기게 되고 겔 강도가 낮아져 가압하 흡수능은 저하될 수 있기 때문이다. 반대로, 가교 밀도를 높게 제어하여 가압하 흡수능을 향상시키는 경우, 빽빽한 가교 구조 사이로 수분이 흡수되기 어려운 상태로 되어 기본적인 보수능이 저하될 수 있다. 상술한 이유로 인해, 보수능 및 가압하 흡수능이 함께 향상된 고흡수성 수지를 제공하는데 한계가 있다.However, it is known that the water retention capacity (CRC), which is a property that shows the basic water absorption and water retention capacity of the superabsorbent polymer, and the pressure absorption capacity (AUP), which exhibits the property of retaining moisture absorbed by external pressure, are difficult to improve together. . This is because, when the overall crosslinking density of the superabsorbent polymer is controlled to be low, the water retention capacity may be relatively high, but the crosslinking structure becomes coarse and the gel strength is lowered, so that the absorption capacity under pressure may be lowered. Conversely, when the absorption capacity under pressure is improved by controlling the crosslinking density to be high, water absorption between the dense crosslinked structures becomes difficult, and thus the basic water retention capacity may be reduced. For the above-mentioned reasons, there is a limit in providing a super absorbent polymer with improved water retention capacity and absorbency under pressure.
그러나, 최근 기저귀나 생리대 등과 같은 위생재의 박막화에 따라 고흡수성 수지에 보다 높은 흡수 성능이 요구되고 있다. 이 중에서도, 상반되는 물성인 보수능과 가압 흡수능의 동반 향상과 통액성의 개선 등이 중요한 과제로 대두되고 있다.However, with the recent thinning of hygiene materials such as diapers and sanitary napkins, higher absorption performance is required for the super absorbent polymer. Among these, the accompanying improvement of water retention capacity and pressure absorption capacity, which are opposite properties, and improvement of liquid permeability, have emerged as important issues.
또한, 기저귀나 생리대 등의 위생재에는 사용자의 무게에 의해 압력이 가해질 수 있다. 특히, 기저귀나 생리대 등의 위생재에 적용되는 고흡수성 수지가 액체를 흡수한 이후, 이에 사용자의 무게에 의한 압력이 가해지면 고흡수성 수지에 흡수된 일부 액체가 다시 배어 나오는 재습윤(rewet) 현상과, 소변이 새는 누출(leakage) 현상이 발생할 수 있다.In addition, pressure may be applied to a hygiene material such as a diaper or a sanitary napkin according to a user's weight. In particular, after the superabsorbent polymer applied to sanitary materials such as diapers or sanitary napkins absorbs the liquid, when a pressure is applied by the user's weight, some liquid absorbed in the superabsorbent polymer is re-wet. And, leakage of urine may occur.
따라서, 이러한 재습윤 현상을 억제하고자 여러 가지 시도들이 진행되고 있다. 하지만 아직까지 재습윤 현상을 효과적으로 억제할 수 있는 구체적인 방안이 제시되지 못하고 있는 실정이다.Accordingly, various attempts have been made to suppress this rewetting phenomenon. However, a specific method for effectively suppressing the re-wetting phenomenon has not been proposed.
상기와 같은 종래 기술의 문제점을 해결하고자, 본 발명은 재습윤 및 소변 누출 현상이 억제되는 고흡수성 수지 및 이의 제조방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, an object of the present invention is to provide a super absorbent polymer and a manufacturing method thereof, in which re-wetting and urine leakage are suppressed.
상기의 목적을 달성하기 위하여, 본 발명의 일 측면에 따르면,In order to achieve the above object, according to an aspect of the present invention,
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스 수지(base resin)를 준비하는 단계(단계 1);Preparing a base resin having an acidic group and having at least a portion of the acidic group neutralized and an internal crosslinking agent crosslinked and polymerized (step 1);
상기 베이스 수지에, 상기 베이스 수지에, 무기 필러, 및 에폭시계 표면 가교제를 혼합하되, 상기 무기 필러를 먼저 상기 베이스 수지에 건식으로 혼합하고, 이어서 에폭시계 표면 가교제를 물에 용해하여 표면 가교 용액 상태로 혼합하는 단계(단계 2); 및The base resin, the base resin, an inorganic filler, and an epoxy-based surface crosslinking agent are mixed, but the inorganic filler is first dry-mixed to the base resin, and then the epoxy-based surface crosslinking agent is dissolved in water to form a surface crosslinking solution. Mixing with (step 2); And
상기 단계 2의 혼합물을 승온하여 상기 베이스 수지에 대한 표면 개질을 수행하는 단계(단계 3)를 포함하고,Including the step of performing the surface modification to the base resin by heating the mixture of step 2 (step 3),
상기 에폭시계 표면가교제는 에폭시 당량이 100 g/eq 이상 내지 130 g/eq 미만인 제1에폭시 가교제 및 에폭시 당량이 130 내지 200 g/eq인 제2에폭시 가교제를 포함하는 것인, 고흡수성 수지의 제조방법을 제공한다.The epoxy-based surface crosslinking agent comprises a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq. Provide a method.
또한, 본 발명의 다른 일 측면에 따르면,In addition, according to another aspect of the present invention,
산성기의 적어도 일부가 중화된 아크릴산계 단량체가 가교 중합된 가교 중합체를 포함하는 베이스 수지; 및A base resin comprising a crosslinked polymer obtained by crosslinking and polymerizing an acrylic acid monomer in which at least a part of the acidic group is neutralized; And
상기 베이스 수지의 입자 표면에 형성되어 있고, 상기 가교 중합체가 에폭시 당량이 상이한 2종의 에폭시계 표면 가교제를 매개로 추가 가교되어 있는 이중의 표면 개질층을 포함하고,It is formed on the particle surface of the base resin, and the crosslinked polymer includes a double surface modification layer that is additionally crosslinked through two epoxy-based surface crosslinking agents having different epoxy equivalents,
상기 표면 개질층은 무기 필러를 포함하며,The surface modification layer includes an inorganic filler,
상기 2종의 에폭시계 표면 가교제는 에폭시 당량이 100 g/eq 이상 내지 130 g/eq 미만인 제1에폭시 가교제 및 에폭시 당량이 130 내지 200 g/eq인 제2에폭시 가교제를 포함하는 것인, 고흡수성 수지를 제공한다.The two types of epoxy-based surface crosslinking agent include a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq, and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq. Provide resin.
본 발명의 고흡수성 수지 및 이의 제조 방법에 따르면, 우수한 제반 흡수 물성을 나타내면서도 재습윤 현상 및 소변 누출 현상이 억제된 고흡수성 수지를 제공할 수 있다.According to the superabsorbent polymer of the present invention and a method for producing the superabsorbent polymer, it is possible to provide a superabsorbent polymer having excellent absorption properties while suppressing rewetting and urine leakage.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention can be applied to various changes and may have various forms, and specific embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosure form, and it should be understood that it includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하, 본 발명의 일 구현예에 따른 고흡수성 수지의 제조 방법에 대해 상세히 설명한다.Hereinafter, a method of manufacturing a super absorbent polymer according to an embodiment of the present invention will be described in detail.
본 발명의 일 구현예에 따른 고흡수성 수지의 제조방법은,Method of manufacturing a super absorbent polymer according to an embodiment of the present invention,
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스 수지(base resin)를 준비하는 단계(단계 1);Preparing a base resin having an acidic group and having at least a portion of the acidic group neutralized and an internal crosslinking agent crosslinked and polymerized (step 1);
상기 베이스 수지에, 무기 필러, 및 에폭시계 표면 가교제를 혼합하되, 상기 무기 필러를 먼저 상기 베이스 수지에 건식으로 혼합하고, 이어서 에폭시계 표면 가교제를 물에 용해하여 표면 가교 용액 상태로 혼합하는 단계(단계 2); 및Mixing an inorganic filler and an epoxy-based surface crosslinking agent in the base resin, but mixing the inorganic filler first in the base resin dryly, followed by dissolving an epoxy-based surface crosslinking agent in water and mixing in a surface crosslinking solution state ( Step 2); And
상기 단계 2의 혼합물을 승온하여 상기 베이스 수지에 대한 표면 개질을 수행하는 단계(단계 3)를 포함하고,Including the step of performing the surface modification to the base resin by heating the mixture of step 2 (step 3),
상기 에폭시계 표면가교제는 에폭시 당량이 100 g/eq 이상 내지 130 g/eq 미만인 제1에폭시 가교제 및 에폭시 당량이 130 내지 200 g/eq인 제2에폭시 가교제를 포함한다.The epoxy-based surface crosslinking agent includes a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq, and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq.
본 발명의 명세서에서, "베이스 수지" 또는 "베이스 수지 분말"은 수용성 에틸렌계 불포화 단량체가 중합된 중합체를 건조 및 분쇄하여 입자(particle) 또는 파우더(powder) 형태로 만든 것으로, 후술하는 표면 개질 또는 표면 가교 단계를 수행하지 않은 상태의 중합체를 의미한다.In the specification of the present invention, "base resin" or "base resin powder" is made of particles or powder by drying and pulverizing a polymer in which a water-soluble ethylenically unsaturated monomer is polymerized, or a surface modification described later or Refers to a polymer without performing a surface crosslinking step.
아크릴산계 단량체의 중합 반응에 의해 수득되는 함수겔상 중합체는 건조, 분쇄, 분급, 표면 가교 등의 공정을 거쳐 분말상의 제품인 고흡수성 수지로 시판된다.The hydrogel polymer obtained by the polymerization reaction of an acrylic acid monomer is marketed as a superabsorbent polymer that is a powdery product through processes such as drying, grinding, classification, and surface crosslinking.
최근 들어 고흡수성 수지에서 흡수능, 통액성과 같은 제반 흡수 물성뿐 아니라 실제 기저귀가 사용되는 상황에서 표면의 건조(dryness) 상태가 얼마나 유지될 수 있는가가 기저귀 특성을 가늠하는 중요한 척도가 되고 있다.In recent years, not only absorbent properties such as absorbency and liquid permeability in a super absorbent polymer, but also how much the dryness of the surface can be maintained in a situation where actual diapers are used has become an important measure of diaper characteristics.
본 발명의 일 구현예에 따른 제조방법에 의해 수득되는 고흡수성 수지는 보수능, 가압 흡수능, 통액성 등의 물성이 우수하여 우수한 제반 흡수 성능을 나타내며, 염수에 의해 팽윤된 후에도 건조한 상태가 유지되며 고흡수성 수지에 흡수된 소변이 다시 배어 나오는 재습윤(rewet) 및 소변 누출(leakage) 현상을 효과적으로 방지할 수 있음을 확인하여 본 발명에 이르게 되었다.The superabsorbent polymer obtained by the manufacturing method according to an embodiment of the present invention exhibits excellent water absorption performance due to excellent physical properties such as water retention capacity, pressure absorption capacity, and liquid permeability, and remains dry even after being swollen with brine. It has been confirmed that the urine absorbed by the superabsorbent polymer can effectively prevent rewet and urine leakage from re-embedding.
본 발명의 고흡수성 수지의 제조 방법에서, 먼저 상기 고흡수성 수지의 원료 물질인 모노머 조성물은 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 내부 가교제 및 중합 개시제를 포함하는 모노머 조성물을 중합하여 함수겔상 중합체를 수득하고, 이를 건조, 분쇄, 분급하여 베이스 수지(base resin)를 준비한다(단계 1).In the method for producing a superabsorbent polymer of the present invention, first, a monomer composition that is a raw material of the superabsorbent polymer has an acidic group and a monomer composition comprising an acrylic acid-based monomer, an internal crosslinking agent, and a polymerization initiator in which at least a portion of the acidic group is neutralized. Polymerization to obtain a hydrogel polymer, dried, pulverized and classified to prepare a base resin (step 1).
이에 대해 하기에서 보다 상세히 설명한다.This will be described in more detail below.
상기 고흡수성 수지의 원료 물질인 모노머 조성물은 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 중합 개시제를 포함한다.The monomer composition, which is a raw material of the super absorbent polymer, has an acidic group and includes an acrylic acid-based monomer and a polymerization initiator in which at least a portion of the acidic group is neutralized.
상기 아크릴산계 단량체는 하기 화학식 1로 표시되는 화합물이다:The acrylic acid monomer is a compound represented by Formula 1 below:
[화학식 1][Formula 1]
Figure PCTKR2019011994-appb-I000001
Figure PCTKR2019011994-appb-I000001
상기 화학식 1에서,In Chemical Formula 1,
R1은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond,
M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다.Preferably, the acrylic acid-based monomer includes at least one selected from the group consisting of acrylic acid, methacrylic acid and their monovalent metal salt, divalent metal salt, ammonium salt and organic amine salt.
여기서, 상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알킬리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 아크릴산계 단량체의 중화도는 40 내지 95 몰%, 또는 40 내지 80 몰%, 또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다.Here, the acrylic acid monomer may have an acidic group and at least a part of the acidic group may be neutralized. Preferably, the monomer may be partially neutralized with an alkali material such as sodium hydroxide, potassium hydroxide, or ammonium hydroxide. At this time, the neutralization degree of the acrylic acid-based monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%. The range of the neutralization degree can be adjusted according to the final physical properties. However, if the degree of neutralization is too high, the neutralized monomer may be precipitated and polymerization may be difficult to proceed smoothly. On the other hand, if the degree of neutralization is too low, it may exhibit properties such as elastic rubber that is not only poorly absorbed but also difficult to handle. have.
상기 아크릴산계 단량체의 농도는, 상기 고흡수성 수지의 원료 물질 및 용매를 포함하는 모노머 조성물에 대해 약 20 내지 약 60 중량%, 바람직하게는 약 40 내지 약 50 중량%로 될 수 있으며, 중합 시간 및 반응 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다.The concentration of the acrylic acid-based monomer may be from about 20 to about 60% by weight, preferably from about 40 to about 50% by weight relative to the monomer composition containing the raw material and solvent of the superabsorbent polymer, polymerization time and It may be an appropriate concentration in consideration of reaction conditions and the like. However, if the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and economic problems may occur. Conversely, if the concentration is too high, a part of the monomer precipitates or the grinding efficiency of the polymerized hydrogel polymer is low. Such problems may occur in the process and physical properties of the super absorbent polymer may be deteriorated.
본 발명의 고흡수성 수지 제조 방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다.The polymerization initiator used in polymerization in the superabsorbent polymer production method of the present invention is not particularly limited as long as it is generally used for the production of superabsorbent polymers.
구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.Specifically, the polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method. However, even by the photopolymerization method, since a certain amount of heat is generated by irradiation with ultraviolet rays or the like and a certain amount of heat is generated as the polymerization reaction that is an exothermic reaction proceeds, a thermal polymerization initiator may be additionally included.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.If the photopolymerization initiator is a compound capable of forming radicals by light such as ultraviolet rays, the composition may be used without limitation.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드(2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 'UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)' p115에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.The photopolymerization initiator includes, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine and one or more selected from the group consisting of alpha-aminoketone. Meanwhile, as a specific example of acylphosphine, a commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used. . For a wider variety of photoinitiators, it is well documented in Reinhold Schwalm's book 'UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)' p115, and is not limited to the examples described above.
상기 광중합 개시제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 1.0 중량%의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.The photopolymerization initiator may be included in a concentration of about 0.01 to about 1.0% by weight relative to the monomer composition. If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow, and if the concentration of the photopolymerization initiator is too high, the molecular weight of the super absorbent polymer may be small and the properties may be uneven.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate;(NH4)2S2O8) 등이 있으며, 아조(Azo)계 개시제의 예로는 2, 2-아조비스-(2-아미디노프로판)이염산염(2, 2-azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스-(N, N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobutylonitril), 2, 2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산)(4,4-azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.In addition, as the thermal polymerization initiator, one or more selected from the initiator group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used. Specifically, examples of the persulfate-based initiator are sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), ammonium persulfate (Ammonium persulfate; (NH 4 ) 2 S 2 O 8 ), and examples of the azo-based initiator are 2, 2-azobis- (2-amidinopropane) dihydrochloride (2, 2-azobis (2-amidinopropane) dihydrochloride), 2 , 2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride (2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2- (carbamoyl azo) isobutyronitrile (2- (carbamoylazo) isobutylonitril), 2, 2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2,2-azobis [2- (2-imidazolin-2- yl) propane] dihydrochloride), 4,4-azobis- (4-cyanovaleric acid) (4,4-azobis- (4-cyanovaleric acid)). More various thermal polymerization initiators are well specified in the Odian book 'Principle of Polymerization (Wiley, 1981)', p203, and are not limited to the above-described examples.
본 발명의 일 실시예에 따르면, 상기 모노머 조성물은 고흡수성 수지의 원료 물질로서 내부 가교제를 포함한다. 상기 내부 가교제로는 상기 아크릴산계 단량체와 반응할 수 있는 관능기를 1개 이상 가지면서, 에틸렌성 불포화기를 1개 이상 갖는 가교제; 혹은 상기 아크릴산계 단량체의 치환기 및/또는 단량체의 가수분해에 의해 형성된 치환기와 반응할 수 있는 관능기를 2개 이상 갖는 가교제를 사용할 수 있다.According to an embodiment of the present invention, the monomer composition includes an internal crosslinking agent as a raw material of a super absorbent polymer. As the internal crosslinking agent, while having at least one functional group capable of reacting with the acrylic acid monomer, a crosslinking agent having at least one ethylenically unsaturated group; Alternatively, a crosslinking agent having two or more functional groups capable of reacting with the substituents of the acrylic acid-based monomers and / or the substituents formed by hydrolysis of the monomers may be used.
상기 내부 가교제는 아크릴산계 단량체가 중합된 중합체의 내부를 가교시키기 위한 것으로서, 상기 중합체의 표면을 가교시키기 위한 표면 가교제와 구분된다.The internal crosslinking agent is for crosslinking the interior of a polymer in which an acrylic acid monomer is polymerized, and is different from a surface crosslinking agent for crosslinking the surface of the polymer.
상기 내부 가교제의 구체적인 예로는, N,N'-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리(메타)아크릴레이트, 에틸렌글리콜 다이(메타)아크릴레이트, (메타)아크릴레이트, 프로필렌글리콜 다이(메타)아크릴레이트, 폴리프로필렌글리콜(메타)아크릴레이트, 부탄다이올다이(메타)아크릴레이트, 부틸렌글리콜다이(메타)아크릴레이트, 다이에틸렌글리콜 다이(메타)아크릴레이트, 헥산다이올다이(메타)아크릴레이트, 트리에틸렌글리콜 다이(메타)아크릴레이트, 트리프로필렌글리콜 다이(메타)아크릴레이트, 테트라에틸렌글리콜 다이(메타)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메타)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다.Specific examples of the internal crosslinking agent include N, N'-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, (meth) acrylate, and propylene glycol di (meth) acrylic Rate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate , Triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate, pentaerythritol tetra One or more selected from the group consisting of acrylate, triarylamine, ethylene glycol diglycidyl ether, propylene glycol, glycerin, and ethylene carbonate can be used.
이러한 내부 가교제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 1.0 중량%의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다.Such an internal crosslinking agent may be included in a concentration of about 0.01 to about 1.0% by weight relative to the monomer composition, thereby crosslinking the polymerized polymer.
본 발명의 제조방법에서, 고흡수성 수지의 상기 모노머 조성물은 필요에 따라 증점제(thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.In the production method of the present invention, the monomer composition of the super absorbent polymer may further include additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
상술한 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 모노머 조성물 용액의 형태로 준비될 수 있다.Raw materials such as an acrylic acid-based monomer, a photopolymerization initiator, a thermal polymerization initiator, an internal crosslinking agent, and an additive having an acidic group and neutralizing at least a portion of the acidic group may be prepared in the form of a solution of a monomer composition dissolved in a solvent.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 크실렌, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트 및 N,N-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다.The solvent that can be used at this time can be used without limitation of its composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol Ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate and N, N-dimethylacetamide can be used in combination.
상기 용매는 모노머 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.The solvent may be included in the remaining amount excluding the above-mentioned components with respect to the total content of the monomer composition.
한편, 이와 같은 모노머 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.On the other hand, if the method for forming a hydrogel polymer by thermal polymerization or photopolymerization of such a monomer composition is also a commonly used polymerization method, there is no particular limitation on the configuration.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and in general, when performing thermal polymerization, it can be carried out in a reactor having a stirring axis such as a kneader, and when performing photopolymerization, it is movable Although it may be carried out in a reactor equipped with a conveyor belt, the polymerization method described above is an example, and the present invention is not limited to the polymerization method described above.
일 예로, 상술한 바와 같이 교반축을 구비한 니더(kneader)와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 함수겔상 중합체를 얻을 수 있고, 반응기에 구비된 교반축의 형태에 따라, 반응기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50 mm 인 함수겔상 중합체가 얻어질 수 있다.For example, as described above, a reactor such as a kneader having a stirring shaft may be supplied with hot air or heated to heat-polymerize the reactor to obtain a hydrogel polymer, depending on the shape of the stirring shaft provided in the reactor, The hydrogel polymer discharged to the reactor outlet may be in the form of several centimeters to several millimeters. Specifically, the size of the hydrogel polymer obtained may vary depending on the concentration and injection speed of the monomer composition to be injected, and a hydrogel polymer having a weight average particle diameter of 2 to 50 mm can be usually obtained.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내지 약 5cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.In addition, when the photopolymerization is performed in a reactor equipped with a movable conveyor belt as described above, the shape of the hydrogel polymer usually obtained may be a hydrogel polymer on a sheet having a belt width. At this time, the thickness of the polymer sheet varies depending on the concentration and the injection rate of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 5 cm can be obtained. When the monomer composition is supplied to such an extent that the thickness of the polymer on the sheet is too thin, production efficiency is low, which is undesirable. When the thickness of the polymer on the sheet exceeds 5 cm, due to the excessively thick thickness, the polymerization reaction does not occur evenly over the entire thickness. It may not.
이때 이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 약 40 내지 약 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다.At this time, the normal water content of the hydrogel polymer obtained in this way may be about 40 to about 80% by weight. On the other hand, in the present specification, "water content" refers to a value obtained by subtracting the weight of the polymer in a dry state from the weight of the hydrogel polymer as the content of moisture to the total weight of the hydrogel polymer. Specifically, it is defined as a calculated value by measuring the weight loss due to evaporation of water in the polymer during the drying process by raising the temperature of the polymer through infrared heating. At this time, the drying condition is a method of raising the temperature from room temperature to about 180 ° C and then maintaining it at 180 ° C. The total drying time is set to 20 minutes including 5 minutes of the temperature rise step to measure the water content.
다음에, 얻어진 함수겔상 중합체를 건조하는 단계를 수행한다.Next, a step of drying the obtained hydrogel polymer is performed.
이때 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있다.At this time, if necessary, in order to increase the efficiency of the drying step, the step of coarsely pulverizing before drying may be further performed.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.At this time, the used grinder is not limited in configuration, but specifically, a vertical cutter (Vertical pulverizer), a turbo cutter (Turbo cutter), a turbo grinder (Turbo grinder), a rotary cutting mill (Rotary cutter mill), cutting Cutter mill, disc mill, shred crusher, crusher, chopper, and disc cutter However, it is not limited to the above-described example.
이때 분쇄 단계는 함수겔상 중합체의 입경이 약 2 내지 약 10mm로 되도록 분쇄할 수 있다.At this time, the grinding step may be pulverized such that the particle diameter of the hydrogel polymer is about 2 to about 10 mm.
입경이 2mm 미만으로 분쇄하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 10mm초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미하다.Grinding to a particle diameter of less than 2 mm is not technically easy due to the high water content of the hydrogel polymer, and there may also be a phenomenon in which agglomerated particles are aggregated with each other. On the other hand, when the particle diameter is pulverized to more than 10 mm, the effect of increasing the efficiency of the subsequent drying step is negligible.
상기와 같이 분쇄되거나, 혹은 분쇄 단계를 거치지 않은 중합 직후의 함수겔상 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 약 150 내지 약 250℃일 수 있다. 건조 온도가 150℃ 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250℃를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내지 약 200℃의 온도에서, 더욱 바람직하게는 약 160 내지 약 180℃의 온도에서 진행될 수 있다.Drying is performed on the hydrogel polymer immediately after polymerization, which is pulverized as described above or has not been subjected to a crushing step. At this time, the drying temperature of the drying step may be about 150 to about 250 ℃. When the drying temperature is less than 150 ° C, the drying time is too long and there is a fear that the physical properties of the superabsorbent resin to be formed are lowered. When the drying temperature exceeds 250 ° C, only the polymer surface is dried excessively, and a subsequent grinding process is performed. In the fine powder may be generated, there is a fear that the physical properties of the superabsorbent polymer to be formed finally decreases. Therefore, preferably, the drying may be performed at a temperature of about 150 to about 200 ° C, more preferably at a temperature of about 160 to about 180 ° C.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20 내지 약 90분 동안 진행될 수 있으나, 이에 한정되지는 않는다.Meanwhile, in the case of a drying time, process efficiency may be considered, and may be performed for about 20 to about 90 minutes, but is not limited thereto.
상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량%일 수 있다.The drying method of the drying step may also be selected and used without limitation, as long as it is commonly used as a drying process for the hydrogel polymer. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The moisture content of the polymer after the drying step may be about 0.1 to about 10% by weight.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.Next, a step of pulverizing the dried polymer obtained through such a drying step is performed.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 약 150 내지 약 850㎛ 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.The polymer powder obtained after the grinding step may have a particle size of about 150 to about 850 μm. The pulverizer used for pulverizing to such a particle size is specifically, a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill or a jog. A mill may be used, but the present invention is not limited to the examples described above.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있으며, 상기 중합체 분말을 입경 범위에 따라 일정 중량비가 되도록 분급할 수 있다.And, in order to manage the physical properties of the superabsorbent polymer powder finally produced after such a pulverization step, a separate process of classifying the polymer powder obtained after pulverization according to the particle diameter may be performed, and the polymer powder may be subjected to a certain weight ratio according to the particle size range. You can classify as possible.
다음에, 상기 베이스 수지에, 무기 필러, 및 에폭시계 표면 가교제를 혼합한다(단계 2).Next, an inorganic filler and an epoxy-based surface crosslinking agent are mixed with the base resin (step 2).
일반적인 고흡수성 수지의 제조방법에서, 건조 및 분쇄된 중합체, 즉 베이스 수지에 표면 가교제를 포함하는 표면 가교 용액을 혼합한 다음, 이들 혼합물에 열을 가하여 승온함으로써 상기 분쇄된 중합체에 대해 표면 가교 반응을 수행한다.In a general superabsorbent polymer manufacturing method, a surface crosslinking reaction is performed on the pulverized polymer by mixing the dried and pulverized polymer, that is, a surface crosslinking solution containing a surface crosslinking agent in a base resin, and then heating the mixture by heating. Perform.
상기 표면 가교 단계는 표면 가교제의 존재 하에 상기 분쇄된 중합체의 표면에 가교 반응을 유도함으로써, 보다 향상된 물성을 갖는 고흡수성 수지를 형성시키는 단계이다. 이러한 표면 가교를 통해 상기 분쇄된 중합체 입자의 표면에는 표면 가교층(표면 개질층)이 형성된다.The surface crosslinking step is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a surface crosslinking agent, thereby forming a superabsorbent polymer having improved physical properties. Through the surface crosslinking, a surface crosslinking layer (surface modification layer) is formed on the surface of the pulverized polymer particles.
일반적으로, 표면 가교제는 고흡수성 수지 입자의 표면에 도포되므로 표면 가교 반응은 고흡수성 수지 입자의 표면 상에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합된 고흡수성 수지 입자는 내부에서보다 표면 부근에서 더 높은 가교 결합도를 갖는다.In general, the surface crosslinking agent is applied to the surface of the superabsorbent polymer particles, so that the surface crosslinking reaction occurs on the surface of the superabsorbent polymer particles, which improves the crosslinkability on the surface of the particles without substantially affecting the inside of the particles. Therefore, the surface-crosslinked superabsorbent polymer particles have a higher degree of crosslinking near the surface than from the inside.
한편, 상기 표면 가교제로는 중합체가 갖는 관능기와 반응 가능한 화합물을 사용하며, 일례로 다가 알콜 화합물, 에폭시 화합물, 폴리아민 화합물, 할로에폭시 화합물, 할로에폭시 화합물의 축합 산물, 옥사졸린 화합물류, 다가 금속염, 또는 알킬렌 카보네이트 화합물 등을 사용할 수 있는 것으로 알려져 있다.Meanwhile, as the surface crosslinking agent, a compound capable of reacting with a functional group of the polymer is used, for example, a polyhydric alcohol compound, an epoxy compound, a polyamine compound, a haloepoxy compound, a condensation product of a haloepoxy compound, an oxazoline compound, a polyvalent metal salt, Or it is known that an alkylene carbonate compound or the like can be used.
한편 본 발명의 제조방법에 따르면, 에폭시계 표면 가교제를 사용하며, 에폭시 당량이 상이한 2종의 에폭시계 표면 가교제를 혼합 사용한다. 이와 같이 2종의 에폭시계 표면 가교제를 혼합 사용하면 고흡수성 수지의 표면에 가교층이 이중층으로 형성되며, 이에 따라 고흡수성 수지의 재습윤 특성이 저하되지 않으면서, 물이 빨리 통과하는 성질인 통액성이 보다 개선될 수 있다.Meanwhile, according to the manufacturing method of the present invention, an epoxy-based surface crosslinking agent is used, and two epoxy-based surface crosslinking agents having different epoxy equivalents are mixed and used. When two types of epoxy-based surface crosslinking agents are mixed in this way, a crosslinking layer is formed on the surface of the superabsorbent polymer as a double layer, and accordingly, the water repellent property of the superabsorbent polymer is not deteriorated, and the water passes through quickly. Liquidity can be further improved.
구체적으로, 본 발명의 제조방법에서는 상기 에폭시계 표면 가교제로 에폭시 당량이 100 g/eq 이상 내지 130 g/eq 미만인 제1에폭시 가교제 및 에폭시 당량이 130 내지 200 g/eq 인 제2에폭시 가교제를 사용한다.Specifically, in the manufacturing method of the present invention, as the epoxy surface crosslinking agent, a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq are used. do.
일 구현예에서, 상기 제1에폭시 가교제는 에폭시 당량이 110 내지 125 g/eq 범위일 수 있다. 제1에폭시 가교제는 베이스 수지의 1차 표면가교를 통한 전반적인 흡수특성 향상 효과를 얻기 위하여 사용되며, 만일 제1에폭시 가교제의 에폭시 당량이 100 g/eq 미만이면 상술한 효과를 충분히 확보할 수 없다.In one embodiment, the first epoxy crosslinking agent may have an epoxy equivalent of 110 to 125 g / eq. The first epoxy crosslinking agent is used to obtain an effect of improving the overall absorption property through primary surface crosslinking of the base resin. If the epoxy equivalent of the first epoxy crosslinking agent is less than 100 g / eq, the above-described effect cannot be sufficiently secured.
상기 제1에폭시 가교제는 2관능성 가교제가 바람직하다. 제1에폭시 가교제로 2관능성 에폭시 가교제를 사용할 때, 가교 체인의 유연성을 확보할 수 있으며, 이에 따라 고흡수성 수지의 흡수 성능을 최대화할 수 있다.The first epoxy crosslinking agent is preferably a bifunctional crosslinking agent. When a bifunctional epoxy crosslinking agent is used as the first epoxy crosslinking agent, flexibility of the crosslinking chain can be secured, thereby maximizing the absorption performance of the superabsorbent polymer.
또한, 상기 제1에폭시 가교제의 함량은 베이스 수지 100 중량부에 대하여 0.01 내지 0.1 중량부, 또는 0.02 내지 0.05 중량부일 수 있다. 만일 제1에폭시 가교제의 함량이 베이스 수지 100 중량부에 대해 0.01 중량부 미만이면 충분한 표면가교가 진행되지 못하여, 가압 흡수능 및 통액성 저하 문제가 있을 수 있고, 0.1 중량부를 초과하면 고흡수성 수지의 재습윤 특성이 저하되는 문제가 있을 수 있다.In addition, the content of the first epoxy crosslinking agent may be 0.01 to 0.1 parts by weight, or 0.02 to 0.05 parts by weight based on 100 parts by weight of the base resin. If the content of the first epoxy crosslinking agent is less than 0.01 part by weight based on 100 parts by weight of the base resin, sufficient surface crosslinking may not proceed, and there may be a problem of reduced pressure absorption capacity and liquid permeability. There may be a problem that the wetting characteristics are deteriorated.
상기 제1에폭시 가교제의 예로는 에틸렌글리콜 디글리시딜에테르(ethyleneglycol diglycidyl ether) 및 디에틸렌글리콜 디글리시딜에테르(diethyleneglycol diglycidyl ether)로 이루어지는 군에서 선택되는 1종 이상을 들 수 있다.Examples of the first epoxy crosslinking agent include one or more selected from the group consisting of ethylene glycol diglycidyl ether and diethylene glycol diglycidyl ether.
상기 제2에폭시 가교제는 제1에폭시 가교제에 비하여 에폭시 당량이 높은 것으로서, 베이스 수지의 표면 가교 시 제2에폭시 가교제의 침투 깊이는 제1에폭시 가교제와 상이하게 된다. 따라서, 제1에폭시 가교제 및 제2에폭시 가교제를 동시에 사용하여 표면 가교를 진행하면 베이스 수지 표면이 이중으로 가교되는 효과가 얻어진다.The second epoxy crosslinking agent has a higher epoxy equivalent than that of the first epoxy crosslinking agent, and the penetration depth of the second epoxy crosslinking agent is different from that of the first epoxy crosslinking agent upon surface crosslinking of the base resin. Therefore, when surface crosslinking is performed using the first epoxy crosslinking agent and the second epoxy crosslinking agent at the same time, an effect of double crosslinking of the base resin surface is obtained.
일 구현예에서 상기 제2에폭시 가교제의 에폭시 당량은 135 g/eq 이상, 150 g/eq 이상, 또는 160 g/eq 이상이면서, 195 g/eq 이하, 또는 190 g/eq 이하일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment, the epoxy equivalent of the second epoxy crosslinking agent is 135 g / eq or more, 150 g / eq or more, or 160 g / eq or more, and may be 195 g / eq or less, or 190 g / eq or less, but is not limited thereto. It does not work.
상기 제2에폭시 가교제의 함량은 베이스 수지 100 중량부에 대하여 0.001 내지 0.1 중량부, 또는 0.005 내지 0.05 중량부일 수 있다. 만일 제2에폭시 가교제의 함량이 베이스 수지 100 중량부에 대해 0.001 중량부 미만이면 이중 표면 가교 효과를 얻을 수 없으며, 0.1 중량부를 초과하면 표면 가교 강도가 지나치게 강하여 재습윤 특성이 저하되는 문제가 있을 수 있다.The content of the second epoxy crosslinking agent may be 0.001 to 0.1 parts by weight, or 0.005 to 0.05 parts by weight based on 100 parts by weight of the base resin. If the content of the second epoxy crosslinking agent is less than 0.001 part by weight based on 100 parts by weight of the base resin, a double surface crosslinking effect cannot be obtained, and if it exceeds 0.1 part by weight, the surface crosslinking strength is too strong, and there may be a problem of deterioration of rewetting properties. have.
상기 제2에폭시 가교제의 예로는 글리세롤 폴리글리시딜에테르(glycerol polyglycidyl ether), 디글리세롤 폴리글리시딜에테르(diglycerol polyglycidyl ether), 폴리글리세롤 폴리글리시딜에테르(polyglycerol polyglycidyl ether)및 소르비톨 폴리글리시딜에테르(sorbitol polyglycidyl ether)로 이루어지는 군에서 선택되는 1종 이상을 들 수 있다. 상기 폴리글리세롤 폴리글리시딜 에테르는 바람직하기로 반복단위를 3개 갖는 트리글리세롤 폴리글리시딜에테르일 수 있다.Examples of the second epoxy crosslinking agent include glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether and sorbitol polyglycidyl. And one or more selected from the group consisting of sorbitol polyglycidyl ether. The polyglycerol polyglycidyl ether may preferably be triglycerol polyglycidyl ether having three repeating units.
상기 제2에폭시 가교제는 에폭시 관능기를 3 이상, 또는 3 내지 4개 포함하는 것이 바람직할 수 있다. 상기 관능기수를 만족하는 제2에폭시 가교제를 사용할 때, 추가적으로 고흡수성 입자의 최외각 표면의 가교 강도만을 향상시킬 수 있으며, 이에 따라 고흡수성 수지의 통액성 및 재습윤 특성이 더욱 향상될 수 있다.The second epoxy crosslinking agent may preferably include 3 or more or 3 or 4 epoxy functional groups. When using a second epoxy crosslinking agent that satisfies the functional group number, it is possible to additionally improve only the crosslinking strength of the outermost surface of the superabsorbent particles, and accordingly, the liquid permeability and rewetting properties of the superabsorbent resin may be further improved.
상기 에폭시계 표면 가교제 첨가시, 추가로 물을 함께 혼합하여 표면 가교 용액의 형태로 첨가할 수 있다. 물을 첨가하는 경우, 표면 가교제가 중합체에 골고루 분산될 수 있는 이점이 있다. 이때, 추가되는 물의 함량은 표면 가교제의 고른 분산을 유도하고 중합체 분말의 뭉침 현상을 방지함과 동시에 표면 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 중합체 100 중량부에 대해, 약 1 내지 약 10 중량부의 비율로 첨가되는 것이 바람직하다.When adding the epoxy-based surface crosslinking agent, water may be additionally mixed together and added in the form of a surface crosslinking solution. When adding water, there is an advantage that the surface crosslinking agent can be evenly dispersed in the polymer. At this time, the content of water to be added induces even dispersion of the surface crosslinking agent and prevents agglomeration of the polymer powder, and at the same time, for the purpose of optimizing the surface penetration depth of the surface crosslinking agent, about 1 to about 10 weight by weight of the polymer It is preferably added in a proportion of negative.
한편, 상술한 상기 표면 가교제 외에 다가 금속염, 예를 들어, 알루미늄 염, 보다 구체적으로 알루미늄의 황산염, 칼륨염, 암모늄염, 나트륨염 및 염산염으로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있다.Meanwhile, in addition to the above-mentioned surface crosslinking agent, a multivalent metal salt, for example, an aluminum salt, more specifically, may further include at least one selected from the group consisting of sulfate, potassium salt, ammonium salt, sodium salt, and hydrochloride salt of aluminum.
이러한 다가 금속염은 추가로 사용함에 따라, 일 구현예의 방법으로 제조된 고흡수성 수지의 통액성 등을 더욱 향상시킬 수 있다. 이러한 다가 금속염은 상기 표면 가교제와 함께 표면 가교 용액에 첨가될 수 있으며, 상기 베이스 수지 100 중량부에 대하여 0.01 내지 4 중량부의 함량으로 사용될 수 있다.As the polyvalent metal salt is further used, the liquid permeability of the superabsorbent polymer produced by the method of one embodiment can be further improved. The polyvalent metal salt may be added to the surface crosslinking solution together with the surface crosslinking agent, and may be used in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the base resin.
또, 본 발명의 제조방법에서는 표면 개질 반응을 수행하기 위한 승온 이전에, 무기 필러를 베이스 수지에 혼합하여 응집 방지(anti-caking) 효과를 부여한다. 본 발명에서 상기 무기 필러는 표면 가교 용액을 혼합하기 전에 건식 혼합하는 방식으로 혼합되며, 이 경우 베이스 수지와 무기 필러가 더욱 균일하게 혼합될 수 있다.In addition, in the manufacturing method of the present invention, an inorganic filler is mixed with a base resin before raising the temperature to perform a surface modification reaction, thereby providing an anti-caking effect. In the present invention, the inorganic filler is mixed in a dry mixing method before mixing the surface crosslinking solution, in which case the base resin and the inorganic filler may be more uniformly mixed.
상기 무기 필러는, 소수성 또는 친수성 어느 것이나 혼합 가능하며, 예를 들어, 흄드 실리카(fumed silica), 침강 실리카 등과 같은 실리카 입자를 사용할 수 있으나, 본 발명이 이에 제한되는 것은 아니다.The inorganic filler may be mixed with either hydrophobic or hydrophilic, and for example, silica particles such as fumed silica and precipitated silica may be used, but the present invention is not limited thereto.
또한, 상기 무기 필러는 상기 베이스 수지 또는 고흡수성 수지 100 중량부에 대하여 약 0.01 내지 약 0.5 중량부, 또는 약 0.02 내지 약 0.2 중량부의 농도로 첨가될 수 있다. 상기 무기 필러의 사용량이 0.5 중량부를 초과할 경우에는 가압 흡수능과 같은 흡수 특성이 저하될 수 있고, 상기 0.01 중량부 미만일 경우 응집 방지 효과가 없을 수 있어 이러한 관점에서 상기 중량부 범위로 사용하는 것이 바람직할 수 있다.In addition, the inorganic filler may be added in a concentration of about 0.01 to about 0.5 parts by weight, or about 0.02 to about 0.2 parts by weight based on 100 parts by weight of the base resin or super absorbent polymer. When the amount of the inorganic filler exceeds 0.5 parts by weight, absorption characteristics such as pressure absorption capacity may be deteriorated, and when it is less than 0.01 parts by weight, there may be no effect of preventing aggregation, and thus it is preferable to use it in the range of parts by weight from this point of view. can do.
한편 이러한 표면 가교 반응에 의해 가압 흡수능과 통액성(permeability)은 개선될 수 있지만 재습윤 특성은 보다 보완할 필요가 있다.On the other hand, the pressure absorption capacity and permeability may be improved by the surface crosslinking reaction, but the rewetting characteristics need to be supplemented.
본 발명의 제조방법에 따르면, 베이스 수지에 표면 가교제를 혼합하여 표면 가교 반응을 수행하기 위해 승온하기 전에 소수성 물질을 상기 베이스 수지에 혼합하여 재습윤 특성을 보다 개선할 수 있다. 또한 표면 가교 효율이 향상되어 소수성 물질을 사용하지 않은 수지에 비해 흡수 속도, 및 통액성이 더욱 향상될 수 있다.According to the manufacturing method of the present invention, it is possible to further improve the rewetting property by mixing the base resin with a hydrophobic material in the base resin prior to heating to perform a surface crosslinking reaction by mixing a surface crosslinking agent. In addition, the surface cross-linking efficiency is improved, so that the absorption rate and liquid permeability can be further improved compared to resins that do not use hydrophobic materials.
상기 소수성 물질은 HLB가 그 하한값으로 0 이상, 또는 1 이상, 또는 2 이상이면서 상한값으로 6 이하, 또는 5 이하, 또는 5.5 이하를 만족하는 물질을 사용할 수 있다. 또한, 상기 소수성 물질은 표면 가교 반응시 녹아 베이스 수지의 표면 개질층에 위치해야 하므로 용융 온도(melting point)가 표면 가교 반응 온도 이하인 물질을 사용할 수 있다.The hydrophobic material may be a material whose HLB is 0 or more, or 1 or more, or 2 or more as its lower limit, and 6 or less, or 5 or less, or 5.5 or less as its upper limit. In addition, the hydrophobic material is melted during the surface cross-linking reaction and must be located in the surface-modified layer of the base resin, so a material having a melting point below the surface cross-linking reaction temperature may be used.
사용가능한 소수성 물질로는 예를 들어, 글리세릴 스테아레이트(glyceryl stearate), 글리콜 스테아레이트(glycol stearate), 마그네슘 스테아레이트(magnesium stearate), 글리세릴 라우레이트(glyceryl laurate), 소르비탄 스테아레이트(sorbitan stearate), 소르비탄 트리올리에이트(sorbitan trioleate), 또는 PEG-4 디라우레이트(PEG-4 dilaurate) 등을 들 수 있으며, 바람직하게는 글리세릴 스테아레이트, 또는 글리세릴 라우레이트를 사용할 수 있으나, 본 발명이 이에 제한되는 것은 아니다.Hydrophobic materials that can be used include, for example, glyceryl stearate, glycol stearate, magnesium stearate, glyceryl laurate, sorbitan stearate stearate), sorbitan trioleate, or PEG-4 dilaurate, and the like, and preferably glyceryl stearate or glyceryl laurate. The present invention is not limited to this.
상기 소수성 물질은 상기 베이스 수지의 표면의 표면 개질층 내에 분포하여 고흡수성 수지가 액체를 흡수하여 팽윤되는 과정에서 팽윤된 수지 입자들이 높아진 압력에 따라 서로 응집되거나 뭉쳐지는 것을 방지하며, 표면에 소수성을 부여함으로써 액체의 투과 및 확산을 보다 용이하게 할 수 있다. 따라서 고흡수성 수지의 재습윤 특성을 개선하는데 기여할 수 있다.The hydrophobic material is distributed in the surface modification layer of the surface of the base resin to prevent the swelling resin particles from agglomerating or agglomerating with each other according to the increased pressure in the process of absorbing the liquid and swelling the superabsorbent resin, and the hydrophobicity on the surface. By imparting, liquid permeation and diffusion can be made easier. Therefore, it can contribute to improving the re-wetting properties of the super absorbent polymer.
상기 소수성 물질은 상기 베이스 수지 100 중량부에 대하여 약 0.001 중량부 이상, 또는 약 0.005 중량부 이상, 또는 약 0.01 중량부 이상이면서 약 0.5 중량부 이하, 또는 약 0.3 중량부 이하, 또는 약 0.1 중량부 이하가 되도록 혼합할 수 있다. 상기 소수성 물질의 함량이 너무 적으면 재습윤 특성을 개선하기에 부족할 수 있고, 너무 많이 포함될 경우 베이스 수지와 소수성 물질이 서로 탈리 되어 재습윤 개선 효과가 없거나 불순물로 작용하는 문제가 있을 수 있으므로 이러한 관점에서 상기 중량부 범위가 바람직할 수 있다.The hydrophobic material is at least about 0.001 part by weight, or at least about 0.005 part by weight, or at least about 0.01 part by weight, or less than about 0.5 part by weight, or about 0.3 part by weight or less, or about 0.1 part by weight relative to 100 parts by weight of the base resin It can mix so as to be the following. If the content of the hydrophobic material is too small, it may be insufficient to improve the rewetting properties, and if it is included too much, the base resin and the hydrophobic material may be detached from each other, so that there is no effect of improving rewetting or there may be a problem of acting as an impurity. In the range by weight may be preferred.
상기 소수성 물질을 베이스 수지와 혼합하는 방법은 특별히 제한되는 것은 아니나, 상기 표면 가교 용액에 표면 가교제와 함께 분산시켜 베이스 수지에 혼합하는 방식으로 혼합될 때 고흡수성 수지 입자에 보다 균일하게 코팅될 수 있어 바람직하다.The method of mixing the hydrophobic material with the base resin is not particularly limited, but can be more uniformly coated on the superabsorbent polymer particles when mixed in a manner that is mixed with the base resin by dispersing it with the surface crosslinking agent in the surface crosslinking solution. desirable.
다음에, 상기 베이스 수지, 및 에폭시계 표면 가교제의 혼합물에 열을 가하여 승온함으로써 상기 베이스 수지에 대해 표면 개질 단계를 수행한다(단계 3).Next, a surface modification step is performed on the base resin by heating the mixture of the base resin and the epoxy-based surface crosslinking agent by heating (step 3).
상기 표면 개질 단계는 약 120 내지 약 190 ℃, 바람직하게는 약 130 내지 약 180 ℃의 온도에서 약 10 내지 약 90 분, 바람직하게는 약 20 내지 약 70 분 동안 가열시킴으로써 수행할 수 있다. 가교 반응 온도가 120 ℃ 미만이거나 반응 시간이 너무 짧을 경우 표면 가교 반응이 제대로 일어나지 않아 투과도가 낮아질 수 있고, 190 ℃를 초과하거나 반응 시간이 너무 길 경우 보수능이 저하되는 문제가 발생할 수 있다.The surface modification step may be performed by heating at a temperature of about 120 to about 190 ° C, preferably about 130 to about 180 ° C for about 10 to about 90 minutes, preferably about 20 to about 70 minutes. If the cross-linking reaction temperature is less than 120 ° C or the reaction time is too short, the surface cross-linking reaction does not occur properly, and thus the permeability may be lowered. If the temperature exceeds 190 ° C or the reaction time is too long, a problem that water retention capacity may be lowered may occur.
표면 개질 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.The heating means for the surface modification reaction is not particularly limited. The heating medium may be supplied or a heat source may be directly supplied to heat. At this time, as the kind of heat medium that can be used, a heated fluid such as steam, hot air, and hot oil may be used, but the present invention is not limited to this, and the temperature of the heat medium supplied is the means of the heat medium, the rate of temperature increase, and the temperature increase. It can be appropriately selected in consideration of the target temperature. On the other hand, the heat source directly supplied may include a heating method through electricity or a gas, but the present invention is not limited to the above-described example.
상기와 같은 표면 개질 단계에 의해, 상기 베이스 수지의 표면에는 2종의 서로 다른 에폭시계 표면 가교제가 베이스 수지가 갖는 관능기와 반응하여 형성된 이중의 표면 가교 구조가 형성되며, 상기 표면 가교 구조 내에 전술한 소수성 물질과 무기 필러가 고르게 분포한 표면 개질층이 형성될 수 있다.By the above surface modification step, a double surface crosslinking structure formed by reacting two different epoxy-based surface crosslinking agents with a functional group of the base resin is formed on the surface of the base resin, and the above-described surface crosslinking structure is used. A surface modification layer evenly distributed with a hydrophobic material and an inorganic filler may be formed.
따라서, 상기 본 발명의 제조방법으로 제조된 고흡수성 수지는, 이러한 이중의 표면 개질층으로 인해 보수능과 가압 흡수능 등의 물성을 저하시키지 않으면서 향상된 재습윤 및 통액성을 가질 수 있다.Therefore, the superabsorbent polymer produced by the manufacturing method of the present invention can have improved rewetting and liquid permeability without deteriorating physical properties such as water retention capacity and pressure absorption capacity due to the dual surface modification layer.
이에 본 발명의 다른 일 구현예에 따르면, 산성기의 적어도 일부가 중화된 아크릴산계 단량체가 가교 중합된 가교 중합체를 포함하는 베이스 수지; 및 상기 베이스 수지의 입자 표면에 형성되어 있고, 상기 가교 중합체가 에폭시 당량이 상이한 2종의 에폭시계 표면 가교제를 매개로 추가 가교되어 있는 이중의 표면 개질층을 포함하고, 상기 표면 개질층은 무기 필러를 포함하며, 상기 2종의 에폭시계 표면 가교제는 에폭시 당량이 100 g/eq 이상 내지 130 g/eq 미만인 제1에폭시 가교제 및 에폭시 당량이 130 내지 200 g/eq인 제2에폭시 가교제를 포함하는 것인, 고흡수성 수지가 제공된다.Accordingly, according to another embodiment of the present invention, a base resin comprising a crosslinked polymer in which an acrylic acid monomer in which at least a portion of an acidic group is neutralized is crosslinked; And a double surface modification layer formed on the particle surface of the base resin, wherein the crosslinking polymer is additionally crosslinked through two epoxy-based surface crosslinking agents having different epoxy equivalents, and the surface modification layer is an inorganic filler. Including, the two epoxy-based surface crosslinking agent includes a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq, and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq. Phosphorus, superabsorbent resin is provided.
상기 고흡수성 수지의 구체적인 제조방법 및 물성 등에 대한 상세한 설명은 상기 고흡수성 수지의 제조방법에서 상술한 바와 같다.Detailed descriptions of the method and physical properties of the super absorbent polymer are as described above in the method of manufacturing the super absorbent polymer.
상기 고흡수성 수지는, EDANA 법 WSP 241.3에 따라 측정한 보수능(CRC)이 약 25 g/g 이상, 또는 약 29 g/g 이상, 또는 약 30 g/g 이상이면서, 약 40 g/g 이하, 또는 약 38 g/g 이하, 또는 약 35 g/g 이하의 범위를 가질 수 있다.The superabsorbent polymer has a water retention capacity (CRC) of about 25 g / g or more, or about 29 g / g or more, or about 30 g / g or more, and about 40 g / g or less, measured according to EDANA method WSP 241.3. , Or about 38 g / g or less, or about 35 g / g or less.
또한, 상기 고흡수성 수지는, EDANA 법 WSP 242.3에 따라 측정한 0.3 psi의 가압 흡수능(AUP)이 약 20 g/g 이상, 또는 약 23 g/g 이상, 또는 약 25 g/g 이상이면서, 약 37 g/g 이하, 또는 약 35 g/g 이하, 또는 약 32 g/g 이하의 범위를 가질 수 있다.In addition, the superabsorbent polymer, the pressure absorption capacity (AUP) of 0.3 psi measured in accordance with EDANA method WSP 242.3 is about 20 g / g or more, or about 23 g / g or more, or about 25 g / g or more, and about 37 g / g or less, or about 35 g / g or less, or about 32 g / g or less.
또한, 상기 고흡수성 수지는, 흡수 속도(vortex time)가 40초 이하, 또는 35초 이하, 또는 약 32초 이하일 수 있다. 상기 흡수 속도는 그 값이 작을수록 우수하여 상기 흡수 속도의 하한은 이론상 0초이나, 일례로 약 5초 이상, 또는 약 10초 이상, 또는 약 12초 이상일 수 있다.In addition, the superabsorbent polymer may have a vortex time of 40 seconds or less, or 35 seconds or less, or about 32 seconds or less. The smaller the absorption rate, the better the value, so the lower limit of the absorption rate is theoretically 0 seconds, but may be, for example, about 5 seconds or more, or about 10 seconds or more, or about 12 seconds or more.
상기 흡수 속도는 생리 식염수에 고흡수성 수지를 가하여 교반시켰을 때, 빠른 흡수에 의해 액체의 소용돌이(vortex)가 없어지는 시간(time, 단위: 초)을 의미하는 것으로서, 상기 시간이 짧을수록 고흡수성 수지가 빠른 초기 흡수 속도를 갖는 것으로 볼 수 있다.The absorption rate refers to a time (time, unit: second) in which a vortex of a liquid disappears due to rapid absorption when a superabsorbent resin is added to a physiological saline solution and stirred. The shorter the time, the higher the superabsorbent resin is Can be seen to have a fast initial absorption rate.
또한, 상기 고흡수성 수지는, 하기 식 1에 따라 측정되는 통액성(permeability, 단위: 초)이 약 35초 이하, 또는 약 30초 이하일 수 있다. 상기 통액성은 그 값이 작을수록 우수하여 이론상 하한 값은 0초이나, 예를 들어 약 5초 이상, 또는 약 10초 이상, 또는 약 12초 이상일 수 있다.In addition, the superabsorbent polymer may have a permeability (unit: second) measured according to Equation 1 below about 35 seconds or less, or about 30 seconds or less. The lower the value of the liquid permeability, the better the theoretical lower limit is 0 seconds, but may be, for example, about 5 seconds or more, or about 10 seconds or more, or about 12 seconds or more.
[식 1][Equation 1]
Figure PCTKR2019011994-appb-I000002
Figure PCTKR2019011994-appb-I000002
상기 식 1에서,In the above formula 1,
T1은 크로마토그래피 관 내에 분급(300 ~ 600㎛)된 고흡수성 수지 시료 0.2±0.0005g을 넣고 염수를 가하여 염수 부피가 50 ml가 되게 한 후, 30분 간 방치 후, 액면높이가 40 ml에서 20 ml까지 줄어드는 데에 걸리는 시간이고, B는 염수가 채워진 크로마토그래피 관에서 액면높이가 40 ml에서 20 ml까지 줄어드는 데에 걸리는 시간이다.T1 is 0.2 ± 0.0005 g of a superabsorbent polymer sample (300 to 600 μm) classified in a chromatography tube, brine is added to make the volume of the brine 50 ml, and after standing for 30 minutes, the liquid level is 40 ml to 20 The time it takes to reduce to ml, and B is the time it takes for the liquid level to decrease from 40 ml to 20 ml in a saline-filled chromatography tube.
또한, 상기 고흡수성 수지는 우수한 흡수 특성을 나타내면서도, 보다 향상된 재습윤 특성을 나타낼 수 있다.In addition, the superabsorbent polymer may exhibit excellent resorption characteristics while exhibiting excellent absorption characteristics.
보다 구체적으로, 상기 고흡수성 수지 4 g을 수도수 200 g에 침지시켜 2시간 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 0.75 psi의 압력 하에 1분 동안 여과지 상에서 방치하고 나서, 상기 고흡수성 수지로부터 상기 여과지로 다시 배어나온 물의 중량으로 정의되는 재습윤 특성(가압 수도수 장기 재습윤)이 1.0 g 이하, 또는 0.9 g 이하, 또는 0.8 g 이하로 될 수 있다. 상기 물의 중량은 그 값이 작을수록 우수하여 이론상 하한값은 0 g이나, 예를 들어 0.1 g 이상, 또는 0.2 g 이상, 또는 0.3 g 이상으로 될 수 있다.More specifically, after 4 g of the superabsorbent polymer is immersed in 200 g of tap water for swelling for 2 hours, the swollen superabsorbent polymer is left on a filter paper for 1 minute under a pressure of 0.75 psi, and then the superabsorbent polymer is absorbed. The re-wetting properties (long-term re-wetting of pressurized tap water), defined as the weight of water that has re-emerged back to the filter paper from may be 1.0 g or less, or 0.9 g or less, or 0.8 g or less. The smaller the weight of the water is, the better the theoretical lower limit is 0 g, but may be, for example, 0.1 g or more, or 0.2 g or more, or 0.3 g or more.
상기 재습윤 물성 평가에서 사용한 수도수는 전기 전도도가 140 내지 150 μS/cm이다. 수도수의 전기 전도도는 측정 물성에 큰 영향을 주기 때문에 동등한 수준의 전기 전도도를 갖는 수도수를 사용해서 재습윤 등의 물성을 측정할 필요가 있다.The tap water used in the evaluation of the rewet properties has an electrical conductivity of 140 to 150 μS / cm. Since the electrical conductivity of tap water greatly affects the measurement properties, it is necessary to measure properties such as rewetting using tap water having an equal level of electrical conductivity.
상기와 같이 본 발명의 고흡수성 수지는 우수한 흡수능을 가지며 다량의 소변을 흡수하였을 경우에도 재습윤 및 소변 누출 현상이 억제될 수 있다.As described above, the superabsorbent polymer of the present invention has an excellent absorbing ability, and even when a large amount of urine is absorbed, rewetting and urine leakage can be suppressed.
본 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 상세한 설명이 하기의 실시예에 의하여 한정되는 것은 아니다.The present invention will be described in more detail in the following examples. However, the following examples are only illustrative of the present invention, and the detailed description of the present invention is not limited by the following examples.
<실시예><Example>
고흡수성 수지의 제조Preparation of super absorbent polymer
실시예 1Example 1
(1) 베이스 수지의 제조(1) Preparation of base resin
교반기, 질소 투입기, 온도계를 장착한 3L 유리 용기에 아크릴산 518 g, 폴리에틸렌글리콜 디아크릴레이트(Polyethyleneglycol (400) diacrylate) 3.2 g과 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥시드 0.04 g을 첨가하여 용해시킨 후, 24.5 % 수산화나트륨 용액 822.2 g을 첨가하여 질소를 연속적으로 투입하면서 수용성 불포화 단량체 수용액을 제조하였다. 상기 수용성 불포화 단량체 수용액을 40 ℃로 냉각하였다. 이 수용액 500 g을 가로 250 mm, 세로 250 mm, 높이 30 mm의 스테인레스 재질의 용기에 가하고 자외선을 조사(조사량: 10 mV/cm2)하여 90초 동안 UV중합을 실시하여 함수겔상 중합체를 수득하였다. 수득한 함수겔상 중합체를 2 mm * 2 mm 크기로 분쇄한 후, 얻어진 겔형 수지를 600 μm의 구멍 크기를 갖는 스테인레스 와이어 거즈 위에 약 30 mm 두께로 펼쳐 놓고 180 ℃ 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고, ASTM 규격의 표준 망체로 분급하여 150 내지 850 ㎛의 입자 크기를 갖는 베이스 수지를 얻었다.In a 3L glass container equipped with a stirrer, nitrogen injector, and thermometer, 518 g of acrylic acid, 3.2 g of polyethyleneglycol (400) diacrylate, and diphenyl (2,4,6-trimethylbenzoyl) -phosphine oxide 0.04 After dissolving by adding g, 822.2 g of a 24.5% sodium hydroxide solution was added to prepare a water-soluble unsaturated monomer aqueous solution while continuously introducing nitrogen. The water-soluble unsaturated monomer aqueous solution was cooled to 40 ° C. 500 g of this aqueous solution was added to a container made of stainless steel having a width of 250 mm, a height of 250 mm, and a height of 30 mm, and ultraviolet ray was irradiated (irradiation amount: 10 mV / cm 2 ) to perform UV polymerization for 90 seconds to obtain a hydrogel polymer. . After the obtained hydrogel polymer was pulverized to a size of 2 mm * 2 mm, the obtained gel-like resin was spread on a stainless wire gauze having a pore size of 600 μm to a thickness of about 30 mm and dried in a 180 ° C. hot air oven for 30 minutes. The dried polymer thus obtained was pulverized using a grinder, classified by a standard mesh body of ASTM standard, to obtain a base resin having a particle size of 150 to 850 μm.
(2) 고흡수성 수지의 제조(2) Preparation of super absorbent polymer
상기 베이스 수지 100 중량부에 실리카 0.1 중량부를 건식으로 혼합한 후, 에틸렌글리콜 디글리시딜 에테르(에폭시 당량 113~125 g/eq) 0.02 중량부, 글리세롤 폴리글리시딜 에테르(에폭시 당량 135~155 g/eq, 3관능성) 0.01 중량부, 물 6.2 중량부, 황산알루미늄 0.2 중량부, 글리세릴 스테아레이트(HLB 3.8) 0.03 중량부를 포함하는 표면 가교 용액을 분사하여 혼합하고 이를 교반기와 이중 자켓으로 이루어진 용기에 넣어 140℃에서 35분간 표면 가교 반응을 진행하였다. 이후 표면 처리된 분말을 ASTM 규격의 표준 망체로 분급하여 150 내지 850 ㎛의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다.After dry mixing of 0.1 parts by weight of silica with 100 parts by weight of the base resin, 0.02 parts by weight of ethylene glycol diglycidyl ether (epoxy equivalent 113-125 g / eq), glycerol polyglycidyl ether (epoxy equivalent 135-155 g / eq, trifunctional) The surface crosslinking solution containing 0.01 parts by weight, 6.2 parts by weight of water, 0.2 parts by weight of aluminum sulfate, and 0.03 parts by weight of glyceryl stearate (HLB 3.8) is sprayed and mixed, and placed in a container consisting of a stirrer and a double jacket at 140 ° C, 35 The surface crosslinking reaction proceeded for a minute. Subsequently, the surface-treated powder was classified as a standard mesh of ASTM standards to obtain a super absorbent polymer powder having a particle size of 150 to 850 μm.
실시예 2Example 2
(2) 단계에서 글리세롤 폴리글리시딜 에테르를 베이스 수지 100 중량부에 대하여 0.005 중량부로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지 분말을 얻었다.The superabsorbent polymer powder was obtained in the same manner as in Example 1, except that in step (2), glycerol polyglycidyl ether was used in an amount of 0.005 parts by weight based on 100 parts by weight of the base resin.
실시예 3Example 3
(2) 단계에서 글리세롤 폴리글리시딜 에테르를 베이스 수지 100 중량부에 대하여 0.03 중량부로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지 분말을 얻었다.The superabsorbent polymer powder was obtained in the same manner as in Example 1, except that in step (2), glycerol polyglycidyl ether was used in an amount of 0.03 parts by weight based on 100 parts by weight of the base resin.
실시예 4Example 4
(2) 단계에서 글리세롤 폴리글리시딜 에테르를 베이스 수지 100 중량부에 대하여 0.05 중량부로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지 분말을 얻었다.The superabsorbent polymer powder was obtained in the same manner as in Example 1, except that in step (2), glycerol polyglycidyl ether was used in 0.05 parts by weight based on 100 parts by weight of the base resin.
실시예 5Example 5
(2) 단계에서 글리세롤 폴리글리시딜 에테르 대신 폴리글리세롤 폴리글리시딜 에테르(에폭시 당량 168 g/eq)를 베이스 수지 100 중량부에 대하여 0.01 중량부로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지 분말을 얻었다.In the same manner as in Example 1, except that in step (2), instead of glycerol polyglycidyl ether, polyglycerol polyglycidyl ether (epoxy equivalent 168 g / eq) was used as 0.01 part by weight based on 100 parts by weight of the base resin. A superabsorbent polymer powder was obtained.
실시예 6Example 6
(2) 단계에서 글리세롤 폴리글리시딜 에테르 대신 소르비톨 폴리글리시딜 에테르(에폭시 당량 160~190 g/eq)를 베이스 수지 100 중량부에 대하여 0.01 중량부로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지 분말을 얻었다.The same method as in Example 1, except that in step (2), sorbitol polyglycidyl ether (epoxy equivalent 160-190 g / eq) was used as 0.01 part by weight based on 100 parts by weight of the base resin instead of glycerol polyglycidyl ether. As a result, a super absorbent polymer powder was obtained.
비교예 1Comparative Example 1
(1) 베이스 수지의 제조(1) Preparation of base resin
교반기, 질소 투입기, 온도계를 장착한 3 L 유리 용기에 아크릴산 518 g, 폴리에틸렌글리콜 디아크릴레이트(Polyethyleneglycol (400) diacrylate) 3.2 g과 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥시드 0.04 g을 첨가하여 용해시킨 후, 24.5 % 수산화나트륨 용액 822.2 g을 첨가하여 질소를 연속적으로 투입하면서 수용성 불포화 단량체 수용액을 제조하였다. 상기 수용성 불포화 단량체 수용액을 40 ℃로 냉각하였다. 이 수용액 500 g을 가로 250 mm, 세로 250 mm, 높이 30 mm의 스테인레스 재질의 용기에 가하고 자외선을 조사(조사량: 10 mV/cm2)하여 90초 동안 UV중합을 실시하여 함수겔상 중합체를 수득하였다. 수득한 함수겔상 중합체를 2 mm * 2 mm 크기로 분쇄한 후, 얻어진 겔형 수지를 600 μm의 구멍 크기를 갖는 스테인레스 와이어 거즈 위에 약 30 mm 두께로 펼쳐 놓고 180 ℃ 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고, ASTM 규격의 표준 망체로 분급하여 150 내지 850 ㎛의 입자 크기를 갖는 베이스 수지를 얻었다.In a 3 L glass container equipped with a stirrer, nitrogen injector, and thermometer, 518 g of acrylic acid, 3.2 g of polyethyleneglycol (400) diacrylate, and diphenyl (2,4,6-trimethylbenzoyl) -phosphine oxide After dissolving by adding 0.04 g, 822.2 g of a 24.5% sodium hydroxide solution was added to prepare a water-soluble unsaturated monomer aqueous solution while continuously adding nitrogen. The water-soluble unsaturated monomer aqueous solution was cooled to 40 ° C. 500 g of this aqueous solution was added to a container made of stainless steel having a width of 250 mm, a height of 250 mm, and a height of 30 mm, and ultraviolet ray was irradiated (irradiation amount: 10 mV / cm 2 ) to perform UV polymerization for 90 seconds to obtain a hydrogel polymer. . After the obtained hydrogel polymer was pulverized to a size of 2 mm * 2 mm, the obtained gel-like resin was spread on a stainless wire gauze having a pore size of 600 μm to a thickness of about 30 mm and dried in a 180 ° C. hot air oven for 30 minutes. The dried polymer thus obtained was pulverized using a grinder, classified by a standard mesh body of ASTM standard, to obtain a base resin having a particle size of 150 to 850 μm.
(2) 고흡수성 수지의 제조(2) Preparation of super absorbent polymer
상기 베이스 수지 100 중량부에 실리카 0.1 중량부를 건식으로 혼합한 후, 에틸렌글리콜 디글리시딜 에테르(에폭시 당량 113~125 g/eq) 0.02 중량부, 물 6.2 중량부, 황산알루미늄 0.2 중량부, 글리세릴 스테아레이트(HLB 3.8) 0.03 중량부를 포함하는 표면 가교 용액을 분사하여 혼합하고 이를 교반기와 이중 자켓으로 이루어진 용기에 넣어 140 ℃에서 35분간 표면 가교 반응을 진행하였다. 이후 표면 처리된 분말을 ASTM 규격의 표준 망체로 분급하여 150 내지 850 ㎛의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다.After mixing 0.1 parts by weight of silica with 100 parts by weight of the base resin, 0.02 parts by weight of ethylene glycol diglycidyl ether (epoxy equivalent 113-125 g / eq), 6.2 parts by weight of water, 0.2 parts by weight of aluminum sulfate, glycerol The surface crosslinking solution containing 0.03 parts by weight of reel stearate (HLB 3.8) was sprayed and mixed, and then placed in a container made of a stirrer and a double jacket, the surface crosslinking reaction was performed at 140 ° C for 35 minutes. Subsequently, the surface-treated powder was classified as a standard mesh of ASTM standards to obtain a super absorbent polymer powder having a particle size of 150 to 850 μm.
비교예 2Comparative Example 2
(2) 단계에서 에틸렌글리콜 디글리시딜 에테르를 베이스 수지 100 중량부에 대하여 0.03 중량부로 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 고흡수성 수지 분말을 얻었다.The superabsorbent polymer powder was obtained in the same manner as in Comparative Example 1, except that in step (2), ethylene glycol diglycidyl ether was used in an amount of 0.03 parts by weight based on 100 parts by weight of the base resin.
비교예 3Comparative Example 3
(2) 단계에서 에틸렌글리콜 디글리시딜 에테르를 베이스 수지 100 중량부에 대하여 0.05 중량부로 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 고흡수성 수지 분말을 얻었다.In step (2), superabsorbent polymer powder was obtained in the same manner as in Comparative Example 1, except that 0.05 parts by weight of ethylene glycol diglycidyl ether was used in 100 parts by weight of the base resin.
<실험예><Experimental Example>
상기 실시예들 및 비교예들에서 제조한 고흡수성 수지에 대하여, 다음과 같은 방법으로 물성을 평가하였다.For the superabsorbent polymer prepared in Examples and Comparative Examples, physical properties were evaluated in the following manner.
다르게 표기하지 않는 한, 하기 물성 평가는 모두 항온항습(23 ± 1 ℃, 상대습도 50 ± 10 %)에서 진행하였고, 생리식염수 또는 염수는 0.9 중량% 염화나트륨(NaCl) 수용액을 의미한다.Unless otherwise indicated, all of the following physical property evaluations were performed at constant temperature and humidity (23 ± 1 ° C, relative humidity 50 ± 10%), and physiological saline or saline means 0.9 wt% sodium chloride (NaCl) aqueous solution.
또한, 하기 재습윤 물성 평가에서 사용한 수도수는 Orion Star A222 (회사:Thermo Scientific)을 이용하여 측정하였을 때, 전기 전도도가 140 내지 150 μS/cm 인 것을 사용하였다.In addition, the tap water used in the evaluation of the re-wet properties was used when measured using Orion Star A222 (Company: Thermo Scientific) with electrical conductivity of 140 to 150 μS / cm.
(1) 원심분리 보수능(CRC: Centrifuge Retention Capacity)(1) Centrifuge Retention Capacity (CRC)
각 수지의 무하중하 흡수 배율에 의한 보수능을 EDANA WSP 241.3에 따라 측정하였다.The water retention capacity of each resin by the load-free absorption magnification was measured according to EDANA WSP 241.3.
구체적으로, 고흡수성 수지 W0(g) (약 0.2 g)을 부직포제의 봉투에 균일하게 넣고 밀봉(seal)한 후, 상온에서 생리식염수(0.9 중량%)에 침수시켰다. 30분 경과 후, 원심 분리기를 이용하여 250 G의 조건 하에서 상기 봉투로부터 3분간 물기를 빼고, 봉투의 질량 W2(g)을 측정하였다. 또, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W1(g)을 측정하였다. 얻어진 각 질량을 이용하여 다음과 같은 식에 따라 CRC(g/g)를 산출하였다.Specifically, the super absorbent polymer W 0 (g) (about 0.2 g) was uniformly put in a nonwoven fabric bag, sealed, and then immersed in physiological saline (0.9 wt%) at room temperature. After 30 minutes, the bag was drained for 3 minutes under the condition of 250 G using a centrifuge, and the mass W 2 (g) of the envelope was measured. Moreover, the mass W 1 (g) at that time was measured after performing the same operation without using a resin. CRC (g / g) was calculated according to the following equation using each obtained mass.
[수학식 1][Equation 1]
Figure PCTKR2019011994-appb-I000003
Figure PCTKR2019011994-appb-I000003
(2) 흡수속도 (Vortex time)(2) Absorption speed (Vortex time)
흡수 속도(vortex time)는 국제 공개 출원 제1987-003208호에 기재된 방법에 준하여 초 단위로 측정하였다.The vortex time was measured in seconds according to the method described in International Publication No. 1987-003208.
구체적으로, 23 ℃의 50 mL의 생리 식염수에 2 g의 고흡수성 수지를 넣고, 마그네틱 바(직경 8 mm, 길이 30 mm)를 600 rpm으로 교반하여 와류(vortex)가 사라질 때까지의 시간을 초 단위로 측정하여 산출되었다.Specifically, 2 g of superabsorbent polymer was added to 50 mL of physiological saline at 23 ° C., and a magnetic bar (8 mm in diameter and 30 mm in length) was stirred at 600 rpm to time the time until vortex disappeared. It was calculated by measuring in units.
(3) 가압 흡수능 (AUP: Absorption Under Pressure)(3) Absorption Under Pressure (AUP)
각 수지의 0.3 psi의 가압 흡수능을, EDANA법 WSP 242.3에 따라 측정하였다.The pressure absorption capacity of 0.3 psi of each resin was measured according to EDANA method WSP 242.3.
구체적으로, 내경 60 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온 및 습도 50 %의 조건 하에서 철망 상에 고흡수성 수지 W0(g) (0.90 g)을 균일하게 살포하고, 그 위에 0.3 psi의 하중을 균일하게 더 부여할 수 있는 피스톤은 외경 60 mm 보다 약간 작고 원통의 내벽과 틈이 없고 상하 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다.Specifically, a 400 mesh wire mesh made of stainless steel was mounted on a cylindrical bottom of a plastic having an inner diameter of 60 mm. A piston capable of uniformly spreading super absorbent polymer W 0 (g) (0.90 g) on a wire mesh under conditions of normal temperature and humidity of 50%, and a piston capable of uniformly applying a load of 0.3 psi thereon is slightly smaller than an outer diameter of 60 mm. It is small and has no gap with the inner wall of the cylinder, and the vertical movement is not disturbed. At this time, the weight W 3 (g) of the device was measured.
직경 150 mm의 페트로 접시의 내측에 직경 90 mm 및 두께 5 mm의 유리 필터를 두고, 0.9 중량% 염화나트륨으로 구성된 생리식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90 mm의 여과지 1장을 실었다. 여과지 위에 상기 측정 장치를 싣고, 액을 하중 하에서 1시간 동안 흡수시켰다. 1시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다.A glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a 150 mm diameter petri dish, and the physiological saline composed of 0.9% by weight sodium chloride was brought to the same level as the top surface of the glass filter. A sheet of filter paper having a diameter of 90 mm was placed thereon. The measuring device was mounted on a filter paper, and the liquid was absorbed for 1 hour under a load. After 1 hour, the measuring device was lifted, and the weight W 4 (g) was measured.
얻어진 각 질량을 이용하여 다음 식에 따라 가압 흡수능(g/g)을 산출하였다.Using each mass obtained, pressure absorption capacity (g / g) was calculated according to the following equation.
[수학식 2][Equation 2]
Figure PCTKR2019011994-appb-I000004
Figure PCTKR2019011994-appb-I000004
(4) 통액성(Permeability)(4) Permeability
크로마토그래피 관(F20mm)에 피스톤을 넣은 상태에서의 액량 20 ml 및 40 ml의 액면에 선을 표시하였다. 이 후, 크로마토그래피 관 하부 glass 필터와 콕크 사이에 기포가 생기지 않도록 역으로 물을 투입하여 약 10 ml를 채우고 염수로 2~3회 세척하고, 40 ml 이상까지 0.9 % 염수를 채웠다. 크로마토그래피 관에 피스톤을 넣고 하부 밸브를 열어 액면이 40 ml에서 20 ml 표시선까지 줄어드는 시간(B)을 기록하였다.The line was marked on the liquid level of 20 ml and 40 ml of the liquid amount in a state where a piston was put in a chromatography tube (F20 mm). Thereafter, water was added in reverse to fill up about 10 ml and washed 2-3 times with brine to prevent bubbles from forming between the glass filter and the bottom of the chromatography tube, and 0.9% brine was added up to 40 ml or more. The piston was placed in the chromatography tube and the lower valve was opened to record the time (B) at which the liquid level decreased from 40 ml to 20 ml mark.
크로마토그래피 관에 염수를 10 ml 남기고, 분급(300 ~ 600 ㎛)된 고흡수성 수지 시료 0.2 ± 0.0005 g을 넣고 염수를 가하여 염수 부피가 50 ml가 되게 한 후, 30분 간 방치하였다. 그 후, 크로마토그래피 관 내에 추가 달린 피스톤(0.3 psi = 106.26 g)을 넣고 1분 간 방치 후, 크로마토그래피 관 하부 밸브를 열어 액면이 40 ml에서 20 ml 표시선까지 줄어드는 시간(T1)을 기록하여, T1 - B 의 시간(단위: 초)을 계산하였다.10 ml of brine was left in the chromatography tube, 0.2 ± 0.0005 g of a superabsorbent polymer sample classified (300 to 600 μm) was added, and brine was added to a volume of 50 ml, and then allowed to stand for 30 minutes. Thereafter, an additional piston (0.3 psi = 106.26 g) was placed in the chromatography tube, left for 1 minute, and the time (T1) at which the liquid level decreased from 40 ml to 20 ml mark was recorded by opening the lower valve of the chromatography tube, The time (unit: second) of T1-B was calculated.
(5) 가압 수도수 장기 재습윤(2 hrs)(5) Pressurized tap water long-term rewetting (2 hrs)
① 지름 13 cm 페트리 접시(petri dish)에 고흡수성 수지 4 g을 고르게 뿌려 분산시키고 수도수 200 g을 부은 후 2시간 동안 팽윤시켰다.① Sprinkle evenly with 4 g of superabsorbent resin on a 13 cm diameter petri dish, pour 200 g of tap water and swell for 2 hours.
② 2시간 동안 팽윤시킨 고흡수성 수지를 필터페이퍼(제조사: whatman, catalog No. 1004-110, pore size 20-25 μm, 지름 11 cm) 20장 위에 깔고 지름 11 cm, 5 kg 추(0.75 psi)로 1분 간 가압하였다.② Put super absorbent resin swollen for 2 hours on 20 sheets of filter paper (manufacturer: whatman, catalog No. 1004-110, pore size 20-25 μm, diameter 11 cm) and put 11 cm in diameter, 5 kg weight (0.75 psi) Pressurized with for 1 minute.
③ 1분 간 가압 후 필터페이퍼에 묻은 수도수의 양(단위: g)을 측정하였다.③ After pressing for 1 minute, the amount of tap water on the filter paper (unit: g) was measured.
상기 실시예들과 비교예들에 관한 물성값을 하기 표 1에 기재하였다.Table 1 shows the physical properties of the examples and comparative examples.
Figure PCTKR2019011994-appb-T000001
Figure PCTKR2019011994-appb-T000001
표 1을 참조하면, 본 발명의 실시예 1 내지 6은 모두 우수한 재습윤 특성 및 통액성을 나타냄을 확인할 수 있다. 반면, 에폭시 당량이 100 g/eq 이상 내지 130 g/eq 미만인 제1에폭시 가교제만을 사용한 비교예 1 내지 2는 통액성 및 재습윤 특성이 실시예 보다 좋지 않음을 알 수 있다. 즉, 동량의 에폭시계 표면 가교제를 사용한 경우를 비교할 때, 비교예에 비하여 실시예의 경우가 우수한 통액성 및 재습윤 특성을 나타내는 것으로 확인되었다.Referring to Table 1, it can be seen that Examples 1 to 6 of the present invention all exhibit excellent rewetting properties and liquid permeability. On the other hand, it can be seen that Comparative Examples 1 to 2 using only the first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq have poor liquid-permeability and re-wetting properties than in Examples. That is, when comparing the case where the same amount of epoxy-based surface crosslinking agent was used, it was confirmed that the case of the example exhibited superior liquid permeability and rewetting properties compared to the comparative example.

Claims (14)

  1. 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스 수지(base resin)를 준비하는 단계(단계 1);Preparing a base resin having an acidic group and having at least a portion of the acidic group neutralized and an internal crosslinking agent crosslinked and polymerized (step 1);
    상기 베이스 수지에, 무기 필러, 및 에폭시계 표면 가교제를 혼합하되, 상기 무기 필러를 먼저 상기 베이스 수지에 건식으로 혼합하고, 이어서 에폭시계 표면 가교제를 물에 용해하여 표면 가교 용액 상태로 혼합하는 단계(단계 2); 및Mixing an inorganic filler and an epoxy-based surface crosslinking agent in the base resin, but mixing the inorganic filler first in the base resin dryly, followed by dissolving an epoxy-based surface crosslinking agent in water and mixing in a surface crosslinking solution state ( Step 2); And
    상기 단계 2의 혼합물을 승온하여 상기 베이스 수지에 대한 표면 개질을 수행하는 단계(단계 3)를 포함하고,Including the step of performing the surface modification to the base resin by heating the mixture of step 2 (step 3),
    상기 에폭시계 표면가교제는 에폭시 당량이 100 g/eq 이상 내지 130 g/eq 미만인 제1에폭시 가교제 및 에폭시 당량이 130 내지 200 g/eq인 제2에폭시 가교제를 포함하는 것인, 고흡수성 수지의 제조방법.The epoxy-based surface crosslinking agent comprises a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq. Way.
  2. 제1항에 있어서,According to claim 1,
    상기 제1에폭시 가교제는 베이스 수지 100 중량부에 대하여 0.01 내지 0.1 중량부로 포함되고, 제2에폭시 가교제는 베이스 수지 100 중량부에 대하여 0.001 내지 0.1 중량부로 포함되는, 고흡수성 수지의 제조방법.The first epoxy cross-linking agent is contained in 0.01 to 0.1 parts by weight based on 100 parts by weight of the base resin, the second epoxy cross-linking agent is contained in 0.001 to 0.1 parts by weight based on 100 parts by weight of the base resin, a method for producing a super absorbent polymer.
  3. 제1항에 있어서,According to claim 1,
    제1에폭시 가교제는 에틸렌글리콜 디글리시딜에테르(ethyleneglycol diglycidyl ether) 및 디에틸렌글리콜 디글리시딜에테르(diethyleneglycol diglycidyl ether)로 이루어지는 군에서 선택되는 1종 이상인, 고흡수성 수지의 제조방법.The first epoxy cross-linking agent is at least one member selected from the group consisting of ethylene glycol diglycidyl ether and diethylene glycol diglycidyl ether.
  4. 제1항에 있어서,According to claim 1,
    제2에폭시 가교제는 글리세롤 폴리글리시딜에테르(glycerol polyglycidyl ether), 디글리세롤 폴리글리시딜에테르(diglycerol polyglycidyl ether), 폴리글리세롤 폴리글리시딜에테르(polyglycerol polyglycidyl ether) 및 소르비톨 폴리글리시딜에테르(sorbitol polyglycidyl ether)로 이루어지는 군에서 선택되는 1종 이상인, 고흡수성 수지의 제조방법.The second epoxy crosslinking agent is glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether and sorbitol polyglycidyl ether ( sorbitol polyglycidyl ether) is selected from the group consisting of at least one, superabsorbent polymer production method.
  5. 제1항에 있어서,According to claim 1,
    상기 단계 2에서, HLB가 0 이상 6 이하인 소수성 물질을 더 포함하는, 고흡수성 수지의 제조방법.In step 2, the HLB further comprises a hydrophobic material having 0 to 6, the method for producing a super absorbent polymer.
  6. 제5항에 있어서,The method of claim 5,
    상기 소수성 물질은 글리세릴 스테아레이트(glyceryl stearate), 글리콜 스테아레이트(glycol stearate), 마그네슘 스테아레이트(magnesium stearate), 글리세릴 라우레이트(glyceryl laurate), 소르비탄 스테아레이트(sorbitan stearate), 소르비탄 트리올리에이트(sorbitan trioleate), 및 PEG-4 디라우레이트(PEG-4 dilaurate)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지의 제조방법.The hydrophobic material is glyceryl stearate, glycol stearate, magnesium stearate, glyceryl laurate, sorbitan stearate, sorbitan stearate Method for producing a super absorbent polymer comprising at least one member selected from the group consisting of sorbitan trioleate, and PEG-4 dilaurate.
  7. 제5항에 있어서,The method of claim 5,
    상기 소수성 물질은 상기 베이스 수지 100 중량부에 대하여 0.001 내지 0.5 중량부로 혼합하는, 고흡수성 수지의 제조방법.The hydrophobic material is mixed with 0.001 to 0.5 parts by weight based on 100 parts by weight of the base resin, a method for producing a super absorbent polymer.
  8. 제1항에 있어서,According to claim 1,
    상기 단계 3은 120 내지 190 ℃의 온도에서 수행하는, 고흡수성 수지의 제조방법.The step 3 is carried out at a temperature of 120 to 190 ℃, super absorbent polymer production method.
  9. 제1항에 있어서,According to claim 1,
    상기 단계 1은,Step 1 above,
    산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 내부 가교제, 및 중합 개시제를 포함하는 모노머 조성물을 중합하여 함수겔상 중합체를 형성하는 단계;Polymerizing a monomer composition comprising an acrylic acid-based monomer having an acidic group and at least a part of which is neutralized, an internal crosslinking agent, and a polymerization initiator to form a hydrogel polymer;
    상기 함수겔상 중합체를 건조하는 단계;Drying the hydrogel polymer;
    상기 건조된 중합체를 분쇄하는 단계; 및Crushing the dried polymer; And
    상기 분쇄된 중합체를 분급하는 단계를 포함하는, 고흡수성 수지의 제조방법.Method of producing a super absorbent polymer comprising the step of classifying the pulverized polymer.
  10. 산성기의 적어도 일부가 중화된 아크릴산계 단량체가 가교 중합된 가교 중합체를 포함하는 베이스 수지; 및A base resin comprising a crosslinked polymer obtained by crosslinking and polymerizing an acrylic acid monomer in which at least a part of the acidic group is neutralized; And
    상기 베이스 수지의 입자 표면에 형성되어 있고, 상기 가교 중합체가 에폭시 당량이 상이한 2종의 에폭시계 표면 가교제를 매개로 추가 가교되어 있는 이중의 표면 개질층을 포함하고,It is formed on the particle surface of the base resin, and the crosslinked polymer includes a double surface modification layer that is additionally crosslinked through two epoxy-based surface crosslinking agents having different epoxy equivalents,
    상기 표면 개질층은 무기 필러를 포함하며,The surface modification layer includes an inorganic filler,
    상기 2종의 에폭시계 표면 가교제는 에폭시 당량이 100 g/eq 이상 내지 130 g/eq 미만인 제1에폭시 가교제 및 에폭시 당량이 130 내지 200 g/eq인 제2에폭시 가교제를 포함하는 것인, 고흡수성 수지.The two types of epoxy-based surface crosslinking agent include a first epoxy crosslinking agent having an epoxy equivalent of 100 g / eq or more and less than 130 g / eq and a second epoxy crosslinking agent having an epoxy equivalent of 130 to 200 g / eq. Suzy.
  11. 제10항에 있어서,The method of claim 10,
    상기 고흡수성 수지는 흡수 속도(vortex time)가 40초 이하인, 고흡수성 수지.The super absorbent polymer has a super absorbent polymer having a vortex time of 40 seconds or less.
  12. 제10항에 있어서,The method of claim 10,
    상기 고흡수성 수지는 하기 식 1에 따라 측정되는 통액성(permeability, 단위: 초)이 35초 이하인, 고흡수성 수지:The superabsorbent polymer has a superabsorbent polymer having a permeability (unit: second) of 35 seconds or less measured according to the following Equation 1:
    [식 1][Equation 1]
    Figure PCTKR2019011994-appb-I000005
    Figure PCTKR2019011994-appb-I000005
    상기 식 1에서,In the above formula 1,
    T1은 크로마토그래피 관 내에 분급(300 ~ 600 ㎛)된 고흡수성 수지 시료 0.2±0.0005 g 을 넣고 염수를 가하여 염수 부피가 50 ml 가 되게 한 후, 30분 간 방치 후, 액면높이가 40 ml 에서 20 ml 까지 줄어드는 데에 걸리는 시간이고, B 는 염수가 채워진 크로마토그래피 관에서 액면높이가 40 ml 에서 20 ml 까지 줄어드는 데에 걸리는 시간이다.T1 is 0.2 ± 0.0005 g of a super absorbent polymer sample (300 to 600 μm) classified in a chromatography tube, brine is added to make the volume of the brine 50 ml, and after standing for 30 minutes, the liquid level is 40 ml to 20 The time it takes to reduce to ml, and B is the time it takes for the liquid level to decrease from 40 ml to 20 ml in a saline-filled chromatography tube.
  13. 제10항에 있어서,The method of claim 10,
    상기 고흡수성 수지는 원심분리 보수능(CRC)이 25 g/g 이상인, 고흡수성 수지.The superabsorbent polymer is a superabsorbent polymer having a centrifugal water retention capacity (CRC) of 25 g / g or more.
  14. 제10항에 있어서,The method of claim 10,
    상기 고흡수성 수지는, 상기 고흡수성 수지 4 g 을 수도수 200 g 에 침지시켜 2시간 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 0.75 psi 의 압력 하에 1분 동안 여과지 상에서 방치하고 나서, 상기 고흡수성 수지로부터 상기 여과지로 다시 배어나온 물의 중량으로 정의되는 재습윤 특성(가압 수도수 장기 재습윤)이 1.0 g 이하인, 고흡수성 수지.The superabsorbent polymer, after immersing the superabsorbent polymer 4 g in 200 g of tap water for 2 hours, and then swelling the swollen superabsorbent polymer on a filter paper for 1 minute under a pressure of 0.75 psi, A superabsorbent polymer having a rewetting characteristic (pressurized tap water long-term rewetting) of 1.0 g or less, defined by the weight of water that has re-extruded from the absorbent resin into the filter paper.
PCT/KR2019/011994 2018-11-13 2019-09-17 Superabsorbent polymer and preparation method thereof WO2020101167A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020518768A JP6973874B2 (en) 2018-11-13 2019-09-17 Super absorbent polymer and its manufacturing method
CN201980004784.6A CN111436201B (en) 2018-11-13 2019-09-17 Super absorbent polymer and method for preparing the same
US16/756,921 US11466131B2 (en) 2018-11-13 2019-09-17 Superabsorbent polymer and preparation method thereof
EP19863965.0A EP3680277A4 (en) 2018-11-13 2019-09-17 Superabsorbent polymer and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180139103 2018-11-13
KR10-2018-0139103 2018-11-13
KR1020190113734A KR102418591B1 (en) 2018-11-13 2019-09-16 Super absorbent polymer and preparation method for the same
KR10-2019-0113734 2019-09-16

Publications (1)

Publication Number Publication Date
WO2020101167A1 true WO2020101167A1 (en) 2020-05-22

Family

ID=70730845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011994 WO2020101167A1 (en) 2018-11-13 2019-09-17 Superabsorbent polymer and preparation method thereof

Country Status (1)

Country Link
WO (1) WO2020101167A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587308A (en) 1984-02-04 1986-05-06 Arakawa Kagaku Kogyo Kabushiki Kaisha Method for producing improved water-absorbent resins
WO1987003208A1 (en) 1985-11-22 1987-06-04 Beghin-Say Sa Method for preparing a liquid absorbing composition
JPH10244151A (en) 1997-03-06 1998-09-14 Sanyo Chem Ind Ltd Production of water absorbent and water absorbent
WO2004096304A1 (en) 2003-04-25 2004-11-11 Stockhausen, Inc. Superabsorbent polymer with high permeability
JP2011080069A (en) * 2010-11-04 2011-04-21 Sumitomo Seika Chem Co Ltd Water-absorbing resin
JP5162160B2 (en) 2007-06-04 2013-03-13 サンダイヤポリマー株式会社 Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article
KR20150048785A (en) * 2012-08-30 2015-05-07 가부시키가이샤 닛폰 쇼쿠바이 Particulate water-absorbing agent and method for manufacturing same
KR20150066454A (en) * 2013-12-06 2015-06-16 주식회사 엘지화학 Super Absorbent Polymer Resin and the Method for Preparing of the Same
EP2877137B1 (en) * 2012-07-27 2017-05-10 Livedo Corporation Absorbent article
KR20180019558A (en) * 2015-06-19 2018-02-26 가부시키가이샤 닛폰 쇼쿠바이 Poly (meth) acrylic acid (salt) -based particulate sorbent and method of manufacture
WO2018110758A1 (en) 2016-12-13 2018-06-21 주식회사 엘지화학 Superabsorbent polymer and method for preparing same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587308A (en) 1984-02-04 1986-05-06 Arakawa Kagaku Kogyo Kabushiki Kaisha Method for producing improved water-absorbent resins
WO1987003208A1 (en) 1985-11-22 1987-06-04 Beghin-Say Sa Method for preparing a liquid absorbing composition
JPH10244151A (en) 1997-03-06 1998-09-14 Sanyo Chem Ind Ltd Production of water absorbent and water absorbent
WO2004096304A1 (en) 2003-04-25 2004-11-11 Stockhausen, Inc. Superabsorbent polymer with high permeability
JP5162160B2 (en) 2007-06-04 2013-03-13 サンダイヤポリマー株式会社 Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article
JP2011080069A (en) * 2010-11-04 2011-04-21 Sumitomo Seika Chem Co Ltd Water-absorbing resin
EP2877137B1 (en) * 2012-07-27 2017-05-10 Livedo Corporation Absorbent article
KR20150048785A (en) * 2012-08-30 2015-05-07 가부시키가이샤 닛폰 쇼쿠바이 Particulate water-absorbing agent and method for manufacturing same
KR20150066454A (en) * 2013-12-06 2015-06-16 주식회사 엘지화학 Super Absorbent Polymer Resin and the Method for Preparing of the Same
KR20180019558A (en) * 2015-06-19 2018-02-26 가부시키가이샤 닛폰 쇼쿠바이 Poly (meth) acrylic acid (salt) -based particulate sorbent and method of manufacture
WO2018110758A1 (en) 2016-12-13 2018-06-21 주식회사 엘지화학 Superabsorbent polymer and method for preparing same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115
See also references of EP3680277A4

Similar Documents

Publication Publication Date Title
WO2016200041A1 (en) Method for preparing superabsorbent resin comprising fine powder re-assembled body of superabsorbent resin, and superabsorbent resin prepared thereby
WO2016111447A1 (en) Super absorbent resin having improved solidification resistance, and method for preparing same
KR102418591B1 (en) Super absorbent polymer and preparation method for the same
WO2016099102A1 (en) Surface cross-linked super absorbent resin and method for preparing same
WO2020145548A1 (en) Superabsorbent resin and preparation method of same
WO2016099100A1 (en) Surface-modified super absorbent resin and method for preparing same
WO2020145533A1 (en) Method for producing super absorbent polymer
WO2020122442A1 (en) Method for preparing superabsorbent polymer
KR102568226B1 (en) Super absorbent polymer and preparation method for the same
KR20180071940A (en) Super absorbent polymer and preparation method thereof
WO2020122444A1 (en) Method for preparing super-absorbent polymer
WO2016099103A1 (en) Super absorbent resin for absorbing blood or high viscosity liquid and method for preparing same
WO2016104926A1 (en) Attrition-resistant superabsorbent polymer and method for producing same
WO2020067705A1 (en) Method for preparing super absorbent polymer, and super absorbent polymer
WO2020226385A1 (en) Super absorbent polymer preparation method and super absorbent polymer
WO2020116760A1 (en) Method for preparing superabsorbent polymer
WO2020067662A1 (en) Manufacturing method for superabsorbent polymer sheet
WO2020101167A1 (en) Superabsorbent polymer and preparation method thereof
WO2020149691A1 (en) Super absorbent polymer and preparation method therefor
WO2015084060A1 (en) Superabsorbent polymer and preparation method therefor
WO2020122426A1 (en) Super absorbent polymer and preparation method therefor
WO2021054718A1 (en) Superabsorbent polymer and method for preparing same
WO2021054711A1 (en) Super absorbent polymer and preparation method for same
WO2023038340A1 (en) Preparation method for superabsorbent polymer
WO2020122390A1 (en) Superabsorbent polymer and method for preparing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020518768

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019863965

Country of ref document: EP

Effective date: 20200330

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE