JP6973223B2 - Manufacturing method of active material mixture - Google Patents

Manufacturing method of active material mixture Download PDF

Info

Publication number
JP6973223B2
JP6973223B2 JP2018055067A JP2018055067A JP6973223B2 JP 6973223 B2 JP6973223 B2 JP 6973223B2 JP 2018055067 A JP2018055067 A JP 2018055067A JP 2018055067 A JP2018055067 A JP 2018055067A JP 6973223 B2 JP6973223 B2 JP 6973223B2
Authority
JP
Japan
Prior art keywords
active material
powder
mixing
dispersion medium
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018055067A
Other languages
Japanese (ja)
Other versions
JP2019169299A (en
Inventor
有基 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018055067A priority Critical patent/JP6973223B2/en
Publication of JP2019169299A publication Critical patent/JP2019169299A/en
Application granted granted Critical
Publication of JP6973223B2 publication Critical patent/JP6973223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本願は活物質合材の製造方法を開示する。 The present application discloses a method for producing an active material mixture.

固体電池用の正極合材や負極合材として活物質と固体電解質と導電材とを含む活物質合材が知られている。このような活物質合材は、例えば、特許文献1、2に開示されているような各種混練機を用いて活物質と固体電解質と導電材と分散媒とを混合することで製造可能である。一方で、特許文献3に開示されているように、粉体の吸い込みと液体の送りと粉体及び液体の混合とを行うことが可能な粉体混合ポンプが知られている。 As a positive electrode mixture or a negative electrode mixture for a solid battery, an active material mixture containing an active material, a solid electrolyte, and a conductive material is known. Such an active material mixture can be produced, for example, by mixing an active material, a solid electrolyte, a conductive material, and a dispersion medium using various kneaders as disclosed in Patent Documents 1 and 2. .. On the other hand, as disclosed in Patent Document 3, a powder mixing pump capable of sucking powder, feeding liquid, and mixing powder and liquid is known.

特開2017−220455号公報Japanese Unexamined Patent Publication No. 2017-20455 特開2017−205705号公報Japanese Unexamined Patent Publication No. 2017-20705 特許第4458536号公報Japanese Patent No. 4458536

本発明者の新たな知見によると、特許文献3に開示されているような粉体混合ポンプを備える循環式の混合装置において、分散媒を循環させながら活物質合材の混合を行う場合、合材中の固体電解質が凝集し易く、合材の粒度を下げることが難しい場合がある。 According to a new finding of the present inventor, in a circulation type mixing apparatus provided with a powder mixing pump as disclosed in Patent Document 3, when mixing an active material mixture while circulating a dispersion medium, a combination is performed. The solid electrolyte in the material tends to aggregate, and it may be difficult to reduce the particle size of the mixture.

本願は、上記課題を解決するための手段の一つとして、粉体供給装置と、攪拌装置を有する攪拌タンクと、送液ポンプと、粉体の吸い込み、液体の送り、並びに、粉体及び液体の混合を行うことが可能な粉体混合ポンプと、を備え、前記粉体供給装置と前記攪拌タンクと前記送液ポンプと前記粉体混合ポンプとが接続されてなる混合装置を用いて活物質合材を製造する方法であって、前記混合装置を作動させて前記混合装置内に分散媒を循環させる、循環工程と、前記混合装置を作動させた状態で前記粉体供給装置から固体電解質を供給して前記分散媒中に分散させる、第1の分散工程と、前記第1の分散工程後に、前記混合装置を作動させた状態で前記粉体供給装置から活物質及び導電材を供給して前記分散媒中に分散させる、第2の分散工程とを備える、活物質合材の製造方法を開示する。 The present application presents, as one of the means for solving the above-mentioned problems, a powder supply device, a stirring tank having a stirring device, a liquid feeding pump, powder suction, liquid feeding, and powder and liquid. The active material is provided with a powder mixing pump capable of mixing the above, and the mixing device is formed by connecting the powder supply device, the stirring tank, the liquid feeding pump, and the powder mixing pump. A method for producing a mixture, which is a circulation step in which the mixing device is operated to circulate a dispersion medium in the mixing device, and a solid electrolyte is supplied from the powder supply device in a state where the mixing device is operated. After the first dispersion step of supplying and dispersing in the dispersion medium and the first dispersion step, the active material and the conductive material are supplied from the powder supply device in a state where the mixing device is operated. Disclosed is a method for producing an active material mixture, which comprises a second dispersion step of dispersing in the dispersion medium.

本開示の製造方法のように、粉体混合ポンプを備える循環式の混合装置において、分散媒を循環させながら活物質合材の混合を行う場合に、分散媒中に固体電解質を分散させた後で活物質及び導電材を分散させることで、合材中の固体電解質の凝集を抑え、合材の粒度を下げることができる。 In the case of mixing the active material mixture while circulating the dispersion medium in a circulation type mixing device equipped with a powder mixing pump as in the manufacturing method of the present disclosure, after the solid electrolyte is dispersed in the dispersion medium. By dispersing the active material and the conductive material in the mixture, it is possible to suppress the aggregation of the solid electrolyte in the mixture and reduce the particle size of the mixture.

混合装置100の構成を説明するための概略図である。It is a schematic diagram for demonstrating the structure of a mixing apparatus 100. 活物質合材の製造方法S10の流れを説明するための図である。It is a figure for demonstrating the flow of the manufacturing method S10 of an active material mixture. 実施例及び比較例の結果を示す図である。It is a figure which shows the result of an Example and a comparative example.

図1に、本開示の活物質合材の製造方法において用いられる混合装置100の構成を概略的に示す。図1に示すように、混合装置100は、粉体供給装置10と、攪拌装置20aを有する攪拌タンク20と、送液ポンプ30と、粉体混合ポンプ40とを備えている。粉体混合ポンプ40は、粉体の吸い込みと液体の送りと粉体及び液体の混合とを行うことが可能なものである。混合装置100において、粉体供給装置10と攪拌タンク20と送液ポンプ30と粉体混合ポンプ40とが接続されており、混合装置100内で流体を循環させることができる。 FIG. 1 schematically shows the configuration of a mixing device 100 used in the method for producing an active material mixture of the present disclosure. As shown in FIG. 1, the mixing device 100 includes a powder supply device 10, a stirring tank 20 having a stirring device 20a, a liquid feeding pump 30, and a powder mixing pump 40. The powder mixing pump 40 is capable of sucking powder, feeding liquid, and mixing powder and liquid. In the mixing device 100, the powder supply device 10, the stirring tank 20, the liquid feed pump 30, and the powder mixing pump 40 are connected, and the fluid can be circulated in the mixing device 100.

粉体供給装置10は、混合装置100内に粉体を供給可能なものであればよく、その形態は特に限定されるものではない。例えば、投入口(ホッパー)10aから投入された粉体を混合装置100内へと落下や押出等によって導入する形態である。図1に示すように、粉体供給装置10は送液ポンプ20と粉体混合ポンプ40との間に接続されていることが好ましい。送液ポンプ20による送液と粉体混合ポンプ40による吸い込みとによって、混合装置100内に粉体をより適切に供給することができるためである。粉体供給装置10の構成そのものは公知であり、ここではこれ以上の説明を省略する。 The powder supply device 10 may be any as long as it can supply powder into the mixing device 100, and its form is not particularly limited. For example, the powder charged from the charging port (hopper) 10a is introduced into the mixing device 100 by dropping, extrusion, or the like. As shown in FIG. 1, it is preferable that the powder supply device 10 is connected between the liquid feed pump 20 and the powder mixing pump 40. This is because the powder can be more appropriately supplied into the mixing device 100 by the liquid feeding by the liquid feeding pump 20 and the suction by the powder mixing pump 40. The configuration of the powder supply device 10 itself is known, and further description thereof will be omitted here.

攪拌タンク20は、内部に攪拌装置20aを備え、分散媒や粉体を攪拌可能なものであればよい。攪拌装置20aの具体例としては、図1に示すような動力を用いて攪拌羽根を回転させる形態が挙げられるが、これに限定されるものではない。攪拌タンク20は、分散媒等を混合装置100内で循環させるための流入口及び排出口を備えているが、これとは別に流入口や排出口をさらに備えていてもよい。例えば、図1の紙面左側に矢印にて示すように、分散媒等の各種液を攪拌タンク20内に供給するための供給口や、分散媒等を混合装置100の系外に排出するための排出口を備えていてもよい。攪拌タンク20の構成そのものは公知であり、ここではこれ以上の説明を省略する。 The stirring tank 20 may be provided with a stirring device 20a inside and can stir a dispersion medium or powder. Specific examples of the stirring device 20a include, but are not limited to, a form in which the stirring blade is rotated by using the power as shown in FIG. The stirring tank 20 is provided with an inlet and an outlet for circulating the dispersion medium and the like in the mixing device 100, but may be further provided with an inlet and an outlet separately. For example, as shown by an arrow on the left side of the paper in FIG. 1, a supply port for supplying various liquids such as a dispersion medium into the stirring tank 20 and a supply port for discharging the dispersion medium and the like to the outside of the mixing device 100 are discharged. It may be provided with an outlet. The configuration of the stirring tank 20 itself is known, and further description thereof will be omitted here.

送液ポンプ30は、混合装置100内の分散媒等の流れを制御可能なポンプであればよい。送液ポンプ30によって、混合装置100内において分散媒等を一方方向に流通させることができる。図1に示すように、送液ポンプ30は、攪拌タンク20から排出された分散媒等を粉体混合ポンプ40へと送るように、攪拌タンク20と粉体混合ポンプ40との間に備えられることが好ましい。送液ポンプ30の構成そのものは公知であり、ここではこれ以上の説明を省略する。 The liquid feed pump 30 may be any pump that can control the flow of the dispersion medium or the like in the mixing device 100. The liquid feed pump 30 allows the dispersion medium and the like to be circulated in one direction in the mixing device 100. As shown in FIG. 1, the liquid feed pump 30 is provided between the stirring tank 20 and the powder mixing pump 40 so as to send the dispersion medium or the like discharged from the stirring tank 20 to the powder mixing pump 40. Is preferable. The configuration of the liquid feed pump 30 itself is known, and further description thereof will be omitted here.

粉体混合ポンプ40は、粉体の吸い込みと液体の送りと粉体及び液体の混合とを行うことが可能なポンプである。例えば、特許文献3に開示されているように「円筒状ケーシングの内部に、攪拌翼を備えたロータを同心状に配設し、該攪拌翼の回転により、ロータの前方に設けた流入口から攪拌翼の外側に液体を導入するようにしたポンプにおいて、円板状のロータの外周部に複数の攪拌翼を突設し、該攪拌翼の外側と内側とにスリットを有する筒状のステータを配設するとともに、該内側ステータの内側を液体の流路とチャンバとに区画する仕切板を形成し、該チャンバに連通する粉体流入口をケーシングに設けたことを特徴とする粉体混合ポンプ」とすればよい。粉体混合ポンプ40を備える循環式の混合装置100においては、減圧吸引によって粉体を供給することができ、また、キャビテーションとせん断とによって、過度の粉砕を防ぎつつ、粉体を分散媒中に効率的に分散させることが可能である。 The powder mixing pump 40 is a pump capable of sucking powder, feeding liquid, and mixing powder and liquid. For example, as disclosed in Patent Document 3, "a rotor provided with a stirring blade is concentrically arranged inside a cylindrical casing, and the rotation of the stirring blade causes an inlet provided in front of the rotor to be used. In a pump in which a liquid is introduced to the outside of the stirring blade, a plurality of stirring blades are provided on the outer peripheral portion of a disk-shaped rotor, and a tubular stator having slits on the outside and inside of the stirring blade is provided. A powder mixing pump characterized in that a partition plate is formed to partition the inside of the inner stator into a liquid flow path and a chamber, and a powder inlet communicating with the chamber is provided in the casing. "And it is sufficient. In the circulation type mixing device 100 provided with the powder mixing pump 40, the powder can be supplied by vacuum suction, and the powder is put into the dispersion medium while preventing excessive pulverization by cavitation and shearing. It is possible to disperse efficiently.

尚、混合装置100を構成する粉体混合ポンプ40は、例えば、日本スピンドル製造株式会社製ジェットペースタ(登録商標)として市販されている。 The powder mixing pump 40 constituting the mixing device 100 is commercially available, for example, as a jet pacer (registered trademark) manufactured by Nihon Spindle Manufacturing Co., Ltd.

混合装置100において、粉体供給装置10と攪拌タンク20と送液ポンプ30と粉体混合ポンプ40とを接続する手段については特に限定されるものではなく、一般的な配管を用いて接続すればよい。この場合、構成10〜40の間の配管には開閉可能な排出口が設けられていてもよい。尚、図1に示した混合装置100における構成10〜40の配置(設備配列)は一例である。混合装置100における構成10〜40の配置は図1に示したものに限定されるものではなく、混合装置100において分散媒等を循環可能な配置であれば良い。 In the mixing device 100, the means for connecting the powder supply device 10, the stirring tank 20, the liquid feed pump 30, and the powder mixing pump 40 is not particularly limited, and if they are connected using general piping, they are not particularly limited. good. In this case, the pipe between the configurations 10 to 40 may be provided with an openable / closable discharge port. The arrangement (equipment arrangement) of the configurations 10 to 40 in the mixing device 100 shown in FIG. 1 is an example. The arrangement of the configurations 10 to 40 in the mixing device 100 is not limited to that shown in FIG. 1, and any arrangement may be used as long as the dispersion medium or the like can be circulated in the mixing device 100.

本発明者は、上記のような粉体混合ポンプ40等を備える循環式の混合装置100を用いて分散媒とともに固体電解質と活物質と導電材とを混合した場合、合材中の固体電解質が凝集し易く、合材の粒度を下げることが難しい場合があるという新たな課題に突き当たった。当該課題を解決すべく試行錯誤の結果、本発明者は、固体電解質と活物質と導電材とを供給する順番を特定の順番とすることによって、固体電解質の凝集を抑えて、合材の粒度を顕著に下げることができることを知見した。 When the present inventor mixes the solid electrolyte, the active material, and the conductive material together with the dispersion medium by using the circulation type mixing device 100 equipped with the powder mixing pump 40 or the like as described above, the solid electrolyte in the mixture becomes We faced a new problem that it is easy to aggregate and it may be difficult to reduce the particle size of the mixture. As a result of trial and error in order to solve the problem, the present inventor suppresses the aggregation of the solid electrolyte and the grain size of the mixture by setting the order of supplying the solid electrolyte, the active material, and the conductive material to a specific order. Was found to be able to be significantly reduced.

図2に活物質合材の製造方法S10の流れを示す。図2に示すように、製造方法S10は、粉体供給装置10と、攪拌装置20aを有する攪拌タンク20と、送液ポンプ30と、粉体の吸い込み、液体の送り、並びに、粉体及び液体の混合を行うことが可能な粉体混合ポンプ40と、を備え、粉体供給装置10と攪拌タンク20と送液ポンプ30と粉体混合ポンプ40とが接続されてなる混合装置100を用いて活物質合材を製造する方法であって、混合装置100を作動させて混合装置100内に分散媒を循環させる、循環工程S1と、混合装置100を作動させた状態で粉体供給装置10から固体電解質を供給して分散媒中に分散させる、第1の分散工程S2と、第1の分散工程S2後に、混合装置100を作動させた状態で粉体供給装置10から活物質及び導電材を供給して分散媒中に分散させる、第2の分散工程S2とを備えることを特徴とする。 FIG. 2 shows the flow of the method S10 for producing an active material mixture. As shown in FIG. 2, the manufacturing method S10 includes a powder supply device 10, a stirring tank 20 having a stirring device 20a, a liquid feeding pump 30, powder suction, liquid feeding, and powder and liquid. A powder mixing pump 40 capable of mixing the above-mentioned materials, and a mixing device 100 in which the powder supply device 10, the stirring tank 20, the liquid feeding pump 30, and the powder mixing pump 40 are connected are used. A method for producing an active material mixture, from the circulation step S1 in which the mixing device 100 is operated to circulate the dispersion medium in the mixing device 100, and from the powder supply device 10 in a state where the mixing device 100 is operated. After the first dispersion step S2 in which the solid electrolyte is supplied and dispersed in the dispersion medium and the first dispersion step S2, the active material and the conductive material are separated from the powder supply device 10 in a state where the mixing device 100 is operated. It is characterized by comprising a second dispersion step S2 which is supplied and dispersed in a dispersion medium.

1.循環工程S1
循環工程S1においては、混合装置100を作動させて混合装置100内に分散媒を循環させる。例えば、攪拌タンク20の供給口等から混合装置100内へと分散媒を供給し、攪拌装置20a、送液ポンプ30及び粉体混合ポンプ40を作動させることで、混合装置100内に分散媒を循環させることができる。循環工程S1において分散媒の流量や流速は特に限定されるものではなく、生産性等を考慮して適宜決定すればよい。
1. 1. Circulation process S1
In the circulation step S1, the mixing device 100 is operated to circulate the dispersion medium in the mixing device 100. For example, the dispersion medium is supplied into the mixing device 100 from the supply port of the stirring tank 20 or the like, and the stirring device 20a, the liquid feed pump 30, and the powder mixing pump 40 are operated to bring the dispersion medium into the mixing device 100. Can be circulated. In the circulation step S1, the flow rate and the flow velocity of the dispersion medium are not particularly limited, and may be appropriately determined in consideration of productivity and the like.

分散媒は、後述の固形分を分散させるための媒体として機能するものであればよい。特に、分散媒は溶媒とバインダーとを含むことが好ましい。この場合、バインダーは溶媒に溶解していることが好ましいが、必ずしもバインダーのすべてが溶解している必要はない。溶媒にバインダーが溶解せずに膨潤したような分散媒を用いることも可能である。分散媒を構成する溶媒は、固体電解質等に対する反応性ができるだけ小さいものが好ましく、非水溶媒が好ましい。非水溶媒は、極性溶媒若しくは無極性溶媒又はこれらの組み合わせを特に制限なく用いることができる。無極性溶媒の例としては、ヘプタン、トルエン、キシレン等を挙げることができる。極性溶媒の例としては、エタノール、N−メチルピロリドン、酢酸ブチル、酪酸ブチル等を挙げることができる。非水溶媒は1種のみを用いても、2種以上を混合して用いてもよい。一方、バインダーは活物質合材中に含まれるバインダーとして公知のものをいずれも採用可能である。例えば、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、アクリロニトリルブタジエンゴム(ABR)、ブタジエンゴム(BR)、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)等の中から選ばれる少なくとも1種を用いることができる。分散媒におけるバインダーの含有量は特に限定されるものではない。尚、分散媒には、上記課題を解決できる範囲で、粘度調整剤(増粘剤)等及び分散剤等の添加剤が含まれていてもよい。 The dispersion medium may be any medium that functions as a medium for dispersing the solid content described later. In particular, the dispersion medium preferably contains a solvent and a binder. In this case, the binder is preferably dissolved in a solvent, but not all of the binder is necessarily dissolved. It is also possible to use a dispersion medium in which the binder does not dissolve in the solvent and swells. The solvent constituting the dispersion medium is preferably one having as little reactivity as possible with a solid electrolyte or the like, and is preferably a non-aqueous solvent. As the non-aqueous solvent, a polar solvent, a non-polar solvent, or a combination thereof can be used without particular limitation. Examples of non-polar solvents include heptane, toluene, xylene and the like. Examples of polar solvents include ethanol, N-methylpyrrolidone, butyl acetate, butyl butyrate and the like. As the non-aqueous solvent, only one kind may be used, or two or more kinds may be mixed and used. On the other hand, as the binder, any known binder contained in the active material mixture can be adopted. For example, among styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), acrylonitrile butadiene rubber (ABR), butadiene rubber (BR), polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyimide (PI) and the like. At least one selected from can be used. The content of the binder in the dispersion medium is not particularly limited. The dispersion medium may contain additives such as a viscosity modifier (thickening agent) and a dispersant as long as the above problems can be solved.

2.第1の分散工程S2
第1の分散工程S2においては、混合装置100を作動させた状態で粉体供給装置10から固体電解質を供給して分散媒中に分散させる。「混合装置100を作動させた状態」とは、攪拌装置20a、送液ポンプ30及び粉体混合ポンプ40のうちの少なくとも1つが作動して混合装置100内を分散媒が循環している状態を意味する。
2. 2. First dispersion step S2
In the first dispersion step S2, the solid electrolyte is supplied from the powder supply device 10 in a state where the mixing device 100 is operated and dispersed in the dispersion medium. The "state in which the mixing device 100 is operated" is a state in which at least one of the stirring device 20a, the liquid feed pump 30, and the powder mixing pump 40 is operated and the dispersion medium is circulated in the mixing device 100. means.

固体電解質は、活物質合材を構成する固体電解質として公知のものをいずれも採用可能である。特に上記の課題は硫化物固体電解質を用いた場合に生じ易い。すなわち、製造方法S10による効果がより顕著となる観点から、固体電解質として硫化物固体電解質を採用することが好ましい。硫化物固体電解質としては、例えば、構成元素としてLi、P及びSを含む固体電解質を用いることができる。具体的には、LiS−P、LiS−SiS、LiI−LiS−SiS、LiI−SiS−P、LiI−LiBr−LiS−P、LiI−LiS−P、LiI−LiO−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−P−GeS等が挙げられる。これらの中でも、特に、LiS−Pを含む硫化物固体電解質がより好ましい。固体電解質は1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。固体電解質の形状は特に限定されるものではないが、通常、分散媒に供給される前の形状(粉体供給装置10の投入口10aに投入される際の形状)において粒子状である。この場合、分散媒に供給される前の固体電解質の粒子径は0.01μm以上5μm以下であることが好ましい。下限がより好ましくは0.05μm以上、さらに好ましくは0.1μm以上であり、上限がより好ましくは3μm以下、さらに好ましくは2μm以下である。或いは、固体電解質の平均粒子径(D50)は、0.01μm以上5μm以下であることが好ましい。下限がより好ましくは0.05μm以上、さらに好ましくは0.1μm以上であり、上限がより好ましくは3μm以下、さらに好ましくは2μm以下である。尚、本願にいう平均粒子径(D50)とは、レーザ散乱・回折法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出されるメジアン径(50%体積平均粒子径)をいう。 As the solid electrolyte, any known solid electrolyte constituting the active material mixture can be adopted. In particular, the above problems are likely to occur when a sulfide solid electrolyte is used. That is, from the viewpoint that the effect of the production method S10 becomes more remarkable, it is preferable to use a sulfide solid electrolyte as the solid electrolyte. As the sulfide solid electrolyte, for example, a solid electrolyte containing Li, P and S as constituent elements can be used. Specifically, Li 2 SP 2 S 5 , Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Si 2 SP 2 S 5 , LiI-LiBr-Li 2 SP. 2 S 5 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 O-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4- P 2 Examples thereof include S 5 , Li 2 S-P 2 S 5- GeS 2. Among these, in particular, sulfide solid electrolyte containing Li 2 S-P 2 S 5 is more preferable. Only one type of solid electrolyte may be used alone, or two or more types may be mixed and used. The shape of the solid electrolyte is not particularly limited, but is usually particulate in the shape before being supplied to the dispersion medium (the shape when charged into the charging port 10a of the powder supply device 10). In this case, the particle size of the solid electrolyte before being supplied to the dispersion medium is preferably 0.01 μm or more and 5 μm or less. The lower limit is more preferably 0.05 μm or more, further preferably 0.1 μm or more, and the upper limit is more preferably 3 μm or less, still more preferably 2 μm or less. Alternatively, the average particle size (D 50 ) of the solid electrolyte is preferably 0.01 μm or more and 5 μm or less. The lower limit is more preferably 0.05 μm or more, further preferably 0.1 μm or more, and the upper limit is more preferably 3 μm or less, still more preferably 2 μm or less. The average particle size (D 50 ) referred to in the present application means a median diameter (50% volume average particle size) derived from a particle size distribution measured based on a particle size distribution measuring device based on a laser scattering / diffraction method.

第1の分散工程S2において、固体電解質の供給量(分散媒に対する固体電解質の体積比、分散媒における固形分濃度)は、特に限定されるものではないが、固体電解質の量が少な過ぎても多過ぎても、生産性等が悪化する虞がある。この点、第1の分散工程S2においては、分散媒と固体電解質との体積の合計を基準(100体積%)として、固体電解質が1体積%以上50体積%以下となるように、固体電解質の供給量を調整することが好ましい。下限がより好ましくは5体積%以上、さらに好ましくは10体積%以上であり、上限がより好ましくは30体積%以下、さらに好ましくは20体積%以下である。 In the first dispersion step S2, the supply amount of the solid electrolyte (volume ratio of the solid electrolyte to the dispersion medium, the solid content concentration in the dispersion medium) is not particularly limited, but even if the amount of the solid electrolyte is too small. If it is too much, there is a risk that productivity and the like will deteriorate. In this regard, in the first dispersion step S2, the solid electrolyte is divided into 1% by volume or more and 50% by volume or less based on the total volume of the dispersion medium and the solid electrolyte (100% by volume). It is preferable to adjust the supply amount. The lower limit is more preferably 5% by volume or more, further preferably 10% by volume or more, and the upper limit is more preferably 30% by volume or less, still more preferably 20% by volume or less.

尚、第1の分散工程S2において、固体電解質は粉体供給装置10から乾式で供給されてもよいし、溶媒等とともに湿式で供給されてもよい。 In the first dispersion step S2, the solid electrolyte may be supplied dry from the powder supply device 10 or may be supplied wet together with a solvent or the like.

3.第2の分散工程S3
第2の分散工程S3においては、第1の分散工程S2後に、混合装置100を作動させた状態で粉体供給装置10から活物質及び導電材を供給して分散媒中に分散させる。
3. 3. Second dispersion step S3
In the second dispersion step S3, after the first dispersion step S2, the active material and the conductive material are supplied from the powder supply device 10 in a state where the mixing device 100 is operated and dispersed in the dispersion medium.

活物質は、活物質合材を構成する活物質として公知のものをいずれも採用可能である。活物質合材を正極合材とする場合は、活物質として、コバルト酸リチウム、ニッケル酸リチウム、Li(Ni,Mn,Co)O(Li1+αNi1/3Mn1/3Co1/3)、マンガン酸リチウム、スピネル型リチウム複合酸化物、チタン酸リチウム、リン酸金属リチウム(LiMPO、MはFe、Mn、Co、Niから選ばれる少なくとも1種)等のリチウム含有酸化物等を採用することができる。また、活物質合材を負極合材とする場合は、活物質として、Si、Si合金及びケイ素酸化物等のシリコン系活物質、グラファイトやハードカーボン等の炭素系活物質、チタン酸リチウム等の各種酸化物系活物質、金属リチウムやリチウム合金等のリチウム系活物質等を採用することができる。活物質は1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。活物質の形状は特に限定されるものではないが、通常、粒子状である。この場合、この場合、分散媒に供給される前の活物質の粒子径は0.01μm以上50μm以下であることが好ましい。下限がより好ましくは0.5μm以上、さらに好ましくは1μm以上であり、上限がより好ましくは20μm以下、さらに好ましくは5μm以下である。或いは、活物質の平均粒子径(D50)は、0.01μm以上20μm以下であることが好ましい。下限がより好ましくは0.5μm以上、さらに好ましくは1μm以上であり、上限がより好ましくは20μm以下、さらに好ましくは5μm以下である。 As the active material, any known active material that constitutes the active material mixture can be adopted. When the active material mixture is a positive electrode mixture, the active materials are lithium cobalt oxide, lithium nickel oxide, Li (Ni, Mn, Co) O 2 (Li 1 + α Ni 1/3 Mn 1/3 Co 1/3). O 2 ), lithium manganate, spinel-type lithium composite oxide, lithium titanate, lithium metal phosphate (LiMPO 4 , M is at least one selected from Fe, Mn, Co, Ni) and other lithium-containing oxides. Can be adopted. When the active material mixture is used as a negative electrode mixture, the active material may be a silicon-based active material such as Si, Si alloy or silicon oxide, a carbon-based active material such as graphite or hard carbon, or lithium titanate. Various oxide-based active materials, lithium-based active materials such as metallic lithium and lithium alloys, and the like can be adopted. Only one type of active material may be used alone, or two or more types may be mixed and used. The shape of the active material is not particularly limited, but it is usually in the form of particles. In this case, in this case, the particle size of the active material before being supplied to the dispersion medium is preferably 0.01 μm or more and 50 μm or less. The lower limit is more preferably 0.5 μm or more, further preferably 1 μm or more, and the upper limit is more preferably 20 μm or less, still more preferably 5 μm or less. Alternatively, the average particle size (D 50 ) of the active material is preferably 0.01 μm or more and 20 μm or less. The lower limit is more preferably 0.5 μm or more, further preferably 1 μm or more, and the upper limit is more preferably 20 μm or less, still more preferably 5 μm or less.

導電材は、活物質合材を構成する導電材として公知のものをいずれも採用可能である。例えば、アセチレンブラック、ケッチェンブラック、VGCF、カーボンナノファイバー等の炭素材料やニッケル、アルミニウム、ステンレス鋼等の金属材料を採用することができる。導電材は1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。導電材の形状は特に限定されるものではないが、粒子状或いは繊維状であることが好ましい。粒子状の導電材は、例えば、1次粒子径が5nm以上10μm以下であることが好ましい。繊維状の導電材は、例えば、繊維径が10nm以上1μm以下で、アスペクト比が20以上であることが好ましい。 As the conductive material, any known conductive material as a conductive material constituting the active material mixture can be adopted. For example, carbon materials such as acetylene black, ketjen black, VGCF, and carbon nanofibers and metal materials such as nickel, aluminum, and stainless steel can be adopted. As the conductive material, only one kind may be used alone, or two or more kinds may be mixed and used. The shape of the conductive material is not particularly limited, but it is preferably in the form of particles or fibers. The particulate conductive material preferably has, for example, a primary particle diameter of 5 nm or more and 10 μm or less. The fibrous conductive material preferably has, for example, a fiber diameter of 10 nm or more and 1 μm or less and an aspect ratio of 20 or more.

第2の分散工程S3において、活物質及び導電材の供給量(分散媒に対する固体電解質、活物質及び導電材の体積比、分散媒における固形分濃度)は、特に限定されるものではないが、活物質及び導電材の量が少な過ぎても多過ぎても、生産性等が悪化する虞がある。この点、第2の分散工程S3においては、分散媒と固体電解質と活物質と導電材との体積の合計を基準(100体積%)として、固体電解質と活物質と導電材とが合計で10体積%以上70体積%以下となるように、活物質及び導電材の供給量を調整することが好ましい。下限がより好ましくは20体積%以上、さらに好ましくは30体積%以上であり、上限がより好ましくは50体積%以下、さらに好ましくは40体積%以下である。尚、固体電解質と活物質と導電材との配合比は特に限定されるものではなく、目的とする活物質合材の組成に応じて適宜調整すればよい。 In the second dispersion step S3, the supply amount of the active material and the conductive material (the volume ratio of the solid electrolyte to the dispersion medium, the active material and the conductive material, and the solid content concentration in the dispersion medium) is not particularly limited. If the amount of the active material and the conductive material is too small or too large, the productivity and the like may deteriorate. In this regard, in the second dispersion step S3, the total volume of the solid electrolyte, the active material, and the conductive material is 10 based on the total volume of the dispersion medium, the solid electrolyte, the active material, and the conductive material (100% by volume). It is preferable to adjust the supply amount of the active material and the conductive material so as to be 50% by volume or more and 70% by volume or less. The lower limit is more preferably 20% by volume or more, further preferably 30% by volume or more, and the upper limit is more preferably 50% by volume or less, still more preferably 40% by volume or less. The blending ratio of the solid electrolyte, the active material, and the conductive material is not particularly limited, and may be appropriately adjusted according to the composition of the target active material mixture.

尚、第2の分散工程S3において、活物質及び導電材は粉体供給装置10から乾式で供給されてもよいし、溶媒等とともに湿式で供給されてもよい。 In the second dispersion step S3, the active material and the conductive material may be supplied dry from the powder supply device 10 or may be supplied wet together with a solvent or the like.

以上の通り、製造方法S10においては、粉体混合ポンプ40を備える循環式の混合装置100において、分散媒を循環させながら活物質合材の混合を行う場合に、固体電解質を分散させた後で活物質及び導電材の分散を行うことで、合材の凝集を抑え、合材の粒度を下げることができる。製造方法S10を経て得られる活物質合材はスラリー状(或いはペースト状)であり、例えば、そのまま電極作製のための塗工プロセスに適用可能である。 As described above, in the manufacturing method S10, when the active material mixture is mixed while the dispersion medium is circulated in the circulation type mixing device 100 provided with the powder mixing pump 40, after the solid electrolyte is dispersed. By dispersing the active material and the conductive material, it is possible to suppress the aggregation of the mixture and reduce the particle size of the mixture. The active material mixture obtained through the production method S10 is in the form of a slurry (or a paste), and can be applied as it is to a coating process for producing an electrode, for example.

1.混合装置の構成
日本スピンドル製造株式会社製ジェットペースタ(登録商標)を用いて図1に示すような配置にて混合装置を構成した。
1. 1. Configuration of mixing device A mixing device was configured using a jet pacer (registered trademark) manufactured by Nihon Spindle Manufacturing Co., Ltd. in the arrangement shown in FIG.

2.比較例
混合装置を作動させて、溶媒(酪酸ブチル)とバインダー(PVDF)とを分散媒として混合装置内に循環させた。その後、混合装置を作動させた状態で、粉体供給装置から固体電解質(主成分:LiS−P、粒子径:約0.2〜2μm)と活物質(正極の場合はNCM、 負極の場合はC、Si又はLiTiO、粒子径:約1〜5μm)と導電材(VGCF、繊維径:約150nm 繊維長さ3〜20μm)とを分散媒中に一括で供給し、分散媒中に固体電解質と活物質と導電材とを分散させて、スラリー状の活物質合材(固形分濃度37体積%)を得た。固体電解質等供給後の運転時間は20分で、粉体混合ポンプ内部のローターの周速を36m/sとした。
2. 2. Comparative Example The mixing device was operated, and the solvent (butyl butyrate) and the binder (PVDF) were circulated in the mixing device as a dispersion medium. After that, with the mixing device activated, the solid electrolyte (main component: Li 2 SP 2 S 5 , particle size: about 0.2 to 2 μm) and the active material (NCM in the case of a positive electrode) from the powder supply device. In the case of a negative electrode, C, Si or Li 3 TiO 4 , particle diameter: about 1 to 5 μm) and a conductive material (VGCF, fiber diameter: about 150 nm, fiber length 3 to 20 μm) are collectively supplied into the dispersion medium. The solid electrolyte, the active material, and the conductive material were dispersed in the dispersion medium to obtain a slurry-like active material mixture (solid content concentration: 37% by volume). The operating time after supplying the solid electrolyte and the like was 20 minutes, and the peripheral speed of the rotor inside the powder mixing pump was set to 36 m / s.

3.実施例
混合装置を作動させて、溶媒(同上)とバインダー(同上)とを分散媒として混合装置内に循環させた。その後、混合装置を作動させた状態で、粉体供給装置から固体電解質(同上)を分散媒中に供給し、1回目の分散処理を行った。引き続き、混合装置を作動させた状態で、粉体供給装置から活物質(同上)と導電材(同上)とを分散媒中に供給し、2回目の分散処理を行い、分散媒中に固体電解質と活物質と導電材とを分散させて、スラリー状の活物質合材(固形分濃度39.7体積%)を得た。固体電解質供給後の運転時間は10分、活物質及び導電材供給後の運転時間は10分で、粉体混合ポンプ内部のローターの周速を36m/sとした。
3. 3. Example The mixing device was operated, and the solvent (same as above) and the binder (same as above) were circulated in the mixing device as a dispersion medium. Then, with the mixing device operated, the solid electrolyte (same as above) was supplied from the powder supply device into the dispersion medium, and the first dispersion treatment was performed. Subsequently, with the mixing device operated, the active material (same as above) and the conductive material (same as above) are supplied from the powder supply device into the dispersion medium, and the second dispersion treatment is performed, and the solid electrolyte is added to the dispersion medium. And the active material and the conductive material were dispersed to obtain a slurry-like active material mixture (solid content concentration 39.7% by volume). The operating time after supplying the solid electrolyte was 10 minutes, the operating time after supplying the active material and the conductive material was 10 minutes, and the peripheral speed of the rotor inside the powder mixing pump was 36 m / s.

4.活物質合材の粒度の測定
比較例及び実施例のそれぞれについて、粒度分布測定器(グラインドゲージ)によって、JIS K5400−1990に従って、スラリー状の活物質合材の粒度を測定した(スラリーを引き伸ばし、粒4粒以上又はスジ3本以上が発生した部分の数字を粒ゲージ値とした。具体的には、線状に表れるツブによる評価で、10mm以上連続した線状が1つの溝について3本以上並んで現れた箇所の目盛を読み取った。2本の溝の数値が異なるときは、数値の大きい方の目盛を読み取った)。結果を図3に示す。図3に示す結果から明らかなように、粉体混合ポンプを用いた循環式の混合装置においては、固体電解質と活物質及び導電材とをこの順に分割して混合することで、最終的に得られる活物質合材の粒ゲージの到達粒度が大きく低減することが分かった。
4. Measurement of particle size of active material mixture For each of the comparative examples and the examples, the particle size of the slurry-like active material mixture was measured by a particle size distribution measuring device (grind gauge) according to JIS K5400-1990 (slurry was stretched, and the slurry was stretched. The number of the part where 4 or more grains or 3 or more streaks were generated was used as the grain gauge value. The scales of the parts that appeared side by side were read. When the values of the two grooves were different, the scale with the larger value was read). The results are shown in FIG. As is clear from the results shown in FIG. 3, in a circulation type mixing device using a powder mixing pump, the solid electrolyte, the active material, and the conductive material are divided and mixed in this order to finally obtain the result. It was found that the ultimate particle size of the grain gauge of the active material mixture was greatly reduced.

本開示の製造方法により製造された活物質合材は、例えば、硫化物固体電池の正極合材や負極合材として好適に利用できる。硫化物固体電池は携帯機器用等の小型電源から車搭載用等の大型電源まで、広く好適に利用できる。 The active material mixture produced by the production method of the present disclosure can be suitably used as, for example, a positive electrode mixture or a negative electrode mixture of a sulfide solid-state battery. The sulfide solid-state battery can be widely and suitably used from a small power source for mobile devices to a large power source for mounting on a car.

10 粉体供給装置
20 攪拌タンク
30 送液ポンプ
40 粉体混合ポンプ
100 混合装置
10 Powder supply device 20 Stirring tank 30 Liquid transfer pump 40 Powder mixing pump 100 Mixing device

Claims (1)

粉体供給装置と、攪拌装置を有する攪拌タンクと、送液ポンプと、粉体の吸い込み、液体の送り、並びに、粉体及び液体の混合を行うことが可能な粉体混合ポンプと、を備え、前記粉体供給装置と前記攪拌タンクと前記送液ポンプと前記粉体混合ポンプとが接続されてなる混合装置を用いて活物質合材を製造する方法であって、
前記混合装置を作動させて前記混合装置内に分散媒を循環させる、循環工程と、
前記混合装置を作動させた状態で前記粉体供給装置から固体電解質を供給して前記分散媒中に分散させる、第1の分散工程と、
前記第1の分散工程後に、前記混合装置を作動させた状態で前記粉体供給装置から活物質及び導電材を供給して前記分散媒中に分散させる、第2の分散工程と
を備える、活物質合材の製造方法。
It is provided with a powder supply device, a stirring tank having a stirring device, a liquid feeding pump, and a powder mixing pump capable of sucking powder, feeding liquid, and mixing powder and liquid. A method of manufacturing an active material mixture using a mixing device in which the powder supply device, the stirring tank, the liquid feeding pump, and the powder mixing pump are connected.
A circulation step in which the mixing device is operated to circulate the dispersion medium in the mixing device, and
The first dispersion step of supplying a solid electrolyte from the powder supply device and dispersing it in the dispersion medium while the mixing device is operated.
After the first dispersion step, the active material comprises a second dispersion step of supplying an active material and a conductive material from the powder supply device in a state where the mixing device is operated and dispersing the active material and the conductive material in the dispersion medium. Manufacturing method of material mixture.
JP2018055067A 2018-03-22 2018-03-22 Manufacturing method of active material mixture Active JP6973223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018055067A JP6973223B2 (en) 2018-03-22 2018-03-22 Manufacturing method of active material mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055067A JP6973223B2 (en) 2018-03-22 2018-03-22 Manufacturing method of active material mixture

Publications (2)

Publication Number Publication Date
JP2019169299A JP2019169299A (en) 2019-10-03
JP6973223B2 true JP6973223B2 (en) 2021-11-24

Family

ID=68108452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055067A Active JP6973223B2 (en) 2018-03-22 2018-03-22 Manufacturing method of active material mixture

Country Status (1)

Country Link
JP (1) JP6973223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021126598A (en) 2020-02-10 2021-09-02 日本スピンドル製造株式会社 Dispersion device and powder feed member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721494B2 (en) * 2011-03-25 2015-05-20 出光興産株式会社 Slurry composition for lithium secondary battery electrode and battery using the same
JP2014241282A (en) * 2013-05-16 2014-12-25 トヨタ自動車株式会社 Method for manufacturing electrode body
JP2015018709A (en) * 2013-07-11 2015-01-29 トヨタ自動車株式会社 Method of manufacturing negative electrode body
JP2015037009A (en) * 2013-08-12 2015-02-23 株式会社イズミフードマシナリ Dispersion/mixture system with dispersion/mixture pump used for manufacturing slurry containing carbon
JP2015222651A (en) * 2014-05-22 2015-12-10 トヨタ自動車株式会社 Method for producing paste
CN109478685B (en) * 2016-06-03 2022-03-25 富士胶片株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, electrode sheet, and method for producing same
JP7013681B2 (en) * 2016-06-06 2022-02-01 トヨタ自動車株式会社 A continuous extrusion kneader for producing a mixture for an electrode active material layer, and a method for producing a mixture for an electrode active material layer, an electrode laminate, and an all-solid-state battery using the continuous extrusion kneader.

Also Published As

Publication number Publication date
JP2019169299A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6576452B2 (en) Method for producing slurry for positive electrode of non-aqueous electrolyte secondary battery and slurry for positive electrode of non-aqueous electrolyte secondary battery
KR101636604B1 (en) Dispersing mixer system equipped with dispersing mixer pump used in producing slurry containing carbon and producing method of slurry containing carbon
CN106669520B (en) Preparation device and method for lithium ion battery slurry
CN104854737B (en) The manufacture method of lithium ion secondary battery negative pole slurries
JP2013254699A (en) Conductive material-containing master batch, and method for manufacturing electrode slurry
CN103904303A (en) Preparation method of high-capacity nanoscale lithium iron phosphate electrode plate with long service life
JP6973223B2 (en) Manufacturing method of active material mixture
JP2021150158A (en) Aqueous slurry for battery, manufacturing apparatus, and manufacturing method of the aqueous slurry for the battery
JP7111552B2 (en) Manufacturing method and manufacturing apparatus for active material mixture
JP6874245B2 (en) Stirring system and its operation method
JP5601341B2 (en) Method for producing lithium ion secondary battery
JP5655362B2 (en) Continuous production apparatus and continuous production method for electrode mixture-containing composition slurry for secondary battery
JP6744569B2 (en) Method for producing slurry for negative electrode of non-aqueous electrolyte secondary battery and slurry for negative electrode of non-aqueous electrolyte secondary battery
CN111029586B (en) High-rate lithium ion battery anode slurry
CN113594403B (en) Granular carbon anode and preparation method and application thereof
JP2017147081A5 (en)
JP2016046017A (en) Conductive material containing aqueous master batch, electrode slurry, and method of manufacturing the same
TWI741232B (en) Method and device for producing slurry for positive electrode of non-aqueous electrolyte secondary battery
WO2018211610A1 (en) Method for manufacturing negative electrode slurry for non-aqueous electrolyte secondary battery, and negative electrode slurry for non-aqueous electrolyte secondary battery
JP2023069327A (en) Method for producing slurry
JP6704284B2 (en) Method for producing positive electrode slurry for non-aqueous electrolyte secondary battery
JPH11317219A (en) Manufacture of active material paste for secondary battery
JP2023082871A (en) Electrode manufacturing method
JP2023092195A (en) Electrode sheet manufacturing method
CN113363470A (en) Method for quickly obtaining appropriate range of solid content in slurry kneading and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6973223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151